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Abstract

An ultralight scalar field is a candidate for the dark matter. The Pulsar Timing Array
offers a unique opportunity to search for the ultralight scalar field with mass around
10−23 eV. The dark matter makes up about 30 percent of the cosmic components, and
the detection is very important. In particular, the ultralight scalar dark matter can solve
the core-cusp problem of galactic halos.

We search for the ultralight scalar dark matter using the North American Nanohertz
Observatory for Gravitational Waves 11-year Data Set. We give the 95% confidence
upper limit for the energy density of the ultralight scalar dark matter near the Earth. In
comparison with the published upper limits on the ultralight scalar dark matter using
the Parkes Pulsar Timing Array 12-year data set (Porayko et al. 2018), we find three
times stronger upper limit in the mass range from 9.45 × 10−24 to 1.34 × 10−23 eV. In
terms of the energy density of the dark matter, we find that the energy density near
the Earth is less than 7GeV/cm3 in the range from 5.83 × 10−24 to 2.02 × 10−23 eV.
The strongest upper limit on the the energy density is given by 2GeV/cm3 at a mass
1.09× 10−23 eV.
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Conventions

Units:

c = G = 1

Metric tensor:

gµν = diag(−,+,+,+)

Christoffel symbols：

Γµ
νλ =

1

2
gµα(gαν,λ + gαλ,ν − gνλ,α)

Riemann curvature tensor:

Rµ
νρσ = Γµ

νσ,ρ − Γµ
νρ,σ + Γµ

λρΓ
λ
νσ − Γµ

λσΓ
λ
νρ

Ricci tensor:

Rµν = Rα
µαν

Curvature scalar:

R = gµνRµν

Einstein tensor:

Gµν = Rµν −
1

2
gµνR

Fourier transform:

g(t) =

∫ ∞

−∞
df g̃(f)e−i2πft

g̃(f) =

∫ ∞

−∞
dt g(t)ei2πft
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Chapter 1

Introduction

The dark matter problem is clearly one of the most important issues in modern cos-
mology. Recently, motivated by string theory, an ultralight scalar dark matter has been
intensively studied [1, 2]. In particular, an ultralight scalar field with mass 10−23 eV can
behave like the cold dark matter (CDM) on cosmological scales and resolve a core-cusp
problem [3, 4]. In this thesis, we call it simply the fuzzy dark matter (FDM). The FDM
can be treated as a classical scalar field because the occupation number of the FDM
accounting for the energy density of the dark matter is very large. The main difference
between FDM and CDM is that the pressure of the FDM is coherently oscillating, while
that of CDM almost vanishes. Khmelnitsky and Rubakov have pointed out that the
effect of oscillating pressure might be detected with the pulsar timing arrays (PTAs) [5].
Indeed, the oscillation of the pressure induces the oscillation of the gravitational poten-
tial, and as a result, it induces the oscillation of the arrival time of the pulse passing
through the gravitational potential.

Nowadays, the PTAs are most sensitive to the gravitational effects with a few
nanohertz frequency. There are three major pulsar timing projects: the European Pulsar
Timing Array (EPTA) [6], the North American Nanohertz Observatory for Gravitational
Waves (NANOGrav) [7], and the Parkes Pulsar Timing Array (PPTA) [8]. The collab-
oration of the three projects is called the International Pulsar Timing Array (IPTA) [9].
Furthermore, observations of the pulsars have started by Five-hundred-meter Aperture
Spherical Telescope (FAST) in China and MeerKAT in South Africa. From 2020 year,
the Square Kilometre Array (SKA) will begin observations which is the next genera-
tion telescope. There are many projects observing the pulsars, therefore, the PTA is
currently receiving much interest.

Porayko and Postnov [10] gave upper limits for the FDM with the Bayesian anal-
ysis using the NANOGrav 5-year Data Set. Moreover, Porayko et al. [11] gave upper
limits for the FDM with the Bayesian and the Frequentist analyses using the PPTA 12-
year Data Set. Following the previous articles, we search for the FDM by the Bayesian
analysis in the time domain using the NANOGrav 11-year Data Set. We quantita-
tively investigate whether the ultralight scalar dark matter is detectable or not using
the Bayesian model selection approach. We clarify the prior dependence of constraints
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on the amplitude of the FDM signal and obtain three times stronger constraints on the
amplitude of the FDM signal in the frequency range from 10−8.34 to 10−8.19Hz. We also
discuss how the results of Bayesian analysis depend on the solar system ephemeris noise
in the model describing the observation data.

1.1 Why we want to detect FDM?

In the first place, it is known that the percentage of the dark matter in the universe is 26%
based on the CMB observations by the Planck satellite. For this reason, the detection of
the dark matter is one of the important issues in physics. Currently, various unknown
particles are considered as dark matter candidates. Some of the dark matter candidates
include the FDM, the neutralino of supersymmetric particles, the sterile neutrino that
interact only with gravity, and the black hole in the early universe.

The reason for searching for the FDM is that the FDM can solve the core-cusp
problem if the mass is about 10−23 eV/c2 [3, 4]. The core-cusp problem is a problem in
which the energy density of the dark matter halo does not agree between the theory and
the observation. Theoretically, the energy density increases as it approaches the center
of the galaxy, but in observation, it is a constant value at the center of the galaxy.

The FDM can solve the core-cusp problem because its mass is so small that it becomes
wavelike at the galactic scale. Actually, the de Broglie wavelength λ is on the order of
the galaxy scale:

λ =
2π!
mv

∼ 4 kpc

(
10−23eV/c2

m

)(
10−3c

v

)
, (1.1.1)

where v is the typical velocity of the matter in the galaxy. Therefore, the FDM can be
made to have a core structure at the center of the galaxy by spreading to the de Broglie
wavelength.

1.2 Why we use pulsar timing array?

In the first place, the pulsar timing array is used to detect the gravitational waves and is
the highest precision detector. Since the article [5] revealed that the pulsar timing array
can detect the FDM, it would be natural to attempt detection with the pulsar timing
array. However, recent observations have limited the low mass FDM that can be detected
with a pulsar timing array. For example, if the FDM mass is less than 10−22 eV/c2, from
the observation of the Lyman-alpha forest, the proportion of FDM in dark matter is less
than 20% [12], see figure 1.1. Therefore, there is a relatively strong constraint on the
FDM that can be detected by the pulsar timing array. Currently, the pulsar timing array
is not sensitive enough to detect FDM. However, if sensitivity is improved by the SKA, it
is expected that a constraint comparable to that of Lyman-alpha forest will be obtained
[5]. In addition, the constraints of the Lyman-alpha forest and the pulsar timing array
are obtained on the cosmological scale and the galactic scale, respectively. It would be
important to confirm that these two constraints of different scales are consistent.
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Figure 1: Constraints on the scalar DM mass m and fraction F of the total DM density in scalar

DM obtained from Lyman-↵ forest data; the two di↵erent areas indicate 2 and 3 � confidence levels.

These results have been obtained for the reference combination of data sets described in [16], with a

physically motivated weak prior on the thermal evolution of the intergalactic medium. The regime of

m < 10�22 eV has been extrapolated.

DM fraction becomes small, as we will shortly see, hence the quantum pressure is also expected to

be negligible there. If the quantum pressure at the nonlinear level is actually non-negligible, then

it should lead to further suppression of structure formation; hence the bounds we present for the

scalar DM parameters can be considered as conservative.

Following [16] we vary only �8 (the normalization of the matter power spectrum) and the slope

of the matter power ne↵ , at the scale of Lyman-↵ forest (0.005 s/km). Five di↵erent values are

considered in the hydrodynamical simulations for both �8 (in the range of [0.754, 0.904]) and ne↵ (in

the range of [�2.3474,�2.2674]). These parameters just described are our cosmological parameters.

There have been several studies in the past (e.g. [18, 27, 28]), that have shown that the Lyman-↵

forest is really measuring the amplitude of the linear matter power spectrum, the slope of the power

spectrum, and possibly the e↵ective running, all evaluated at a pivot scale of around 1-10 Mpc/h.

Thus �8 and ne↵ used are good tracers of what is actually measured. Given that all our modelling

in simulations kept ⌦mh
2 fixed, �8 can be directly translated into the amplitude of linear matter

power at the pivot scale (similarly to how ne↵ was used). As pointed by [18], these matter power

amplitude parameters are equivalent. The linear matter power only weakly depends on ⌦mh
2, and

moreover, the e↵ects of ⌦m and H0 on the linear matter power are already captured in the tracers

of the amplitude (�8) and slope (ne↵). Therefore the constraints are not sensitive to the value of

⌦m nor H0.

4

Figure 1.1: Lyman-alpha forest constraint which is obtained by the article [12]. The
vertical axis is the proportion of the FDM in the dark matter, and the horizontal axis
is the FDM mass.

1.3 Which analysis method is suitable?

In general, there are two ways of interpreting probabilities: frequentist and Bayesian. In
the pulsar timing array, the number of parameters for parameter estimation is very large,
and the likelihood function is multimodal. Therefore, it is more reasonable to estimate
the likelihood function rather than to derive an analytical (or numerical) solution for
the parameter that maximizes the likelihood function. In the Bayesian, a method for
estimating the posterior distribution obtained by multiplying the likelihood function
by the prior distribution is known, which is called Markov chain Monte Carlo method
(MCMC). Therefore, we will use the Bayesian statistics instead of frequentist statistics.

In data analysis, it is important whether the data is handled in the time domain or
the Fourier domain. The data used in the pulsar timing array is obtained by irregular
observation intervals. The Fourier transform assumes uniform sampling, so the nature
of the observation data in the Fourier domain of PTA is not well understood. In a pulsar
timing array, it would be natural to handle data in the time domain. Therefore, we will
use the data in the time domain.
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Chapter 2

Fuzzy Dark Matter

The cosmological model containing cold dark matter and dark energy can explain the
CMB observations very well. However, in astrophysical scales, the density profile of
the galaxy halo predicted by the cold dark matter model does not match the actual
galaxy profile. This disagreement is called the core-cusp problem. To solve the core-
cusp problem, an ultra-light scalar field was introduced as a candidate for the dark
matter. The ultralight scalar field is called the fuzzy dark matter.

2.1 Candidate of Fuzzy Dark Matter

In this section we review the axion which is a candidate for the FDM, see the articles
[1, 13, 14] for further detail. The axion is a pseudo Nambu-Goldstone boson, which is
introduced when global symmetry breaks spontaneously. There are two parameters that
characterize the axion. The first is the parameter F , which is related to the scale of
the spontaneous symmetry breaking. The second is the parameter µ, which is related
to the scale at which the instanton effect occures. Due to the instanton effect, the shift
symmetry of the axion is broken explicitly and the axion can have a mass. It is known
that the Lagrangian for the axion can be written as follows:

L =
1

2
∂µφ∂

µφ− µ4

[
1− cos

(
φ

F

)]
, (2.1.1)

where φ denotes the axion. As can be seen from this equation, the symmetry of the
Lagrangian is discrete φ → φ + 2πF , due to the second term. Expanding the second
term to the quadratic order in the axion, we can define the axion mass as

m ≡ µ2

F
. (2.1.2)

Considering the behavior of the axion with mass 10−22eV in the expanding universe,
the value of the F is known to be as follows [14]:

F ∼ 0.5× 1017GeV. (2.1.3)
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The value in the above equation is between the grand unified scale MG ∼ 1016GeV and
the reduced Planck mass MPl ∼ 1018GeV, and it is known that this parameter space is
preferred in string theory. Then the energy density of the axion is close to the percentage
the dark matter in the universe:

Ωaxion ∼ 0.1

(
F

1017GeV

)2 ( m

10−22.eV

)1/2
. (2.1.4)

2.2 Fuzzy Dark Matter in Expanding Universe

In this section, we describe that FDM behaves as dark energy in the early expanding
universe and dark matter in later expanding universe. After inflation, the universe
expands depending on what components of the universe are dominant. There are three
eras in the expanding universe; radiation dominant, matter dominant, and dark energy
dominant. First, in the early expanding universe, the radiation is dominant, and the
energy density of the radiation is inversely proportional to the fourth power of the scale
factor. The scale factor is a time-dependent variable that describes the expansion of the
universe. Next, in the later expanding universe, the matter is dominant, and the energy
density of the matter is inversely proportional to the third power of the scale factor.
Finally, in the most recent expanding universe, the dark energy is dominant, and the
energy density of the dark energy is constant independent of the scale factor.

The FDM mass is very small, so that the large occupation number would be required.
This means that FDM can be regarded as a classical field. The action for the FDM with
the flat FLRW metric ds2 = −c2dt2 + a2(t)

[
dx2 + dy2 + dz2

]
is

Sφ =

∫
d4x a3(t)

[
1

2
∂µφ∂µφ− 1

2
m2φ2

]
, (2.2.1)

where a(t) is the scale factor. Then the equation of motion for the FDM is

φ̈+ 3Hφ̇+m2φ = 0, (2.2.2)

where H ≡ ȧ/a is the Hubble parameter. Therefore, the behavior of the FDM changes
depending on the magnitude relationship between the Hubble parameter and the FDM
mass.

In the early expanding universe, the relationship H ≫ m holds, because the Hubble
parameter decreases as the universe expands. Assuming the relationship H ≫ m, Eq.
(2.2.2) gives the following solution:

φ = C1 + C2

∫
a−3 dt, (2.2.3)

where C1 and C2 are the constants. The second term in the above equation denotes that
FDM approaches a certain value as the scale factor increases. Therefore, in the early
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expanding universe, FDM can be considered almost constant independent of time. As
described in the next section, the energy density of FDM would be

ρ =
1

2
φ̇2 +

1

2
m2φ2. (2.2.4)

Due to φ ≃ const, the above equation means that the FDM is almost independent of the
scale factor. Therefore, in the early expanding universe, the FDM can be considered as
dark energy which is constant independent of the scale factor.

In the later expanding universe, the relationship H ≪ m holds. Since it is the
later expanding universe, assuming the mater dominant a ∝ t2/3, Eq. (2.2.2) gives the
following solution:

φ = C3
sin(mt)

t
+ C4

cos(mt)

t
, (2.2.5)

where C3 and C4 are the constants. Substituting this equation into Eq. (2.2.4), then
taking time average with about 1/m time, the energy density is

⟨ρ⟩ ∝ 1

t2
(2.2.6)

Due to the mater dominant a ∝ t2/3, the above equation means that the FDM is inversely
proportional to the third power of the scale factor. Therefore, in the later expanding
universe, the FDM can be considered as the matter (almost dark matter) which is
inversely proportional to the third power of the scale factor.

2.3 Fuzzy Dark Matter Signal

The pulsar timing array can detect the time oscillation of the arrival time of the pulse. In
this section, we derive the time oscillation of the arrival time of the pulse which induced
by the FDM. The derivation is based on the article [5]. This article show that the FDM
can be regarded as a perfect fluid with oscillating pressure. Then the oscillation of the
pressure induces the oscillation of the gravitational potential. Finally, it induces the
oscillation of the arrival time of the pulse passing through the gravitational potential.
We will refer to this oscillation as the FDM signal. The purpose of this thesis is to detect
the FDM signal using the pulse timing array.

As mentioned in the following subsection 2.3.3, the FDM signal is a simple sine wave,
and so some noise in the data may have a similar waveform. Therefore, it is necessary
to consider whether the FDM signal obtained by data analysis is the actual FDM signal
or some noise.

2.3.1 Oscillation of Pressure

In this subsection, we derive the energy momentum tensor for the FDM, and show
that the energy momentum tensor is the perfect fluid with oscillating pressure. First,

10



assuming that the FDM velocity is the nonrelativistic in the galaxy, the dispersion
relation is

E2
k = m2 + k2 = m2 + (mv)2 ≃ m2, (2.3.1)

where v ≈ 10−3 is the typical velocity of matters in the galaxy. Then the plane wave
solution of the Klein-Gordon equation is monochromatic as follows:

φ(t,x) = φ0(x) cos(mt+ α(x)). (2.3.2)

The energy momentum tensor is

Tµν = ∂µφ∂νφ− 1

2

(
(∂φ)2 +m2φ

)
ηµν . (2.3.3)

Substituting Eq. (2.3.2) into the above equation, under the relation

∂iφ ≪ ∂0φ ∵ k ≪ m, (2.3.4)

we can obtain

T00 =
1

2
φ̇2 +

1

2
m2φ2 =

1

2
m2φ2

0 = ρ,

Tij =

(
1

2
φ̇2 − 1

2
m2φ2

)
δij = −1

2
m2φ2

0 cos(2mt+ 2α)δij = −ρ cos(2mt+ 2α)δij ,

(2.3.5)

where we defined the energy density of the FDM ρ ≡ 1/2m2φ2
0. Therefore, the nonrela-

tivistic classical scalar field behaves as a perfect fluid with an oscillating pressure.

2.3.2 Oscillation of Gravitational Potential

In this subsection we show that the oscillating pressure induces the oscillation of the
gravitational potential. The linearized Einstein equation is

Gµν = 8πGTµν . (2.3.6)

Using the Newtonian gauge

ds2 = −(1− 2Ψ)dt2 + (1 + 2Ψ)δijdx
idxj , (2.3.7)

the Einstein tensor are calculated as follows:

G00 = −2Ψ,i
,i,

G0i = Gi0 = −2Ψ̇,i,

Gij = −2Ψ̈δij . (2.3.8)
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Let us divide the gravitational potential into time-independent part and time-dependent
perturbation part

Ψ = Ψ0(x) + δΨ(t,x), |Ψ0(x)| ≫ |δΨ(t,x)|. (2.3.9)

Then, Eq. (2.3.8) can be rewritten as follows:

G00 = −2Ψ0(x)
,i
,i,

G0i = Gi0 = −2δΨ̇(t,x),i,

Gij = −2δ̈Ψ(t,x)δij . (2.3.10)

Using Eq. (2.3.5) and Eq. (2.3.10) , the 00 component and the ij component of the
Einstein equation Eq. (2.3.6) are

−2Ψ0(x)
,i
,i = 8πGρ,

−2δ̈Ψ(t,x)δij = −8πGρ cos(2mt+ 2α)δij . (2.3.11)

The first equation denotes the Poisson equation for the time-independent part. The
time-independent gravitational potential does not cause the oscillation of the light arrival
time, so that it cannot be detected. On the other hand, the second equation shows that
the time-dependent part oscillates. Solving the second equation, we can obtain the
oscillation of the gravitational potential:

δΨ =
πGρ

m2
cos(2mt+ 2α). (2.3.12)

This oscillation would cause the oscillation of the light arrival time, and can be detected
by the pulsar timing array. From the above, it is understood that the oscillation of the
pressure causes the oscillation of the gravitational potential.

2.3.3 Oscillation of Pulse Arrival Time

In this subsection we show that the oscillation of the gravitational potential induces the
oscillation of the pulse arrival time. The derivation is based on the articles [15, 16].
We need to solve the geodesic equation to see if the oscillating gravitational potential
defined by Eq. (2.3.12) actually causes the oscillation of the light arrival time. The zero
component of the geodesic equation is

d2x0

dλ2
+ Γ0

νρ
dxν

dλ

dxρ

dλ
= 0, (2.3.13)

where λ is the affine parameter. By solving the zero component of the geodesic equation,
we can obtain the change in the light frequency, that is, the change in the arrival time
of the light. First, the world line is written in the zero-order and first-order as follows

xα = xα0 (λ) + xα1 (λ). (2.3.14)
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Similarly, the four-momentum kα ≡ dxα/dλ is

kα = kα0 (λ) + kα1 (λ), (2.3.15)

where we define the zero-order world line and four-momentum as

xα0 (λ) = ω0(λ,−λp̂) + (t0,0), kα0 = ω0(1,−p̂) (2.3.16)

ω0 denotes zero-order frequency and p̂ ≡ xp/|xp| denotes the unit vector for pulsar
direction. We also define the zero-order affine parameters of the earth and the pulsar:

λ0e = 0, λ0p = − |xp|
ω0

. (2.3.17)

When affine parameters are defined in this way, the light observed on the earth at the
origin of the spatial coordinates at time t0 is emitted at time t0− |xp| at the position xp

of the pulsar in zero-order. Then the zero component of the first order of the geodesic
equation is

d2x01
dλ2

= −Γ0
00
dx0

dλ

dx0

dλ
− Γ0

0i
dx0

dλ

dxi

dλ
− Γ0

i0
dxi

dλ

dx0

dλ
− Γ0

ij
dxi

dλ

dxj

dλ

= Ψ̇
dx00
dλ

dx00
dλ

+ 2Ψ,i
dx00
dλ

dxi0
dλ

− Ψ̇δij
dxi0
dλ

dxj0
dλ

= 2ω2
0Ψ,ip

i, (2.3.18)

where pi expresses the vector p̂ in component form. The zero component of the first-order
four-momentum can be obtained by integrating the above equation with an affine pa-
rameter, where the integration interval can be defined with a zero-order affine parameter
because the integrand is already in the first order, namely

k01(λ) = 2ω2
0

∫ λ

0
dλ′ Ψ,ip

i + I0, (2.3.19)

where I0 is the integration constant. Next, we calculate the integration constant. The
frequency of light which is emitted at an object with the four velocity uµ is

ω = −gµνk
µuν . (2.3.20)

Therefore, when the pulser emits the light with frequency ω0 at λ0p, the frequency of
light is

ω0 = −gµν(λ0p)k
µ(λ0p)u

ν(λ0p),

= (1− 2Ψ(λ0p))k
0(λ0p)(1 +Ψ(λ0p)),

= (1− 2Ψ(λ0p))(k
0(λ0

0p) + k0(λ1
0p))(1 +Ψ(λ0p)),

= (1− 2Ψ(λ0p))

(
ω0 + 2ω2

0

∫ λ0p

0
dλ′ Ψ,ip

i + I0

)
(1 +Ψ(λ0p)),

= ω0(1−Ψ(λ0p)) + 2ω2
0

∫ λ0p

0
dλ′ Ψ,ip

i + I0(1−Ψ(λ0p)).

(2.3.21)
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From the above equation, the integration constant is as follows:

I0 = ω0Ψ(λ0p)− 2ω2
0

∫ λ0p

λ0e

dλ′ Ψ,ip
i. (2.3.22)

Therefore, the frequency of light ωobs observed on the earth at λ0e is

ωobs = −gµν(λ0e)k
µ(λ0e)u

ν(λ0e),

= (1− 2Ψ(λ0e))k
µ(λ0e)(1 +Ψ(λ0e)),

= (1− 2Ψ(λ0e))(ω0 + I0)(1 +Ψ(λ0e)),

= ω0(1−Ψ(λ0e)) + ω0Ψ(λ0p)− 2ω2
0

∫ λ0p

λ0e

dλ′ Ψ,ip
i,

= ω0 + ω0(Ψ(λ0p)−Ψ(λ0e))− 2ω2
0

∫ λ0p

λ0e

dλ′ Ψ,ip
i. (2.3.23)

The third term in the above equation is negligible because we can only detect the oscilla-
tion part of the gravitational potential δΨ. The oscillation time 1/2m of the gravitational
potential δΨ is much smaller than propagation time between the pulsar and the earth.

Then, the red shift of light z is

z ≡ ω0 − ωobs

ω0

= Ψ(λ0e)−Ψ(λ0p). (2.3.24)

Finally, the deviation of the light arrival time ∆t can be obtained by integrating the
redshift with observation time, so

∆t =

∫ t

0
dt z, (2.3.25)

=

∫ t

0
dt Ψ(λ0e)−Ψ(λ0p). (2.3.26)

Since the pulsar cannot be detected if the arrival time of light is not oscillating, rewriting
only with the gravitational potential oscillating in time Eq. (2.3.12), the FDM signal s(t)
is

∆t =
1

2πf
[Ψ0(xe) sin(2πft+ 2α(xe))−Ψ0(xp) sin(2πf(t−D) + 2α(xp))] ≡ s(t),

(2.3.27)

where f = m/π is a frequency, Ψ0 ≡ πGρ/m2, D is the distance between the pulsar
and the earth, each xe and xp are the position of the Earth and the pulsar. The FDM
signal can be observed as the periodic signal with the frequency determined by the mass
of the FDM. From the above, the oscillation of the gravitational potential induces the
oscillation of the pulse arrival time
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Chapter 3

Pulsar Timing Array

First of all, a pulsar is a fast rotating neutron star. The figure 3.1 denotes the pulsar.
The beam from the pulsar can be received as a pulse on the earth because the rotation
axis and the beam axis of the pulsar are different. As a feature of pulsars, some pulsars
are known to have an accuracy of pulse period comparable to that of atomic clocks, so
they can be regarded as natural clocks in the universe [17]. In addition, thousands of
pulsars will be observed in the Milky Way Galaxy [18]. Due to these features, long-term
observation of a large number of pulsars is expected to detect pulse period deviations
caused by gravitational effects. Numerous pulsars in the Milky Way Galaxy constitute
the galaxy-scale gravitational effect detectors, which is called the pulsar timing arrays.

The concept of the pulsar timing array originated from the American community in
1989 [19, 20]. This community proposed an attempt to detect a stochastic gravitational
wave background by observing many pulsars over the long term. To date, several pulsar
timing array projects have aimed to detect the stochastic gravitational wave background.
Here, the fuzzy dark matter is an exotic target, not the main target of the pulsar timing
array.

3.1 Pulsar Timing Array Projects

There are three main pulsar timing array projects and their collaboration:

• The Parkes Pulsar Timing Array (PPTA) [8]

The PPTA was established in 2004. The PPTA uses the Parkes radio telescope in
New South Wales, Australia. The feature is that unlike other projects, the pulsar
in the southern hemisphere can be observed. In the southern hemisphere sky, there
is a pulsar with the highest pulse period accuracy of PSR J0437-4715.

• The European Pulsar Timing Array (EPTA) [6]

The EPTA was established in 2006. The EPTA is a European collaboration. The
EPTA uses five telescopes, Effelsberg, Lovell, Nançay, Sardinia, and Westerbork
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in Europe. Since it has five telescopes, it can observe pulsars more frequently than
other projects. Effectively, observation data can be made once a week.

• The North American Nanohertz Observatory for Gravitational waves (NANOGrav)
[7]

The NANOGrav was established in 2007. The NANOGrav uses two telescopes,
Green Bank and Arecibo, in the United States. The Arecibo telescope is the second
largest in the world and very sensitive to pulses. The Green Bank telescope is the
world’s largest movable telescope. The area of the sky that can be covered is small
compared to other projects because the Arecibo terescope cannot be moved.

• The International Pulsar Timing Array (IPTA) [9]

The IPTA is is a consortium of consortia, comprised of the PPTA, the EPTA and
the NANOGrav mentioned above. The IPTA aims at detection of background
gravitational waves by combining pulsar observation data from each project. In
2016, the noise contained in the pulsar observation data was estimated, and an
upper limit was given to the amplitude of the stochastic gravitational wave back-
ground [21].

Other than the above projects, observations of pulsars have started by Five-hundred-
meter Aperture Spherical Telescope (FAST) in China and MeerKAT in South Africa.

The Square Kilometre Array project [22] is an international attempt to construct
a next-generation radio telescope, and observations will begin in 2020. The five major
key sciences of Square Kilometre Array are the evolution of galaxies, the verification of
gravity theory, the evolution of the cosmic magnetic field, the dark era of the universe,
and the life in the universe. The second key science, verification of gravity theory,
corresponds to the pulsar timing array.
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3.2 Timing residual

In the pulsar timing, the data analysis is performed on the residual, not the time-of-
arrival (TOA) of the pulse from the pulsar. The residual is defined as the TOA minus
the timing model [23]. The residual calculation is done with TEMPO2 [24].1) The timing
model predicts the time from when a pulse is emitted until when it is detected. The
timing model in time is represented by the following three effects:

tpsr = tobs −∆⊙ −∆IS −∆B, (3.2.1)

where tpsr is the pulse emission time, tobs is the TOA of the pulse at the observatory,
∆⊙ includes the effects which are induced in the solar system, ∆IS includes the effects
which are induced in the interstellar, and ∆B includes the effects which are induced in
the binary pulsar if pulsar is binary pulsar. When ∆⊙, ∆IS, and ∆B are positive, these
effects induce the delay of TOA. The effect that is not included in Eq. (3.2.1) is an offset
between different receivers and backend systems (known as a JUMP).

In addition, the delay of the arrival time of the pulse also occurs due to a decrease
in the rotation speed of the pulser. Due to the evolution of the pulse phase, the timing
model in phase is

φ(t) = φ0 + ν(tpsr − t0) + ν̇(tpsr − t0)
2 + · · · , (3.2.2)

where φ0 is the initial phase, and ν and ν̇ is the expansion coefficient of the frequency
of the pulsar. ν and ν̇ are called spin and spin-down parameter, respectively.

In fact, there is uncertainty in principle when fitting timing model parameters. Con-
sidering this effect, we perform data analysis for the residual. Therefore, It would be
important to mention what kind of timing model was used. In this section we will briefly
review the timing mode used in the NANOgrav 11-year Data Set.

3.2.1 Space and time coordinate

The pulsar timing array attempts to detect very small changes that occur during the
decade of observation. Therefore, special care must be taken when selecting time and
space coordinate systems.

The important time scales in astronomy are listed below2):

• GPS time: determined from atomic clocks of multiple Global Positioning System
satellites.

• UTC (Coordinated Universal Time): basis of civil timekeeping.

• UT1 (Universal Time): time coordinates of the coordinate system that rotates
with the rotation of the earth.

1)https://bitbucket.org/psrsoft/tempo2.git
2)http://www.iausofa.org/2015 0209 C/sofa/sofa ts c.pdf
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• TAI (International Atomic Time): determined from internationally controlled atomic
clocks.

• TCG (Geocentric Coordinate Time):time coordinates of GCRS (Geocentric Celes-
tial Reference System) which is used for objects in the vicinity of the Earth.

• TT (Terrestrial Time): theoretical time scale on rotating geoid (also called mean
sea level). linear transformation of TCG.

• TCB (Barycentric Coordinate Time): time coordinates of BCRS (Barycentric Ce-
lestial Reference System) which is used for the distant celestial objects and the
solar system object.

• TDB (Barycentric Dynamical Time): time coordinates that are close to TT when
taking the average. linear transformation of TCB.

To create the residual, the TOA obtained at the observatory on the Earth’s surface
is first converted into the TOA of the coordinate system of the solar system barycenter
(SSB). Since the pulsar is outside the solar system, it would be natural to use the
coordinate system of the SSB. Either TCB or TDB is used for the time of the coordinate
system of the SSB. TEMPO2 can use both TCB and TDB, and TDB is selected in the
NANOgrav. TCB is well defined as BCRS time coordinate, while TDB has been used
as a convention and must be interpreted with care. For the interpretation of coordinate
systems and physical quantities in TDB, see the article [25].

The relationship between the observatory clock and the corresponding TDB can be
obtained by connecting various time scales. The time of the hydrogen-maser clock in the
observatory and GPS time are compared daily. For transformation from GPS time to
UTC, the circular T of the Bureau international des poids et mesures (BIPM) is used.3)

For transformation from UTC to TAI, the Bulletin C of the International Earth Rotation
and Reference Systems Service (IERS) is used.4) For transformation from TAI to TT,
the TT(BIPM) of the BIPM is used.5) TT(BIPM) is updated every year. The data
obtained in 2015 is used in the NANOgrav 11-year Data Set. The transformation from
TT to TDB is performed in TEMPO2 internally. The method of the transformation
from TT to TDB is based on the article [26]. This transformation uses the relationship
between TT and TCG, TCG and TCB, and TCB and TDB.

The spatial coordinates of the BCRS is provided by the solar system ephemeris. The
solar system ephemeris is a record of the position and the motion of the barycenter of the
solar system objects. There are various the solar system ephemeris. The Jet Propulsion
Laboratory (JPL) DE436 [27] is used in the NANOgrav 11-year Data Set. Note that
the spatial coordinate axis of DE436 is defined by the International Celestial Reference
System (ICRS). The BCRS and the GCRS do not rotate with respect to ICRS.

3)https://www.bipm.org/en/bipm-services/timescales/time-ftp/Circular-T.html
4)http://hpiers.obspm.fr/eoppc/bul/bulc/UTC-TAI.history
5)https://www.bipm.org/en/bipm-services/timescales/time-ftp/ttbipm.html
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We also need the vector from the geocenter to the observatory on the Earth’s surface.
This means that we need to know the relationship between the GSRS and the coordinate
system that rotates with the Earth. The time scale to know the rotation of the Earth
is UT1, and the relationship between UT1 and UTC is provided by the Bulletin B of
the IERS.6) The orientation of the coordinate system rotating with the Earth has the
following three effects: precession and nutation, Earth’s spin rotation, and polar motion.
When creating a residual with TEMPO2, these three effects can be included, but a model
that ignores polar motion is used in NANOgrav 11-year Data Set.

3.2.2 Solar system delay

In this section we describes the delays caused in the solar system. There are four main
sources of the delay: the general coordinate transformation from the GCRS to the BCRS
(Einstein delay), the difference of TOA between the observatory and the SSB, which is
emitted at the same time (Roemer delay and parallax), the gravitational potential of
the solar system objects (Shapiro delay). The equation can be written as

∆⊙ = ∆E +∆R +∆p +∆S. (3.2.3)

Einstein delay

The Einstein delay occurs when transforming from TCG to TCB. This delay is purely
the effect of a general coordinate transformation from GCRS to BCRS. For metric and
transformation of the GCRS and the BCRS, see the IAU Resolutions Adopted at the
XXIVth General Assembly.7) The Einstein delay ∆E can be written as follows:

∆E = TCB − TCG =
1

c2

(∫ t

t0

(
|vE|2

2
+ Uext(rE)

)
dt+ vE · (ro − rE)

)
, (3.2.4)

where rE and vE are the position and the velocity of the geocenter with respect to the
BCRS, ro is the position of the observatory with respect to the BCRS, and Uext(rE)
is the potential of the solar system objects except for the Earth. In TEMPO2, two
methods of articles [28, 26] can be used for integration of the first term. The methods
of the article [28] is used in the NANOgrav 11-year Data Set.

Røemer delay and parallax

The Røemer delay is the difference in the TOA between the geocenter and the SSB. The
pulse is assumed to propagate in the vacuum and the wavefront is a plane. The Røemer
delay ∆R simply can be written as follows:

∆R = −ro · R̂
c

, (3.2.5)

6)http://hpiers.obspm.fr/iers/bul/bulb new/
7)https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote32/

tn32 117.pdf? blob=publicationFile&v=1
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where R̂ the unit vector for the position of the pulsar barycenter (if binary, binary
barycenter) with respect to the BCRS. Since it takes 500s for the light to travel from the
sun to the earth, the Røemer delay is the largest delay among the solar system delays.
Due to the revolution of the Earth, the Røemer delay has an oscillation component of
one year cycle.

The Røemer delay assumes that the pulse wavefront is a plane, but the actual pulse
wavefront is a sphere. The parallax is introduced to take into account that the wavefront
of the pulse is a sphere. Assuming that the distance between the Earth and the pulsar
is very long compared to the revolution radius of the Earth, the parallax can be written
as follows [29]:

∆p =
|ro⊥|2

2cdp
, (3.2.6)

where ro⊥ ≡ ro − ro∥ · R̂0, xo∥ ≡ ro · R̂0, R̂0 is the R̂ at a given epoch, and dp is the
distance from the Earth and the pulsar. Due to the revolution of the earth, the parallax
has an oscillation component of half a year cycle.

Shapiro delay

The Shapiro delay occurs when a pulse passes through the gravitational potential of the
solar system objects. Under the weak field approximation, the Shapiro delay can be
written as follows [30, 31]:

∆S = −2
∑

A

GMA

c3
ln(R̂ · rA + |rA|), (3.2.7)

where A is a subscript for the solar system object to be considered, MA is the mass
of the solar system object A, and rA is the vector from the solar system object A to
the observatory. that Shapiro delay is always negative. The solar system object that
contributes most to the Shapiro delay is the sun. In TEMPO2, in addition to the sun,
planets can be included in Eq. (3.2.7). Only the sun is used in the NANOgrav 11-year
Data Set.

3.2.3 Interstellar delay

The interstellar delay is caused by a pulse passing through the interstellar plasma. In
the plasma, the group velocity of the light changes from that in the vacuum. As a char-
acteristic of the Interstellar delay, the delay depends on the light frequency. Therefore,
the interstellar delay can be examined by observing light with different frequencies. The
interstellar delay is expressed by two component: the delay induced by the integrated
column density of the electrons (Dispersion measure, DM), and the additional delay de-
pends on light frequency (Frequency Dependent delay, FD). The equation can be written
as

∆IS = ∆DM +∆FD. (3.2.8)
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Interstellar dispersion delay

The integrated column density of electrons is called dispersion measure:

DM =

∫ L

0
nedℓ, (3.2.9)

where ne is the electron number density, and L is the distance from the Earth to the
pulsar. Then, Interstellar dispersion delay can be written as follows [31]:

∆DM =
1

f2
SSB

e2

2πmec
DM, (3.2.10)

fSSB =

(
1 +

d∆R

dt

)
f, (3.2.11)

where e is the electron charge, me is the electron mass, and d∆R/dt is the redshift due
to the Røemer delay. Interstellar dispersion delay is known to have temporal variations.
This variation would be caused by the variation of the electron density and by the pulsar
motion. The time variation of the DM is calculated for each pulsar observation in the
NANOGrav.

Frequency Dependent delay

It is known that the pulse shape varies depending on the frequency of the pulse [32]. To
characterize this variation, the FD delay was introduced:

∆FD =
n∑

i

ci log

(
fSSB
1GHz

)i

, (3.2.12)

where ci is the fitting parameter, and the n is increased until the FD delay is sufficiently
low.

3.2.4 Binary delay

Binary delay occurs when the millisecond pulsar is a binary. Many binary models are
considered in the pulsar timing. For example, the Damour and Deruelle (DD) model
[33] can be used in post-newtonian situations. The T2 model based on the DD model,
unlike the DD model, can be used in the case of two or more companions. In addition,
the ELL1 model [34] is numerically more stable than other models for binaries with a
low eccentricity. Since the binary orbital period would be on the order of days, it is
considered that the main component of the oscillation is sufficiently higher than the
region of our interest.
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3.2.5 Uncertainty of fitting in timing model

There is always uncertainty in parameter fitting. The uncertainty of fitting in timing
model would be written as

δτ = tobs − tdet(ξest) = tdet(ξtrue)− tdet(ξest) + n, (3.2.13)

where tdet is the timing model, ξest is the estimated parameters, ξtrue is the true parame-
ter values, and n is the noise which is not included in timing model. We assume that the
estimated parameters can be written with uncertainty ϵ and the true parameter values.
Then assuming the estimated parameters is very close to the true parameter values, the
residual becomes

δτ = tdet(ξest + ϵ)− tdet(ξest) + n

=
∂tdet(ξest + ϵ)

∂ξ

∣∣∣∣∣
ϵ=0

ϵ+ n+O(ϵ2)

= Mϵ+ n+O(ϵ2),

M ≡ ∂tdet(ξest + ϵ)

∂ξ

∣∣∣∣∣
ϵ=0

, (3.2.14)

where M is called the design matrix whose columns correspond to the linearized (around
the estimated timing parameters) timing model.

There is uncertainty of fitting in timing model is used in our analysis. Therefore
we should explain the nature of the design matrix. Figure 3.2 is a plot of the design
matrix for PSR J1713+0747. As you can see, the spin-down parameters are large below
10−8Hz. We are interested in frequencies below 10−8Hz, so that there is a decrease in
sensitivity due to the spin-down parameters.
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Figure 3.2: Left: Plot of the normalized design matrix. Right: Plot of the Fourier power
of the normalized design matrix.
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Chapter 4

Bayesian analysis in the time
domain

In this chapter, we explain the data D, the model M, and the parameter θ used in
Bayesian analysis, and define the posterior probability distribution p(θ|D,M), the like-
lihood function p(D|θ,M), and the prior probability distribution p(θ|M). For the review
of the Bayesian parameter estimation and model comparison, see the Appendix A.

4.1 Data

We used the NANOGrav 11-year data set [35] and chose six pulsars: PSRs J0613-0200,
J1012+5307, J1600-3053, J1713+0747, J1744-1134, and J1909-3744. In this dataset,
these pulsars have relatively good time-of-arrival (TOA) precision and long observation
time, which would be suitable for detecting the signal of the FDM which becomes larger
as the frequency becomes lower.

The data D we use for the Bayesian analysis are timing residuals which are cal-
culated by subtracting the timing model from the TOAs. The fitting to make timing
residual is called timing fit, which removes the currently well-known effects. The param-
eters included in the timing model are spin parameters, astrometry parameters, binary
parameters (if pulser is binary), dispersion measure parameters, frequency dependency
parameters, jump parameters, see the articles [32, 35] for details. Inaccuracies in the
timing fit are taken into account by the TM noise in Section 4.3. Note that, by fitting the
spin parameters, some of the low frequency signal that we are searching for in this thesis
will be absorbed [36, 37]. In the timing fit, TT (BIPM2015)1) is used for the Terrestrial
Time, and JPL DE436 [27] is used for the planetary ephemeris. It is known that the
timing residuals change greatly depending on which planetary ephemeris is selected. To
account for this error, the SSE noise described in Section 4.3 was first introduced to the
model by the article [38].

1)https://www.bipm.org/en/bipm-services/timescales/time-ftp/ttbipm.html
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In order to obtain the timing residuals, we use the libstempo2) which is the PYTHON
interface to TEMPO2.3) For the parameter files which include the timing model param-
eters and for timing files which include TOAs and the uncertainties of TOAs, we used
the identical data set except for the parameter file of PSR J1713+0747. In the param-
eter file of the PSR J1713+0747, we changed only a parameter EPHEM from DE430
[39] to DE436, where this parameter specifies which ephemerides to be used. Then we
used libstempo to fit the timing parameters of the PSR J1713+0747 and created a new
parameter file. We verified that change in ephemeris did not make much difference to
the timing parameters.4) We iterated the parameter fitting five times, which would be
sufficient for parameters to converge to certain values. All of our Bayesian analysis was
done using this new parameter file of the PSR J1713+0747.

4.2 Signal

The parameters used in the Bayesian estimation are defined as follows:

s(t) = − Ψ

2πf
[sin(2πft+ αe)− sin(2πft+ αp)], (4.2.1)

where we auumed Ψ ≡ Ψ(xe) = Ψ(xp) and defined

αe ≡ 2α(xe), αp ≡ 2α(xp)− 2πfD . (4.2.2)

Here, since we do not aim to estimate the distance, we put together the phase α(xp)
and the distance D. In fact, the distance has an uncertainty of tens to hundreds of
parsec currently that is too large to determine the phase [35]. Since, as is mentioned in
the article [11], the distance between the Earth and the pulsar D is not so large, it is
reasonable to assume that the amplitudes at the earth Ψ(xe) and the pulsar Ψ(xp) are
equal. Note that the overall sign of Eq. (4.2.1) only changes the definition of phase and
does not affect the analysis that limits the amplitude.

Assuming that the FDM occupies all of the dark matter energy density, we have

Ψ ≃ 6.48× 10−16

(
ρ

0.4Gev/cm3

)(
10−23eV

m

)2

,

≃ 9.47× 10−16

(
ρ

0.4Gev/cm3

)(
4× 10−9Hz

f

)2

, (4.2.3)

2)http://vallis.github.io/libstempo
3)We confirmed that each pulsar’s value of the chi-square and the degrees of freedom which can be

derived by TEMPO2 are consistent with values listed in the file ‘stats 11y 20180226.dat’, where this file
is included in the data set and can be used as to see if TEMPO2 is properly constructed. Therefore,
TEMPO2 was installed as expected.

4)We found that the LAMBDA and BETA parameters of the astrometry parameters shift by more
than one sigma away from the older value. This result can be inferred from the deviation of the position
parameter due to the difference in ephemeris as pointed out in the article [40].
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and

f ≃ 4.84× 10−9Hz
( m

10−23eV

)
, (4.2.4)

where ρ = 0.4Gev/cm3 is the estimated energy density of the dark matter at the position
of the Earth [41].

4.3 Model

Following the paper [32, 38], the timing residuals δt for each pulsar can be written as
follows

δt = s+ nTM + nred + nSSE + nwhite, (4.3.1)

where these variables are NTOA dimensional vectors and NTOA denotes the number of
TOAs of the pulsar. In the Bayesian framework, Eq. (4.3.1) is the model M for the
residuals δt which are the data D. Each term on the right-hand side is described below.
The first term on the right-hand side s is the FDM signal, which is given by Eq. (4.2.1).
The second term nTM is the noise due to inaccuracies of the timing model, which is
represented by

nTM = Mϵ. (4.3.2)

M is a NTOA × NTM design matrix whose rows describe the dependence of the pulsar
timing residuals on respective timing model parameters, where NTM is the number of
the timing model parameters. ϵ is a NTM dimensional vector, which denotes small offset
for the timing model parameters. We will refer to this noise as the TM noise. We obtain
the design matrix using the TEMPO2 via libstempo, and the timing model parameters
used are listed in [35].

The third term nred is the red noise for which the power spectral density has most of
their power at low frequencies in a given data set. The red noise is known to have achro-
matic (observing-frequency-independent) and chromatic (observing-frequency-dependent)
components [42]. The achromatic components are thought to be caused by a random
walk in one of the pulsar spin parameters [43, 44, 45, 46] and contributions to TOAs by
an asteroid belt around the pulsar [47]. The chromatic components are thought to be
caused by the pulse propagating through the ionized interstellar medium if the disper-
sion measure of the timing model does not describe all this effect [35]. This components
therefore would be induced either by diffractive and refractive interstellar effects [48, 42]
not included in the timing model or by unmodeled propagation effects. Although the
origins of red noise are various, simple power-law spectrum form is often used as the
power spectral density. Under the assumption of the stationary Gaussian process, the
power spectral density P (f) can be written as

P (f) =
A2

red

12π2

(
f

fyr

)3−γred

f−3, (4.3.3)
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where f is a red noise frequency, fyr is 1yr−1, Ared is a dimensionless amplitude of the
red noise, and γred is a spectral index of the red noise. Note that this parameterization
is the analogy of the power-law model for the stochastic gravitational wave background
[49, 50]. In order to improve computational efficiency, the red noise was described by the
Fourier series rather than by analytical solution of the covariance matrix calculated from
the power spectral density Eq. (4.3.3) [51, 52, 53]. In particular, by defining red noise
with Fourier series expansion, it is possible to use TM noise and red noise in a unified
description when analytical marginalization of the posterior probability distribution is
performed [32, 54]. We use the same formulation in the next section. Therefore, the red
noise in component form is defined as

nred,i =
Nred∑

j=1

[
aj cos

(
2πjti
T

)
+ bj sin

(
2πjti
T

)]
, (4.3.4)

where nred,i is the red noise at the ti which is ith TOA, aj and bj are the the Fourier
series coefficients, Nred is a number of frequencies used, T is the total observation time
span which is unique for each pulsar. Then like the second term nTM, the red noise is
represented by

nred = Fa (4.3.5)

where F is a NTOA × 2Nred matrix which has columns of alternating cosine and sine
functions, and a is a 2Nred dimensional vector which has coefficients corresponding to
cosine and sine functions, that is, in a component form,

Fik =

⎧
⎨

⎩
cos

(
2πkti
T

)
, (k = odd)

sin
(
2π(k−1)ti

T

)
, (k = even)

, ak =

{
ak, (k = odd)
bk−1, (k = even)

, (4.3.6)

where k is the number from 1 to 2Nred. Assuming the independence of each Fourier series
coefficient, the relation between Fourier series coefficients and power spectral density Eq.
(4.3.3) is defined as

⟨akak′⟩ =

{
P
(
k
T

)
∆fδk,k′ , (k = odd)

P
(
k−1
T

)
∆fδk,k′ , (k = even)

≡ Ξk (4.3.7)

where < . . . > denotes an ensemble average, ∆f is a frequency resolution, which is about
1/T , and δk,k′ is the Kronecker delta. With this expression, the relation between the
cross-correlation function of red noise Cred and the power spectral density is given by

Cred,i,i′ = ⟨nred,inred,i⟩ =
2Nred∑

k

2Nred∑

k′

Fi,k ⟨akak′⟩Fi′,k′ =
Nred∑

j

P

(
j

T

)
cos

(
2πj(ti − ti′)

T

)
∆f.

(4.3.8)
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This relation is expected from the Wiener-Khinchin theorem for the stationary process.
In this thesis we use Nred = 30. If Nred is set to 30, then the maximum frequency 30/T
is about 10−7Hz, because the total observation time span T is 11 years. Thus, N = 30
is sufficient to describe the red noise that increases below 10−8Hz.

The fourth term nSSE is a noise due to inaccuracies of a Solar System ephemeris
(SSE) which is used to convert the TOAs at the geocenter to those at the Solar System
barycenter (SSB). We will refer to this noise as the SSE noise. It is known that SSE errors
affect upper limits and Bayes factors for amplitudes of the stochastic gravitational wave
background [38]. The stochastic gravitational wave background can be distinguished
from the SSE errors by using the two-point correlation analysis in principle [55], on
the other hand the FDM signal cannot be distinguished from the SSE errors using the
correlation analysis, because the correlation function characterizing the FDM signal is
not defined. Therefore, the presence of the SSE errors would have a stronger influence
on the analysis of the FDM signal than in the case of the stochastic gravitational wave
background. Following [38], we assume that the SSE errors only affect the Rømer delay
∆R which is the vacuum light travel time between the geocenter and the SSB. Therefore,
the Rømer delay at the ti is

∆R,i = ri ·Ri, (4.3.9)

where ri is the vector from the geocenter to the SSB, and Ri is the unit vector from
the SSB to the pulsar barycenter [23]. In the case that the position shift of the SSB is
induced by the error of the planet mass from the SSE, this shift changes the vector ri,
so that the induced residuals nmass

SSE,i at the ti can be written as [56]

nmass
SSE,i = −δM(bi ·Ri), (4.3.10)

where δM is the error of the planet mass in solar mass M⊙ unit and bi is the vector from
the planet barycenter to the SSB. The planets we consider the error of mass are Jupiter,
Saturn, Uranus, and Neptune. As in the above case, the error of the planet orbit from
the SSE induce the residuals norbit

SSE,i

norbit
SSE,i = −M

(
6∑

µ

∂bi
∂aµ

δaµ

)
·Ri, (4.3.11)

where M is the planet mass in solar mass unit, aµ are set-III parameters [57] which
are composed of six parameters and characterize an osculating elliptical orbit at a given
osculation epoch, and δaµ are small offsets of the set-III parameters. We have to consider
the error of the orbit of Jupiter. We also consider a rotation of the vector ri around the
ecliptic pole,

nrotation
SSE,I = (ri −Rz(θ)ri) ·Ri,

Rz(θ) ≡

⎛

⎝
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞

⎠ , θ ≡ δz
second

year
(ti − t0) (4.3.12)
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where Rz(θ) is a rotation matrix, δz is a rotation rate which has the unit rad/year, and
t0 is the offset of time. Among the noises mentioned above, the dominant contribution
to the residuals comes from Jupiter, because Jupiter has a large mass and is thought to
have a relatively large orbital error compared to Saturn [58]. Uranus and Neptune also
have large uncertainty, but the orbital periods are sufficiently longer than the observation
time of pulsars, hence the induced residuals are proportional to the time and absorbed
by fitting of timing model for the intrinsic pulsar spin periods [36, 37]. Thus, the noise
due to inaccuracies of the SSE reads

nSSE = nmass,J
SSE + nmass,S

SSE + nmass,U
SSE + nmass,N

SSE + norbit,J
SSE + nrotation

SSE , (4.3.13)

where nmass,J
SSE ,nmass,S

SSE ,nmass,U
SSE ,nmass,N

SSE,i are the noises due to the mass errors of Jupiter,

Saturn, Uranus, and Neptune, respectively, norbit,J
SSE,i is the noise due to the orbit errors

of Jupiter, and nrotation
SSE is the noise due to the rotation rate around the ecliptic pole.

We used the values and the data implemented in ENTERPRISE (Enhanced Numerical
Toolbox Enabling a Robust PulsaR Inference SuitE) which is a pulsar timing analysis
code5). Thus, the value of the Jupiter’s mass MJ is the value of the IAU 2009 system of
astronomical constants [59] and the value of t0 corresponds to MJD 55197, and the data of
∂bi/∂aµ are the same in ENTERPRISE. Note that, in the data of ∂bi/∂aµ, the principal
component analysis (PCA) was performed for six ∂bi/∂aµ, so that small offsets δaµ do
not correspond to the set-III parameters aµ themselves but correspond to parameters
based on PCA bases. In the calculation of the shifted ri due to the SSE errors, to reduce
the NTOA for efficient computation, bi and ri are averaged within the TOAs obtained in
one observation at one combination of receivers and backend systems, and the data of
∂bi/∂aµ are interpolated into the corresponding averaged TOAs.6) After that, assuming
the value of SSE noise is same within the TOAs obtained in one observation at one
combination of receivers and backend systems, the shift of ri due to the SSE errors is
calculated. We obtained the unit vector from the SSB to the pulsar barycenter Ri using
the TEMPO2 via the libstempo.

The last term nwhite is roughly called as a white noise. Assuming that this noise
follows the Gaussian distribution, we characterize it by a correlation function:

Cwhite =
〈
nwhiten

T
white

〉
= CEFAC +CEQUAD +CJitter, (4.3.14)

where CEFAC, CEQUAD, and CECORR are correlation functions for EFAC, EQUAD, and
ECORR parameters, respectively. Each term on the right-hand side is described below.
When sorting TOAs by what combination of receivers and backend systems were used,

5)https://github.com/nanograv/enterprise
6)In the pulsar we used, we confirmed that there was no overlap between each observation of receivers

and backend systems. Therefore, each observation can be divided appropriately.
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the first term CEFAC can be written as follows:

CEFAC =

⎛

⎜⎜⎜⎜⎜⎝

e21W1 0
e22W2

. . .

0 e2Nback
WNback

⎞

⎟⎟⎟⎟⎟⎠
, (4.3.15)

where Nback denotes the number of the combinations of receivers and backend systems,
a is the subscript for Nback, ea is called as a EFAC parameter, Wa is a NTOAa ×NTOAa

diagonal matrix composed of TOA measurement uncertainties obtained by the ath com-
bination, and NTOAa denotes the number of the TOAs obtained by the ath combination.
From the above equation, it can be seen that EFAC parameters depend on the ath combi-
nation and changes the size of the error bars of TOAs. This noise characterize systematic
errors of TOA measurement uncertainties. As in the case of the EFAC parameters, the
second term CEQUAD can be written as follows:

CEQUAD =

⎛

⎜⎜⎜⎜⎜⎝

q21I1 0
q22I2

. . .

0 q2Nback
INback

⎞

⎟⎟⎟⎟⎟⎠
, (4.3.16)

where qa is the EQUAD parameter and Ia is the NTOAa × NTOAa identity matrix.
This noise is an additional white Gaussian noise. When sorting TOAs in the order of
observation for each combination separately, the last term CECORR can be written as
follows:

CECORR =

⎛

⎜⎜⎜⎜⎜⎝

J1 0
J2

. . .

0 JNback

⎞

⎟⎟⎟⎟⎟⎠
,

Ja ≡

⎛

⎜⎜⎜⎜⎜⎝

ua1j2au
T
a1 0

ua2j2au
T
a2

. . .

0 uaNobs,aj
2
au

T
aNobs,a

⎞

⎟⎟⎟⎟⎟⎠
,

uab ≡

⎛

⎜⎜⎜⎝

1
1
...
1

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
NTOAab , (4.3.17)
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where Nobs,a denotes the number of the observation using the ath combination, b is the
subscript for Nobs,a, ja is the ECORR parameter, uab is the NTOAab dimensional vector
of which all the components are one, and NTOAab denotes the number of the TOAs
obtained within the bth observation using the ath combination. This noise shows that
there is a correlation between the TOAs obtained during one observation and there is no
correlation between the TOAs obtained by other observations. This noise characterizes
pulse jitter caused by stochastic amplitude and phase variations in pulse, which correlates
in a certain frequency band and doesn’t correlate in time [48].

To summarize, the parameters θ for the Bayesian data analysis are Ψ, f,αe, and αp of
the FDM signal, ϵ of the TM noise, a of the red noise, δM, δaµ, and δz of the SSE noise,
and ea, qa, and ja of the white noise. Note that the parameters Ψ, f,αe, δM, δaµ, and δz
are common to all pulsars. The red noise defined in this section is the hierarchical model
in the Bayesian framework, and Ared and γred are called hyperparameters which are the
parameters of the parameter a. In addition, the TM noise defined in this section is not
the hierarchical model, but it is defined in the same way as the red noise. Therefore
the parameters ϵ of the TM noise follow the Gaussian distribution, and the variance-
covariance matrix in component form becomes as follows:

⟨ϵlϵl′⟩ = Φlδl,l′ , (4.3.18)

where l is the subscript for NTM, and Φl are the hyperparameters which are the param-
eter of the parameter ϵl. The reason for doing this is to use the TM noise and the red
noise in a unified description as mentioned in the explanation of red noise. Then, we
can avoid problems in marginalizing the posterior probability distribution with uniform
prior.

4.4 Likelihood Function and Posterior Probability Distri-
bution

In this section we derive the likelihood function and the posterior probability distribution
used in the Bayesian estimation. We basically follow the article [38].

If the model M for the data D is given, the likelihood function p(D|θ,M) can
be obtained. In the model M for the residuals δt given by Eq. (4.3.1) , the white
noise has the statistical uncertainty, on the other hand, the others are determined by
given parameters.7) In this case, since the white noise has the Gaussian distribution, the

7)The statistical uncertainty of the TM noise and the red noise are parametrized by not the parameter
but the hyperparameter. Therefore, as can be seen from Eq. (1.0.6), when constructing a likelihood
function, the TM noise and the red noise are determined by given parameters.
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likelihood for each pulsar can be written as [60]

p(δt|θ,M)

=
1√

det(2πCwhite)

×exp

(
−1

2
(δt− s− nTM − nred − nSSE)

T C−1
white (δt− s− nTM − nred − nSSE)

)
.

(4.4.1)

The likelihood function for all pulsars can be written by multiplying the likelihood
function of each pulser, because it is considered that there is no correlation between the
residuals of each pulsar. If one wants to estimate all the parameters, one can use this
likelihood function.

In most cases in analyses with PTAs, the parameters ϵ of the TM noise and the
parameters a of the red noise are eliminated by marginalizing the posterior probability
distribution before analyzing the data. Since the parameters ϵ and a are unique to each
pulsar, the marginalization can be done independently for each pulsar, we can calculate
the posterior probability distribution in the case of a single pulsar. Our formulation of
the marginalization is the same as that in the papers [32, 54]. Following these papers,
the likelihood function Eq. (4.4.1) is rewritten as

p(δt|θ,M) =
1√

det(2πCwhite)
exp

(
−1

2
(δr − Tb)T C−1

white (δr − Tb)

)
,

δr ≡ δt− s− nSSE,

T ≡ (M F ),

b ≡
(

ϵ
a

)
, (4.4.2)

where δr is defined only for simplifying notation, T is the NTOA × (NTM + 2Nred)
matrix in which the matrices M and F are concatenated along the row axis, and b is
NTM + 2Nred dimensional vector in which ϵ and a are concatenated along the column
axis. Since each noise was assumed to be Gaussian, the prior probability distribution
for the parameter b can be obtained by using Eq. (1.0.5) as follows:

p(b,η|M) = p(b|η,M)p(η|M) =
1√

det(2πB)
exp

(
−1

2
bTB−1b

)
p(η|M),

B ≡ diag(Φ1,Φ2, · · ·Φl,Ξ1,Ξ2, · · ·Ξk), (4.4.3)

where B is a (NTM +2Nred)× (NTM +2Nred) diagonal matrix whose diagonal elements
Φl and Ξk are defined by Eq. (4.3.18) and Eq. (4.3.7) respectively, and η denote the
hyperparameters Φl, Ared, and γred. Note that we assume the statistical independence
of the parameters and the hyperparameters. Then, using Eq. (1.0.6), the posterior
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probability distribution can be written as

p(θ,η|δt,M) =
p(δt|θ,M)p(θ,η|M)

p(D|M)

=
p(δt|φ, b,M)p(b,η|M)p(φ|M)

p(D|M)

=
1√

(2π)NTOA+NTM+2Nreddet(Cwhite)det(B)

× exp

(
−1

2

[
(δr − Tb)T C−1

white (δr − Tb) + bTB−1b
])

× p(η|M)p(φ|M)

p(D|M)
, (4.4.4)

where φ is the vector for all the parameters except for the parameters b, which have no
hyperparameters. In order to marginalize over the parameters b, we performe completing
the square in the exponent:

(δr − Tb)T C−1
white (δr − Tb) + bTB−1b

= δrTC−1
whiteδr − b̂T

(
T TC−1

whiteT +B−1
)
b̂+

(
b− b̂

)T (
T TC−1

whiteT +B−1
) (

b− b̂
)
,(4.4.5)

where

b̂ ≡
(
T TC−1

whiteT +B−1
)−1

T TC−1
whiteδr. (4.4.6)

As a result, only the last term depends on the parameters b and the Gaussian integration
can be performed as

∫ ∞

−∞
exp

(
−1

2

(
b− b̂

)T (
T TC−1

whiteT +B−1
) (

b− b̂
))

db =

√
(2π)NTM+2Nred

det
(
T TC−1

whiteT +B−1
) .

(4.4.7)

The marginalized posterior probability distribution therefore can be calculated as follows

p(φ,η|δt,M)

=

∫ ∞

−∞
p(θ,η|δt,M)db

=
1√

(2π)NTOAdet(Cwhite)det(B) det
(
T TC−1

whiteT +B−1
)

×exp

(
−1

2

[
δrTC−1

whiteδr − (T TC−1
whiteδr)

T
(
T TC−1

whiteT +B−1
)−1

T TC−1
whiteδr

])

×p(η|M)p(φ|M)

p(D|M)
. (4.4.8)
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TM noise was defined as a hierarchical model in the previous section, but there
is no prior knowledge about parameters ϵ. In order to take this into account, it is
further assumed that the values of the each hyperparameter Φl are much larger than
the possible variances in the PTAs analysis. In this case, similar prior values are given
over a range of possible values for each parameter, which means that there is no special
value as prior information for each parameter8). The prior probability distribution of
the hyperparameter Φl are

p(Φl|M) = δ(Φl −ml), (4.4.9)

where ml is a extremely large value. Then, the marginalization over the parameters Φl

can be performed:

p(φ, Ared, γred|δt,M)

=

∫ ∞

−∞
p(φ,η|δt,M)dΦ

=
1√

(2π)NTOAdet(Cwhite)det(B) det
(
T TC−1

whiteT +B−1
)

×exp

(
−1

2

[
δrTC−1

whiteδr − (T TC−1
whiteδr)

T
(
T TC−1

whiteT +B−1
)−1

T TC−1
whiteδr

])

×p(Ared, γred|M)p(φ|M)

p(D|M)
, (4.4.10)

where

B = diag(m1,m2, · · ·ml,Ξ1,Ξ2, · · ·Ξk). (4.4.11)

Note that, in the absence of knowledge of parameters, a uniform distribution is often
used as a prior probability distribution. In order to perform the marginalization, it is
reasonable to assume the uniform prior p(θ|M) ∝ 1 in the range θ ∈ (−∞,∞). However,
this distribution is not a probability distribution, because it cannot be normalized. Such
a prior distribution is called improper prior distribution and special attention must be
paid when we use it [61]. Since we did not want to use improper prior distribution,
we used a normal distribution with very large variance for the TM parameters. This
distribution is proper and can be regarded as an approximation of the uniform distribu-
tion. We set each hyperparameter value ml to 1080, which is sufficiently large for PTAs
analysis.

As mentioned earlier, this marginalized posterior probability distribution is for a
single pulsar. The marginalized posterior probability distribution using multiple pulsars
can be obtained by multiplying the above equations of each pulsar except for the prior

8)As a matter of fact, we know that the equation nTM = Mϵ is correct when ϵ is small enough,
and we can obtain uncertainties of the timing model parameters. Therefore, we might have to use the
uncertainties as variances of the Gaussian prior distribution.
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probability distribution of parameters common to all pulsars, and after that, multiplying
the prior probability distribution of parameters common to all pulsars.

When actually calculating the posterior distribution, how to calculate a determinant
and an inverse of a matrix is important to reduce computation time. Therefore we briefly
describe the calculation. In the case of Cwhite, since Cwhite is the block diagonal matrix,
the determinant and the inverse can be calculated independently for each block. For
each block, the matrix determinant lemma9) and the Sherman-Morrison formula10) can
be used. In the case of B, since B is the diagonal matrix, the determinant is the product
of each element. In the case of T TC−1

whiteT + B−1, the Cholesky decomposition which
expresses a matrix as a product of an upper triangular matrix and its transpose can
be used to this matrix. Using the upper triangular matrix, the equation (T TC−1

whiteT +
B−1)x = T TC−1

whiteδr for x is solved rather than computing the inverse of T TC−1
whiteT +

B−1 itself. The determinant can be calculated as twice the product of the diagonal
elements of the upper triangular matrix.

4.5 Prior Probability Distribution

In this section, we describes the prior probability distribution. We use specific knowledge
only for the mass errors of each planet as the prior information. Using the propagation
of uncertainty law, the variances of δMJ, δMS, and δMN are calculated from the IAU
2009 system of astronomical constants, and the variance of δMU is calculated from
the values in the article [62] which is newer than the IAU 2009 system of astronomical
constants. Then we assume a normal distribution for the mass errors of each planet
and apply the obtained variances. For parameters without specific knowledge, we use a
log-uniform distribution for parameters which are need to be searched over several orders
of magnitude with only positive values, and we use a uniform distribution for the other
parameters. The range of the log-uniform distribution and the uniform distribution is
taken sufficiently wider than the value that the parameter would take. The parameters
and their prior probability distribution used in this thesis are given in Table 4.1.

Regarding the amplitude of the FDM signal, we especially consider both cases of
uniform distribution and log-uniform distribution as in the article [38]. The uniform
distribution is used to give upper limits, and the log-uniform distribution is used for
the model comparison, and the reason for this is as follows. If there is a FDM signal,
for example by inserting it into data, the prior probability distribution is updated to a
posterior probability distribution having a peak at the correct values of the parameters
of the FDM. In this case, both prior probability distributions give similar posterior
probability distributions. In practice, however, it is not known whether there is a FDM
signal in the data, and even if the data is used, the posterior probability distribution may
not be updated much from the prior probability distributions of the parameters of the
FDM. In this practical case, the posterior probability distribution is affected by the shape

9)det(A+ uvT ) = (1 + vTA−1u) det(A)

10)(A+ uvT )−1 = A−1 −
A−1uvTA−1

1 + vTA−1u
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Table 4.1: Prior Probability Distribution
parameter description prior probability distribution
FDM signal
Ψ amplitude Uniform[10−18, 10−11] (for upper limit)

logUniform[−18, −11] (for model comparison)
f [Hz] frequency logUniform[log f − 0.015, log f + 0.015]11)

αe [rad] phase at Earth Uniform[0, 2π]
αp [rad] phase at pulsar Uniform[0, 2π]
red noise
Ared amplitude logUniform[−20, −11]
γ spectral index Uniform[0.02, 6.98]
SSE noise
δMJ [M⊙] mass error of Jupiter N (0, 1.55× 10−11)
δMS [M⊙] mass error of Saturn N (0, 8.17× 10−12)
δMU [M⊙] mass error of Uranus N (0, 5.72× 10−11)
δMN [M⊙] mass error of Neptune N (0, 7.96× 10−11)
δaJµ small offsets of parameters based on PCA bases Uniform[−0.05, 0.05])
δz [rad/year] rotation rate around ecliptic pole Uniform[−10−9, 10−9]
white noise
ea EFAC parameter Uniform[0.001, 10] (for pre-analysis)
qa [s] EQUAD parameter logUniform[−10, −4] (for pre-analysis)
ja [s] ECORR parameter logUniform[−8.5, −4] (for pre-analysis)

of the prior probability distribution of the amplitude of the FDM signal. Considering the
shape of the prior probability distribution, the log-uniform distribution allows smaller
amplitude of the FDM signal than the uniform distribution, so that the upper limit
obtained using Eq. (1.0.8) also decreases accordingly. Consequently, if one wants to give
a conservative upper limit, the log-uniform distribution is not suitable. Furthermore,
when we actually analyze the data used in this thesis, the posterior distribution obtained
by using the log-uniform distribution is often have a value up to the lower limit given
to the log-uniform distribution. This means that the upper limit depends on the lower
limit of the log-uniform distribution, so that if the lower limit is decreased, the upper
limit can be reduced. This is another reason why the logarithmic uniform distribution is
not suitable for giving an upper limit. On the other hand, this property of a logarithmic
uniform distribution is preferable for computing the Bayes factor (1.0.11), because the
Bayes factor often gives a finite value with a fixed value Ψ0 = 10−18 which is a very
small value as the lower limit of the prior probability distribution.

As is done in [52, 63, 38], we analyze the white noises in advance before the main
analysis. The resulting MCMC chains are used to calculate the value that maximizes
the one-dimensional posterior probability distribution corresponding to each white noise,
where this value is called the maximum a posteriori (MAP) value. The main analysis is
performed by fixing the possible values of the white noise parameter to the MAP value.
See the section 4.7 for the pre-analysis.

4.6 Markov chain Monte Carlo simulation

The MCMC simulation can be used to generate samples from the posterior probability
distribution. The MCMC method we used is called parallel tempering. In the parallel
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tempering method, a concept of temperature is introduced, and the MCMC simulations
of different temperatures are executed in parallel. The advantage of parallel tempering
is that it is possible to reduce the tendency of the samples of the posterior distribution
to be trapped in a local minimum, compared to the Metropolis-Hastings method which
is the one of the most famous MCMC methods [60]. We carry out the analysis using
four temperatures T = 1.00, 4.64, 21.5, 100.

In order to perform the parallel tempering, we use the software package PTMCMC-
Sampler12) [64] via PAL213) [65] which is a Bayesian inference package for PTA and can
include the PTMCMCSampler. Regarding models not implemented in the PAL2, the
FDM signal is implemented like the continuous gravitational waves and the SSE noise is
implemented like any other noises. Following the article [52], we use adaptive Metropolis
[66], single component adaptive Metropolis [67], and differential evolution [68], as a pro-
posal algorithm which is used to generate next samples using past samples. Furthermore,
we also use a simple proposal algorithm to generate the next sample of each parameter
by proposal distribution which is the same distribution as the probability distribution.
All of these proposal algorithms are used in a single MCMC simulation and which one is
used is chosen randomly for each proposal in the MCMC simulation. In this thesis, we
use the value written in the PAL2 for each variable used in PTMCMCSampler, unless
specifically mentioned.

4.7 Pre-analysis

As is usual [52, 63, 38], in order to obtain the MAP values of the parameters of the
white noise, we analyze the white noise first before the main analysis. By doing this,
in the main analysis, the number of free parameters can be reduced, and the inverse
matrix and determinant of the white noise mentioned in the section 4.4 only need to be
calculated once at the beginning of MCMC simulation. In the pre-analysis, we performed
independent analysis for each pulsar, and we used the model which contains the red
noise in addition to white noise. We ran the MCMC simulation with 106 iterations and
removed the first 25% as a burn-in period, where the burn-in period is the period during
which samples have not yet been obtained from the target distribution.

Table 4.2 shows the results of the white noise and the red noise obtained by the
pre-analysis. The obtained posterior distribution is expressed by the MAP value and
the 95% confidence interval. At the Green Bank Observatory, the receivers are Rcvr 800
and Rcvr1 2, and the backend system is GASP in early observations and GUPPI in later
observations. Similarly, at the Arecibo Observatory, the receivers are L-wide and S-wide,
and the backend system is ASP in early observations and PUPPI in later observations.
Please see the article [32] for details on the receiver and the backend system.

The reason for including the red noise in the model is that the red noise is the
stochastic noise same as the white noise and it can become white noise when the spectral
index becomes zero. However, if the one-dimensional posterior probability distribution

12)https://github.com/jellis18/PTMCMCSampler
13)https://github.com/jellis18/PAL2
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Table 4.2: Result of pre-analysis
parameter J0613-0200 J1012+5307 J1600-3053 J1713+0747 J1744-1134 J1909-3744
EFAC noise
Rcvr 800 GASP 1.096+0.059

−0.059 1.138+0.049
−0.042 1.19+0.11

−0.11 1.134+0.050
−0.054 1.168+0.073

−0.064 0.984+0.081
−0.060

Rcvr 800 GUPPI 1.164+0.041
−0.032 1.182+0.023

−0.023 1.117+0.025
−0.040 1.066+0.023

−0.020 1.070+0.027
−0.024 1.041+0.023

−0.019

Rcvr1 2 GASP 1.061+0.056
−0.053 1.054+0.044

−0.041 1.155+0.096
−0.148 1.087+0.056

−0.060 0.991+0.080
−0.065 0.977+0.054

−0.060

Rcvr1 2 GUPPI 1.080+0.023
−0.023 1.081+0.021

−0.018 1.062+0.018
−0.019 1.040+0.015

−0.014 1.079+0.028
−0.026 1.049+0.017

−0.013

L-wide ASP 1.013+0.062
−0.048

L-wide PUPPI 1.091+0.026
−0.021

S-wide ASP 1.114+0.066
−0.058

S-wide PUPPI 1.110+0.038
−0.034

EQUAD noise14)

Rcvr 800 GASP −8.5+1.7
−1.5 −6.68+0.18

−3.22 −7.7+1.5
−2.2 −6.97+0.18

−2.93 −6.469+0.079
−0.085 −6.620+0.046

−0.056

Rcvr 800 GUPPI −6.677+0.099
−0.188 −6.348+0.062

−0.059 −6.45+0.14
−3.45 −7.14+0.14

−2.75 −6.598+0.036
−0.045 −7.344+0.090

−0.119

Rcvr1 2 GASP −9.74+3.16
−0.17 −6.51+0.19

−3.38 −6.34+0.17
−3.54 −7.29+0.16

−2.59 −6.382+0.072
−0.097 −7.40+0.18

−2.41

Rcvr1 2 GUPPI −9.65+2.75
−0.27 −6.50+0.11

−0.25 −8.3+1.2
−1.7 −8.01+0.24

−1.93 −6.681+0.041
−0.051 −8.04+0.19

−1.88

L-wide ASP −7.54+0.11
−0.23

L-wide PUPPI −7.89+0.13
−1.78

S-wide ASP −8.46+0.93
−1.48

S-wide PUPPI −7.64+0.16
−2.24

ECORR noisea

Rcvr 800 GASP −7.50+0.69
−0.96 −8.08+1.37

−0.38 −8.472+2.269
+0.019 −7.45+0.49

−1.02 −6.63+0.25
−1.38 −7.95+0.76

−0.52

Rcvr 800 GUPPI −6.74+0.26
−0.32 −8.480+1.517

0.010 −6.20+0.13
−0.24 −6.609+0.092

−0.142 −6.40+0.12
−0.17 −7.19+0.16

−0.24

Rcvr1 2 GASP −7.94+1.43
−0.51 −6.59+0.28

−1.83 −6.74+0.31
−1.70 −7.11+0.25

−0.54 −6.16+0.14
−0.20 −8.31+0.89

−0.17

Rcvr1 2 GUPPI −6.77+0.15
−1.64 −6.55+0.15

−1.45 −6.81+0.16
−0.34 −7.115+0.067

−0.091 −6.372+0.090
−0.087 −7.113+0.066

−0.079

L-wide ASP −6.97+0.14
−0.11

L-wide PUPPI −7.061+0.087
−0.069

S-wide ASP −6.95+0.14
−0.18

S-wide PUPPI −7.03+0.11
−0.10

red noise
Ared

a −13.15+0.17
−0.68 −12.67+0.14

−0.16 −13.45+0.16
−6.36 −14.46+0.39

−3.74 −13.44+0.33
−3.75 −14.13+0.35

−1.96

γ 1.26+2.08
−0.99 0.96+0.79

−0.61 0.17+6.49
−0.10 2.3+3.9

−1.6 2.9+3.9
−1.6 6.899−0.021

−5.295

of the parameter of the white noise has a sharp peak, it was confirmed that the MAP
value of the parameter does not change very much regardless of the presence or absence
of the red noise model. In particular, it is know that the red noise of the PSR 1909-3744
can take wide parameter values [35], but the above result was obtained. Therefore, this
result suggests that the white noise can be analyzed in advance.
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Chapter 5

Result

In this section we describe the upper limits on the amplitude of the FDM signal Eq.
(4.2.1) and how much the FDM signal is absorbed by other noises. All our result was
calculated using six pulsars: PSRs J0613-0200, J1012+5307, J1600-3053, J1713+0747,
J1744-1134, and J1909-3744 in the NANOGrav 11-year data set.

5.1 Upper limits

We calculated the 95% confidence upper limits on the amplitude of the FDM signal Eq.
(4.2.1) by the Bayesian analysis. We ran all the MCMC simulation with 106 iterations
and removed the first 25% as a burn-in period. As the prior probability distribution
of the amplitude of the FDM signal we considerd two cases: the uniform prior and the
log-uniform prior. The uniform prior was used to place the conservative upper limits,
the log-uniform prior was used to calculate the Bayes factors, where the upper limits
were caluculated using the Eq. (1.0.8) and the Bayes factors were calculated using Eq.
(1.0.11). In order to see the effect of including the SSE noise in the model on the results,
we also calculated the upper limits and the Bayes factors when the SSE noise is not
included in the model. See Appendix B for how accurately the FDM can be detected by
our Bayesian analysis.

In Figure 5.1, we show the upper limits and the Bayes factors of the amplitude
Ψ as a function of the frequency f and the FDM mass m. The relation between the
frequency f and the FDM mass m is given by Eq. (4.2.4). First, in the above plot, the
black solid and dashed lines denote the upper limit using uniform prior and log-uniform
prior, respectively. Here, we plotted the results obtained using log-uniform prior, but
as we mentioned in the section 4.5, we regard the results obtained by the uniform prior
as conservative upper limits. The red solid and dashed lines denote the upper limit
obtained when the SSE noise was not included in the model, and using uniform-prior
and log-uniform prior, respectively. The bold black line denotes the upper limit of the
Bayesian analysis obtained in [11]. The green line denotes the predicted amplitude of
the FDM signal given by Eq. (4.2.3) with ρ = 0.4Gev/cm3. Note that it does not mean
that there is the FDM signal on all of this line, it is observed at one point on this line,
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depending on the mass of the FDM. The purple vertical lines denote the inverse of the
observation times of pulsars and corresponds to PSRs J1744-1134, J1012+5307, J1909-
3744, J1713+0747, J0613-0200, and J1600-3053 in order from the left. We regard the
purple vertical line on the leftmost side as the lower limit of the frequency at which
the PTA is sensitive to the signal of FDM. One simple reason why the inverse of the
observation time is lower limit of the frequency that it would be difficult to detect a
signal with a longer wavelength than the observation time. A slightly more specific
reason is that some of the signal at lowest frequency is removed by fitting the pulsar
spin periods when creating the residuals [36, 37]. Furthermore, in the model used in this
thesis, the TM noise is included to take into account the uncertainty of the fitting. The
TM noise corresponding to pulsar spin periods induces uncertainty in the analysis of the
FDM signal at the lowest frequency, because we marginalized the posterior probability
distribution using the uninformative prior for the parameters ϵ. Next, in the bottom
plot, the black and red dots denote the mean value of the Bayes factor using the model
with and without the SSE noise, respectively. The unbiased standard deviation is used
for error bars. Only to make the plot easier to see, when the Bayes factor exceeds 20,
it is represented by the upper triangle and the mean value and the unbiased standard
deviations of the Bayes factor is written above it.

First we consider the red results obtained when the SSE noise is not included in
the model. It turns out that the upper limits for the log-uniform distribution gives
stronger limits than for the uniform distribution, but the difference is small. The reason
the difference is small is that the Bayes factor exceeds 3 when the frequency becomes
10−8.19Hz (1.34 × 10−23 eV) or lower. According to the Table A.1, the Bayes factor
exceeds 3 means that there is a signal that is somewhat similar to the FDM signal.
Therefore, whichever prior probability distribution is used, the value of the posterior
probability distribution tends to be large at the parameter values of that signal, and as
a result the upper limits does not change so much. Also, in cases where the frequencies
are 10−8.52 and 10−8.46Hz (6.24× 10−23 and 7.17× 10−23 eV), the Bayes factor exceeds
20. Thus, at these frequencies, the presence of the FDM signal is strongly supported,
but it should be noted that the fitting of the pulsar spin periods biases the analysis
results. From the above, it was found that the FDM signal is positively supported in
the wide frequency range. However, from a physical point of view, it is hard to think
that FDM signals has been found, because the upper limit obtained is about an order of
magnitude greater than the expected amplitude and also FDM signals would have only
a certain frequency.

Next, we consider the black result obtained when the SSE noise is included in the
model. This result is our main result. Compared with the case where SSE noise is
included in the model, it can be seen that the upper limits of the amplitude of the
FDM signal obtained using uniform distribution does not change much. However, the
difference between the upper limits obtained from the different prior probability distri-
butions is large. The reason for this is that all Bayes factors are smaller than 3 and
in most cases they do not exceed 1, for the opposite reason to that mentioned in the
previous paragraph. The Bayes factor is less than 1 means that the probability that
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the model without the signal of the FDM p(M2|d) is superior to the model with it
p(M1|d). Therefore, in this case we conclude that no FDM signal has been detected.
At frequencies 10−8.46Hz (7.17 × 10−24 eV) or lower, the Bayes factor is larger than 1,
but it is too early to mention the existence of the FDM signal, because it is close to the
lower limit of the frequency. The red and black results show that the Bayes factor is
smaller when the SSE noise is considered. Thus, we conclude that the SSE noise can
mimic the FDM signal. This result would be inferred from the result that the SSE noise
can mimic the stochastic gravitational wave background [38]. In comparison with the
published Bayesian upper limits of the amplitude of the FDM signal using the PPTA
12-year data set [11], i.e. comparing the black and the bold black lines, we found that
stronger upper limits were obtained when the frequency was in the range from 10−8.34

to 10−8.19Hz (from 9.45 × 10−24 to 1.34 × 10−23 eV). In this range, up to three times
stronger upper limits were obtained, and in other region, about the same upper limits
were obtained.

It is also important to see the upper limit on the energy density of the dark matter
near the Earth rather than the amplitude of the FDM signal. Thus, we convert the
amplitude of the FDM signal into the energy density using Eq. (4.2.3), and the result
is plotted in Figure 5.2. Note that the bold black line denotes the upper limit on the
energy density with the Bayesian analysis in [11] (taken from Figure 4). As we can
see from Figure 5.2, our main upper limit represented by the black line is 7 or less in
the range from 10−8.55 to 10−8.01Hz (from 5.83 × 10−24 to 2.02 × 10−23 eV) where we
analyzed. The strongest upper limit on the the energy density is 2GeV/cm3 at the
frequency 10−8.28Hz (1.09× 10−23 eV).

5.2 Fixed noise analysis

We analyzed the red noise and the SSE noise first and calculated the upper limits of
the amplitude of the FDM signal Eq. (4.2.1) using the obtained MAP values of the
parameters. We ran the MCMC simulation with 106 iterations for analysis of red noise
and SSE noise and with 105 iterations for analysis of the FDM signal, and in both cases
we removed the first 25% as a burn-in period. The result of the red noise and the
SSE noise used for the fixed noise analysis are summarized in Table 5.1. The obtained
posterior distribution is expressed by the MAP value and the 95% confidence interval.

As in the previous section, we calculated two cases of uniform and log-unifrom dis-
tributions as the prior probability distribution of the amplitude of the FDM signal. The
results are plotted in Figure 5.3 which is the similar plot as Figure 5.1. The solid and
dashed lines indicate that the unifrom and the loguniform prior were used, respectively.

The reason for doing this analysis is to know how much the red noise and the SSE
noise can absorb the signal of the FDM. Note that this analysis is not intended to give
the upper limits on the amplitude of the FDM signal. The FDM signal, the red noise and
the noise induced by Jupiter in the SSE noise have similar waveforms and any of these
can not be analyzed in advance. The reason is as follows. The red noise is a random
process, but it is known that it mimics a periodic waveform with a lowest frequency in
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Table 5.1: Red noise and SSE noise used for fixed noise analysis
parameter J0613-0200 J1012+5307 J1600-3053 J1713+0747 J1744-1134 J1909-3744
red noise
Ared

1) −13.20+0.20
−0.73 −12.68+0.14

−0.16 −13.51+0.10
−6.34 −19.939+5.436

0.055 −13.51+0.33
−2.31 −14.05+0.17

−5.77

γ 1.36+2.33
−0.98 1.07+0.74

−0.63 0.0897+6.6316
−0.0069 1.8+4.9

−1.6 2.8+4.0
−1.2 0.74+5.97

−0.62

common to all pulsars
SSE noise

δMJ −2× 10−12+3.3×10−11

−3.0×10−11

δMS 1× 10−12+1.6×10−11

−1.6×10−11

δMU 1× 10−11+1.0×10−10

−1.2×10−10

δMN 1× 10−11+1.5×10−10

−1.7×10−10

δaJ1 −0.0046+0.0109
−0.0099

δaJ2 0.004+0.019
−0.018

δaJ3 −0.0128+0.0071
−0.0083

δaJ4 −0.0123+0.0117
−0.0077

δaJ5 0.0044+0.0080
−0.0087

δaJ6 0.008+0.012
−0.019

δz −2.0× 10−10+1.15×10−09

−7.4×10−10

the case of the steep power law, for example, please see [69] and references therein. The
noise induced by the mass error of Jupiter has the frequency which corresponding to the
inverse of the orbital period, and the noises induced by each error of orbital elements of
Jupiter also have its frequency or twice of its frequency. Since Jupiter’s orbital period
is 11.86 yr, Jupiter causes noises with frequencies close to the lowest frequency in the
11-year dataset we used. From the above, we consider that this analysis is not suitable
for giving an upper limit to the amplitude of the FDM signal, and the obtained results
are not regarded as the upper limits of the amplitude of the FDM signal.

It can be seen from Figure 5.3 that the values of the upper limits are drastically
smaller than the result obtained in the previous section. In particular, when using the
log-uniform prior, surprisingly, the upper limits are smaller than the predicted amplitude
in some range. As for Bayesian factors, they are all smaller than 1, which is consistent
with the fact that the upper limits are strongly influenced by the prior probability
distribution. From this result, it is inferred that the FDM signal is well absorbed by the
red noise and the SSE noise.
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Figure 5.1: Top: The 95% upper limits on the amplitude of the FDM signal Ψ using
the NANOGrav 11-year data set. As a prior probability distribution of the amplitude of
the FDM signal, the uniform prior was used for the black solid lines and the log-uniform
prior was used for black dashed lines. The red lines are the upper limit obtained when
the SSE noise is not included in the model describing the observed data, and the solid
and dashed lines indicate that unifrom and loguniform were used, respectively. The bold
black line is the upper limit obtained by the Bayesian analysis of the PPTA data ( taken
from Figure 3 in [11]). The green line is the predicted amplitude of the FDM signal. The
purple vertical line is the inverse of the observation time of the pulsars. Bottom: The
values of the Bayes factor obtained when using log-uniform prior. The black and red
indicate when the SSE noise is included in the model or not, respectively. To improve the
visibility of the plot, when the value of the Bayes factor exceeds 20, the upper triangle
is used.
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Figure 5.2: Top: The 95% upper limits on the energy density of the FDM ρ using the
NANOGrav 11-year data set. This plot is the same as in Figure 5.1 except that the
amplitude is converted to energy density. The bold black line denotes the upper limit
obtained by the Bayesian analysis of the PPTA data ( taken from Figure 4 in [11]).
Bottom: The values of the Bayes factor obtained when using log-uniform prior. This
plot is the same as in Figure 5.1.
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Figure 5.3: Similar plot to Figure 5.1. The FDM signal, the red noise and the noise
induced by Jupiter in the SSE noise have similar waveforms and any of these can not be
analyzed in advance. Therefore we do not regard this plot from such an analysis as the
upper limits of the amplitude of the FDM signal. The purpose of this plot is to know
how much the red noise and the SSE noise can absorb the signal of the FDM.
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Chapter 6

Conclusion

We searched for the FDM signal Eq. (4.2.1) by performing the Bayesian analysis in the
time domain using the NANOGrav 11-year Data Set. In Section 5.1, we gave the 95%
confidence upper limit on the amplitude of the FDM signal. we found that probability
that the FDM should be included in the model was less than 75% in all frequency region.
Compared with the published Bayesian upper limit of the FDM using the PPTA 12-year
data set [11], we found that our upper limit was up to 3 times stronger than the previous
study when the frequency was in the range from 10−8.34 to 10−8.19Hz (9.45 × 10−24 to
1.34 × 10−23 eV in terms of the FDM mass). In other region, we also obtained the
similar upper limit on the amplitude of the FDM signal. Since the amplitude of FDM
can be converted to the energy density of the dark matter near the Earth, it is easy
to obtain the upper limit of the energy density. The upper limit on the energy density
was lower than 7GeV/cm3 in the range from 10−8.55 to 10−8.01Hz (from 5.83× 10−24 to
2.02 × 10−23 eV) where we analyze. In particular, at a frequency of 10−8.28Hz (a mass
of 1.09 × 10−23 eV), we obtained the strongest upper limit 2GeV/cm3. In addition to
the main analysis, we also investigated the case where the SSE noise was not included in
the model. In this case, we showed that we can not exclude the existence of the FDM,
because the probability that the FDM should be included in the model was more than
75% in the frequency region 10−8.19Hz or less. This results show that the Bayes factor
is smaller when the SSE noise is considered. Thus, we conclude that the SSE noise can
mimic the FDM signal, which would be inferred from the result that the SSE noise can
mimic the stochastic gravitational wave background [38].

In Section 5.2, by analyzing the noise in advance, we examined how much the signal
of the FDM was absorbed. In this case, we clarified that the probability that the FDM
should be included in the model was much lower than 50% in all frequency region.
Compared to our main analysis, we found that the upper limit on the amplitude of the
FDM signal became very small. Note that it is inappropriate to analyze only the noise
in advance, and we do not consider this to be an actual upper limit for the FDM. From
this, it is expected that the signal of the FDM will be absorbed very well by analyzing
the noise in advance.
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Appendix A

Bayesian Parameter Estimation
and Model Comparison

We review the Bayesian parameter estimation and the model comparison in the following
paragraphs. For further details about the Bayesian data analysis, see for example [60,
70, 61].

The purpose of the Bayesian parameter estimation is to estimate the posterior prob-
ability distribution p(θ|D) of the parameters θ given the data D. Having the observed
data, we can update our belief about the parameters using Bayes’ rule, namely

p(θ|D) =
p(D|θ)p(θ)

p(D)
. (1.0.1)

In the above expression, the posterior probability distribution is interpreted as the
strength of belief in the parameters based on the data, and p(θ) is the prior probability
distribution, which is interpreted as the strength of belief in the parameters without the
data. Then p(D|θ) is the likelihood function, which is the probability of the data given
the parameters. Lastly, p(D) is the evidence, which is the probability of the data. Using
the law of total probability, the evidence is given by

p(D) =

∫

Ω
dθ p(D|θ)p(θ), (1.0.2)

where Ω denotes the parameter space. For the purpose of the parameter estimation,
the evidence can be regarded as a normalization constant, because it does not involve
the parameter. It is reasonable to explicitly include in Eq. (1.0.1) the model M which
assigns a meaning to the parameters. Given a model, we can rewrite Eq. (1.0.1):

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
, (1.0.3)

where

p(D|M) =

∫

Ω
dθ p(D|θ,M)p(θ|M). (1.0.4)

48



More generally, considering a hierarchical model in which the parameters depend on the
parameters, the prior probability distribution becomes p(θ, η|M), where η is called as a
hyperparameter which is the parameter of the parameter θ. Applying the product rule
for the conditional probability, the prior probability distribution can be written as

p(θ, η|M) = p(θ|η,M)p(η|M). (1.0.5)

Then, using Bayes’ rule Eq. (1.0.3), the posterior probability distribution would be
written as

p(θ, η|D,M) =
p(D|θ, η,M)p(θ, η|M)

p(D|M)

=
p(D|θ,M)p(θ, η|M)

p(D|M)
. (1.0.6)

The above equation tells us that the hyperparameter only affects the posterior probability
distribution through parameters, that is, the likelihood function does not depend on the
hyperparameter.

Although the model used in this study contains many parameters and hyperparame-
ters, we are interested in only the amplitude of the FDM signal. Therefore, the posterior
probability distribution is integrated over the parameters and the hyperparameters ex-
cept for the amplitude of the FDM signal:

p(A|D,M) =

∫

Ω′
p(A,θ′,η|D,M)dθ′dη, (1.0.7)

where θ′ is the vector which denotes the parameters except for the amplitude of the
FDM signal, η is the vector which denotes the hyperparameters, and Ω′ denotes the
parameter space for θ′ and η. This procedure is called marginalization. Using the
posterior probability distribution for the amplitude of the FDM signal, we define the
upper limit R by

∫ R

0
p(A|D,M)dA = 0.95. (1.0.8)

The above equation means that the probability that the amplitude of the FDM signal
is less than or equal to R is 95%. The purpose of parameter estimation in this thesis is
to obtain this upper limit R.

It is not practical to calculate the posterior probability distribution for a lot of
parameters, because the multiple integration of the denominator is generally difficult.
Even if one can calculate the posterior distribution, one must calculate an integral like
Eq. (1.0.7) to discuss the probability of a specific parameter. One way to avoid these
problems is to use Markov Chain Monte Carlo (MCMC) method to generate samples
from the posterior probability distribution instead of calculating the posterior probability
distribution itself. Since the unnormalized posterior probability distribution is used in
MCMC, we do not need to calculate the normalization constant, that is, the evidence.
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Table A.1: Interpretation of the Bayes factor and the probability p(M1|d)
B12 p(M1|d) Evidence in favor of M1 against M2

1-3 0.500-0.750 Not worth more than a bare mention
3-20 0.750-0.952 Positive
20-150 0.952-0.993 Strong
>150 >0.993 Very strong

In order to discuss a specific parameter after using the MCMC method, we simply select
the samples of the parameter from the derived samples.

Analogous to the parameter estimation, we can also update our belief about the the
model through the data with the Bayes’ rule:

p(M|D) =
p(D|M)p(M)

p(D)
. (1.0.9)

If we have two competing models M1 and M2, for the Bayesian model comparison, it
is often considered the ratio of Eq. (1.0.4) of two models. The ratio

p(M1|D)

p(M2|D)
=

p(M1)

p(M2)

p(D|M1)

p(D|M2)
,

≡ p(M1)

p(M2)
B12, (1.0.10)

is called the odds ratio and the first ratio on the right-hand side is the prior odds ratio and
the second ratio is the Bayes factor. The purpose of the model comparison procedures
is to calculate the Bayes factor according to Eq. (1.0.4), and therefore the evidence
becomes critically important unlike in the case of the parameter estimation. However,
as described in the following paragraph, if two models compared are nested models, it
is not necessary to calculate Eq. (1.0.4). The Table A.1 gives the interpretation of the
Bayes factor in terms of the strength of the evidence. The second column of the Table
A.1 refers to the probability p(M1|D) under the assumption that the prior odds ratio
is equal to unity: p(M1) = p(M2) = 0.5 [71, 72, 73]. In this thesis, since we have no
prior knowledge of models, we set the prior odds ratio to 1. Therefore we can use the
probability of the second column in the Table A.1.

For the nested models where two models contain the common parameters and one
model has at least one additional parameter [74], calculation of the Bayes factor is
significantly simplified. We compare the model M1 in which the parameters include the
amplitude of the FDM signal and the model M2 in which the amplitude of the FDM
signal is a fixed value Ψ0 and the other parameters are same as those in the model M1.
In the case of nested models, we can use the Savege-Dickey density ratio to calculate the
Bayes factor [74, 75, 76, 72], namely,

B12 =
p(Ψ = Ψ0|M1)

p(Ψ = Ψ0|D,M1)
, (1.0.11)
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where we assumed the statistical independence between the amplitude of the FDM signal
and the other parameters given the model M1 and assumed that the prior probability
distribution of the parameters are the same for both models except for the amplitude of
the FDM signal, that is,

p(Ψ, θ′|M1) = p(Ψ|M1)p(θ
′|M2). (1.0.12)

From the equation Eq. (1.0.11), it can be seen that this Bayes factor requires only the
prior and the posterior probability distribution for Ψ at Ψ0 under the model M1 instead
of the evidences of each model. Since the prior probability distribution is given before
the parameter estimation and the samples of the posterior probability distribution are
obtained from the result of the parameter estimation, it is possible to calculate this
Bayes factor immediately after the parameter estimation. Specifically, we calculate Eq.
(1.0.11) for multiple small bins around the fixed value Ψ0, then the average is used as
the Bayes factor, and the unbiased standard deviation is used as the error bar. In this
thesis, we use the lower limit in the log-uniform distribution for the amplitude of the
FDM signal as the fixed value Ψ0. Since this lower limit is sufficiently small, the model
M2 can be regarded as a model with no FDM signal.
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Appendix B

Simulated Signal

In order to investigate whether the signal can actually be detected by the MCMC simu-
lation, we test the MCMC simulation using data composed of virtual signals. We made
the following two data:

Data1 : δt = s+ nred + nSSE + nequad, f = 10−8.0, (2.0.1)

Data2 : δt = s+ nred + nSSE + nequad, f = 10−8.55, (2.0.2)

where the Data1 has the FDM frequency of 10−8.0Hz, and the Data2 has the FDM fre-
quency of 10−8.55Hz. The frequencies 10−8.0 and 10−8.55Hz are respectively the highest
and lowest frequencies of the upper limit of the amplitude of the FDM signal calculated
by us. It is considered that 10−8.0Hz is easy to distinguish from other noises, while
10−8.55Hz is not. We do not specifically mention the parameter values we used, but the
RMS value is 10−4 s for the FDM signal, the red noise and the SSE noise, and 10−6 s for
the equad.

The model we used is

Model : δt = s+ nTM + nred + nSSE + nequad. (2.0.3)

As in Section 4.4, the posterior probability distribution is marginalized over the pa-
rameters of the red noise and TM noise. The timing fit has not been performed on
the data, but the TM noise is added to investigate the decrease in sensitivity due to
the design matrix. The values of the prior probability distribution in Section 4.5 are
rewritten so that the prior probability distribution contains the value of simulated data
parameters. The prior probability distribution of the amplitude of the FDM signal is
log-uniform distribution. The prior probability distribution of the equad noise is fixed
to the MAP value obtained by the pre-analysis, where both the data and the model of
the pre-analysis include only the equad noise. The MCMC simulation is perfomed with
106 iterations and removed the first 25% as a burn-in period.

In order to confirm that our implementation is done correctly, we also examine the
case where the TM noise is not included in the model except for a constant part with
respect to the time of the TM noise. The reason for leaving only a constant part with
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respect to the time of TM noise is to ignore the effect of subtracting the average when
creating the data. Since it turned out that the posterior probability distribution did not
converge when the iteration was 106, we fix the red noise and the SSE noise to the MAP
value. For the MAP values, the red noise and the SSE noise are analyzed independently
by creating noise data corresponding to each noise. In this pre-analysis, the data and
the model include white noise, but the parameter of the white noise is fixed.

Figure B.1 shows the posterior probability distribution of the frequency and the
amplitude of the FDM signal. Since it is redundant to plot the other parameters, the
posterior distribution has been marginalized over them. The top and bottom plots are
plots with and without the design matrix, respectively. The plot on the left uses the
Data1, and the one on the right uses Data2. The two-dimensional contour plot represents
the posterior probability distribution of the two parameters, and each solid and dashed
line represent the 68% and the 95% credible region, respectively. The one-dimensional
plot represents the the posterior probability distribution marginalized either one of the
parameters, and the value above it is the MAP value. The brue vertical and horizontal
lines denote the value of simulated data parameters.

For the case where TM noise is included in the model, It can be seen that the signal
of the FDM can be detected when the frequency is 10−8.0Hz. On the other hand, when
the frequency is 10−8.55Hz, the FDM can not be detected. The frequency has no peak
in all region of the prior probability distribution, and the amplitude has a peak but the
MAP value is not accurately determined. Since the amplitude has a finite value up to
the lower limit of the prior probability distribution, the Bayes factor can be calculated.
As a result, it is found that the value of Bayes factor is less than 1, so that the model
which does not include the FDM is superior to the model which include it. By including
the TM noise into the model we found that the low frequency signal of the FDM was not
detected in the data we made, but we believe that there is no problem for the purpose of
giving the upper limit. For the case where TM noise is not included in the model, it can
be seen that the signal of the FDM is detected at either frequency. The uncertainty of
the pre-analysis of the red noise and the SSE noise creates a bias, but the MAP values
and the values of the simulated data parameters are very close. Therefore, we conclude
that our implementation was done correctly.
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Figure B.1: The posterior probability distribution of the frequency and the amplitude
of the FDM signal. The top and bottom plots are for the model with and without TM
noise, respectively. The left and right plots are for the data with frequencies 10−8.0

and 10−8.55Hz, respectively. The one-dimensional plot shows the posterior probability
distribution marginalized over either the frequency or the amplitude, and the value above
the plot denotes the MAP value. The two-dimensional contour plot shows the posterior
probability distribution of the frequency or the amplitude, and each solid and dashed
line represent the 68% and the 95% credible region, respectively. The blue vertical and
horizontal lines denote the value of simulated data parameters.

54



Bibliography

[1] Peter Svrcek and Edward Witten. Axions In String Theory. JHEP, 06:051, 2006.

[2] Asimina Arvanitaki, Savas Dimopoulos, Sergei Dubovsky, Nemanja Kaloper, and
John March-Russell. String Axiverse. Phys. Rev., D81:123530, 2010.

[3] Wayne Hu, Rennan Barkana, and Andrei Gruzinov. Fuzzy cold dark matter: The
wave properties of ultralight particles. Phys. Rev. Lett., 85:1158–1161, Aug 2000.

[4] David J. E. Marsh. Axion Cosmology. Phys. Rept., 643:1–79, 2016.

[5] Andrei Khmelnitsky and Valery Rubakov. Pulsar timing signal from ultralight scalar
dark matter. Journal of Cosmology and Astroparticle Physics, 2014(02):019–019,
feb 2014.

[6] Michael Kramer and David J Champion. The european pulsar timing array and the
large european array for pulsars. Classical and Quantum Gravity, 30(22):224009,
nov 2013.

[7] M A McLaughlin. The north american nanohertz observatory for gravitational
waves. Classical and Quantum Gravity, 30(22):224008, nov 2013.

[8] R. N. Manchester, G. Hobbs, M. Bailes, W. A. Coles, W. van Straten, M. J. Keith,
R. M. Shannon, N. D. R. Bhat, A. Brown, S. G. Burke-Spolaor, and et al. The
parkes pulsar timing array project. Publications of the Astronomical Society of
Australia, 30:e017, 2013.

[9] G Hobbs, A Archibald, Z Arzoumanian, D Backer, M Bailes, N D R Bhat, M Bur-
gay, S Burke-Spolaor, D Champion, I Cognard, W Coles, J Cordes, P Demorest,
G Desvignes, R D Ferdman, L Finn, P Freire, M Gonzalez, J Hessels, A Hotan,
G Janssen, F Jenet, A Jessner, C Jordan, V Kaspi, M Kramer, V Kondratiev,
J Lazio, K Lazaridis, K J Lee, Y Levin, A Lommen, D Lorimer, R Lynch, A Lyne,
R Manchester, M McLaughlin, D Nice, S Oslowski, M Pilia, A Possenti, M Purver,
S Ransom, J Reynolds, S Sanidas, J Sarkissian, A Sesana, R Shannon, X Siemens,
I Stairs, B Stappers, D Stinebring, G Theureau, R van Haasteren, W van Straten,
J P W Verbiest, D R B Yardley, and X P You. The international pulsar timing ar-
ray project: using pulsars as a gravitational wave detector. Classical and Quantum
Gravity, 27(8):084013, apr 2010.

55



[10] N. K. Porayko and K. A. Postnov. Constraints on ultralight scalar dark matter
from pulsar timing. Phys. Rev. D, 90:062008, Sep 2014.

[11] Nataliya K. Porayko et al. Parkes Pulsar Timing Array constraints on ultralight
scalar-field dark matter. Phys. Rev., D98(10):102002, 2018.

[12] Takeshi Kobayashi, Riccardo Murgia, Andrea De Simone, Vid Iršič, and Matteo
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