<RNEL

S
4ope

T Kobe University Repository : Kernel

PDF issue: 2024-11-17

Effect of gravitational waves on magnons

Ito, Asuka

(Degree)
Bt (EZF)

(Date of Degree)
2020-03-25

(Date of Publication)
2021-03-01

(Resource Type)
doctoral thesis

(Report Number)
FHE76995

(URL)
https://hdl. handle. net/20.500. 14094,/D1007699

X YAVTFUVIIHRRZOEMBRTY, BEH - FEFEASE2RELCET, ZEEETROLNTVWREEANT. BUNICTFALCLEIW,

\j].\i\'l:lihl'['\'
AN



Effect of gravitational waves on magnons

Asuka Ito






Contents

Abstract
Acknoledgements
1 Introduction

2 Gravitational waves

2.1 The wave equation of gravitational waves . . . . . . . . . ... ... ... ..

2.2  Energy of gravitational waves . . . .

2.3 Observables of gravitational waves . .
2.3.1 Spectral density Sp(f) . . . .
2.3.2 Characteristic amplitudes h.(f)
2.3.3 The energy density parameter

3 A proper reference frame
3.1 Fermi normal coordinates . . . . ..

3.2 Earth’s gravity . . . ... ... ...

4 Gravitational effects on fermions

4.1 Dirac fields in curved spacetime . . .

4.2 Non-relativistic limit of the Dirac equation . . . . . . . ... ... ... ...

5 Magnons

5.1 Magnons as corrective spin excitations

3

13
13
18
22
22
24
24

27
27
32

39
39
42

49
49



5.2 Graviton-magnon resonance . . . . . . o. ... e e e e e

6 Limits on GHz gravitational waves with magnons
6.1 Axion-magnon resonance . . . . . . . .. ...
6.2 Measurement of resonance fluorescence of magnons . . . . .. ... .. ...

6.3 Discussion and future prospects . . . . . .. ..o
A The geodesic deviation equation
B Expansion in powers of S

References

CONTENTS

23

57
57
60
63

65

69

71



Abstract

In this thesis, we propose a novel method for detecting gravitational waves around GHz
range with magnons. The magnons as corrective spin excitations have been studied exten-
sively in the field of the cavity quantum electrodynamics both in theory and experiment.
We investigate the possibility to use magnons for detecting gravitational waves. It is shown
that gravitational waves can excite magnons. Therefore, gravitational waves can be probed
by measuring resonance fluorescence of magnons. Moreover, in the process of deriving the
interactions between gravitational waves and magnons, we reveal all possible gravitational
effects on a non-relativistic fermion with a mass m in Fermi normal coordinates up to order of
1/m. Finally, we give experimental upper limits on the amplitude of continuous gravitational
waves around GHz range by utilizing the experimental results of resonance fluorescence of
magnons. In terms of the spectral density of gravitational waves, the upper limits at 95
% C.L. are given by 7.5 x 107 [Hz /%] at 14 GHz and 8.7 x 1078 [Hz '/?] at 8.2 GHz,

respectively.
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Chapter 1
Introduction

In 2015, the gravitational wave interferometer detector LIGO [1] opened up full-blown
multi-messenger astronomy and cosmology, where electromagnetic waves, gravitational waves,
neutrinos, and cosmic rays are utilized to explore the universe. In future, as the history of
electromagnetic wave astronomy tells us, multi-frequency gravitational wave observations will
be required to boost the multi-messenger astronomy and cosmology.

The purpose of this thesis is to present a novel idea for extending the frequency frontier
in gravitational wave observations and to report the first limit on GHz gravitational waves.
As we will see below, there are experimental and theoretical motivations to probe GHz
gravitational waves.

First, it is useful to review the current status of gravitational wave observations [2]. It
should be stressed that there exists the lowest measurable frequency. Indeed, the lowest
frequency we can measure is around 10718 Hz below which the wave length of gravitational
waves exceeds the current Hubble horizon. Measuring the temperature anisotropy and the
B-mode polarization of the cosmic microwave background [3, 4], we can probe gravitational
waves with frequencies between 107 Hz and 1071 Hz. Astrometry of extragalactic radio
sources is sensitive to gravitational waves with frequencies between 1071° Hz and 10~° Hz |5,
6]. The pulsar timing arrays, like EPTA [7, 8] and NANOGrav [9], observe the gravitational
waves in the frequency band from 10~ Hz to 10~7 Hz. Doppler tracking of a space craft, which

uses a measurement similar to the pulsar timing arrays, can search for gravitational waves
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in the frequency band from 1077 Hz to 1073 Hz [10]. The space interferometers LISA [11]
and DECIGO [12] can cover the range between 1072 Hz and 10 Hz. The interferometer
detectors LIGO [13], Virgo [14], and KAGRA [15] with km size arm lengths can search
for gravitational waves with frequencies from 10 Hz to 1 kHz. In this frequency band,
resonant bar experiments [16] are complementary to the interferometers [17]. Furthermore,
interferometers can be used to measure gravitational waves with the frequencies between 1
kHz and 100 MHz. In fact, recently, the limit on gravitational waves at MHz was reported [18].
To our best knowledge, the measurement of 100 MHz gravitational waves with a 0.75m arm
length interferometer [19] is the highest frequency gravitational wave experiment to date.
Thus, the frequency range higher than 100 MHz is remaining to be explored. Given this
experimental situation, experiments for GHz gravitational waves are desired to extend the

frequency frontier.

Theoretically, GHz gravitational waves are interesting from various points of view. As
is well known, inflation can produce primordial gravitational waves. Among the features
of primordial gravitational waves, the most clear signature is the break of the spectrum,
determined by the energy scale of inflation, which locates at around GHz. Moreover, cor-
responding to the end of inflation or just after inflation, there may be a high frequency
peak of gravitational waves [20, 21]. Remarkably, there is a chance to observe non-classical
nature of primordial gravitational waves with frequency between MHz and GHz [22]. On
the other hand, there are many astrophysical sources producing high frequency gravitational
waves [23]. Among them, primordial black holes may be the most interesting one because
they give rise to a hint of information loss problem. Exotic signals from extra dimensions
may exist in the GHz band [24, 25]. Hence, GHz gravitational waves could be a window to
the extra dimensions [26]. Therefore, it is worth investigating GHz gravitational waves to

understand the astrophysical process, the early universe, and quantum gravity.

In this thesis, we propose a novel method for detecting GHz gravitational waves with a
magnon detector, based on our paper [27]. The thesis is organized as follows. In the chapter
2, we review a formulation of gravitational waves as perturbations of a spacetime metric.

Observables of gravitational waves are explained while introducing the energy of gravita-
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tional waves. In the chapter 3, we introduce a proper reference frame, which is a coordinate
used in real experiments. Also, we explain how to treat the effect of Earth’s gravity on
the proper reference frame. It will turn out Earth’s gravity is negligible in our discussion.
In the chapter 4, we study the Dirac equation in curved spacetime in order to investigate
effects of gravitational waves on a fermion. We will see, by taking the non-relativistic limit,
that gravitational waves can cause spin resonance of the fermion. Furthermore, all possible
gravitational interactions with a non-relativistic fermion (mass m) in Fermi normal coordi-
nates up to order of 1/m are found. In the chapter 5, we first explain what a magnon is.
Moreover, it is shown that gravitational waves excite magnons in a ferromagnetic insulator
in the presence of external magnetic fields. In the chapter 6, using experimental results of
measurements of resonance fluorescence of magnons, we give upper limits on the spectral
density of gravitational waves, 7.5 x 107 [Hz~"/?] at 14 GHz and 8.7 x 108 [Hz /2] at 8.2

GHz, respectively. Finally, discussion and future prospects are given in the section 6.3.






Chapter 2

Gravitational waves

In this chapter, we derive the wave equation for metric perturbations by expanding the
FEinstein equation around the Minkowski spacetime up to linear order. It will turn out that
the propagating degrees of freedom are nothing but the gravitational waves. Furthermore,
we will define the energy and several characteristic parameters of gravitational waves in the
following sections.

The discussion in the section 2.1 is based on [28] and the definition of the variables in the

section 2.3 follows [16].

2.1 The wave equation of gravitational waves

Let us consider the Einstein equation at a vacuum. It is given by

1

RW—2

Rg, =0, (2.1)

where g, is a metric, R, is the Ricci tensor and R is the Ricci scalar. As a solution of
Eq. (2.1), our universe is described by the Minkowski spacetime, g,,, = 7),,, when there are
no matters. Now we assume that there are small perturbations on the Minkowski spacetime

and consider a small perturbation of the metric as

G = Ny + h,uz/ . (22)

13
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Then the inverse of the metric is given by
gt =nt — | (2.3)

because ¢"*g,, =~ 0¥ at linear order. We now study the solution of the Einstein equation
(2.1) at linear order under the metric ansatz (2.2). From Eq.(2.2), one can calculate the

Christoffel symbol up to linear order as

aé(

o 1
Fﬁy = 59 9868,y + g~é,8 — gﬂ'y,z?)

12

1 (07
3 *(hgsy + hsg — hpye)
1 @ @ Net
- §<h 5 T h%e = hg") - (24)

Here we can raise and lower the index of h,, by 7,,. Thus, h,, can be treated as a tensor

on the flat spacetime. The Riemann tensor is given by

re, ,—re

¢4 ~
upy

uv, B uBv
= %(hau,l/ + halau - hul;a>v/3 - %(hamﬁ + haﬁuu - huéa)»”
S = B = W 10 2:5)
The Ricci tensor is
Riv = 50— M= B+ %)
_ %(hay,w Ol — b + ™) (2.6)
where O = 0°0,, h = h%. Also the Ricci scalar is
R=h" ,—0Oh. (2.7)
Finally we obtain the Einstein tensor as
Guw = Ru— %RQW
_ 1 R e — Oy — hoy + By, + (=0 + Ol | (2.8)

2
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Therefore, the Einstein equation around vacua at linear order is given by

e e — Ol — hog + 0%, + (—ha?aﬂ + Oh), =0 . (2.9)

v

Before solving the equation, we have to consider the gauge freedom, indeed, there remain
unphysical degree of freedoms in h,,,. Why does the gauge freedom exist and how do we deal
with it mathematically?

Recall that we separated the metric into the background one 7,, and the perturbation
h,. However there exists arbitrariness how to map a point in the background spacetime to a
point in the perturbed spacetime and it gives rise to the gauge freedom. Choosing a particular
mapping is called a gauge fixing and transformation among other gauges is called a gauge
transformation. It is important to deal with the gauge freedom appropriately, otherwise one

may misunderstand a gauge artifact as a physical observable.

There are two ways to solve the gauge problem, one is to use gauge invariant variables
and the other is to fix the gauge. The former is that we find gauge invariant variables
which made by linear combination of initial variables and solve the equations about them.
The latter is that we fix the gauge freedom completely and solve the equations about the
remaining physical variables. When we fix the gauge, we have to choose an appropriate gauge
fixing to simplify the equations. It is usual that we choose a coordinate where the physics
looks like simple. In the following, we will learn the gauge fixing method, to do so, we first

explain how to define the gauge transformation.

Let us consider an infinitesimal transformation of the coordinate:

't =gt — M (x) . (2.10)
Then the metric is transformed as
ox® OzP
g () = e Wgaﬁ<x)

12

(0%, + £, (2))(6°%, + €, () gap()
~ gu(x)+ gugéﬁﬂj(x) + gm,g"j“(x) ) (2.11)
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Moreover we pull back the metric from the coordinate z’ to x,

gzux(w/) = giw<x_£)

a /
~ ghule) - D o
= gLV($> - guu,a<x)€a . (212)

From Egs. (2.11) and (2.12), we obtain

Gy () = Gyu(®) = G ()87, + Gow ()87, + Guwia(2)E™ - (2.13)

This is the gauge transformation. It is the variation of the functional form of the metric by an
infinitesimal transformation of the coordinate and the pull back. Note that this procedure is
called the Lie dragging or the Lie derivative. After the gauge transformation, the perturbative

metric becomes

M (@) = g, () = M
= 9us’ () + 9aw€®(2) + Guva(2)E* + G () = Ty
= 915" () + 9aw€® () + Guva(T)E™ + Py ()
= &u + &+ () . (2.14)

Corresponding to the arbitrariness of £, there are freedoms to define the perturbative metric
hy. as deviation from the background metric 7,,,. These freedoms are nothing but the gauge
freedoms.*

Now we have learned what is the gauge freedom and how to describe it mathematically.
Let us return to Eq. (2.9) and solve it with considering the gauge freedom. First, it is useful

to define a new variable,

- 1
Py = Dy — 5?7Wh , (2.15)
whose trace has inverse sign of the original one, i.e., h = —h. Using this variable, we can
rewrite Eq. (2.9) as
Ta 7 PN 7aB _
R e — By + 10", — B s = 0. (2.16)

Notice that the linearized Riemann tensor (2.5) on flat spacetime background is invariant under the

gauge transformation (2.14). This fact will be used in the chapter 4.
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On the other hand, the gauge transformation of Buv is, from Egs. (2.14) and (2.15),
E;w = iLm/ + & + S — My - (2.17)
We now fix the gauge by taking the Lorentz gauge defined by
h;ffa =0. (2.18)
Then from Eq. (2.17), £ must satisfies
OeH = —he (2.19)

This is a non homogeneous wave equation and thus analytic solutions exist. However, adding
a homogeneous solution to the solution is also a solution of Eq. (2.19). It implies that there
still remains uncertainty of the gauge fixing, which is called the residual gauge. More precisely,

the residual gauge is specified by the solution of
LEr =0 . (2.20)

We will come back the problem of the residual gauge soon after. In the Lorentz gauge, the

Einstein equation (2.16) is reduced as
Ohy =0 . (2.21)
The homogeneous wave equation has plane wave solutions:
p = APV eikar® (2.22)
where A,, = A,, and k,k* = 0. Moreover, from the gauge condition (2.18),
APk, =0 . (2.23)

This shows that the wave is transverse wave.

On the other hand, a residual gauge which satisfies the equation (2.20) is

EH = Bretha™ (2.24)
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We can transform A" with the residual gauge as follows:
A" = AW+ i(B*K” + BYK* — " B%k,) . (2.25)
Then using the four components of B,,, one can constrain A,, to be
A% =0 . (2.26)

Note that now
A% =0, (2.27)
is automatically satisfied? . The conditions (2.18), (2.26) and (2.27) are called the transverse
traceless gauge. In this gauge, h,, = izlw, and therefore h,, in the transverse traceless gauge
satisfies
W' =h7=h=0. (2.28)
Above conditions reduce the freedoms of h,, by 8, so that the remaining physical freedoms
are 2. These propagating physical degree of freedoms represent gravitational waves and 2
degree of freedoms are corresponding to the polarizations of the gravitational waves. For
example, if we consider a gravitational wave propagating along z-direction, the components

of the gravitational wave become

00 0 0
0 hy hye O
By = L. (2.29)
0 hy —hy O
00 0 0

It shows that space is distorted by the gravitational wave when it goes through and two kind

of distortion occur corresponding to polarization modes A and h.

2.2 Energy of gravitational waves

We saw that gravitational waves are propagating on spacetime as a solution of the per-

turbative Einstein equation. Gravitational waves carry energy and momentum as well as

’Instead, one can consider giving constraints A0 = A/ﬁ; = 0. Then from the transverse condition (2.23),

A0 — A%k, =0, and A% = 0 give rise to A% =0
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ordinary waves like electromagnetic waves. We want to define the energy momentum tensor
of gravitational waves, however, it is not so clear how to achieve it. Considering the energy

of gravitational waves, the Einstein equation tells us that spacetime is bended:
(GW) _ (GW)
G, =8rG T," (2.30)

where GESW) is the Einstein tensor sourced by the energy momentum tensor of gravitational

GW
waves T,E,, ),

(GW)

Let us examine what 7}, means by evaluating each order of magnitudes of variables.

First, a metric can be separated into a background one and a perturbative one as

Guv = 9;(3,) + h,uzx . (231)

Here order of each variables have been set as gly ~ 6(1) and h,, ~ O(e), respectively.

€ (K 1) represents a certain small numerical value.
We now assume that % < 1 where L is the radius of curvature of the background spacetime

and A is the wave length of gravitational waves. Then order of derivatives of the metrics are

( (0)

(2.32)

Expanding the Einstein equation at a vacuum in series of €, we get
Gu(g) +hw) = GU+GD+GP+---=0. (2.33)

Order of each terms are evaluated as follows:
)
),0(+2),0(5%) » (2.34)
),0(5),0(5) -

We now average the Einstein tensors over a scale [ which satisfies A < | < L and then

G ~6(
G ~ 6
G\ ~6(

o>

% X G-
>
< &

the background spacetime can be regarded as flat spacetime locally, namely, one can take



20 CHAPTER 2. GRAVITATIONAL WAVES

gfg) = gg,),),a = 0. Therefore, the relations (2.34) are reduced to

)
),6(%5) (2.35)

2

), 0(12) -

On the other hand, since gravitational waves are oscillating,

<G>, ~ 6
<G>, ~ 0
<GP >, ~ 6

e Xl -

1
<G)>=0, (2.36)

should hold. Finally, up to the second order of ¢, Eq. (2.33) yields

1 €2 €2

@(ﬁ) = @<ﬁ> or @(L2) . (2.37)
Since € ~ 1 is forbidden by the assumption € < 1, we conclude that
A~el . (2.38)
In this case, from the relations (2.35), we observe that
<G> <GP >~ 6(L),

L
<G>~ 0(L).

eL?

(2.39)

Now at each order of powers of €, the Einstein equation (2.30) is given by following two

equations:
<GY>=0 ,
’;0) o (2.40)
<Guy>:_<Guy>

The first equation is for the wave equation of gravitational waves we derived in the previous
section. On the other hand, comparing the second equation with Eq. (2.30), we find that the

energy momentum tensor of the gravitational wave can be defined by

1
<TEW > = __—_ <q® > | 2.41
uv 87TG y24 ( )
It should be noted the fact that TLSSW) should variate for the scale of L and GE?V) variates for

the scale of A seems to be incompatible. However, they are reconciled by taking average over

the intermediate scale [.
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Now let us calculate Eq. (2.41) explicitly. The Einstein tensor can be written as

a 1 o
G/W = (5,uaﬁu - §guug ﬁ)Raﬁ . (242)

Then, remembering that g" = ¢(©# —h# 4+ h#<h ¥ the part of the second order perturbation

of the Einstein tensor is

o 1 o (2) 1 « o (1)
1 e «

In the second equality, we have extracted the part of order of € (;—22) by regarding the back-

ground spacetime as flat one. Also, R,(fy) is given by the Christoffel symbol as

2) _ 1(2)a 2)a Man(1)s Dan(1)s
RE) =T — 1 4 1o —ierts (2.43)

pv,o [12e% Ba pv

(i)lf s > becomes order of 6 (;—QL) because it is evaluated by a

When we take an average, < I'
surface integral and thus the term is negligible. Moreover, taking the transverse traceless

gauge, hip, = hrr = 0, F(lﬁ)s is zero. Therefore,

< RLQV) > = — < P/(Gl)aFLIOZB >

1
. [0} (0% e B ﬁ 75
- _Z<(h u,,8+h’ ,u_hﬁu>(h a,u+hu,a_hya) >TT

1

_ LA NC] 63 B
= _Z < _2h51/ huva + h,&uha,u >T7T

1 a
= _Z < hﬁ,uhg,,u >7T . (244)

The Ricci scalar is

1
77/”/ < REE) >1T = _Z_lnuy < hg’yhg# >7T

v

12

0,

where we used the integration by parts and the equation of gravitational waves. We now
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have
1
<G > = (030, — 9lg ") < ROy >
= < le >TT
1
= _Z_l < hoiﬁha/g’,, > (245)
From Egs. (2.41) and (2.45), we obtain
1
TGV = 3G < h* hapy >11 (2.46)
In a covariant way, it can be written
(GW) _ 1 af
TMV 327‘[‘G < h® hagy >T77T - (247)

In particular, the energy density of gravitational waves is

(GW) 1 afBi
T < h, ha > . 2.48
00 32 g B8 ~TT ( )

We will move on to the Fourier space and define several parameters to characterize gravita-

tional waves in the next section.

2.3 Observables of gravitational waves

We introduce three parameters characterizing gravitational waves. Although they are
not independent and are related with each other, we use them properly depending on the

situation.

2.3.1 Spectral density S, (f)

Let us consider gravitational waves, h;;(t, Z), at a time ¢ and a position Z. In the Minkowski

spacetime, it can be expanded with plane waves as

A —o0
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where ) denotes the direction of propagation of a gravitational wave, A labels two polariza-
tions and e{‘j(Q) is a polarization tensor which satisfies

e — 5.4 (2.50)

LV Y

Note that h%(f, Q) = ha(—f, —Q) because hy;(t, T) is a real valued function.

We now consider an ensemble average of the two point function of the Fourier coefficient

of gravitational waves:
~ ao~ A 1 1 A A
< I DR (1, 0) 5= S8(f = ') 1=6(0 — @)an250(f) | (251)

where we defined a variable Sy, (f) called the spectral density®. Notice that it has a dimension
Hz~!. We mention that we assumed homogeneity and isotropy of the background spacetime*
and no polarizations of gravitational waves in Eq. (2.51). Furthermore, the factor 1/2 comes
from the fact that the actual integration range of f is 0 ~ oo, the factor 1/4 is a normalization

for the angular integral and the factor 2 in front of S}, is just a convention. From Egs. (2.49)

3Tt is usually called the power spectrum apart from the difference of the coefficient, in particular, in
statistics.
4Considerer an ensemble average of a two point function < h(#)h(#2) > and assume that it only depends

on the distance of the two points, namely £(|@; — Z2|) =< h(#1)h(Z2) >. It’s Fourier coefficient is
< (1 Q)R(fa, D) > = / By dP a1 (0T 2mifa Q2T g (|7, — )
Using a new variable & = 71 — &> instead of Z3 and carrying out the integral with respect to &1, we obtain
< B Q)R fa, Q2) >= 6(f101 + fo20) /d%e—%ih%fgqa) .

The delta function is come from homogeneity of the background spacetime and therefore represents the

momentum conservation. Furthermore, doing the angular integration,
~ - A - A 2 . -
< h(fl, Ql)h(fz, Q2) >= 5(f191 + fQQg) X —E/dxl‘ sm(27rf2x)§(|x\) .

We see that the integrand does not depend on g, so that < A(f1,1)h(fa, Q) > is free from Q. This is a

consequence that the back ground spacetime is isotropic.
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Z// df df’ //deQ’ 2mi( =)t o =2mil | fIQ-11)-2

and (2.51), we have

< hy;(t, Z)h" (¢, T) >

AA
(@) (0 ) 5(f — f) 5(Y = )daxSh(f)
9 / " S(f)
oo
— 1 o 15i() (2.52)
£=0

2.3.2 Characteristic amplitudes h.(f)

We define the characteristic amplitudes h.(f) as follows:
f=00

< hy (8, )R (£, F) >=2 /f d(log f)RA(f) . (2.53)

=0
Notice that h.(f) is a dimensionless parameter. The factor 2 is for the number of polariza-

tions. Comparing Eqgs. (2.52) and (2.53), we find a relation

he(f) = 2fSu(f) - (2.54)

2.3.3 The energy density parameter

Finally, we define the energy density parameter Qgqw (f) as

1 dpew
Qow(f) = — ) 2.55)
) pe dlog(f) (
It is the energy density of gravitational waves divided by the critical density p. = % =

Snghz (100km/s Mpc)?, which is the current energy density of the Universe. Note that

Qaw (f) is a dimensionless parameter. Practically, h2Qcow is used rather than Qg because
ho contains observational uncertainty. On the other hand, using Eq. (2.52) in Eq. (2.48), we
have

1 . .
= —— < h,(t, )" (t, 2
pPew 327G < 2 ( ,$) ( ,.I) >

(2m)”

f=o \
= 5 g 4/f:0 d(log ) f°Su(f) - (2.56)
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Hence,
dpew ™
m = 2Gf35h(f)
= SR

Therefore from Eq. (2.55), one obtain

47
Qow(f) = 3—[{02f35h(f)
27?2

ST r2
sz’

he(f) -

25

(2.57)

(2.58)

(2.59)

(2.60)

Of these observables characterizing gravitational waves, the most useful one is used according

to each situation. However they are related with each other through Egs. (2.59) and (2.60)

and thus we can always convert from one to the others. An observation of gravitational waves

mean the measurement of these variables.






Chapter 3
A proper reference frame

As we saw in the section 2.1, gravitational waves as the perturbations of the metric
are propagating on the (flat) spacetime. Then, we chose a coordinate system where the
metric satisfies the transverse traceless condition (2.28). However, if one wants to observe
effects of gravitational waves with a certain detector, a coordinate system which is fixed with
the detector, we call it the proper reference frame, should be used to examine the effects.
Otherwise, we may get wrong conclusion since gravity is closely related to the coordinate
system due to the equivalence principle. In the section 3.1, we introduce Fermi normal
coordinates which origin is moving along a geodesic of a particle. We also investigate the
effect of Earth’s gravity on Fermi normal coordinates in the section 3.2.

I referred [29, 30, 31] at some parts in this chapter and they would also be helpful for

readers.

3.1 Fermi normal coordinates

One can construct locally inertial coordinates along a geodesic of a particle, it is called
Fermi normal coordinates [32]. An observer on the earth is freely falling assuming that the
earth’s gravity, which will be examind in the next section, is negligible, so that a Fermi
normal coordinate corresponds to a frame which is used in a real experiment. In this section,

we briefly review how to construct Fermi normal coordinates [32].

27
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We consider a timelike geodesic ~, parametrized by a proper time 7 and specify the

points on the geodesic as P(7). Moreover, we consider a spacelike geodesic v, orthogonal to

5

v, which is parametrized by a proper distance s° and is crossing a point P(7) on 7, when

s = 0. The situation is illustrated in Fig. 3.1.

Figure 3.1: A timelike geodesic v, parametrized by a proper time 7 and a spacelike geodesic

vs parametrized by a proper distance s, which is orthogonal to ~;, are illustrated.

Then, Fermi normal coordinates which is locally inertial frames along ~, are defined as
follows:
=7, 2'=a's, (3.1)

9

, 507> are defined to be parallelly transformed

along with 7, and o' are components of the tangent vector % in Fermi normal coordinates,

where the bases of Fermi normal coordinates

actually,
0 o,
! . (3.2)

%:aﬁxi

are taken to be orthonormal by utilizing the arbitrariness of rescaling

Also, the bases

Y Oxk)?

«'. Thus in Fermi normal coordinates, a metric is given by 7,, on 7,.°

5Although one can use affine parameters instead of s, it does not change the following discussion.
6Note that orthonormality is hold at every point on ~, if it is satisfied at one point on +,, because a

parallel transformation keeps orthonormality.
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Let us show that Fermi normal coordinates (3.1) indeed are locally inertial frames, namely,
the Christoffel symbols are zero on ~,. First, because the bases of Fermi normal coordinates

are parallelly transformed along ~,, we have

o\ [0\
= (o). (&)
= (6),0 0

= I (" =1,2"=0)

= FllfO|'YT ? (33)

where we used the fact that vector components of the bases of Fermi normal coordinates are

( aiy)“ = 0¥. On the other hand, on the spacelike geodesic s, the geodesic equation

d*at dx® dxP
w2 3.4
ds? T s ds ds ’ (34)
is satisfied. Using (3.1) in Eq. (3.4), we obtain
(N A SN S S
[(a" =7,0" = a's)a’'a’ = 0. (3.5)
In particular on ~,, namely at s = 0, we conclude that
(2 =72 =0)=T%], =0. (3.6)

Therefore, from Egs. (3.3) and (3.6), we see that the christoffel symbols on the timelike
geodesic v, are all zero and thus Fermi normal coordinates are locally inertial frames along
Vr-

Now our question is what the form of a metric in Fermi normal coordinates is. Locally
inertial coordinates mean that considering an expansion of a metric in powers of the coor-
dinates x*, a nonzero derivative term of the metric first appears at quadratic order. The
quadratic term is the leading one, namely higher derivative terms are negligible, in a situa-
tion that a curvature scale is much larger than that of a system we treat, which is specified
by the coordinates x#. The situation agrees with what we will consider in following chapters,

so that we can ignore the higher derivative terms of the metric than quadratic. Therefore, in
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order to find the form of a metric in Fermi normal coordinates, it is enough to get the second
derivative term of the metric for our purpose.

Because the second derivative of a metric is related to the first derivative of christoffel
symbols, we investigate the latter one to reveal the former one. Since the christoffel symbols

are all zero along the geodesic ~;, it implies
Fi\,o‘w =0. (3.7)
Then, by the definition of a Riemann tensor, we find
Fﬁo,ﬂ% = Rﬁ,\o|% : (3.8)
To go further, we use the geodesic deviation equation (A.5):
d2 gu dfa

0 0 o
o T2 Dot + (R + Th, 5+ ThsTe, — TiTos) u™’€ =0, (3.9)

where \ takes 7 or s in general. We notice that a point on 7, is specified by the parame-
ters (7, s,a’). Then, as to the spacelike geodesic 7, one can consider two deviation vectors;

one is (8%)5 . and the other is (%)m' (a%)s . represents a deviation between two space-
il

Oat

like geodesics which stem from different points on ~, and ( )Ts represents a deviation

between two spacelike geodesics which stem from a same point P(7) on ~,. Substituting

¢ = (Z)" . =3 into Eq.(3.9) yields
(Tl b = Rijole) /e =0, (3.10)

but we have already known that the inside of the parenthesis is 0 because of Eq. (3.8). On

the other hand, substituting £# = (aii)” = 50t into Eq. (3.9), we obtain

2o + sRé.‘ikhTajak + 5FZ7k]77ajak +0(s)=0. (3.11)

The first term in Eq. (3.11) can be expanded in powers of s as

0s
| alak . (3.12)

. 4 0 4
2l = 2I],. 07 + 25 <—ny> o’
at vr

= 25"

ij,k



3.1. FERMI NORMAL COORDINATES 31

From Egs. (3.11) and (3.12), at order of s, we find that an equality

(Ffj,k’% + %R?ik‘%) alak =0, (3.13)
holds. It implies that the symmetric part about indeies of 5 and % in the parenthesis should
be zero, i.e.,

FZ,H% + ka,ﬂ% = _% (Rﬁikh + RZiﬂ%) . (3-14)

After little algebras, this can be solved with respect to the derivative of the Christoffel symbol
as

Dkl = _é (Rlely, + Rigly.) - (3.15)

Finally, we express the second derivative of the metric by the first derivative of the
Christoffel symbols and then relations between the second derivative of the metric and the

Riemann tensor are obtained. From the definition of the Christoffel symbol, we have
Guvx = guarg)\ + guarloj)\ . (316)
Differentiating it with respect to x7 leads

gw/,/\a|% = WuaFSA,aHT + nvarz)\,al’yr : (3.17)

Using Eqgs. (3.7), (3.8) and (3.15) in Eq. (3.17), one can deduce following equations:

Guwor = 0,

Jooij = —QROinHT )

Joijk = —g (Rojikly, + Rokijlv,)

Gijhl = —% (Rikjily. + Rajily,) - (3.18)

Therefore, in fermi normal coordinates, up to quadratic order of the coordinates, a metric is

given by
goo = —1— Ryl a2, (3.19)
2 .
goi = —gROjikhﬂjxk ) (3.20)
1
9i; = 0ij — = Rinjily, 2Fa (3.21)

3
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We note that the Riemann tensor is evaluated on the timelike geodesic 7,, so that it only
depends on z°. Tt should be mentioned that the Riemann tensor in Egs. (3.19)-(3.21) is
constructed on Fermi normal coordinates. Thus, we generally have to transform a Riemann
tensor which is evaluated on a metric we consider to a Riemann tensor constructed on Fermi
normal coordinates. However, the two Riemann tensors coincide with each other in special
cases. For example, a linearized Riemann tensor on the flat spacetime background is invariant
under a gauge transformation as mentioned in the footnote 1. It implies that the Riemann
tensor constructed in Fermi normal coordinates is the same as that in the transverse traceless
gauge. Therefore, we can use (2.5) in Egs. (3.19)-(3.21) when we consider gravitational waves

on the flat spacetime background. It simplifies discussions in following chapters a little bit.

3.2 Earth’s gravity

In the previous section, we constructed locally inertial coordinates along a geodesic for
a freely falling observer, namely Fermi normal coordinates. However, an observer is not
freely falling if he is bounded on Earth because of Earth’s gravity. Thus, he is accelerating
by receiving a force from the ground; first, he accelerates against the gravity of Earth g =
9.8 m/s%. Second, he is rotationally accelerating because of Earth’s rotation. We will evaluate
these gravitational effects of Earth [30, 33]. It will turn out that these effects are negligible in
discussion we will develop in following chapters and so skipping this section and proceeding
to the next chapter does not cause any problem. Nevertheless, it is worth studying how
the effects of Earth’s gravity appears and why they are negligible for our purpose to detect
gravitational waves with magnons.

The set up to consider Earth’s gravity is almost the same as the case of construction of
Fermi normal coordinates; we first consider a timelike geodesic 7, parametrized by a proper
time 7 and second construct a spacelike geodesic 7, parametrized by a proper distance s,
which crosses v, at s = 0. The situation is illustrated by Fig.3.1. A difference compared
with the construction of Fermi normal coordinates appears in the way of transformation of

the orthonormal bases e, which cover small region around a point on ;. Although the bases
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e, are parallelly transformed along ~;, i.e. %eu = 0, in the construction of Fermi normal

coordinates’, now e, are transformed as following, due to Earth’s gravity [30]:

D

Ee“ = —Q-e,

= Q" (e, Ne)- e,

= e, (3.22)

where Q*” is an infinitesimal Lorentz transformation defined by

Q= (a"u” — a’ut) + ugwge™
= W +rw . (3.23)
Also, -
wh = % : (3.24)
is a four velocity,
at = C;L: , (3.25)

is a four acceleration and w, represents an angular velocity of rotation of spatial bases e;.
Note that orthonormality of the bases are hold under the evolution (3.22) as a consequence
of anti symmetricity of Q*”.

One finds that g){2*" represents just a three dimensional rotation in terms of four dimen-

sional covariant form by considering a rest frame, i.e. u* = (1,0,0,0), because

—eqa®)f§l; = —eauwwgewaﬂ

0ij

= W;€;¢€ M

= (wxey) (3.26)

p=k 7

where we identified the label of the bases e, as the component of them due to orthonormality
to obtain the last equality and u = k£ denotes that p takes a spatial index. In order to take
into account rotationally acceleration due to Earth’s gravity, w would correspond to the

angular velocity of the Earth’s rotation.

TAt this time, we do not limit the discussion to the coordinate bases given by Eq. (3.1).
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The transformation 72" is called the Fermi-Walker transport. Let us reveal what the
the Fermi-Walker transport is. Begin by considering an observer who is accelerating with
magnitude of the gravity of Earth, aa, = ¢°, along z'-coordinate in an inertial frame®.
Then, because an acceleration vector defined by (3.25) is orthogonal to the four velocity, we
have

a'u, = —a’u’ + a'u' =0 . (3.27)

Using it and an explicit relation
a'a, = —a’a’ + a'a' = ¢* | (3.28)

one can obtain following equations

o_u _ 1
P Ta T (3.29)
a' =4 = gu’
A solution of Egs. (3.29) is given by
t =g 'sinh(g7) ,
g (97) (3.30)

! = g~ cosh (g7) .

This represents a hyperbola world line, indeed, 2 — t> = ¢~2 and the hyperbola line is a
set of Lorentz transformation (Lorentz boost in this case), apart from a freedom of scaling,
from the inertial coordinate (¢,z') to another one. Moreover, since T dependence appears
in Egs. (3.30), one can construct the rest frame for the accelerating observer at instant 7 by
doing a Lorentz boost transformation depending on 7. Such a Lorentz boost, which is a four
dimensional rotation of a plane spanned by u* and a*, would be expressed by ). Indeed,

if one consider a rest frame of an observer who is accelerating along z!-direction, we have

B =—g, (3.31)

8Considering a rest frame of the observer, a Newtonian equation like, % — g = 0 holds, where we
used the fact that the 0-component of a* is zero because a* is orthogonal to u* and u* = 4} in the rest
frame. Therefore, the relation of the relativistically invariant quantity, a*a, = g, is satisfied as expected in

Newtonian gravity.



3.2. EARTH’S GRAVITY 35

and other components of {*" are all zero. Then, the infinitesimal Lorentz transformation

conducted by @ Q* for the four vector z# = (7,0,0,0) is

d (xol — a:0> = o' @ Quudr
= 0. (3.32)
Thus,
dz”
dr
This is consistent with the first equation in (3.30) when g7 < 1. Furthermore,

—0. (3.33)

d (xll - a:1> = o' @ Qdr
= Tgdr . (3.34)
Then,
dz!
dr

is obtained. This is consistent with the second equation in (3.30) when g7 < 1. Therefore, we

= g7, (3.35)

find that )" correctly represents an infinitesimal Lorentz transformation which connects
a rest frame to an accelerating frame relative to the rest frame. Now, we can understand the
meaning of the Fermi-Walker transport in Eq. (3.22). At one point on ~,, one can construct
a rest frame of an accelerating observer, but after certain duration the frame is not a rest
frame for the observer anymore. In order to keep a frame as a rest frame at any 7, the base of
the frame should be developed by the Fermi-Walker transport. Then we obtain a coordinate
system moving with an accelerating observer.

From now on, we use coordinate bases specified by Eq. (3.1):
=71, 2'=a's, (3.36)

and get an explicit expression of a metric in the proper detector coordinate which is moving
with an accelerating observer due to Earth’s gravity. The procedure is similar to the case of
Fermi normal coordinates in the previous section, that is, we evaluate the Christoffel symbols

and its first derivatives and next, we relate them to the first and second derivatives of the
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metric and then, an expression of the metric expanded up to second order of spacetime
coordinates is found.

From Eq. (3.22), we obtain a relation:
re =0, (3.37)
Using v = (1,0,0,0) and a* = (0, a’) in the definition of Q*, (3.23), we have
Q% =a;, O, =—"ry, . (3.38)
Thus together with Egs. (3.37) and (3.38), we obtain

Fgo =0, F?OHT = F60|7T =d ) F§»0|% = _WkGOijk . (3.39)

We see that the proper reference frame is not a locally inertial frame anymore. Furthermore,

considering a spacelike geodesic equation along -,

A2zt u dx® dxP

—— =0 3.40
ds? s ds ds ’ (3.40)
we can deduce
0 i o i
[ (" =7,0" = a's)a’'a’ = 0. (3.41)
Especially, at s = 0, we conclude that
I, =0. (3.42)

From Egs. (3.39), (3.42) and the relation between a metric and a christoffel symbol

v\ = gﬂarzoj)\ + guarﬁ)\ ) (343)
one can observe that
Juvo = 0 )
Jooi = —2d",
9oij = —kaOijk )

gij,k = 0, (344)
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along the timelike geodesic ..
Next, we evaluate the second derivatives of the metric. Differentiating Eqgs. (3.39) and

(3.42) with respect to 7, we get

F80,0|% = FZ’,O’% =0,

0 _ T Y
FiO,O = F00,0|% =a

Ciooks = —pe®* (3.45)

where a dot represents a derivative with respect to 7. On the geodesic 7., by the definition

of a Riemann tensor, we find
o= Roxo +Thno = Dhalbo + 10100 - (3.46)

Substituting Eqs. (3.45) into Eq. (3.46) yields

0 Y j, k _Oijk
Logily, = @' +dw e,
0 _ 0 iJ
PiO,j v = Rz’j0|”/r —aa
i _ i - 0ijk i g i k
joklvr = Alkolys A :

In order to obtain an expression of Ffj i |, one can utilize a geodesic deviation equation on
~s and the procedure is completely same as that in construction of Fermi normal coordinates.

Thus the result is given by Eq. (3.15):

1
Félj,kl% = 3 (R?jklw + R?ik”%) . (3.48)

Finally, we express the second derivative of the metric by the Christoffel symbols and
their first derivatives, and then relations between the second derivatives of the metric and

the Riemann tensor are obtained. From the definition of the Christoffel symbol, we have

Guvx = guarg)\ + guarloj)\ . (349)

Differentiating it with respect to 7 leads

gyl/,>x0|'yr = nuanO/lA,aHT + nvarﬁ)\,ahf + gya,cf|%rg/\|% + gva,o|'yfrz>\|% . (3-50)
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Using Eqgs. (3.47) and (3.48) in Eq. (3.50), one can deduce following equations:

Guvoo = 0,

goooi = —2a’,

9ooij = —QR%O —2a'a? — 2w'w’ + 20w wy |

Joio; = wre”t

Joijk = —g (Rojikly, + Rokijlv,)

Gijor = 0,

Gijkl = —% (Rikjily, + Rijkly,) - (3.51)

Therefore, in a proper reference coordinate, up to quadratic order of the coordinates, a metric

is given by
goo = —1—2aa" — (a'z?)? — (w'a?)” + ww'aled — Ryl i | (3.52)
goi = —wipe" Tl — gRojik|%x]xk ; (3.53)
1

We see that the effects of Earth’s gravity enter even at linear both for a’ and w’. Even if
so, the effects are quite small, for examples, setting the scale of experimental apparatus to
be ' ~ 1m and using the values a’ ~ 9.8m/s?, w' ~ 2.0 x 10~ rad/s, we can estimate
alr’ ~ 1.1 x 1071% and wia® ~ 6.7 x 1071¢. In general, these small corrections are negligible
in experiments because; first they are small, second their effects are static and so usually
not distinguishable from other signals we want to see. In fact, Earth’s gravity is negligible
in magnon experiments because we utilize a phenomenon of resonance between gravitational
waves and magnons to detect gravitational waves and then the effects of Earth’s gravity does
not concern it. Therefore, we will neglect the acceleration due to Earth’s gravity, i.e. a* and

w' and use the Fermi normal coordinates for a freely falling observer in following chapters.



Chapter 4
Gravitational effects on fermions

In this chapter, we study gravitational effects on fermions, especially in the non-relativistic
regime. To do so, we first consider the Dirac equation in curved spacetime with a Fermi nor-
mal coordinate by reviewing the discussion of [34] in the section 4.1. Next, in the section 4.2,
we will take the non-relativistic limit of the Dirac equation and reveal all possible gravita-
tional interactions with a non-relativistic fermion (mass m) in Fermi normal coordinates up
to order of 1/m. We then find the effect of gravitational waves on non-relativistic fermions,

in particular an interaction between the spin and gravitational waves.

4.1 Dirac fields in curved spacetime

The Dirac equation in curved spacetime with a metric g, is given by (See [35] for details)

iv¥el (0, — T, —ieA,) Y =map (4.1)

where 7%, e, A, are the gamma matrices, the elementary charge, and a vector potential,
respectively. A tetrad e satisfies

€2elnas = Gy - (4.2)

Note that & is used for the locally inertial frame. The spin connection is defined by
i & v v 3
r,= 36004 <8ue P+ FAuem) , (4.3)

39
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where 0,5 = i[”y&, 'yg] is a generator of the Lorentz group and I', is the Christoffel symbol.

We now consider a proper reference frame, and thus it is a Fermi normal coordinate
approximately, to evaluate the Dirac equation (4.1) because the coordinate is the one used in
real experiments. In the section 3.1, we derived an explicit expression of the metric in Fermi

normal coordinates as

goo = -1 - Roz'ojl'il’j s (44)
2 .
Joi = _gROjikI]xk : (4.5)
1
9i; = (5ij - gRikjlxkxl ) (4-6)

where the Riemann tensor is evaluated on ' = 0 and thus it only depends on time z°.

Moreover, inverse of the metric is approximately given by

¢ = -1+ R"igx; (4.7)
. 2 .

gOZ = +§R0ﬂk$j$k s (48)
. 1. ...

g7 = 0+ gRZkﬂﬁwl : (4.9)

From the metric (4.4)-(4.9), by a standard calculation, one can obtain the Christoffel symbols:

0 _ 0 _ : 0 _ 1 k
oo =0, Tg = Roiojz’ , 1Y =3 (Roijr + Rojir) 7",

Lo = Roiojz’ ,  Th; = Ropjix® , Ty = 5 (Reiji + Rjir) @ (410
The tetrad is constructed to satisfy (4.2) as

ey = o8 5 YR gt (4.11)
e = 6 — ééﬁRan’“x’ : (4.12)
ca = 04+ %5S¢Rokoz é’?dejkoﬁk-Tl ; (4.13)
e, = 0% — %52}%0,;@ x' + énajR Ikl (4.14)

Substituting Egs. (4.10)-(4.14) into Eq. (4.3) results in
Iy = %VOW%Roz‘ijj + iVZVERz‘jkak , (4.15)

1 4 3 I
Iy = ZL'VO’Y]ROjikCUkJF§7]’YkRjkilxl- (4.16)
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Here we have rewritten d4v* as 7" and we will do so here after.

On the other hand, the Dirac equation (4.1) can be rewritten as

?;’)/anw = [Z’}/O (Fo + ier) + Z’)/j ((9] + Fj + ieAj) + m} 1/}
= 7'Hy, (4.17)

where we defined the non-relativistic Hamiltonian H and y* = ekv% is a gamma matrix in

curved spacetime , which satisfies

{97} = 29" . (4.18)

Let us express the Hamiltonian in terms of the gamma matrix of the locally inertial frame

instead of that of curved spacetime. First, because of 7%y = —g%,

H=—(¢")"[ig"™ (Lo + iedo) + i7"y’ (8; — T; — ied;) +"m] . (4.19)

Using Eqgs. (4.13) and (4.14), we calculate

197 = (ehy®) ()

(egfyo + egfyd> (eé’yo + egfyb>
T 1o
- 57070R0k]l$k!£l n EvovaJ%ﬁ%l

]_ A ]_ ~ 5
+§707]Rokoz$kxl - BVGVJRakozwkxl : (4.20)

Together with Eq. (4.7), we have

_ ; 5 os 1 1§,
(900) 1707] = —VOYJ—éRijzIkxl—EVOW jkazxkxl
1 A o 1 PO
=577 Rowoia*a! + 29 Ragraa’ (4.21)

Similarly, one can obtain

. s 1, 1,
(9%) " == - §’VORok01$kJEl +57 Rapor*a . (4.22)
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Therefore, from Egs. (4.19), (4.21) and (4.22), the Hamiltonian expressed in the locally iner-
tial coordinate becomes
H = iTy+iy"yT; — edy
| 1 45 4
+ {’YO’Y] + QROWZU%Z + E’YO’YQRjkainkiUl

1 PO 1 PO i
+§”YO’Y]ROkoz$k$l - E’Ya’YjRakozﬂckml} (—i0; — eA;)

A 1 - 1 .
+ {’yo + é’yORokol:ckxl — éfyaRakolxkxll m . (4.23)

Furthermore, substituting Eqgs. (4.15) and (4.16) into the above Hamiltonian and arranging

terms, we have

i P . Z Aa Z A a4 2
H = 5’707ZR01'03‘$] + Z’YZ'YJROiijk + gVOVZVJWkijﬂl —eAg

P | 1,
+ {7072 <5f + 93) + EROkﬂiﬂk%l - EWWJRikozx%l] (—i0; — e4;)

A 1 1 - -
+4° [1 + §R0k01xkxl - éfyo”y’Rikmxkxl} m, (4.24)

where we have defined
A 1 ~ 1
95 = §5§,R0k01$k£€l —+ gRjkilxkl’l . (425)
This is the 4x4 matrix including both of a fermi particle and a anti-fermi particle. The
situation we are interested in is that there exist non-relativistic fermi particles. To take the
non-relativistic limit of the fermi particle in the Hamiltonian (4.24), we have to separate the

particle and the anti-particle while expanding the Hamiltonian in powers of 1/m. We will

explicitly see how to perform it in the next section.

4.2 Non-relativistic limit of the Dirac equation

In the previous section, we derived the (non-relativistic) Hamiltonian of a Dirac field in
general curved spacetime with a Fermi normal coordinate. Assuming that a fermi particle
has a velocity well below the speed of light, which is the situation we will consider in the

section 5.2, we take the non-relativistic limit of the Hamiltonian. The procedure in the flat
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spacetime is known as the Foldy Wouthuysen transformation [36, 37]. We generalize it to
the case of curved spacetime.
We first separate the Hamiltonian (4.24) into the even part, the odd part and the terms
multiplied by m as
0

H = EaiRoinxj - %OKiOéjOékRjkilIl +a' (6] +6)) 11,

L 1 1, .
—eAy — %O/OtJROiijk + {iROkﬂxkxl + g&zoﬂRikkaxl} 11,
1 k..l 1 i k..l
+ 5 1+ §R0kol$ Z — 6501 Rik()ll‘ Tr|lm
1 k.l 1 i k..l
= 0 —l—((bD -+ 5 1+ §R0k01$ X — éﬂa RikOZx r|m, (426)

where we have defined g = 76, al = 767% and II; = —i0; —eA, for brevity. The even, &, means
that the matrix has only block diagonal elements and the odd, G, means that the matrix
has only block off-diagonal elements. Any product of two even (odd) matrices is even and
a product of even (odd) and odd (even) matrices becomes odd. To take the non-relativistic
limit of a fermi particle, we have to diagonalize the Hamiltonian (4.26) and expand the upper
block diagonal part in powers of 1/m. It is known that this can be done in flat spacetime by
repeating unitary transformations order by order in powers of 1/m [36, 37]. Let us generalize
the method to the case of arbitrary curved spacetime in a Fermi normal coordinate.

We now consider a unitary transformation,

W= Sy (4.27)
where S'is a time-dependent Hermitian 4 x 4 matrix. Observing that
D
G = e
g [ .00 (0

_ iS i S

= e (Zat) —i—z(ate >¢

= {eiSHe_iS + i <%ei5) e—iS} Y, (4.28)

we find that the Hamiltonian after the unitary transformation is given by

H =e®He ™ 4+ <Eels) e . (4.29)
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We now assume that S is proportional to 1/m and consider expanding the transformed Hamil-

tonian (4.29) in powers of S up to order of 1/m. Using Egs. (B.4) and (B.7) in Eq. (4.29), we

obtain
B = H i)~ 5[, [5,H]) - £[S.[5. [, H]]] + -
_3_2[573} 4l (4.30)

First, let us eliminate the off-diagonal part of the Hamiltonian (4.26) at order of m by
a unitary transformation. Then we will drop the higher order terms with respect to the
Riemann tensor, which only depends on time, and derivatives of the Riemann tensor with
respect to the time by assuming that they are small enough®. To cancel the last term in the

square bracket of (4.26), we take
S——iﬁ _15 iR ok (4.31)
= om 6 ol T . .
We then obtain

i[S’, H} ~ éﬁaiRikOkaxlm—%[ai,aj}RikOZwkmlHj

+%aiajR0iijk + 1Z—2aiajR0jikxk ) (4.32)

Therefore, from Eqgs. (4.30) and (4.32), we have the transformed Hamiltonian as

H/

12

H+i|S H]

5O Row;x’ — §QZO‘JO‘kRjkill‘l +a' (o] +67) 11,

12

) 2
—eAy — %Romxk + gRomz%kﬂﬁlﬂi
1
+5 (1 + §R0k0ﬂkwl) m
1
= 0+8+p (1 + EROkOZxkxl) m, (4.33)

where we have used the relation {a’,a/} = 26". One can see that only even terms remain

at order of m as expected.

9Then, the Hermiticity of the non-relativistic Hamiltonian is guaranteed [38].
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Next, we focus on order of m" and eliminate the odd terms by a unitary transformation.

In order to do so, we choose the Hermitian operator to be
S =~ 8(6 = 2ad Ropou* 'L, + L Ry 4.34
= —%ﬁ — 50& 0kOIL T j + 5@ Ok:ij . ( . )
One then calculate
1 1
i[S',H’] ~ —0+ —pB6*+ —6[6,8’}
m 2m
1 o )
_TﬁalajROklekleiHj + iﬁROkoﬂkﬂi
m m
7 o 1
+@/5 [041, Oéy} Roroiz™I1; + mﬁROiOi
) .
—Rﬁoﬂngmxkxl (8jeA0) s (435)

Furthermore, up to order of 1/m,

1 1
—=[8[9H]] =~ —=[5,i0]
2 2
1 1 o '
= ——ﬁ@2 + —50/04jR0k01$k$lH¢Hj — LﬁRokOifEkﬂi
2m dm 2m
1 o 1
_%B [al> O‘]} ROkOikaj — %BROiOi , (4.36)
and
-5 %56 + ﬁﬁajROkoﬂkxl@Aj : (4.37)

Therefore, the Hamiltonian after the unitary transformation is given by

H// ~ HI—FTL[S/,HI} . %[S/7 [S/,H/H . S/

12

. . . ‘
_ﬁﬁajROkoﬂkxleEj + %5 <[@,8’] + i@)

1 1 o 7 7 . 1
+6' + —p0* — Rﬁaza]ROkOZxkleiHj + %BROkOikai + 8—m5[0/, Oé]} ROk;Oz’kaj + 8_mBROiOi

2m
1
+p (1 + §R0k051’kl’l> m

1
= 0'+8"+p8 (1 + §R0k01kal) m,

where E; = 0;A¢ — Aj is an electric field. We see that G has only terms of order of 1/m, so

that odd terms at order of m® have been removed precisely.

(4.38)
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Finally, we will eliminate the odd term 0’ and then the Hamiltonian will consist of only
even terms up to order of 1/m, which we want to get. To this end, we now choose the

Hermitian operator of a unitary transformation as
" i / i i k.l

Then up to order of 1/m,

i[S". H"| ~ -0 (4.40)
Therefore, we have the transformed Hamiltonian as

H/// ~ H// + Z'|:S//7 Hl/j|

1
~ ((90" + /B (1 + §R0k01$k$l) m (441)
where 8" is
‘ 2 1 1 o
" = —edy— %Romixk + gROkileklei + %5@2 - Rﬁ&lajROkoﬂkleiHj
1 7 o 1
+%530k0i$kﬂi + %5[0/, o | Rogoia™I1; + %5301‘0@' : (4.42)

Moreover, the fourth term in the first line of Eq. (4.42) can be evaluated as

1 ) o
%562 ~ %5 [Oél, Oé]} EklmGBm (51@51]‘ + 25]%91])
{ (1
—%5[0/, o] <§leji + 25§‘R0i0m) ™1l

1 7 - 1
+%5H? + %/BROinx]Hi + RﬁRom

1 i
— BatddaFl R, —
o i — e

B{o/, ajakal}Rkljmmei , (4.43)

where B = 1¢7%(9;A; — 0,A;) is a magnetic field. Using Eqs. (4.42), (4.43) and a rela-

tion, [of,af] = 2ie;xo", in the transformed Hamiltonian (4.41), we finally arrive at the
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Hamiltonian for a non-relativistic fermion up to order of 1/m as

1 ) 2 1 1
H" = (14 =Roa*s' ) m —eAy — = Ropat® + = Ry ' T + — ( 1 — = Rypour™a! IT;
2 6 3 2m 2

m

o 1 1 1
—210'13] lélﬂ <1 + §R0k01$k$l —+ éRakal]?kJ?l) - ééméjbRakbll’kl’l}

1
+%€ijk0'k (Rijim + 20;mRoior) ',y

+% (gRowi = %Rijij> + = (Roj% = %Rijik> oI (4.44)
The first term is the rest mass and its modification from gravity at a point z¢. The third term
represents gravitational redshift, namely energy shift due to gravity. The first term in the
last line gives same effect at order of 1/m. Considering an equation of motion of a particle,
we find that the fourth and the fifth terms are gravitational effects on motion of a particle.
However we notice that the former contains the time derivative of the curvature, which has
been assumed to be tiny, in the equation of motion. Therefore, the second term in the last
line is also tiny one. The second line represents interactions between gravity and a spin in
the presence of an external magnetic field. This is what causes the spin resonance and/or
the excitation of magnons as we will see in following chapters. The third line is a spin-orbit
coupling mediated by gravity.

Let us focus on gravitational wave as gravitational effects. In the section 2.1, we derived
the Riemann tensor for a general perturbed metric at linear order:
W’“B —h% ., + huﬁ"fy) ) (4.45)

upv v,uB

1
« — Z(h© —h
2(

Taking the linear perturbation h,, as gravitational waves, i.e., ho, = hi; = hg;; = 0, one can

obtain
1.
Roij = _§hij ;
1 /. .
Roijk 3 (hij,k - hz‘kz,j) ,
1
Rij = B (hir i + Mkt — Pjiie — Rik i) (4.46)
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Substituting (4.46) into (4.44) results in
H" = 1—1h~xixj m—eA +1(h 1 —h -)x"“mllT—l—L 1+1ﬁ~»xixj 112
4 i 0 3 kil klyi ) m 4 iJ k

e . . 1. 1
——0'B’ {5@ <1 - thzl“kivl) — —6ia0jb (Pat kb + Pkbar — Pot.ab — Pab kl) Ikiﬂl}

2m 12
+L€..0k l(h 1 hitim — Pjmair — hitim) — 0; ha | 211
m ijk 2 im,jl jlim gm,il il,jm gm!lgl m
—%ﬁjkxkﬂj s (447)

where we have used the equation of motion of gravitational waves, i.e., Oh;; = 0.
In the next chapter, we will explain magnons, which are corrective excitation of spins.
After that, in the section 5.2, we will see that gravitational waves excite magnons through

the interaction at the second line in Eq. (4.47).



Chapter 5

Magnons

In this chapter, we first find what a magnons is in the section 5.1. Moreover, in the section
5.2, we study the interaction between magnons and gravitational waves. It will turn out that

gravitational waves excite magnons from the ground state.

5.1 Magnons as corrective spin excitations

A magnon is a quantum of spin waves, which are corrective spin excitations. To see what
magnons are more precisely, let us consider a specific situation where a spherical ferromagnetic
sample which has N electronic spins is put in an external magnetic field. Such a system is

well described by the Heisenberg model [39]:

P =—=2upB.> Sk — > JiiSaw - Sy (5.1)
i irj

where the Bohr magneton up = e/2m, is defined by the elementary electric charge e and

the mass of electrons m.. We applied an external magnetic field along the z-direction, B.,,

without loss of generality because of isotropy. ¢ specifies each site of spins. The first term is

the conventional Pauli term, which turns the spin direction to be along the external magnetic

field. The second term represents the exchange interactions between spins with the strength

Jij and it is taken to be positive.

49



20 CHAPTER 5. MAGNONS

The spin system (5.1) can be rewritten by using the Holstein-Primakoff transforma-

tion [40]:

Sty =8-CIC; |

o+ _ ] SoNe)

St =1/25-ClC: G, (5.2)
N -

Sq = Cly/25 - iy,

where S denotes the amplitude of the spins, bosonic operators C; and C’J satisfy commutation
relations [C}, C’;r] = 0;; and S(j]:.) = S(j £i5(; are the ladder operators. It is easy to check that
the SU(2) algebra, [S?, S7] = i€e;;x.S* (i, 7,k = z,vy, 2), is satisfied even after the transformation
(5.2). We note that (ZT C represents the particle numbers of the boson, namely the magnon,
created by the creation operator C/.

We first examine the first term in Eq. (5.1). Substituting the Holstein-Primakoff trans-

formation (5.2) into it, we obtain
—2upB. Y Siy =2usB. > CICi, (5.3)

where we have dropped the constant term in the Hamiltonian since it is not important for
our purpose. Furthermore, provided that contributions from the surface of the sample are

negligible, one can expand the bosonic operators by plane waves as
N 6—7:]{:-1‘2'

= & | (5.4)
"

where k denotes the discrete wave numbers and r; is the position vector of the ¢ spin from

the center of the ferromagnetic sample. Substituting Eq. (5.4) into Eq. (5.3) yields

i(k—k/)’l‘i
NN e i
2#33220301 = QﬂBBZZZTC};Ck/
i i kK
= 2upB. Y élék . (5.5)
k

To get the second line, we used the relation . e!®*=%)m = N§(k—k'). Eq. (5.5) is a finite set
of harmonic oscillators, and thus it represents so-called spin waves. Especially, a quantum of

the spin waves created by é,i is called a magnon.
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Next, we consider the second term in Eq.(5.1) and from now on, we assume that the
particle numbers of magnons are always much less than unity, i.e., C’J C; < 1. In fact, this
is the situation we will consider in following sections. Then, after the Holstein-Primakoff

transformation (5.2), the second term of Eq. (5.1) becomes

A ~ — 1 — — z z
=2 TS0 Sy = - Z Jij { (S + S@) (55 +56) = 156 = S@)(56) = 56) + 5050 | -
~ Z J; [S (0,0} + Ol - CIC — C*}Cy) + 52] . (5.6)
,J

We now proceed to the Fourier space, first, we calculate

zk rl —ik'-r;

2,
= Z J T Z il—k')mi Zk/'rl é;[cék’

k,k’

= erl Zék kel el é
k,k’

= ZJ 'rl Zelk'rl ékék
—zk”

= (k”) eik"rl éTé

= \/_Z J ckck (57)

In the second line, we defined r; = r; — r; and J(k) defined at the fifth line is the Fourier

coefficient of the coupling strength between spins J;;. We can also calculate
i,J .3
S ILCLES
ij '
= VNY J(k) ckck—i—\/_ZJ (5.8)
k

where we have used the relation J(—k) = J*(k) stem from the fact J;; is real'®. Furthermore,

10Moreover, requireing Jij = Jj;i of being probable, j(k) is a real function.
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repeating similar calculations, we get following relations:
> Ji; = NVNJ(©0),
i?j
> JCIC = VN J(0) ek
i\j k
> JCIC = VN JH0) ek - (5.9)
ij k
Using Eqgs. (5.7)-(5.9) in Eq. (5.6), we obtain

=" TS Sy = ~25VN Y Re (J(k) — J(0)) hn SZ VNJ(k) — SANVNJ(0) .
@] k
(5.10)

Finally, combing Eqgs. (5.5) and (5.10), the Hamiltonian (5.1) can be rewritten in terms

of magnons instead of spins as
g=3 [QMBBZ +2VNS Re (J(o) - J(k:)ﬂ cléw | (5.11)
k

where we have omitted the parts which give a shift of a constant in the Hamiltonian. We see

that the magnons has a dispersion relation
we = 2upB. + 2V NS Re (j(()) - j(k:)) , (5.12)

where wy, represents the angular frequency of a £ magnon mode, namely, the energy of a
magnon particle with the momentum k. One can see that in particular the angular frequency
of the uniform mode, k£ = 0, is given by the Larmor frequency 2u5B,, which consists of the
Bohr magneton upg, defined by the mass and charge of the particle, and the external magnetic
field B,. The angular frequencies of other modes except the uniform one further consist of
the coupling strength between spins J;;.

Several points should be mentioned about the dispersion relation of magnons (5.12); First,
J(0) = \/Lﬁ >, J(ri) > 0 holds because J(r;) > 0. Second, admitting J;; = Jj; (see also the
footnote 10),

Z — cos (k-r)J(r) , (5.13)
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and thus in the long wave length limit, k- r; < 1, we have
w >~ 2upB, + SZ (k- r,-)2 J(r;) . (5.14)

Finally, if one assume nearest neighbor interactions as J;;, an approximated expression of
(5.14) is
wip ~ 2upB. + SJa*k? | (5.15)

where J is the coupling strength of the nearest neighbor interaction between spins separated
by a lattice constant a. We see that wy depends on k quadratically. This is a characteristic
feature of magnons, for example, in contrast, it is linear dependence in the case of phonons.

As Eq. (5.12) shows, the magnon picture instead of spins is useful because we can solve
the system analytically when the magnon occupancy is much less than unity. In the next
section, we will include the effect of gravitational waves on magnons and reveal that magnons

are excited by gravitational waves.

5.2 Graviton-magnon resonance

In the section 4.2, we revealed gravitational effects on a non-relativistic Dirac fermion
in Fermi normal coordinates. As you can see in Eq.(4.47), if one consider a freely falling
point particle and set a Fermi normal coordinate whose origin traces the particle, the particle
does not feel perturbative gravity, h;;, entirely. This is because of the equivalence principle.
However, gravitational effects are canceled, of course, only at one point and thus an object
with finite dimension feels gravity. In the case of magnons, we prepare, for example, a
ferromagnetic sample in an external magnetic sample and then the sample feels gravity
since it has finite size. It implies magnons can be excited by gravitational effects, especially
by gravitational waves. To examine the effect of gravitational waves on magnons, it is
appropriate to set a Fermi normal coordinate whose origin is placed at the center of the
ferromagnetic sample. Then, we can apply the discussion of the section 4.2.

As in the previous section, we consider a ferromagnetic sample in an external magnetic
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field. Such system is described by the Heisenberg model (5.1):
Hspin = _Q,UBB;; Z Sé) - Z JZJS(l) . S(]) > (516)
i ij

where the magnetic field direct the z-direction. In addition, we take into account the effect
of gravitational waves on the system. From Eq. (4.47), the interaction Hamiltonian between

gravitational waves and a spin in the ferromagnetic sample is

Haw = —15BaS{) Qab (5.17)
where we have defined
1 . k1 1 .
Qij = Z%‘hkﬂ T — Eéiaéjb (hat,kb + Pobar — Pitab — Paber) 72" (5.18)

It represents the effect of gravitational waves in a Fermi normal coordinate. Indeed, at the
origin, ' = 0, we see that Q;; = 0. From Egs. (5.16) and (5.17), the total Hamiltonian of

the system is

Htot = Hspin + HGW
= —UB (2(Sza + Qza) Bz Z Sa) — Z Jz]S’(z) . S(j) . (519)
% iy J

We now rewrite the spin system by magnons with the Holstein-Primakoff transformation
(5.2) and then we only focus on the homogeneous mode of magnons, so that the second term
in the total Hamiltonian (5.19) is irrelevant (see Eq. (5.11)). Furthermore, because @, does
not contribute the resonance of spins, namely excitation of magnons, we will drop it. Thus

we have
C; +
2

¢ — ¢

C‘J

Hyw = upB. Y |2C1C; + Q.| - (5.20)

Now let us consider a planar gravitational wave propagating in the z-z plane, namely,
the wave number vector of the gravitational waves k has a direction k= (sinf, 0, cos@).
Moreover, we assume that the wave length of the gravitational wave is much longer than the

dimension of the sample. This is the case of cavity experiments which we will utilize in the
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next chapter. We can expand the metric perturbations in terms of linear polarization tensors

(@) (

o)
’L] €Z == 50-0—/ as

satistying e;; e;;

hij(t) = RO (el + hX) (1)el) (5.21)

where we used the fact that the amplitude is approximately uniform over the sample. More

explicitly, we took the representation

B , ,

h(-i‘)(t) — T (e—zwht + 6zwht) ’ (522)
hO) ‘ .

h(x)(t) = (e—Z(wht+a) + el(whﬂ-a)) 7 (5.23)

where wy, is an angular frequency of the gravitational wave and a represents a difference of

the phases of polarizations. Note that the polarization tensors can be explicitly constructed

as
cos 6 0 —cosfsinf
1
el = NG 0 1 0 , (5.24)
—cosfsind 0 sin 62

0 cos 0 0

1
egf) = E cos 0 0 —sinf | . (5.25)
0 —sinf 0

In above Egs. (5.24) and (5.25), we defined + mode as a deformation in the y-direction.
Then substituting Eq. (5.21)-(5.25) into the total Hamiltonian (5.20), moving on to the

Fourier space and using the rotating wave approximation, one can deduce
Hygy ~ 2upB.¢'¢ + gegy (eTe™ ™t + ce™nt) | (5.26)

where ¢ = ¢,—¢ and

o2 (1\?
Jett = ig (‘) B, sin6V/N [cos” 0 (0)? + ()2 + 2cos fsina AR

A
(5.27)

is an effective coupling constant between the gravitational wave and the magnons. The

parameters [ and A = 27 /wy, are the radius of the (spherical) ferromagnetic sample and
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the wavelength of the gravitational wave. We note that the sum over the spin sites ¢ was

evaluated as

Zxac—Zyy— 2z o —/// r2sin ¢ (rcos ¢)? drdCdo = ?7;253 : (5.28)

where L is a lattice constant, which is related to the number of spins as N = (%’rlg) /L3. From
Eq. (5.27), we see that the effective coupling constant has gotten a factor V/N. Moreover,
in order to obtain a coordinate-independent expression of gy, it is useful to use the Stokes
parameters:

1/2

2 2 2 1 2
Gers = “6_5 (é) ppB.singvN %891—81“ “Qreosiv| , (5:20)

where the Stokes parameters are defined by

(1= (ny+ (Y
Q = (hH)? = (h09)?
U =2cosahHh>)

(5.30)

|V = 2sin a (A

They satisfy I? = U% + Q% + V2. We see that the effective coupling constant depends on the

polarizations. Note that the stokes parameters () and U transform as

(Q’) _ | cos 40 sin4W¥ (Q) (5.31)
U’ —sin4dV¥  cos4W U
where W is the rotation angle around k.

The second term in Eq.(5.26) shows that planar gravitational waves induce the reso-
nant spin precessions if the angular frequency of the gravitational waves is near the Lamor
frequency, 2upB,. It is worth noting that the situation is similar to the resonant bar exper-
iments [16] where planar gravitational waves excite phonons in a bar detector.

In the next section, utilizing the graviton-magnon resonance, we will search for planar

gravitational waves and give upper limits on GHz gravitational waves.



Chapter 6

Limits on GHz gravitational waves

with magnons

In the previous section, we showed that planar gravitational waves can induce resonant
spin precession of electrons, namely excitation of magnons. It is our observation that the
same resonance is caused by coherent oscillation of the axion dark matter [41]. Recently,
measurements of resonance fluorescence of magnons induced by the axion dark matter was
conducted and upper bounds on an axion-electron coupling constant have been obtained [42,
43]. The point is that we can utilize these experimental results to give upper bounds on
the amplitude of GHz gravitational waves. We will review how the axion-magnon resonance
occurs [41] and draw a parallel between the axion dark matter and gravitational waves in the
section 6.1. Next, in the section 6.2, we will give upper limits on planar gravitational waves

in GHz range with the experimental results [27].

6.1 Axion-magnon resonance

The axion emerges as a Nambu-Goldstone boson of the broken Peccei-Quinn symmetry [44,

45, 46]. An axion field a(x) can interact with the electron as

gint - _igaeea(x>1z(x)75w(x) ) (61)

27
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1'is a dimensionless coupling constant. Espe-

where ¥ (z) denotes the electron and gge.'
cially, the interaction (6.1) is realized at tree level in the DFSZ model [47]. Taking the
non-relativistic limit of the interaction term as is done in the section 4.2, one can get the

Hamiltonian concerned with the spin of the electron as'?

aeeh
%int = - J

Me

& -Va=—2ugS - (g(;eeVa> . (6.2)

Here m, is the mass of the electron, e is the elementary electric charge, ug = eh/2m, is the
Bohr magneton and the spin of the electron S is related to the Pauli matrices & as § = & /2.
Note that we do not consider loop corrections of the Landé g-factor from the value 2.

As an analogue of the Pauli term, the term in the parenthesis of Eq. (6.2) can be regarded

as an effective magnetic field defined by

B,(z) = Y va(x) . (6.3)

e
If the dark matter is the axion, such effective magnetic fields are ubiquitous around us. Also,
properties of the effective magnetic field (6.3) reflect features of the axion dark matter.

The axion dark matter can be regarded as a classical (pseudo) scalar field oscillating at
the bottom of the potential of the axion field [48, 49]. As a solution of the classical equation
of motion, the axion dark matter is oscillating in time determined by the mass of the axion,

so that the effective magnetic filed is oscillating with the frequency:

My
=024 —— Hz . 4
Ja=0 (1.0 ueV) GHz (6.4)

We assume that the axion dark matter forms coherently oscillating solitonic objects which
are the stable solution of the Schrodinger Poisson equation [48, 49]. The radius, namely the
Jeans length, of such axion clumps can be estimated by applying the virial theorem to the
object and assuming that the Jeans length is roughly equal to the de Broglie length. It leads

1/2 3\ 1/4
o~ 6.8 % 1011 (1.0ue\/) (0.45 GeV/cm ) ], (6.5)
myg, Pob

'We can rewrite the interaction (6.1) by using the background Dirac equation as §aee(0,a)0y*v51(x),

where Ggee = g“m: It clearly shows the shift symmetry of the axion field.

12Tn this case, it is more useful to use the exact Foldy Wouthuysen transformation [38] than the conventional

one [36, 37].
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where p,}, is the energy density of the object. Here, p,, is assumed to be the local dark
matter density, although it could be higher by several orders. Since the objects are moving

with the virial velocity in the Galaxy v, the coherence time is estimated as

ty ~ @:2.3x106x(
v

1.0 ,ueV)m (0.45 GeV/cm3)1/4 (300 km /s

Pob v

JERCD

Mg

We note that the coherence time in which the effective magnetic field keeps coherence is
much longer than the observation time in magnon experiments we will consider in the next
section. In the coherently oscillating object, we expect that the distribution of the axion
field is almost homogeneous due to quantum effects. Even if so, the spatial gradient of the
axion field is not zero since the object is moving with velocity v [50] relative to the laboratory
frame. Then, we have a relation 0;a ~ m,va because the time for the moving object depends
on the coordinates of our frame. Therefore, the effective magnetic field can be written as

B,(t) = > (e7mat 4 gty (6.7)

Let us consider the effect of the axion dark matter on magnons. We now consider a
ferromagnetic sample which has N electronic spins in the axion dark matter background.

Such a system is well described by the Heisenberg model [39]:
Hor = —2up Y Si (Bo+ Ba(t)) = Y JSi - S; (6.8)
i i.j

where By is an external magnetic field and i specifies each site of spins. The second term
represents the exchange interactions between spins with the strength J;;. We apply an
external magnetic field along the z-direction. Without loss of generality, we can consider
the direction of the effective magnetic field to lie in the z-z plane. Moreover, using the fact

B, < By, we have
By, =(0,0,By), B,~(B,sin6,0,0) . (6.9)

Here, 6 is an angle between the z-axis and the effective magnetic filed B,. We further move

on to the magnon picture with the Holstein-Primakoff transformation (5.2). As is done in
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the section 5.2, substituting Egs. (5.2), (6.7) and (6.9) into Eq. (6.8), in the Fourier space, we
have

P, = 2up Bt &+ Gopg (et 4 ceimat) (6.10)

where ¢ = ¢,—g and we used the rotating wave approximation. Also, the effective coupling

constant between the axion and the magnon is defined by

- B, sin6
Geff = 2,uB 1 \/N . (611)

Comparing Eq. (5.26) and Eq. (6.10), we find that the effect of the gravitational wave has
a same form as that of the axion dark matter. In fact, axion dark matter searches with
measurements of resonance fluorescence of magnons was operated and upper bounds on the
axion-electron coupling constant (6.1) have been obtained [42, 43]. Reading off upper bonds
on gess from the results enables us to give constraints on the g.;; as we will see soon.
Moreover, we will see that one can constrain the amplitude of gravitational waves in GHz

range.

6.2 Measurement of resonance fluorescence of magnons

Recently, measurements of resonance fluorescence of magnons induced by the axion dark
matter was conducted and upper bounds on an axion-electron coupling constant have been
obtained [42, 43]. We can utilize these experimental results to give upper bounds on the
amplitude of GHz gravitational waves.

As we saw in the previous section, the interaction hamiltonian which describe excitation

of magnons in the axion dark matter background is
Haxion = geff (éTe_imat + éeimat> s (612)

where g.rr is an effective coupling constant between the axion and the magnons. Notice
that the axion dark matter, which can be regarded as a classical field, oscillates with a
frequency determined by the axion mass m, (6.4). One can see that the form of (6.12) is

same as the interaction term in Eq. (5.26). Through Egs. (6.3) and (6.11), gy is related to
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the axion-electron coupling constant g,e.. More explicitly, gqce can be converted to g.ss by
using parameters, such as the energy density of the axion dark matter, the external magnetic
fields, the numbers of spins in the ferromagnetic samples, etc, which are explicitly given
in [42, 43]. Therefore constraints on g.sr (95% C.L.) can be read from the constraints on the

axion-electron coupling constant given in [42] and [43], respectively, as follows:

7.0 x 1072 eV,
Gefr < (6.13)
6.2 x 1071t eV .

It is easy to convert the above constraints to those on the amplitude of gravitational waves
appearing in the effective coupling constant (5.29). Indeed, we can read off the external
magnetic field B, and the number of electrons N as (B,, N) = (0.5T, 5.6 x 10'?) from [42]
and (B,,N) = (0.37T, 9.2 x 10') from [43], respectively. The external magnetic field B,
determines the frequency of gravitational waves we can detect. Therefore, using Egs. (5.29),
(6.13) and above parameters, one can put upper limits on gravitational waves at frequencies
determined by B,. Since [42] and [43] focused on the direction of Cygnus and set the external
magnetic fields to be perpendicular to it, we probe continuous gravitational waves coming
from Cygnus with 6 = 7 (More precisely, sinf = 0.9 in [43]). We also assume no linear and
circular polarizations, i.e., Q' = U’ =V = 0. Consequently, experimental data [42] and [43]

let us put upper bounds on the characteristic amplitude of gravitational waves defined by
he = h(H) = ) as

1.3x 1071 at 14 GHz ,
he ~ (6.14)
1.1x 10712 at 8.2 GHz ,

at 95 % C.L., respectively. In terms of the spectral density defined by S, = h?/2f and the

energy density parameter defined by Qew = 272 f2h?/3HZ (H, is the Hubble parameter),
the upper limits at 95 % C.L. are

7.5 x 107" [Hz""?] at 14 GHz ,
/Sy ~ (6.15)

8.7x 10718 [Hz /%] at 8.2 GHz,



62 CHAPTER 6. LIMITS ON GHZ GRAVITATIONAL WAVES WITH MAGNONS

and

) 2.1 x 10* at 14 GHz ,
hoQew ~ (6.16)
5.5 x 103 at 8.2 GHz .

We depicted the limits on the spectral density with several other gravitational wave experi-

ments in Fig.6.1.

waveguide
_18 I
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Figure 6.1: Several experimental sensitivities and constraints on high frequency gravitational
waves are depicted. LIGO and Virgo have the sensitivity around 10% Hz [13, 14]. The blue
color represents an upper limit on stochastic gravitational waves by waveguide experiment
using an interaction between electromagnetic fields and gravitational waves [51]. The green
one is the upper limit on stochastic gravitational waves, obtained by the 0.75 m interfer-
ometer [19]. Our new constraints on continuous gravitational waves are plotted with a red
color, which also represent the sensitivity of the graviton-magnon detector for stochastic

gravitational waves.
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6.3 Discussion and future prospects

Interestingly, there are several theoretical models predicting high frequency gravitational
waves which are with in the scope of our method [2]. Although we focussed on continuous
gravitational waves to put experimental upper bounds, the graviton-magnon resonance is also
useful for probing stochastic gravitational waves with almost the same sensitivity illustrated
in Fig. 6.1. Moreover, we can probe burst gravitational waves of any wave form if the duration
time is smaller than the relaxation time of a system. The situation is the same as resonant
bar detectors [29]. For instance, in the measurements [42, 43], the relaxation time is about
0.1 ps, which is determined by the line width of the ferromagnetic sample and the cavity. If
a duration of burst gravitational waves is smaller than 0.1 us, we can detect it.

Taking a look at Eq. (6.16), we see that further improvement of the sensitivity is required
to observe, for instance, stochastic gravitational waves. In order to improve the sensitivity,
there are several potentials to pursue. Noises in a system of a measurement decide the
actual sensitivity of the magnon detector and they are characterized by the line width of
the ferromagnetic sample and the cavity [52, 53]. Therefore, improving the line width by
purifying the sample and/or reducing the noises in the system leads to improvement of the
sensitivity. Recall the effective coupling constant between a gravitational wave and magnons
(5.29):

1/2

or2 (1\? 1 29 in? g
geff:\/(;(;r (X) ,uBBZsinH\/N +0208 [—SH; Q + cosOV

Although it seems that getting the external magnetic field strong leads to larger coupling
constant, one then have to remind that the detectable frequency of gravitational waves is
also changed because it is determined by the Larmor frequency 2ugB,. The most simple way
to make the coupling constant large is to increase the number of spins in the ferromagnetic
sample N. It is doable by finding a new ferromagnetic material or using a bigger sample.
The former does not seem easy, but the latter would be possible. (Then the factor (%)2 in
gers is also improved.) However, in general, a sufficiently bigger sample has a larger line
width because inhomogeneity of cavity modes appleid on the sample becomes obvious and

then the quality of the detector drops as a whole [54]. Then it seems that using several
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samples at the same time may be one of a best way to increase N. Actually, it has been done
in [42]. Furthermore, there would be room for improvement on the method for analyzing
data. For example, a matched filtering is useful for increasing the signal to noise ratio
a few decades hopefully. As another way to improve sensitivity, quantum nondemolition
measurement may be promising [55, 56, 57]. It would enable us to overcome the quantum
limit of measurements. In particular, although we assumed that a gravitational wave was
approximately monochromatic, there might be cases the approximation is not valid. In such

cases, quantum nondemolition measurement would be useful.



Appendix. A

The geodesic deviation equation

In the section 3.1, we used the geodesic deviation equation to obtain the expression of
second derivative of the metric in Fermi normal coordinates. A derivation of the geodesic

deviation equation is given in this appendix. The discussion is based on [58] and [59].

Let us consider two geodesics v, and 7, parameterized by an affine parameter A and two
geodesics are continuously connected by a parameter s. Then we define a tangent vector

along ~v1:

and a deviation vector evaluated on ~;:

oo (2) "

& which took to be orthogonal to u*, i.e., {#u, = 0, represents the deviation of the two
neighbouring geodesics and our goal is to derive the evolution equation for * with respect

to .

65
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Figure A.1: Two neighbouring geodesics and the deviation vector.

We note that the orthogonality between £# and u* is hold at every point on the geodesic v,

if initially they were orthogonal at a some point on ~;, indeed,

% = (fﬂuu);ﬁuﬁ

= u“;ﬁfﬁuu
1
= 5(“““#);555
= 0, (A.3)

where we used the fact u,, su” and u” 55’3 =" Buﬁ which is a consequence of interchangeability
of order of derivatives with respect to A and s to obtain the second equality. Therefore, the
&M takes a role of a geodesic deviation vector for any value of A on .

We now consider the evolution of £ along the geodesic 7;:

D¢ .
IV (f“yu );A u’
= (u‘u' gy) A U)\
= (- R"Mu +uty,) €t + ut € ut
= )\u uAéBV ( >\)'1/€ —u ;)\u ;ny + uu;yuy;ké»\

= _R“’yﬁu uﬁgy (A4)
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where the left-hand side means a covariant derivative with respect to A and we have used
the definition of the Riemann tensor [Vﬂ, V,,} Ve = R%,, at the third equality. We see
that the geodesic deviation equation (A.4) is determined by the Riemann tensor, so that the
right-hand side is zero in the flat spacetime. Actually, in the flat spacetime, the deviation of
two freely falling objects should be a constant (if they were parallel initially) or proportional
to A and thus the second derivative of the deviation with respect to A is zero. In contrast, no
neighbouring geodesics always run parallel with each other even if they were parallel initially
in general curved spacetime.

Finally, instead of the covariant form (A.4), we give a convenient expression of the geodesic

deviation equation for the discussion in the section 3.1:

d2f” dfa N
T2 T + (R + Tl 5+ ThTG, = ThTos) utue = 0. (A.5)







Appendix. B

Expansion in powers of S

We consider expanding e* He™* and ( s ) —is

a fake parameter \ as

fAS) = N Hem

and set A =1 finally. Expanding it with respect to A\, we obtain

fx8) = i % (W)A: |

n=0

We find that

af(\, S) __iAS; —iAS
B = e Z[S, H]e ,
82f()‘7 S) [ . —1
e e’\SZQ[S, (S, H]]e AS
PICS) — sinls [s,....[5,H]] -]

Therefore, one can deduce

S He ™ = f(1,8)
Z’n

s H]]- ]

[M]¢

n!
n=0

Eq. (B.4) is called the Campbell-Baker-Hausdorff formula.
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in powers of S. To do so, we introduce

(B.1)

(B.2)

(B.3)

(B.4)
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S

Next, let us consider the expansion of (%eig ) e~ in powers of S. Again we introduce a

fake parameter A and expand it with respect to A:

0 . )
g()\’s) — (EeZAS) e—z)\S

_ v (—8"9“’ S)> | (B.5)
— ! OA\" \—0
We see that
(99()\’ S) _ iAS & —iAS
B = ¢e""iSe ,

829()\’ S) iAS Y1 —iAS

W = € 12 [S, S] e s (B 6)
(N S) IAS.m - s
e = S [S L[S, 8]] )]l

Note that the right-hand side of the last equation has n pieces of S. Hence, we finally arrive

at
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