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Chapter I

Introduction
The modal system GL is obtained from K by adding an axiom !(!ϕ →
ϕ) → !ϕ. This logic enjoys two significant properties, the arithmetical
completeness and the fixed-point property.

Modal formulas can be interpreted into first-order sentences of formal
arithmetic, for example, Peano Arithmetic PA. An arithmetical interpreta-
tion is a mapping ∗ from propositional variables to arithmetical sentences.
In particular the modal operator ! is interpreted as Bew(x), where Bew(x) is
the standard provability predicate of Peano Arithmetic PA. The provability
logic of PA is the set of all modal formulas ϕ satisfying PA $ ϕ∗ for any
arithmetical interpretation ∗.

Solovay [27] established the arithmetical completeness theorem of GL. It
asserts that, GL coincides with the logic of provability of PA, i.e., for any
modal formula ϕ, GL $ ϕ if and only if PA $ ϕ∗ for any arithmetical inter-
pretation ∗. Thus GL captures some properties of the provability predicate
Bew(x). Moreover, the uniform arithmetical completeness theorem, which is
a stronger version of Solovay’s one, also holds for GL. That is, there ex-
ists a fixed arithmetical interpretation ∗ such that for any modal formula
ϕ, GL $ ϕ if and only if PA $ ϕ∗ (See Artemov [1], Avron [4], Boolos [6],
Montagna [16] or Visser [29]).

De Jongh and Sambin [21] independently proved the fixed-point theorem
for GL. Let ϕ(p) be a modal formula containing the propositional variable
p. A modal formula ϕ(p) is said to be modalized in p if all occurrences of the
propositional variable p in ϕ(p) are within the scope of the modal operator.
The fixed-point theorem states that if ϕ(p) is modalized in p then there is
a modal formula ψ containing only propositional variables occurring in ϕ(p)
without p, and such that GL $ ψ ↔ ϕ(ψ). Moreover, effective procedures of
constructing fixed-points in GL has been studied (See Reidhaar-Olson [18]
or Lindström [13]).

In this dissertation, we investigate the following variants of GL: (i) Arte-
mov’s Logic of Proofs; (ii) Sacchetti’s logics wGLn; (iii) the predicate modal
logic QGL.

1 Logic of Proofs

A proof predicate is a formula Prf(x, y) which represents the explicit provabil-
ity of formulas in PA. The formula Prf(x, y) intuitively means “there exists a
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proof in PA with the code (the Gödel number) x of the formula with the code
y”. For a proof predicate Prf(x, y), we call a Σ1 formula Pr(x) ≡ ∃yPrf(y, x)
a provability predicate.

Artemov developed the Logic of Proofs, which analyzes the properties of
explicit proof predicates in PA. The logic of proofs deals with LP-formulas,
especially formulas of the form t : F , where t is called a proof term. An arith-
metical interpretation of LP-formulas is defined as a collection of mapping ∗
and functions from proof terms to natural numbers. The intended meaning
of t : F is “t is a (code of a) proof of F”.

Artemov [2] proved the arithmetical completeness theorem of LP0: for
any LP-formula F , LP0 $ F if and only if for any ∆1 normal proof predicate
Prf(x, y) and any arithmetical interpretation ∗ based on Prf, PA $ F ∗.

Technically, there is a substantial difference between Solovay’s theorem
and Artemov’s theorem. The arithmetical completeness theorem ofGL holds
for each canonical provability predicate. On the other hand, in the case of
LP0 the arithmetical completeness theorem does not hold with only the
standard proof predicate Proof(x, y). Moreover, it is not known whether the
uniform arithmetical completeness theorem holds for LP0.

In Chapter III, we examine the following two problems: (i) Does the
arithmetical completeness theorem for LP0 hold with respect to some fixed
proof predicate? (ii) Does the uniform arithmetical completeness theorem
for LP0 hold?

For these problems, we prove the following two statements:

(i) There exists a normal ∆1 proof predicate Prf(x, y) such that for any LP-
formula F , LP0 $ F if and only if for any arithmetical interpretation
∗ based on Prf, PA $ F ∗;

(ii) There exist a Σ1 (but not normal) proof predicate Prf(x, y) and an
arithmetical interpretation ∗ based on Prf such that for any LP-formula
F , LP0 $ F if and only PA $ F ∗.

2 Interpolation properties for Sacchetti’s log-
ics

A logic L is said to have the Craig interpolation property if for any impli-
cation ϕ → ψ which is provable in L, there exists a formula θ (called an
interpolant of ϕ → ψ) such that θ consists of common variables of ϕ and
ψ, and satisfies L $ ϕ → θ and L $ θ → ψ. A logic L is said to have the
Lyndon interpolation property if for any provable implication ϕ → ψ, there
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is a stronger interpolant θ which preserves positivity of variables, that is,
every positive (negative) occurrence of a variable also occurs both in ϕ and
ψ positively (resp. negatively).

In GL, there is a close connection between the fixed-point properties and
the interpolation properties, since the following two facts:

(i) The fixed-point theorem for GL can be derived from the Craig inter-
polation property for the logic;

(ii) Using the effective fixed-point theorem, we can prove the effective Lyn-
don interpolation property for GL.

Proofs of the Craig interpolation property for GL and the fact (i) are inde-
pendently given by Boolos [5] and Smoryński [25]. A comprehensive descrip-
tion of the fact (i) is also shown in Boolos’s textbook [7].

It had been opened whether the Lyndon interpolation property posses
for GL until Shamkanov solved in 2011. In [23] he proved the Lyndon inter-
polation property for GL by a modified version of Smoryński’s semantical
argument, without applying the fixed-point theorem. Later in [24] he also
proved the fact (ii) by using a cut-free sequent calculus for GL. A benefit
of Shamkanov’s second proof of the Lyndon interpolation property is that,
from ϕ → ψ, we can effectively construct a Lyndon interpolant θ of ϕ → ψ
whenever ϕ → ψ is provable in GL.

In the proof of Shamkanov’s second result, he also introduced a circular
proof system. A circular proof system ◦L of L is one which has the same
axioms and rules of L and admits “circular proofs”. A circular proof is a
derivation tree of L whose leaves are either axioms of L or identical to a
sequent below that leaf. Shamkanov showed that GL is provably equivalent
to the circular proof system ◦K4. He gave an effective way of constructing
a Lyndon interpolant of ϕ → ψ by using ◦K4 and the effective fixed-point
theorem.

In Chapter IV, we try to generalize Shamkanov’s results of GL into Sac-
chetti’s logics wGLn.

Sacchetti [19, 20] studied modal logics having the fixed-point property.
In particular, he introduced a new modal logic wGLn (the notation wGLn

is according to Kurahashi [11]). The logic wGLn is obtained from GL by
replacing the axiom !(!ϕ → ϕ) → !ϕ by !(!nϕ → ϕ) → !ϕ, where n is

a nonzero natural number, and !nϕ denotes

n︷ ︸︸ ︷
! · · ·!ϕ.

Sacchetti’s logics wGLn have several properties like GL. Originally Sac-
chetti [20] showed that wGLn enjoys all the Kripke completeness, the Craig
interpolation property. Moreover, he proved the de Jongh-Sambin fixed-point
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theorem for wGLn. Later Kurahashi [11] proved the arithmetical complete-
ness theorem for wGLn with respect to a Σ2 provability predicate.

It is expected that wGLn posses the Lyndon interpolation property, how-
ever, this conjecture has not been clarified.

We develop two one-sided sequent calcului wGLG
n and wK4G

n , and prove
the following results:

(i) The calculus wGLG
n is equivalent to the circular proof system ◦wK4G

n ;

(ii) Using ◦wK4G
n and the effective fixed-point theorem for wGLn (cf. Ku-

rahashi and Okawa [12]), we can construct a Lyndon interpolant of
ϕ → ψ in wGLn whenever ϕ → ψ is provable.

Iemhoff [10] studied some sufficient conditions for a type of modal sequent
calculus to have an equivalent circular proof system. Although the calculus
wGLG

n does not enjoy Iemhoff’s conditions, it has an equivalent circular
proof counterpart.

3 Fixed-point properties in predicate modal
logics

It is natural to extend the studies of the logic of provability to a predicate
modal logic. However, the stituation of the predicate logic of provability is
quite complex and most of the properties for GL do not hold for the pred-
icate modal system QGL, which is the natural predicate extension of GL.
In particular, Montagna [17] proved that QGL enjoys neither the Kripke
completeness, nor the arithmetical completeness. He also showed the failure
of the fixed-point theorem for QGL, that is, he found a predicate modal for-
mula ϕ(p) which has no fixed-points in QGL. Smoryński [26] gave a simpler
counterexample.

On the other hand, there is a room for investigations of fixed-point prop-
erties in predicate modal logics. The logic QGL is not only the candidate of
an extension of GL. Recently Tanaka [28] introduced a new predicate modal
logic NQGL, which is strictly stronger than QGL and enjoys the Kripke
completeness with respect to a proper subclass of transitive and conversely
well-founded Kripke frames. There is a possibility that the fixed-point theo-
rem holds for these natural extensions of QGL.

Sacchetti [19] showed that the fixed-point theorem holds for the modal
logic K +!n+1⊥. Also it has not been known that the fixed-point theorem
even holds for the predicate extension of this logic.
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In Chapter V we discuss some versions of the fixed-point properties for
predicate modal logics. We define the following classes of Kripke frames
in which all theorems of QGL are valid: CW (the class of transitive and
conversely well-founded frames), FH (the class of transitive frames with finite
height), FI (the class of finite transitive irreflexive frames) and FIFD (the class
of finite transitive irreflexive frames of which domains are finite). The class
FH is a proper subclass of BL (the class of transitive of which are bounded
length), which is introduced by Tanaka [28]. Tanaka’s system NQGL is
Kripke complete with respect to the class BL. The class FIFD was originally
investigated by Artemov and Dzhaparidze [3].

We study two semantical fixed-point properties for a class of Kripke
frames, the fixed-point property and the local fixed-point property. From Mon-
tagna’s result, it follows that the classes CW and BL enjoy neither the fixed-
point property nor the local fixed-point property. We discuss whether the
classes FH, FI and FIFD enjoy these two properties. We describe the following
results:

(i) The classes FH, FI and FIFD do not enjoy the fixed-point property;

(ii) We prove the fixed-point theorem for the predicate modal systemQK+
!n+1⊥. An algorithm for calculating fixed-points in QK + !n+1⊥ is
given in the proof. Consequently, we obtain that the classes FH, FI and
FIFD enjoy the local fixed-point property.

As a consequence, we prove that Tanaka’s system NQGL does not enjoy
the Craig interpolation property.

As mentioned above, Montagna [17] showed that the fixed-point theorem
does not hold for QGL. Although there is a possibility that the fixed-point
theorem holds for some classes of formulas. It has not been known sufficient
(or necessary) conditions for a formula to have a fixed-point in QGL. In the
end of Chapter V, we investigate these conditions. We prove that if ϕ(p) is
a Boolean combination of Σ-formulas, then ϕ(p) has a fixed-point in QGL.
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Chapter II

Preliminaries

4 General definitions

For any two expressions ε1 and ε2 (of a certain language), ε1 ≡ ε2 means
ε1 and ε2 are syntactically identical. Throughout this dissertation, we use
Greek letters ϕ,ψ, . . . to express (propositional or predicate) modal formu-
las. Propositional variables is denoted by p, q, . . . etc.. Propositional modal
formulas is constructed as the following grammar:

ϕ ::= ( | ⊥ | p | ¬ϕ | ϕ → ϕ | !ϕ

where ( and ⊥ are constants, p is a propositional variable. Another Boolean
connectives are defined a natural way. We put ♦ϕ :≡ ¬!¬ϕ. Formulas !nϕ

and ♦nϕ stand for

n︷ ︸︸ ︷
! · · ·!ϕ and

n︷ ︸︸ ︷
♦ · · ·♦ϕ, respectively. Let #ϕ :≡ !ϕ ∧ ϕ.

4.1 Negation normal form

While we discuss the interpolation properties for a modal logic (Chapter IV),
we deal with formulas in the negation normal form to recognize positivity
of propositional variables. We denote by p, q, . . . the complement of p, q, . . .
respectively. We call propositional variables and their complements literals.

ϕ ::= p | p | ( | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | !ϕ | ♦ϕ.

We inductively define the negation ϕ of a formula ϕ in the usual way:

( :≡ ⊥, ⊥ :≡ (, (p) :≡ p, (p) :≡ p,

ϕ ∨ ψ :≡ ϕ ∧ ψ, ϕ ∧ ψ :≡ ϕ ∨ ψ, !ϕ :≡ ♦ϕ, ♦ϕ :≡ !ϕ.

We put (ϕ → ψ) :≡ (ϕ ∨ ψ), and (ϕ ↔ ψ) :≡ (ϕ → ψ) ∧ (ψ → ϕ).

4.2 Modal systems

In this subsection we define propositional modal logics.

Definition 4.1 (Modal logic K, GL, K4). The propositional modal system
K consists of the following axioms and rules.

Axiom 1 All instances of tautologies of propositional logic;
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Axiom 2 !(ϕ → ψ) → (!ϕ → !ψ);

Rule 1
ϕ → ψ ϕ

ψ (modus ponens);

Rule 2
ϕ
!ϕ (necessitation).

The propositional modal system GL and K4 are obtained from K by adding
the following axioms L, and 4, respectively.

L !(!ϕ → ϕ) → !ϕ;

4 !ϕ → !!ϕ.

Definition 4.2 (Modal logicwGLn andwK4n). Let n be a non-zero natural
number. The propositional modal systems wGLn (and wK4n) is obtained
from GL (resp. K4) by replacing the axiom L (resp. 4) by the following
axiom Ln (resp. 4n).

Ln !(!nϕ → ϕ) → !ϕ;

4n !ϕ → !n+1ϕ.

4.3 Kripke semantics

We describe Kripke semantics for propositional modal logics.
A Kripke frame F is a pair 〈W,≺〉, whereW is a non-empty set, and≺ is a

binary relation on W . A Kripke model M is a triple 〈W,≺, V 〉, where 〈W,≺〉
is a Kripke frame and V is a valuation function from the set of propositional
variables to P(W ). We say a propositional variable p is true in w (write
w |= p) if w ∈ V (p). The valuation of formulas is uniquely determined by
V in a usual way. In particular, w |= !ϕ iff for any x ∈ W , w ≺ x implies
x |= ϕ. We say a formula ϕ is valid in a Kripke model M = 〈W,≺, V 〉 if
for any w ∈ W , w |= ϕ. We say a formula ϕ is valid in a Kripke frame
F = 〈W,≺〉 if for any valuation V on F , ϕ is valid in the model 〈W,≺, V 〉.

We say F is finite if W is finite. A Kripke frame F is conversely well-
founded if there is no countably infinite sequence (wi)i∈ω of worlds of W
satisfying wi ≺ wi+1 for each i ∈ ω.

We inductively define the binary relation ≺n on W : x ≺0 y iff x = y, and
x ≺n+1 y iff ∃z ∈ W s.t. x ≺n z and z ≺ y. A binary relation ≺ on W is
said to be n-transitive if for any x, y ∈ W , x ≺n y implies x ≺ y. A Kripke
frame F = 〈W,≺〉 (resp. a Kripke model M = 〈W,≺, V 〉) is said to be a
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wGLn-frame (resp. a wGLn-model) if ≺ is (n+1)-transitive and conversely
well-founded.

The following lemma will be needed in our proof of Theorem 11.6.

Lemma 4.3. Let ≺ be a binary relation on a set W and suppose that ≺ is
(n+1)-transitive. Then for any x, y ∈ W and k ≥ 1, if x ≺kn y then x ≺n y.

Proof. Induction on k. The case for k = 1 is trivial. Assume Lemma holds
for ≤ k, and x ≺(k+1)n y. Then there exist x1, . . . , x(k+1)n ∈ W such that
x ≺ x1 ≺ · · · ≺ x(k+1)n and y = x(k+1)n. In particular, x ≺n+1 xn+1 ≺kn−1 y.
Since ≺ is (n + 1)-transitive, x ≺ xn+1. Hence we get x ≺kn y. By the
induction hypothesis, we obtain x ≺n y.

4.4 Provability predicates in arithmetic

In Chapter III we discuss arithmetical formulas. Let LA be the first-order
language of arithmetic. We assume LA contains function symbols for all
primitive recursive functions. The numeral for the natural number n is also
denoted by n. We write $ϕ% as the Gödel number (or simply code) of ϕ. We
assume that all theorems of Peano Arithmetic PA are true in the standard
model N of arithmetic.

Definition 4.4 (Σ1 and ∆1 formulas).

1. An LA-formula ϕ is ∆0 if its quantifiers are all bounded.

2. An LA-formula ϕ is Σ1 if it is PA-provably equivalent to a formula of
the form ∃&xψ(&x, &y) where ψ is a ∆0 formula.

3. An LA-formula ϕ is ∆1 if both ϕ and ¬ϕ are Σ1.

Definition 4.5 (Proof predicate). An LA-formula Prf(x, y) is a proof predi-
cate if it satisfies that for any LA-sentence ϕ,

PA $ ϕ if and only if for some natural number n, N |= Prf(n, $ϕ%).

Definition 4.6 (Normal proof predicate). A proof predicate Prf(x, y) is nor-
mal if it satisfies the following two conditions:

1. For any natural number k, the set T (k) := {n | N |= Prf(k, n)} is finite.
Moreover, the code of the finite set T (k) is computable from k;

2. For any natural numbers k and l, there is a natural number m such
that

T (k) ∪ T (l) ⊆ T (m).
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Definition 4.7 (Prf-functions). Let Prf(x, y) be a proof predicate. Three
computable functions 〈m(·, ·), a(·, ·), c(·)〉 on natural numbers are said to be
Prf-functions if they satisfy the following conditions: For any LA-sentences
ϕ and ψ and natural numbers k and l,

• PA $ (Prf(k, $ϕ → ψ%) ∧ Prf(l, $ϕ%)) → Prf(m(k, l), $ψ%);

• PA $ (Prf(k, $ϕ%) ∨ Prf(l, $ϕ%)) → Prf(a(k, l), $ϕ%);

• PA $ Prf(k, $ϕ%) → Prf(c(k), $Prf(k, $ϕ%)%).

Proposition 4.8. If a proof predicate Prf(x, y) is ∆1 and normal, then there
are Prf-functions.

Proof. See Artemov [2].

For example, the Gödel multi-conclusion proof predicate Proof(x, y) is
the LA-formula which means the following assertion:

“x is the code of a PA-proof containing an LA-formula with the code y.”

The formula Proof(x, y) is ∆1 and normal proof predicate, therefore there
are Proof-functions 〈⊗,⊕, ↑〉.

Let Provable(x) be the Σ1 formula ∃zProof(z, x). The formula Provable(x)
satisfies the following propositions.

Proposition 4.9 (Derivability conditions). For any LA-sentences ϕ and ψ,

1. if PA $ ϕ, then PA $ Provable($ϕ%);

2. PA $ Provable($ϕ → ψ%) → (Provable($ϕ%) → Provable($ψ%));

3. PA $ Provable($ϕ%) → Provable($Provable($ϕ%)%).

Clause (3) of Proposition 4.9 is a particular case of the following propo-
sition.

Proposition 4.10 (Formalized Σ1 completeness). For any Σ1 sentence ϕ,
PA $ ϕ → Provable($ϕ%).
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5 Preceding studies

5.1 Arithmetical completeness theorem

Definition 5.1. An arithmetical interpretation is a mapping from proposi-
tional modal formulas to LA-sentences satisfying the following conditions:

1. ∗ commutes with Boolean connectives:

2. (!ϕ)∗ ≡ Bew($ϕ∗%).
Solovay [27] proved the following arithmetical completeness theorem of

GL.

Theorem 5.2 (Arithmetical completeness theorem of GL, Solovay [27]).
For any propositional modal formula ϕ, the following are equivalent:

1. GL $ ϕ;

2. For any arithmetical interpretation ∗, PA $ ϕ∗.

5.2 Fixed-point theorem

The fixed-point theorem was originally proved by de Jongh and Sambin [21]
for the propositional logic GL independently. Sacchetti [19] proved the fixed-
point theorem for the logic K+!n+1⊥.

Let ϕ(p) be a propositional modal formula containing occurrences of p.
We say ϕ(p) is modalized in p if every occurrence of p in ϕ(p) is in the scope of
modal operators. For a propositional modal formula ψ, ϕ(ψ) denotes the one
obtained from ϕ by substituting ψ for all occurrences p in ϕ. To summarize
the results, the fixed-point theorems are described as follows.

Theorem 5.3 (Fixed-point theorem (de Jongh, Sambin [21], and Sacchetti
[19])). Suppose that L is either GL or K+!n+1⊥. If ϕ(p) is modalized in p,
then there is a formula ψ containing only propositional variables occurring
in ϕ(p), not containing p, and such that L $ ψ ↔ ϕ(ψ).

We call such a ψ a fixed-point of ϕ(p) in L.

6 Logic of Proofs

In this section we define the logic LP0 that is called the Logic of Proofs. The
logic LP0 was introduced by Artemov [2]1.

1In [2], Artemov also introduced the logic LP that contains LP0 and has the axiom
necessitation rule, but in this paper we only discuss LP0.
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6.1 Language of the Logic of Proofs

The language of the Logic of Proofs consists of the following symbols:

• Propositional variables (written p, q, . . . etc.) and Boolean connectives ;

• Proof variables (written v, w, . . . etc.) and proof constants (written
a, b, c, . . . etc.);

• Binary function symbols · and +, and an unary function symbol !.

Proof terms are defined by the grammar

t ::= v | a | t · t | t+ t |!t

where v is a proof variable and a is a proof constant.
LP-formulas are defined by the grammar:

F ::= p | (¬F ) | (F → F ) | (t : F )

where p is a propositional variable, and t is a proof term. Other Boolean
connectives ∧, ∨ and ↔ are defined in a usual way.

6.2 System LP0

Definition 6.1 (Logic LP0). The system LP0 consists of the following ax-
ioms and the rule:

Axiom 0 all instances of tautologies in the language of LP;

Axiom 1 t : F → F ;

Axiom 2 s : (F → G) ∧ t : F → s · t : G;

Axiom 3 s : F ∨ t : F → s+ t : F ;

Axiom 4 s : F →!s : s : F ;

Rule modus ponens.

Definition 6.2 (Arithmetical interpretations of LP-formulas). Let Prf(x, y)
be a proof predicate, and 〈m, a, c〉 be Prf-functions. An arithmetical inter-
pretation ∗ based on 〈Prf,m, a, c〉 is an evaluation of LP-formulas by LA-
sentences and an evaluation of proof terms by natural numbers, satisfying
the following conditions:

1. ∗ commutes with Boolean connectives;
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2. (s · t)∗ = m(s∗, t∗), (s+ t)∗ = a(s∗, t∗), (!s)∗ = c(s∗);

3. (t : F )∗ ≡ Prf(t∗, $F ∗%);

where s and t are proof terms, and F is an LP-formula.

Artemov [2] proved the arithmetical completeness theorem of LP0.

Theorem 6.3 (Artemov [2]). Let F be an LP-formula. The following are
equivalent:

1. LP0 $ F ;

2. For any ∆1 normal proof predicate Prf, Prf-functions 〈m, a, c〉 and
arithmetical interpretation ∗ based on 〈Prf,m, a, c〉, PA $ F ∗.

7 Predicate modal logic

7.1 Language and formulas

The language of predicate modal logic LQ consists of countably many vari-
ables u, v, . . ., etc., Boolean constants (,⊥, Boolean connectives ¬,→, quan-
tifier ∀, and countably many predicate symbols for each arity (denoted by
P,Q, . . . etc.). An LQ-formula ϕ is constructed as the following manner:

ϕ ::= ( | ⊥ | P (u1, . . . , un) | ¬ϕ | ϕ → ϕ | ∀uϕ | !ϕ

where P is an n-ary predicate symbol, and u1, . . . , un, u are variables.
Boolean constants ( and ⊥, and LQ-formulas of the form P (u1, . . . , un)

are called atomic formulas. We put

ϕ ∨ ψ :≡ ¬ϕ → ψ, ϕ ∧ ψ :≡ ¬(ϕ → ¬ψ), ϕ ↔ ψ :≡ (ϕ → ψ) ∧ (ψ → ϕ),

∃uϕ :≡ ¬∀u¬ϕ, ♦ϕ :≡ ¬!¬ϕ.

Free variables and bounded variables are naturally defined. We say ϕ is
an LQ-sentence if ϕ is an LQ-formula with no free variables.

7.2 Modal systems QK, QGL

The predicate modal system QK consists of the following axioms and rules:

Axiom 1 All instances of axioms of predicate logic in the language LQ;

12



Axiom 2, Rule 1, Rule 2 Same as K.
The predicate modal systems QK4 and QGL are obtained from QK by

adding the following axioms 4, and L, respectively.

4 !ϕ → !!ϕ;

L !(!ϕ → ϕ) → !ϕ.

Recall that QK ⊆ QK4 ⊆ QGL.
Tanaka [28] introduced the modal proof system NQGL which has an

infinite inference rule.

Definition 7.1. The modal systemNQGL is obtained fromQK4 by adding
the following rule:

BL If $ !n+1⊥ → A for all natural numbers n, then $ A.

7.3 Predicate Kripke frames

Definition 7.2. A (predicate) Kripke frame F is a triple 〈W,≺, {Dw}w∈W 〉
where:

• W is a non-empty set;

• ≺ is a binary relation on W ;

• Each Dw is a non-empty set, and if w ≺ w′, then Dw ⊆ Dw′ .

Definition 7.3. Let F = 〈W,≺, {Dw}w∈W 〉 be a Kripke frame. An inter-
pretation of F is a mapping & which assigns each pair 〈w, P 〉, where w ∈ W
and P is an n-ary predicate symbol, into an n-ary relation on Dw. We write
w & P (a1, . . . , an) if (a1, . . . , an) is a member of & 〈w, P 〉. A Kripke model
M is a pair 〈F ,&〉 where F is a Kripke frame and & is an interpretation of
F .

Definition 7.4. Let M = 〈W,≺, {Dw}w∈W ,&〉 be a Kripke model, and ϕ
be an LQ-sentence with parameters from Dw for some w ∈ W . The truth
value of ϕ in w (we write M, w |= ϕ if ϕ is true in w) is inductively defined
as follows:

• M, w |= ( and M, w 7|= ⊥, for every w ∈ W ;

• M, w |= P (a1, . . . an) iff w & P (a1, . . . an);

• M, w |= ¬ϕ iff M, w 7|= ϕ;
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• M, w |= ϕ → ψ iff M, w 7|= ϕ or M, w |= ψ;

• M, w |= ∀uϕ(u) iff M, w |= ϕ(a) for every a ∈ Dw;

• M, w |= !ϕ iff for any v ∈ W , if w ≺ v, then M, v |= ϕ.

Definition 7.5. Let M be a Kripke model and ϕ be an LQ-sentence. We
say ϕ is valid in M (write M |= ϕ) if for every w ∈ W , M, w |= ϕ.

Let F be a Kripke frame and ϕ be an LQ-sentence. We say ϕ is valid in
F (write F |= ϕ) if for any interpretation & of F , ϕ is valid in M = 〈F ,&〉.

Validity of an LQ-formula ϕ is defined by the validity of the universal
closure of ϕ.

14



Chapter III

Arithmetical completeness for
LP0

8 Strong arithmetical completeness of LP0

8.1 Completion Algorithm

Let F be an LP-formula, and L(F ) be the set of all propositional variables,
proof variables and proof constants contained in F . An LP-formula G is
called an L(F )-formula if L(G) ⊆ L(F ). A proof term t is said to be an L(F )-
term if t is built from only proof variables and proof constants contained in
L(F ). For each LP-formula A, let

∼ A :≡
{
B if A is of the form ¬B,

¬A otherwise.

Definition 8.1. Let F be any LP-formula. Define SF to be the finite set
{B,∼ B | B is a subformula of F}.

Notice that SF is closed under ∼ and subformulas.
Let X be a set of LP-formulas. We say that X is LP0-consistent if

LP0 ! ¬
∧

Y for all finite subsets Y of X where
∧

Y is a conjunction of all
elements of Y . The set X is called F -maximal consistent if X is an LP0-
consistent subset of SF and for any LP-formula A ∈ SF , either A ∈ X or
∼ A ∈ X.

Since the set of all theorems of LP0 is primitive recursive (cf. Mkrtychev
[15]), we obtain the following lemma.

Lemma 8.2. For each LP0-unprovable formula F , we can find an F -maximal
consistent set XF of L(F )-formulas such that ∼ F ∈ XF in a primitive
recursive way.

For each LP0-unprovable formula F , we define the extended set of LP-
formulas (a completion of F ) by using the following algorithm.

Lemma 8.3. Let F be an LP0-unprovable formula and XF be as in Lemma
8.2. Then there is a set X̃F of LP-formulas (a completion of F ) satisfying
the following conditions:

(B1) XF ⊆ X̃F ;

15



(B2) X̃F is LP0-consistent;

(B3) If s : A ∈ X̃F , then A ∈ X̃F ;

(B4) If s : (A → B) ∈ X̃F and t : A ∈ X̃F , then s · t : B ∈ X̃F ;

(B5) If s : A ∈ X̃F , then s + t : A ∈ X̃F and t + s : A ∈ X̃F for any proof
term t;

(B6) If s : A ∈ X̃F , then !s : s : A ∈ X̃F .

Moreover, the binary relation “A ∈ X̃F” is primitive recursive.

Proof. We describe the algorithm COM which produces the sequence (Yi)i∈ω
of sets of LP-formulas from an input XF (the algorithm is same as in the
proof of Lemma 7.5 in Artemov [2]):
(1) Let Y0 := XF ;
(2)

• if j = 3k + 1 (k ≥ 0), then COM sets

Yj+1 := Yj ∪
⋃

s,t

{s · t : B | s : A → B, t : A ∈ Yj},

• if j = 3k + 2 (k ≥ 0), then COM sets

Yj+1 := Yj ∪
⋃

s

{!s : s : A | s : A ∈ Yj},

• if j = 3k (k > 0), then COM sets

Yj+1 := Yj ∪
⋃

s,t

{s+ t : A, t+ s : A | s : A ∈ Yj, |t| < j}.

where |t| is the number of symbols occurring in t. Let

X̃F :=
⋃

i∈ω

Yi.

Since each Yi is obviously LP0-consistent, X̃F is LP0-consistent (B2).The
conditions B1, B4, B5, and B6 clearly hold from the definition of COM.
Before proving B3, we show that each Yi is closed under modus ponens. If
A → B and A are in Yi, then A → B ∈ Y0 = XF because COM never
adds A → B in each step. Since A → B ∈ SF , we have A ∈ SF . Since
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A ∈ Yi ⊇ XF , A ∈ XF by the F -maximal consistency of XF and the LP0-
consistency of Yi. Thus B ∈ XF ⊆ Yi by the F -maximal consistency of XF

again.
To show B3, it suffices to prove that for all i ∈ ω, if t : A ∈ Yi then

A ∈ Yi. We prove by induction on i.
Suppose t : A ∈ Y0 = XF . Since t : A ∈ SF , A ∈ SF . By the F -maximal
consistency of XF , A ∈ Y0.
Suppose s · t : A ∈ Yj+1, s : C → A ∈ Yj and t : C ∈ Yj. By the induction
hypothesis, C → A, C ∈ Yj. Therefore A ∈ Yj ⊆ Yj+1.
The proofs for the other cases s+ t : A and !s : s : A are similar.

Let F be an LP-formula. A proof term t is said to be an L(F )-term if t
contains only proof variables and proof constants in L(F ). In the case that
F is unprovable in LP0, we define J(F, t) := {G | t : G ∈ X̃F}.

Proposition 8.4. For any LP0-unprovable formula F and LP-term t, J(F, t)
is finite, and the code of J(F, t) is effectively computable from F and t.

Proof. See Lemma 7.5 in Artemov [2].

The following proposition will play a key role in our proof of Theorem 8.6
in the next subsection.

Proposition 8.5. Let F be any LP0-unprovable formula and t be any proof
term. If J(F, t) is nonempty, then t contains some subterm s which is an
L(F )-term (we call such a proof term s an L(F )-subterm of t).

Proof. We prove by induction on the construction of t. Assume G ∈ J(F, t)
for some LP-formula G.

If t is some proof variable or constant, then t : G is already contained in
XF because XF ⊆ X̃F by B1 and the algorithm COM in Lemma 8.3 does
not add new formulas of the form t : H in each step. Since XF is a set of
L(F )-formulas, t is itself an L(F )-term.

If t ≡ s+u, then we have either t : G ∈ XF , or t : G is added in some step
by COM. The former case, t is itself an L(F )-term. The latter case, we have
either s : G ∈ X̃F or u : G ∈ X̃F by the construction of completion by COM.
By the induction hypothesis, either s or u contains some L(F )-subterm. In
both cases, t contains an L(F )-subterm.

The proofs for the remaining possibilities t ≡ s · u and t ≡!s are similar.
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8.2 A stronger version of Artemov’s theorem

There is a substantial difference between Solovay’s arithmetical completeness
theorem of GL (Theorem 5.2) and Artemov’s arithmetical completeness the-
orem of LP0 (Theorem 6.3). Solovay’s theorem holds for each fixed appropri-
ate provability predicate. On the other hand, the arithmetical completeness
of LP0 does not hold with only the Gödel proof predicate Proof. Indeed, let
F :≡ ¬v : v : p, and ∗ be an arbitrary arithmetical interpretation based on
〈Proof,⊗,⊕, ↑〉. Then F ∗ is ¬Proof(v∗, $Proof(v∗, $p∗%)%). Since v∗ cannot
be a proof of the sentence Proof(v∗, $p∗%) with the code larger than v∗, F ∗

is true in N. Since F ∗ is a ∆1 sentence, F ∗ is provable in PA. Thus PA $ F ∗

for any arithmetical interpretation ∗ based on 〈Proof,⊗,⊕, ↑〉. If LP0 $ F ,
then the forgetful projection ¬!!p of F is provable in the modal logic S4
(see Artemov [2]), and this is not the case. Hence LP0 ! F .

Now we prove a stronger version of the arithmetical completeness theorem
of LP0. That is, we prove that the arithmetical completeness theorem of LP0

holds with a fixed appropriate∆1 normal proof predicate Prf and computable
Prf-functions 〈m, a, c〉.

Theorem 8.6 (A stronger version of the arithmetical completeness theorem
of LP0). There exist a ∆1 normal proof predicate Prf(x, y) and computable
Prf-functions 〈m, a, c〉 such that for any LP-formula F , the following are
equivalent:

1. LP0 $ F ;

2. For any arithmetical interpretation ∗ based on 〈Prf,m, a, c〉, PA $ F ∗.

It suffices to show the existence of ∆1 normal proof predicate Prf and
computable Prf-functions 〈m, a, c〉 satisfying the implication (2) ⇒ (1). In
our proof, we assume that:

• the Gödel numbering of the joint language of LP and LA is injective,
i.e., for any expressions ε1 and ε2, $ε1% = $ε2% if and only if ε1 ≡ ε2;

• 0 is not a Gödel number of any expression;

• for any proof term t and for any LA-sentence ϕ, N 7|= Proof($t%, $ϕ%).

Definition 8.7. A replacement r(x) is a substitution such that r substi-
tutes a propositional variable, proof variable and a proof constant into each
propositional variable, proof variable and proof constant, respectively.
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Then for any replacement r and LP-formula A, the LP-formula r(A) is
uniquely determined in a usual way.

Let {Ai}i≥1 be a primitive recursive enumeration of all LP0-unprovable
LP-formulas. We can find a replacement r(x) with the following conditions
in a primitive recursive way:

• for any i, j ≥ 1, if i 7= j, then L(r(Ai)) ∩ L(r(Aj)) = ∅.

• There exists a primitive recursive function f(x) such that:

f($ε%) =
{
i if ε is in L(r(Ai)) for some i ≥ 1,

0 if ε is not in L(r(Ai)) for all i ≥ 1,

where ε is some propositional variable or proof variable or proof con-
stant.

The value of f is uniquely determined by the first clause.
For each i ≥ 1, we denote r(Ai) by Bi. Each Bi is also unprovable in

LP0.
By using the function f , we can obtain the following primitive recursive

function g(x):

g($G%) =
{
i if p ∈ L(Bi) for all propositional variables p ∈ L(G),

0 otherwise,

whereG is an LP-formula. Note that the value of g is uniquely determined by
the choice of the replacement r. If G is an L(Bi)-formula, then g($G%) = i.

Recall that X̃Bi is a completion of Bi provided by the completion algo-
rithm COM. We have the following lemma.

Lemma 8.8. Let i ≥ 1 and F be any LP-formula. If F ∈ X̃Bi , then
g($F%) = i.

Proof. Let X̃Bi =
⋃

n∈ω Yn where {Yn}n∈ω is as in Lemma 8.3. We prove by
induction on n that for any n ∈ ω, if F ∈ Yn, then g($F%) = i.

• If F ∈ Y0 = XBi , then L(F ) ⊆ L(Bi). Thus g($F%) = i.

• Suppose F ∈ Yn+1. If F ≡ s · t : B for some proof terms s and t and
LP-formulas A and B such that s : (A → B), t : A ∈ Yn. By induction
hypothesis, g($A → B%) = i. Then g($F%) = g($B%) = i. The other
cases are obvious.
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Recall J(Bi, t) is the set {G | t : G ∈ X̃Bi}. The next Lemma 8.9 directly
follows from Proposition 8.4 and the effectiveness of the sequence {Ai}i≥1

and the replacement r(x).

Lemma 8.9. For any i ≥ 1 and proof term t, the set J(Bi, t) is finite.
Moreover, the code of J(Bi, t) is effectively computable from i and t.

Let
J(t) =

⋃

i≥1

J(Bi, t).

Lemma 8.10. For any proof term t, J(t) is finite. Moreover, the code of
J(t) is effectively computable from t.

Proof. Let t be any proof term. First, compute the finite set

S(t) := {i ≥ 1 | t contains an L(Bi)-subterm}.

By Proposition 8.5, for any j /∈ S(t), J(Bj, t) = ∅. Thus

J(t) =
⋃

i∈S(t)

J(Bi, t)

and hence this set is finite and the code of J(t) is effectively computable from
t by Lemma 8.9.

By the Fixed Point Lemma (cf. Lindström [14]), we simultaneously define
the auxiliary translation † of LP-formulas and the ∆1 formula Prf(x, y) as
follows:

1. p† :≡
{
$p% = $p% if for some i ≥ 1, p ∈ X̃Bi ,

$p% = 0 if for any i ≥ 1, p /∈ X̃Bi ;

2. † commutes with Boolean connectives;

3. (t : F )† :≡ Prf($t%, $F †%);

4. PA $ Prf(x, y) ↔ Proof(x, y)
∨[“x = $t% & y = $G†% & g($G%) = i & G ∈ J(Bi, t) for some t, G, i”].

We refer Clause 4 as FPE. We can recover F from F † effectively since †
is injective. Therefore our definition of Prf(x, y) makes sense.
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Now we define our functions 〈m, a, c〉.

m(x, y) :=






$s · t% if x = $s%, y = $t% for some proof terms s, t;

u⊗ y if x = $s% for some proof term s

& y 7= $t% for any proof term t;

x⊗ v if x 7= $s% for any proof term s

& y = $t% for some proof term t;

x⊗ y if x 7= $s%, y 7= $t% for any proof terms s, t.

a(x, y) :=






$s+ t% if x = $s%, y = $t% for some proof terms s, t;

u⊕ y if x = $s% for some proof term s

& y 7= $t% for any proof term t;

x⊕ v if x 7= $s% for any proof term s

& y = $t% for some proof term t;

x⊕ y if x 7= $s%, y 7= $t% for any proof terms s, t.

c(x) :=

{
$!s% if x = $s% for some proof term s;

w⊗ ↑ x if x 7= $s% for any proof term s.

where

• u is the least natural number satisfying

Proof(u, $F †%) for all F ∈ J(s);

• v is the least natural number satisfying

Proof(v, $F †%) for all F ∈ J(t);

• w is the least natural number satisfying

Proof(w,Proof(x, $ϕ%) → Prf(x, $ϕ%)) for all ϕ ∈ T (x).

Recall that T (x) is the set {n | N |= Prf(x, n)}.
The desired arithmetical interpretation ∗ is defined as follows:

1. p∗ :≡ p† for each propositional variable p;

2. x∗ := $x%, a∗ := $a% for each proof variable x and proof constant a;

3. for proof terms s and t,
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(s · t)∗ := m(s∗, t∗), (s+ t)∗ := a(s∗, t∗), (!s)∗ := c(s∗);

4. (t : F )∗ :≡ Prf(t∗, $F ∗%).

Lemma 8.11. For any proof term t and LP-formula F ,

1. t∗ ≡ t†;

2. F ∗ ≡ F †.

Proof. The proof is similar to the proof of Lemma 8.2 in Artemov [2].

Lemma 8.12. Let i ≥ 1 and F be an LP-formula.

1. If F ∈ X̃Bi , then PA $ F ∗;

2. If ∼ F ∈ X̃Bi , then PA $ (∼ F )∗.

Proof. We prove by induction on the construction of F .
Base Case (i): F ≡ p for some propositional variable p.

1. Suppose that p ∈ X̃Bi . Then PA $ p∗ holds immediately by the defini-
tions of † and ∗.

2. Suppose that ∼ p ∈ X̃Bi . In this case, ∼ p ≡ ¬p. By B2, p 7∈ X̃Bi .
Since g($p%) = i, p 7∈ X̃Bj for any j 7= i. Therefore p∗ ≡ $p% = 0, and
we obtain PA $ ¬p∗.

Base Case (ii): F ≡ t : G.

1. Suppose that t : G ∈ X̃Bi . Then we have PA $ “G ∈ J(Bi, t)”. By
Lemma 8.8, g($G%) = g($t : G%) = i. Thus PA $ “g($G%) = i”. By
FPE, PA $ Prf($t%, $G†%). By Lemma 8.11, PA $ Prf(t∗, $G∗%).

2. Suppose that ∼ t : G ∈ X̃Bi . In this case, ∼ t : G ≡ ¬t : G. By B2,
t : G 7∈ X̃Bi . Then we have PA $ ¬“G ∈ J(Bi, t)”. By our assumption
of the Gödel numbering, PA $ ¬Proof($t%, $G†%). By FPE, PA $
¬Prf($t%, $G†%). By Lemma 8.11, PA $ ¬Prf(t∗, $G∗%).

Induction Case (i): F ≡ G → H.

1. If G → H ∈ X̃Bi , then G → H ∈ XBi follows from B1 and the
description of COM. By the Bi-maximal consistency of XBi , either
∼ G ∈ XBi or H ∈ XBi . By B1, either ∼ G ∈ X̃Bi or H ∈ X̃Bi . By
the induction hypothesis, either PA $∼ (G∗) or PA $ H∗. In either
cases, we obtain PA $ G∗ → H∗, i.e., PA $ (G → H)∗.
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2. Suppose that ∼ (G → H) ∈ X̃Bi . In this case, ∼ (G → H) ≡ ¬(G →
H). Then ¬(G → H) ∈ XBi follows from B1 and the description of
COM. By the Bi-maximal consistency ofXBi , G and ∼ H are elements
of XBi , and by B1, G and ∼ H are elements of X̃Bi . By the induction
hypothesis, we have PA $ G∗ and PA $∼ H∗. Thus PA $ ¬(G∗ → H∗),
i.e., PA $ (∼ (G → H))∗.

Induction Case (ii): F ≡ ¬G. In this case, ∼ F ≡ G.

1. Suppose that ¬G ∈ X̃Bi . We distinguish two possibilities. Assume
G is of the form ¬H. Then ∼ G ≡ H and F ≡ ¬¬H ∈ X̃Bi . By
the description of COM, ¬¬H ∈ XBi . By Bi-maximal consistency,
H ∈ XBi , and hence ∼ G ≡ H ∈ X̃Bi . By the induction hypothesis,
PA $ H∗, i.e., PA $ F ∗. Assume G is not of the form ¬H. Then ¬G ≡∼
G. Since ∼ G ∈ X̃Bi , PA $ (∼ G)∗ by the induction hypothesis.
Therefore PA $ F ∗.

2. If ∼ F ∈ X̃Bi , then G ∈ X̃Bi . By the induction hypothesis, PA $ G∗,
and hence PA $ (∼ F )∗.

We obtain the following lemma.

Lemma 8.13. The formula Prf(x, y) is a proof predicate.

Proof. It suffices to show that if N |= Prf(n, $ϕ%) for some natural number
n, then PA $ ϕ. Suppose N |= Prf(n, $ϕ%). If N |= Proof(n, $ϕ%), then
PA $ ϕ. If N |= “n = $t% & $ϕ% = $G†% & g($G%) = i & G ∈ J(Bi, t)”, then
t : G ∈ X̃Bi . By B3, G ∈ X̃Bi . By Lemma 8.12, PA $ G∗. By Lemma 8.11,
PA $ ϕ.

We prove that the above three functions 〈m, a, c〉 are Prf-functions.

Lemma 8.14. For any natural numbers k, l and LA-sentences ϕ and ψ, the
following sentences are true (and hence provable in PA):

1. (Prf(k, $ϕ → ψ%) ∧ Prf(l, $ϕ%)) → Prf(m(k, l), $ψ%);

2. (Prf(k, $ϕ%) ∨ Prf(l, $ϕ%)) → Prf(a(k, l), $ϕ%);

3. Prf(k, $ϕ%) → Prf(c(k), $Prf(k, $ϕ%)%).
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Proof. 1. Suppose Prf(k, $ϕ → ψ%) and Prf(l, $ϕ%). We distinguish the fol-
lowing four cases: (i) k = $s% and l = $t% for some proof terms s and t; (ii)
k = $s% for some proof term s and l is not the Gödel number of any proof
term; (iii) k is not the Gödel number of any proof term and l = $t% for some
proof term t; (iv) k and l are not the Gödel numbers of proof term.

(i) In this case, m(k, l) = $s · t%. By FPE, there are LP-formulas F , G
and natural numbers i, j ≥ 1 such that ϕ ≡ F †, ψ ≡ G†, g($F → G%) = i,
g($F%) = j, s : (F → G) ∈ X̃Bi and t : F ∈ X̃Bj . Then i = j by the

definition of g. Hence both s : (F → G) and t : F are in X̃Bi . By B4,
s · t : G ∈ X̃Bi . Again by FPE, we have Prf($s · t%, $G†%). Therefore
Prf(m(k, l), $ψ%).

(ii) In this case, m(k, l) = u⊗ l, where u is as in the definition of m. By
FPE, there exist an LP-formula F and a natural number i ≥ 1 such that
ϕ → ψ ≡ F † and s : F ∈ X̃Bi . In addition, Proof(l, $ϕ%) holds. Compute
all members of J(s). Let G be one of the elements of J(s). Then G is in
J(Bj, s) for some j ≥ 1, i.e., s : G ∈ X̃Bj . By B3, G ∈ X̃Bj . By Lemma
8.12, PA $ G∗, and by Lemma 8.11, PA $ G† (especially F †).

By the normality of Proof(x, y), we can compute the least natural num-
ber u such that Proof(u, $G†%) for all G ∈ J(s). In particular, we have
Proof(u, $F †%), i.e., Proof(u, $ϕ → ψ%). By the property of ⊗, we have
Proof(u⊗ l, $ψ%). By FPE, Prf(u⊗ l, $ψ%). Therefore Prf(m(k, l), $ψ%).

(iii) In this case, m(k, l) = k ⊗ v where v is as in the definition of m.
By FPE, there are an LP-formula F and a natural number i ≥ 1 such that
ϕ ≡ F † and t : F ∈ X̃Bi . In addition, Proof(k, $ϕ → ψ%) holds. Compute
J(t). Let G be one of the elements of J(t). Then G is in J(Bj, t) for some
j ≥ 1, i.e., t : G ∈ X̃Bj . By B3, G ∈ X̃Bj , and hence by Lemma 8.12 and
Lemma 8.11, PA $ G†.

By the normality of Proof(x, y), we can compute the least natural num-
ber v such that Proof(v, $G†%) for all G ∈ J(t). In particular, we have
Proof(v, $F †%), i.e., Proof(v, $ϕ%). By the property of the Proof-function ⊗,
we have Proof(k ⊗ v, $ψ%). By FPE, we obtain Prf(k ⊗ v, $ψ%). Therefore
Prf(m(k, l), $ψ%).

(iv) In this case, m(k, l) = k ⊗ l. By FPE, Proof(k, $ϕ → ψ%) and
Proof(l, $ϕ%) hold. By the property of the Proof-function ⊗, Proof(k ⊗
l, $ψ%) also holds. Again by FPE, we obtain Prf(k ⊗ l, $ψ%). Therefore
Prf(m(k, l), $ψ%).

2. We suppose Prf(k, $ϕ%) holds. (The case for Prf(l, $ϕ%) is similar.) In
order to prove Prf(a(k, l), $ϕ%), we distinguish the following three cases: (i)
k = $s% and l = $t% for some proof terms s and t; (ii) k = $s% for some proof
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term s and l 7= $t% for any proof term t; (iii) k 7= $s% for any proof term s.
(i) In this case, a(k, l) = $s+ t%. By FPE, there is an LP-formula F

and a natural number i ≥ 1 such that ϕ ≡ F †, g($F%) = i and s : F ∈ X̃Bi .
By B5, s + t : F ∈ X̃Bi . Again by FPE, Prf($s+ t%, $F †%). Therefore
Prf(a(k, l), $ϕ%).

(ii) In this case, a(k, l) = u⊕ l. By FPE, there is an LP-formula F and a
natural number i ≥ 1 such that ϕ ≡ F † and s : F ∈ X̃Bi . Compute the least
natural number u such that Proof(u, $G†%) for any G ∈ J(s). In particular,
Proof(u, $F †%). By the property of Proof-function ⊕, we obtain Proof(u ⊕
l, $F †%). Again by FPE, Prf(u⊕ l, $F †%). Therefore Prf(a(k, l), $ϕ%).

(iii) In this case, a(k, l) is either k ⊕ v or k ⊕ l. By FPE, Proof(k, $ϕ%)
holds. Then we have Proof(k ⊕ n, $ϕ%) for any natural number n. If l = $t%
for some proof term t, then let n be the least natural number v such that
Proof(v, $G†%) for any G ∈ J(t). If l 7= $t% for any proof term t, then let n
be l. By FPE, in both cases we obtain Prf(a(k, l), $ϕ%).

3. Suppose Prf(k, $ϕ%). We distinguish the following two cases: (i) k =
$t% for some proof term t; (ii) k 7= $t% for any proof term t.

(i) In this case, c(k) = $!t%. By FPE, there is an LP-formula F and a
natural number i ≥ 1 such that ϕ ≡ F † and F ∈ J(Bi, t), i.e., t : F ∈ X̃Bi .
by B6, !t : t : F ∈ X̃Bi . By Lemma 8.12, PA $ (!t : t : F )∗. By Lemma 8.11,
PA $ (!t : t : F )†. Since (!t : t : F )† ≡ Prf($!t%, $Prf($t%, $F †%)%), we obtain
PA $ Prf(c(k), $Prf(k, $ϕ%)%). Thus Prf(c(k), $Prf(k, $ϕ%)%) holds.

(ii) In this case, c(k) = w⊗ ↑ (k). By FPE, Proof(k, $ϕ%) holds. By
the property of Proof-function ↑, Proof(↑ (k), $Proof(k, $ϕ%)%) also holds.
Compute the least natural number w which satisfies

Proof(w, $Proof(k, $ψ%) → Prf(k, $ψ%)%)

where ψ ∈ T (k). Then we obtain

Proof(w⊗ ↑ (k), $Prf(k, $ϕ%)%).

By FPE, we have Prf(c(k), $Prf(k, $ϕ%)%).

Lemma 8.15. The proof predicate Prf(x, y) is normal.

Proof. We verify two conditions of Definition 4.6.
In order to check the condition (1), let k be a natural number. If k is not

the code of any proof term, then T (k) is finite since Proof(x, y) is normal.
Suppose that k = $t% for some proof term t. Then T (k) = {$G†% | g($G%) =
i and G ∈ J(Bi, t) for some i}, specifically T (k) = {$G†% | G ∈ J(t)}. By
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Lemma 8.10, J(t) is finite and the code of J(t) is effectively computable from
t.

Since T (k) ∪ T (l) ⊆ T (a(k, l)) by Lemma 8.12 (2), the condition (2)
holds.

Proof of Theorem 8.6. If LP0 ! F , then for some i, F ≡ Ai. Since ∼ Bi ∈
X̃Bi , we have PA $ ¬B∗

i by Lemma 8.12. Let ∗ be the arithmetical interpre-
tation established in the above. Define the arithmetical interpretation ∗i as
follows:

ε∗i ≡
{
r(ε)∗ if ε ∈ L(Ai);

ε∗ otherwise.

It is easy to show that A∗i
i ≡ B∗

i . Therefore PA $ ¬A∗i
i , and we conclude

PA ! A∗i
i .

9 Uniform arithmetical completeness of LP0

As in Section 8, we established a stronger version of Artemov’s theorem by
proving the arithmetical completeness theorem of LP0 with respect to a fixed
∆1 normal proof predicate Prf and Prf-functions 〈m, a, c〉. However, the so-
called uniform arithmetical completeness theorem of LP0 does not hold with
respect to ∆1 proof predicates.

Proposition 9.1. There is no arithmetical interpretation ∗ based on some
∆1 normal proof predicate Prf(x, y) and computable Prf-functions 〈m, a, c〉
such that for any LP-formula F ,

LP0 $ F if and only if PA $ F ∗.

Proof. Suppose, towards a contradiction, that there are such an arithmetical
interpretation ∗ and a ∆1 proof predicate Prf(x, y). Since two LP-formulas
¬v : p and ¬v : ¬p are not provable in LP0, neither ¬Prf(v∗, $p∗%) nor
¬Prf(v∗, $¬p∗%) is provable in PA. Since Prf(x, y) is a ∆1 formula, PA $
Prf(v∗, $p∗%) and PA $ Prf(v∗, $¬p∗%). Then PA $ p∗ and PA $ ¬p∗. This
contradicts the consistency of PA.

Notice that Proposition 9.1 also holds when we do not fix a ∆1 proof
predicate. In the above proof, the decidability of ∆1 formulas plays a key
role. Thus for some proof predicate which is not ∆1, the uniform arithmetical
completeness theorem may hold. Indeed, in this section, we prove a version
of the uniform arithmetical completeness theorem of LP0 with respect to
some Σ1 proof predicate.
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Theorem 9.2 (The uniform arithmetical completeness theorem of LP0).
There exist a Σ1 proof predicate Prf(x, y), computable Prf-functions 〈m, a, c〉,
and an arithmetical interpretation ∗ based on 〈Prf,m, a, c〉 such that for any
LP-formula F ,

LP0 $ F if and only if PA $ F ∗.

First, we prove the following lemma (see Lindström [14] p.44 exercise
2.24).

Lemma 9.3. There exists a Σ1 formula σ(x) satisfying the following condi-
tions:

1. PA $ ∀x∀y(σ(x) ∧ σ(y) → x = y),

2. for any natural number n, PA ! σ(n) and PA ! ¬σ(n),

3. N |= ∀x¬σ(x).

Proof. By the Fixed Point Lemma, let σ(x) be a Σ1 formula satisfying the
following equivalence:

PA $ σ(x) ↔
∃y(Proof($¬σ(ẋ)%, y) ∧ ∀z∀w(〈z, w〉 < 〈x, y〉 → ¬Proof($¬σ(ż)%, w))),

where 〈·, ·〉 is a usual primitive recursive paring function.
1. We reason in PA. Suppose σ(x) holds. Then there exists a proof p

of ¬σ(x) such that for any 〈z, w〉 with 〈z, w〉 < 〈x, p〉, w is not a proof of
¬ϕ(z). Let q be a proof of ¬σ(y), then 〈x, p〉 ≤ 〈y, q〉 by the choice of 〈x, p〉.
If y 7= x, then 〈x, p〉 < 〈y, q〉, and hence ¬σ(y) holds.

2. First, we prove PA ! ¬σ(n) for all n. Towards a contradiction, suppose
PA $ ¬σ(n) for some n. Let 〈k, p〉 = min{〈n, q〉 | q is a proof of ¬σ(n) in
PA}. Then PA $ ¬σ(k). On the other hand, since

PA $ Proof($¬σ(k)%, p) ∧ ∀z∀w(〈z, w〉 < 〈k, p〉 → ¬Proof($¬σ(ż)%, w)),

we have PA $ σ(k). This is a contradiction. Therefore there exists no n such
that PA $ ¬σ(n).

Also, for m 7= n, we have PA $ σ(n) → ¬σ(m) by 1. Hence PA ! σ(n)
for any n by 2.

3. If there were a natural number n such that N |= σ(n), then PA $ σ(n)
because σ(x) is Σ1. This contradicts Clause 2. Therefore N |= ∀x¬σ(x).
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Let {Ai}i∈ω be a primitive recursive enumeration of all LP0-unprovable
formulas. For each i ∈ ω, let Xi be a maximal LP0-consistent extension
of {¬Ai}. Since the set of theorems of LP0 is primitive recursive, we can
construct such a set Xi primitive recursively. Moreover, we can define a ∆1

formula x ∈ Xu satisfying the following conditions: for any n ∈ ω, LP-
formulas F,G and proof terms s, t,

(C1) F ∈ Xn if and only if N |= $F% ∈ Xn,

(C2) PA $ ∀v($F → G% ∈ Xv ↔ ($F% ∈ Xv → $G% ∈ Xv)),

(C3) PA $ ∀v($¬F% ∈ Xv ↔ ¬($F% ∈ Xv)),

(C4) PA $ ∀v($s : (F → G)% ∈ Xv ∧ $t : F% ∈ Xv → $(s · t) : G% ∈ Xv),

(C5) PA $ ∀v($s : F% ∈ Xv ∨ $t : F% ∈ Xv → $(s+ t) : F% ∈ Xv),

(C6) PA $ ∀v($t : F% ∈ Xv → $!t : (t : F )% ∈ Xv),

(C7) PA $ ∀v($t : F% ∈ Xv → $F% ∈ Xv).

We start defining a Σ1 proof predicate Prf(x, y), computable Prf-functions
m(x, y), a(x, y), c(x), and an arithmetical interpretation ∗ with the required
properties. Let σ(x) be a Σ1 formula as in Lemma 9.3. We first define the
auxiliary translation † of LP-formulas and the Σ1 formula Prf(x, y) simulta-
neously as follows:

1. p† :≡ ∃v(σ(v) ∧ $p% ∈ Xv) for each propositional variable p,

2. (F → G)† :≡ (F † → G†),

3. (¬F )† :≡ ¬F †,

4. (t : F )† :≡ Prf($t%, $F †%),

5. PA $ ∀x∀y(Prf(x, y) ↔ (x = 0∧ Provable(y))∨ ξ(x, y)) where ξ(x, y) is
the following formula:

∃v(σ(v) ∧ “x = $s% & y = $B†% & $s : B% ∈ Xv for some s,B”).

We can recover F from F † in a primitive recursive way because † is
injective, and hence the above definition makes sense.

Our formula Prf(x, y) is a proof predicate.

Lemma 9.4. For any LA-sentence ϕ,
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PA $ ϕ if and only if N |= ∃xPrf(x, $ϕ%).

Proof. Since N |= ∀x¬σ(x) by Lemma 9.3, N |= Prf(n, $ϕ%) ↔ (n = 0 ∧
Provable($ϕ%)). Thus PA $ ϕ if and only if N |= ∃xPrf(x, $ϕ%).

The following lemma plays a key role in our proof.

Lemma 9.5. For any LP-formula F , PA $ ∀u(σ(u) → ($F% ∈ Xu ↔ F †)).

Proof. We prove by induction on the construction of F .
Base Case (i): F ≡ p for some propositional variable p.

(→): PA $ σ(u) ∧ $p% ∈ Xu → p† by the definition of p†. Thus

PA $ ∀u(σ(u) → ($p% ∈ Xu → p†)).

(←): Since PA $ ∀x∀y(σ(x) ∧ σ(y) → x = y), we have

PA $ σ(u) ∧ ¬$p% ∈ Xu → ∀v(σ(v) → ¬$p% ∈ Xv).

Hence we obtain PA $ ∀u(σ(u) → (¬$p% ∈ Xu → ¬p†)) by the definition of
p†.
Base Case (ii): F ≡ t : G.

(→): We have

PA $ σ(u) ∧ $t : G% ∈ Xu → ∃v
(
σ(v) ∧ “$t% = $s% & $G†% = $B†%
& $s : B% ∈ Xv for some s, B′′) .

Thus PA $ σ(u) ∧ $t : G% ∈ Xu → ξ($t%, $G†%). Then we obtain PA $
σ(u) ∧ $t : G% ∈ Xu → Prf($t%, $G†%), and hence

PA $ ∀u(σ(u) → ($t : G% ∈ Xu → (t : G)†)).

(←): Since PA $ 0 7= $t%, PA $ ¬($t% = 0 ∧ Provable($G†%)). Since
PA $ ∀x∀y(σ(x) ∧ σ(y) → x = y), we have

PA $ σ(u) ∧ ¬$t : G% ∈ Xu → ¬∃v
(
σ(v) ∧ “$t% = $s% & $G†% = $B†%
& $s : B% ∈ Xv for some s, B′′) .

This means PA $ σ(u) ∧ ¬$t : G% ∈ Xu → ¬ξ($t%, $G†%). Therefore PA $
σ(u)∧¬$t : G% ∈ Xu → ¬Prf($t%, $G†%) by the definition of Prf(x, y). Hence

PA $ ∀u(σ(u) → (¬$t : G% ∈ Xu → ¬(t : G)†)).

Induction Case (i): F ≡ (G → H).
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We suppose PA $ ∀u(σ(u) → ($G% ∈ Xu ↔ G†)) and PA $ ∀u(σ(u) →
($H% ∈ Xu ↔ H†)). Since PA $ $G → H% ∈ Xu ↔ ($G% ∈ Xu → $H% ∈
Xu) by C2, we have PA $ σ(u) → ($G → H% ∈ Xu ↔ (G† → H†)). Hence

PA $ ∀u(σ(u) → ($G → H% ∈ Xu ↔ (G → H)†)).

Induction Case (ii): F ≡ ¬G.
We suppose PA $ ∀u(σ(u) → ($G% ∈ Xu ↔ G†)). Since PA $ $¬G% ∈

Xu ↔ ¬($G% ∈ Xu) by C3, we obtain PA $ σ(u) → ($¬G% ∈ Xu ↔ ¬G†).
Therefore

PA $ ∀u(σ(u) → ($¬G% ∈ Xu ↔ (¬G)†).

We define computable functions m(x, y), a(x, y) and c(x) as follows:

m(x, y) =

{
$s · t% if x = $s% and y = $t% for some s and t,

0 otherwise.

a(x, y) =

{
$s+ t% if x = $s% and y = $t% for some s and t,

0 otherwise.

c(x) =

{
$!t% if x = $t% for some t,

0 otherwise.
We define the required arithmetical interpretation ∗ as follows:

1. p∗ :≡ p† for each propositional variable p,

2. x∗ := $x% for each proof variable x,

3. c∗ := $c% for each proof constant c,

4. for every proof terms s, t,

• (s · t)∗ := m(s∗, t∗),

• (s+ t)∗ := a(s∗, t∗),

• (!t)∗ := c(t∗).

Then as usual, we obtain the following lemma.

Lemma 9.6.

1. t∗ ≡ t† for each proof term t.

2. F ∗ ≡ F † for each LP-formula F .
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The following lemma follows from Lemma 9.5 and Lemma 9.6 immedi-
ately.

Lemma 9.7. For any LP-formula F , PA $ ∀u(σ(u) → ($F% ∈ Xu ↔ F ∗)).

We prove the completeness of LP0 with respect to the arithmetical inter-
pretation ∗.

Lemma 9.8. For any LP-formula F , if LP0 ! F , then PA ! F ∗.

Proof. Suppose LP0 ! F , then F ≡ An for some n ∈ ω. Since ¬F ∈ Xn,
PA $ $¬F% ∈ Xn by C1. By Lemma 9.7, we obtain PA $ σ(n) → ¬F ∗.
Since PA ! ¬σ(n) by Lemma 9.3, we conclude PA ! F ∗.

Then we prove the soundness of LP0 with respect to ∗.

Lemma 9.9. For any k ∈ ω and LA-sentence ϕ, PA $ Prf(k, $ϕ%) →
Provable($ϕ%).

Proof. First, we show that for each LP-formula F ,

PA $ ∃v(σ(v) ∧ $F% ∈ Xv) → Provable($F †%) ())

holds. Let F be any LP-formula. By Lemma 9.5, PA $ ∃v(σ(v) ∧ $F% ∈
Xv) → F †. Then PA $ Provable($∃v(σ(v) ∧ $F% ∈ Xv)%) → Provable($F †%)
by the derivability conditions (Proposition 4.9). Since ∃v(σ(v) ∧ $F% ∈ Xv)
is a Σ1 sentence, by Proposition 4.10 we have PA $ ∃v(σ(v) ∧ $F% ∈ Xv) →
Provable($∃v(σ(v) ∧ $F% ∈ Xv)%). Therefore PA $ ∃v(σ(v) ∧ $F% ∈ Xv) →
Provable($F †%).

We reason in PA: Suppose Prf(k, $ϕ%). If k = 0, then Provable($ϕ%) is
obvious. If k 7= 0, then ξ(k, $ϕ%). In this case, σ(v), k = $s%, $ϕ% = $F †%
and $s : F% ∈ Xv hold for some v, proof term s and LP-formula F . Then
$F% ∈ Xv by C7. Therefore ∃v(σ(v)∧$F% ∈ Xv), and hence Provable($F †%)
holds by ()). Since $ϕ% = $F †%, we obtain Provable($ϕ%).

Lemma 9.10. For any k, l ∈ ω and LA-sentences ϕ and ψ,

1. PA $ Prf(k, $ϕ → ψ%) ∧ Prf(l, $ϕ%) → Prf(0, $ψ%),

2. PA $ Prf(k, $ϕ%) → Prf(0, $ϕ%),

3. PA $ Prf(k, $ϕ%) → Prf(0, $Prf(k, $ϕ%)%).

31



Proof. 1. Let T be PA+ Prf(k, $ϕ → ψ%) ∧ Prf(l, $ϕ%). Then

T $ Provable($ϕ → ψ%) ∧ Provable($ϕ%),

by Lemma 9.9. By the derivability conditions, T $ Provable($ψ%). Hence we
have T $ Prf(0, $ψ%).

2. Immediate from Lemma 9.9 and the definition of Prf(x, y).
3. Since Prf(k, $ϕ%) is a Σ1 sentence,

PA $ Prf(k, $ϕ%) → Provable($Prf(k, $ϕ%)%).

Thus PA $ Prf(k, $ϕ%) → Prf(0, $Prf(k, $ϕ%)%).

Lemma 9.11. For any k, l ∈ ω and LA-sentences ϕ and ψ,

1. PA $ Prf(k, $ϕ → ψ%) ∧ Prf(l, $ϕ%) → Prf(m(k, l), $ψ%),

2. PA $ Prf(k, $ϕ%) ∨ Prf(l, $ϕ%) → Prf(a(k, l), $ϕ%),

3. PA $ Prf(k, $ϕ%) → Prf(c(k), $Prf(k, $ϕ%)%).

Proof. 1. If m(k, l) = 0, it is obvious from Lemma 9.10. If m(k, l) =
$s · t% for some proof terms s and t, then k = $s% and l = $t%. Also
PA $ Prf(k, $ϕ → ψ%) ↔ ξ(k, $ϕ → ψ%) and PA $ Prf(l, $ϕ%) ↔ ξ(l, $ϕ%)
because k, l 7= 0.

We reason in PA: Suppose Prf(k, $ϕ → ψ%)∧Prf(l, $ϕ%), then for some v
and LP-formulas F and G, σ(v), $ϕ% = $F †%, $ψ% = $G†%, $s : (F → G)% ∈
Xv and $t : F% ∈ Xv hold. We obtain $(s · t) : G% ∈ Xv by C4, and
ξ(m(k, l), $ψ%) holds. Then we conclude Prf(m(k, l), $ψ%).

2. By Lemma 9.10, we may assume a(k, l) = $s+ t% for some proof terms
s and t.

We reason in PA: Suppose Prf(k, $ϕ%) ∨ Prf(l, $ϕ%), then ξ(k, $ϕ%) ∨
ξ(l, $ϕ%) holds. Thus for some v and LP-formula F , σ(v), $ϕ% = $F †% and
$s : F% ∈ Xv or $t : F% ∈ Xv. In either case, $(s+ t) : F% ∈ Xv holds by
C5, and hence we have ξ(a(k, l), $ϕ%). Then we conclude Prf(a(k, l), $ϕ%).

3. We assume c(k) = $!t% for some proof term t.
We reason in PA: Suppose Prf(k, $ϕ%), then ξ(k, $ϕ%) holds. Thus for

some v and LP-formula F , σ(v), $ϕ% = $F †% and $t : F% ∈ Xv. By C6,
we have $!t : (t : F )% ∈ Xv. Then ξ(c(k), $Prf($t%, $ϕ%)%) holds. Therefore
Prf(c(k), $Prf(k, $ϕ%)%) holds.

Lemma 9.12. For any n > 0 and LA-sentence ϕ, PA $ Prf(n, $ϕ%) → ϕ.

Proof. Since n 7= 0, PA $ Prf(n, $ϕ%) ↔ ξ(n, $ϕ%). We distinguish two cases.
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Case (i): n 7= $s% for any proof term s or ϕ 7≡ F † for any LP-formula F .

Since PA $ ¬ξ(n, $ϕ%), PA $ ¬Prf(n, $ϕ%). Thus PA $ Prf(n, $ϕ%) →
ϕ.

Case (ii): n = $s% for some proof term s, and ϕ ≡ F † for some LP-formula
F .

In this case, we have PA $ Prf(n, $ϕ%) → ∃v(σ(v) ∧ $s : F% ∈ Xv).
Since PA $ $s : F% ∈ Xv → $F% ∈ Xv by C7, PA $ Prf(n, $ϕ%) →
∃v(σ(v) ∧ $F% ∈ Xv). By Lemma 9.5, PA $ Prf(n, $ϕ%) → F †. We
conclude PA $ Prf(n, $ϕ%) → ϕ.

Lemma 9.13. For any LP-formula F , if LP0 $ F , then PA $ F ∗.

Proof. From Lemma 9.11 and Lemma 9.12.

Our proof of Theorem 9.2 is completed.
Our Theorem 9.2 is not a perfect statement of the so-called uniform arith-

metical completeness theorem because of the following two reasons.

Remark 9.14.

1. Our proof predicate Prf(x, y) is not normal because 0 is a proof of all
theorems of PA.

2. The arithmetical soundness of LP0 does not hold with respect to our
proof predicate Prf(x, y). For, if PA $ Prf(0, $ϕ%) → ϕ, then PA $
Provable($ϕ%) → ϕ by the definition of Prf. By Löb’s theorem, PA $ ϕ.
Hence for PA-unprovable sentences ϕ, PA $ Prf(0, $ϕ%) → ϕ does not
hold. Let v∗ be 0 and p∗ be ϕ, then LP0 $ v : p → p but PA ! (v : p →
p)∗.
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Chapter IV

Interpolation properties for
Sacchetti’s logics

10 Some propositions of wGLn

The next Propositions 10.1 and 10.3 state basic properties of Sacchetti’s
logics wGLn.

Proposition 10.1. Assume n ≥ 1. For any formula ϕ, wGLn $ !ϕ →
!n+1ϕ.

Proof. See Sacchetti [20] or Kurahashi & Okawa [12].

We give some notations. For n ≥ 1 and ϕ, we put:

[n]ϕ :≡ !ϕ ∧!2ϕ ∧ · · · ∧!nϕ, [n]+ϕ :≡ ϕ ∧ [n]ϕ.

Let Γ be a set of formulas. The sets !nΓ, [n]Γ and [n]+Γ denote the ones
obtained from Γ by replacing every formula ϕ in Γ by !nϕ, [n]ϕ, and [n]+ϕ,
respectively.

Lemma 10.2. Assume n ≥ 1. For any ϕ,

1. wGLn $ [n]ϕ ↔ [n+ 1]ϕ.

2. wGLn $ [n]ϕ → ![n]ϕ.

Proof. Clearly follows from Proposition 10.1.

Proposition 10.3. Assume n ≥ 1. For any sets of formulas Γ and ∆, and
any formula ϕ,

1. wGLn $ [n]+ϕ → ϕ.

2. If
wGLn $

∧
[n]+Γ ∧

∧
[n]∆ → ϕ,

then
wGLn $

∧
[n] (Γ ∪∆) → !ϕ.

34



3. If
wGLn $

∧
[n]+Γ ∧

∧
[n]∆ ∧ [n]ϕ → ϕ,

then
wGLn $

∧
[n]+Γ ∧

∧
[n]∆ → ϕ.

Proof. 1. Trivial.
2. Suppose that wGLn $

∧
[n]+Γ ∧

∧
[n]∆ → ϕ. Since wGLn is normal,

wGLn $
∧

[n+ 1]Γ ∧
∧

![n]∆ → !ϕ.

By Lemma 10.2, the premises can be simplified as follows:

wGLn $
∧

[n]Γ ∧
∧

[n]∆ → !ϕ.

That is,
wGLn $

∧
[n] (Γ ∪∆) → !ϕ.

3. The argument is based on Kurahashi & Okawa [12] Proposition 3.4.
Suppose that wGLn $

∧
[n]+Γ ∧

∧
[n]∆ ∧ [n]ϕ → ϕ. We claim that for any

k (0 ≤ k ≤ n− 1),

wGLn $
∧

[n]+Γ ∧
∧

[n]∆ ∧
(
!k+1ϕ ∧ · · · ∧!nϕ

)
→ [n]+ϕ.

We prove the claim by induction on k.
Base case (k = 0). It is clear that wGLn $

∧
[n]+Γ ∧

∧
[n]∆ ∧ [n]ϕ →

[n]ϕ. Combining with the supposition we have

wGLn $
∧

[n]+Γ ∧
∧

[n]∆ ∧ [n]ϕ → [n]+ϕ. (1)

Inductive case. Suppose that the claim holds for k, i.e.,

wGLn $
∧

[n]+Γ ∧
∧

[n]∆ ∧
(
!k+1ϕ ∧ · · · ∧!nϕ

)
→ [n]+ϕ.

Since wGLn is normal,

wGLn $
∧

[n+ 1]Γ ∧
∧

![n]∆ ∧
(
!k+2ϕ ∧ · · · ∧!n+1ϕ

)
→ [n+ 1]ϕ.

By Lemma 10.2,

wGLn $
∧

[n]Γ ∧
∧

[n]∆ ∧
(
!k+2ϕ ∧ · · · ∧!n+1ϕ

)
→ [n]ϕ. (2)
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On the other hand, by the inductive hypothesis,

wGLn $
∧

[n]+Γ ∧
∧

[n]∆ ∧
(
!k+1ϕ ∧ · · · ∧!nϕ

)
→ ϕ,

$
∧

[n]+Γ ∧
∧

[n]∆ ∧
(
!k+1ϕ ∧ · · · ∧!n−1ϕ

)
→ (!nϕ → ϕ) ,

$
∧

[n+ 1]Γ ∧
∧

![n]∆ ∧
(
!k+2ϕ ∧ · · · ∧!nϕ

)
→ ! (!nϕ → ϕ) ,

$
∧

[n+ 1]Γ ∧
∧

![n]∆ ∧
(
!k+2ϕ ∧ · · · ∧!nϕ

)
→ !ϕ.

By Proposition 10.1 and Lemma 10.2,

wGLn $
∧

[n+ 1]Γ ∧
∧

![n]∆ ∧
(
!k+2ϕ ∧ · · · ∧!nϕ

)
→ !n+1ϕ,

$
∧

[n]Γ ∧
∧

[n]∆ ∧
(
!k+2ϕ ∧ · · · ∧!nϕ

)
→ !n+1ϕ.

Combining with (2), we have

wGLn $
∧

[n]Γ ∧
∧

[n]∆ ∧
(
!k+2ϕ ∧ · · · ∧!nϕ

)
→ [n]ϕ,

$
∧

[n]+Γ ∧
∧

[n]∆ ∧
(
!k+2ϕ ∧ · · · ∧!nϕ

)
→ [n]ϕ.

From this and (1), we obtain

wGLn $
∧

[n]+Γ ∧
∧

[n]∆ ∧
(
!k+2ϕ ∧ · · · ∧!nϕ

)
→ [n]+ϕ.

The proof of the claim is completed.
We return to the proof of Proposition 10.3.3. By the claim, If k = n− 1,

then

wGLn $
∧

[n]+Γ ∧
∧

[n]∆ ∧!nϕ → [n]+ϕ,

$
∧

[n]+Γ ∧
∧

[n]∆ →
(
!nϕ → [n]+ϕ

)
.

Since wGLn $ [n]+ϕ → ϕ,

wGLn $
∧

[n]+Γ ∧
∧

[n]∆ → (!nϕ → ϕ) . (3)

Then we have

wGLn $
∧

[n+ 1]Γ ∧
∧

![n]∆ → ! (!nϕ → ϕ) , by the normality,

$
∧

[n+ 1]Γ ∧
∧

![n]∆ → !ϕ,

$
∧

[n]Γ ∧
∧

[n]∆ → !ϕ, (by Lemma 10.2.)
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Moreover,

wGLn $
∧

![n]Γ ∧
∧

![n]∆ → !2ϕ,

$
∧

[n]Γ ∧
∧

[n]∆ → !2ϕ,

...

$
∧

[n]Γ ∧
∧

[n]∆ → !nϕ,

$
∧

[n]+Γ ∧
∧

[n]∆ → !nϕ.

From this and (3), we conclude wGLn $
∧
[n]+Γ ∧

∧
[n]∆ → ϕ.

11 Sequent calculi for wGLn

We present one-sided sequent calculi wGLG
n for Sacchetti’s logics. Sequents,

denoted by Γ,∆, . . . etc., are defined as sets of formulas. Let Γ and ∆ be
sequents and ϕ be a formula. We define the sequent (Γ,∆) as the union of
Γ and ∆, and (Γ,ϕ) as the set Γ ∪ {ϕ}. As mentioned in Section 2, for a
given Γ, !nΓ (and ♦nΓ) denotes the sequents obtained from Γ by replacing
every ϕ in Γ by !nϕ (resp. ♦nϕ). A derivation in a calculus is a finite tree
whose nodes are assigned by sequents that is constructed according to the
rules of the calculus. A proof in a calculus is a derivation such that every
leaf is labeled with axioms.

Definition 11.1. Assume n ≥ 1. The one-sided sequent calculus wGLG
n

consists of the following axioms and rules.

Axioms:
(p, p) , (

Structural Rule:
Γ

Γ,∆
(weak)

Propositional Rules:

Γ,ϕ,ψ
Γ,ϕ ∨ ψ

(∨) Γ,ϕ Γ,ψ
Γ,ϕ ∧ ψ

(∧)

Modal rule:
♦nΓ,Γ,♦nϕ,ϕ

♦Γ,!ϕ
(!n)
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The aim of this section is showing the following facts:

• For any sequent Γ, if wGLG
n $ Γ, then we can construct a proof of Γ

in wGLG
n effectively;

• The following rules are admissible in wGLG
n :

Γ,ϕ Γ,ϕ
Γ

(cut)
, and

♦nΓ,Γ,♦nϕ,ϕ
♦nΓ,Γ,ϕ

(Löb)
.

The argument is based on Sambin and Valentini [22].

11.1 Proof search procedure

We give an effective way of constructing a proof of Γ in wGLG
n , for every

sequent Γ with wGLG
n $ Γ (see Proposition 11.5 in this subsection).

Lemma 11.2. Let Γ be a sequent and ϕ be a formula. Then wGLG
n $

(Γ,ϕ,ϕ). Moreover, we can construct a proof of (Γ,ϕ,ϕ) inwGLG
n effectively

from ϕ and ϕ.

Proof. Induction on the construction of ϕ.

• Suppose that ϕ is one of the form 〈p, p,(,⊥〉. In this case, a proof of
(Γ,ϕ,ϕ) in wGLG

n is given as follows:

(
Γ,(,⊥ (weak)

,
p, p

Γ, p, p
(weak)

.

• Assume ϕ ≡ ψ ∨ θ or ϕ ≡ ψ ∧ θ. Consider the following derivations:

Γ,ψ, θ,ψ

Γ,ψ ∨ θ,ψ
(∨) Γ,ψ, θ, θ

Γ,ψ ∨ θ, θ
(∨)

Γ,ψ ∨ θ,ψ ∧ θ
(∧)

,

Γ,ψ,ψ, θ

Γ,ψ,ψ ∨ θ
(∨) Γ, θ,ψ, θ

Γ, θ,ψ ∨ θ
(∨)

Γ,ψ ∧ θ,ψ ∨ θ
(∧)

.

By the induction hypothesis, we can effectively construct a proof of each
assumption in the derivations. Thus we can also effectively construct
a proof of (Γ,ϕ,ϕ).

• Assume ϕ ≡ !ψ or ϕ ≡ ♦ψ. Consider the following derivations:

♦nψ,ψ,ψ

!ψ,♦ψ
(!n)

Γ,!ψ,♦ψ
(weak)

,

♦nψ,ψ,ψ

♦ψ,!ψ
(!n)

Γ,♦ψ,!ψ
(weak)
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By the induction hypothesis, we can effectively construct a proof of each
assumption in the derivations. Thus we can also effectively construct
a proof of (Γ,ϕ,ϕ).

Next, we describe the proof search procedure P . For a given Γ, P gener-
ates a derivation of Γ in the following variant of wGLG

n .

Definition 11.3. Assume n ≥ 1. The calculus wGLG
n

′
consists of the fol-

lowing axioms and rules:

Axioms:
Γ,ϕ,ϕ Γ,(

Rules: Propositional rules of wGLG
n , and

♦nΓ,Γ,♦nϕ1,ϕ1 · · · ♦nΓ,Γ,♦nϕm,ϕm

L,♦Γ,!ϕ1, . . . ,!ϕm
!′

n,

where L is a set of literals and the constant ⊥.

The rule (!′
n) has m assumptions of the form (♦nΓ,Γ,♦nϕi,ϕi). The

meaning of (!′
n) is that the conclusion is provable if at least one of the

assumptions is provable.
For a given sequent, the proof search procedure P tries to apply all appli-

cable rules of wGLG
n

′
until every leaf is decomposed into an axiom of wGLG

n
′

or a sequent to which no more rules are applicable.
The following proposition asserts that the procedure P works soundly.

Proposition 11.4. For any input Γ, the proof search procedure P of Γ
always halts.

Proof. It suffices to show that P never generates an infinite branch. Since any
propositional rule lowers the numbers of connectives, P always halts as long
as it applies only propositional rules. Therefore we have to show that P never
generates infinitely many applications of (!′

n). Suppose, for contradiction,
that P produces an infinitely many applications of !′

n for some sequent Γ.

...
· · · ♦n∆2,∆2,♦nψ2,ψ2 · · ·

L2,♦∆2,!Σ2 ? !ψ2
(!′

n)
....

· · · ♦n∆1,∆1,♦nψ1,ψ1 · · ·
L1,♦∆1,!Σ1 ? !ψ1

(!′
n)

....
Γ
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Note that every sequent in this infinite branch is non-axiomatic. Each time
!′

n is applied, we need at least one formula of the form !ψ. Since every
propositional rule does not affect to any sequents of the form ♦∆, every!ψi+1

is obtained from either ψi or a formula in ∆i by applying some propositional
rules.

It is impossible that for all i ≥ 1, !ψi+1 are obtained from ψi. Hence,
for some natural number k, !ψk+1 is obtained from a formula θ in ∆k by
applying some propositional rules. The following table describes some for-
mulas generated by P in each application of (!′

n) from the k-th application
of (!′

n).

Table 1: Some formulas generated by P
k k + 1 k + 2 · · · k + (n− 1) k + n

♦nψk+1,ψk+1 ♦n−1ψk+1 · · · ♦2ψk+1 ♦ψk+1

♦nθ, θ ♦n−1θ ♦n−2θ · · · ♦θ ♦nθ, θ

When the (k+n)-th (!′
n) is applied, the resulting sequent contains ♦ψk+1

and θ, and P will decompose θ into !ψk+1 by applying propositional rules.
Hence this branch contains a sequent containing ♦ψk+1 and !ψk+1, i.e., an
axiom of wGLG

n
′
. This contradicts that the infinite branch consists of non-

axiomatic sequents.

Let π be a derivation of a sequent Γ in wGLG
n

′
generated by P . A

search of π is a subtree obtained by choosing a particular branch at each
application of (!n)′. A search π′ of π is said to be successful if every branch
of π′ terminates in axioms of wGLG

n
′
.

Proposition 11.5. For an input Γ, let π be a derivation of Γ in wGLG
n

′

generated by P . If π contains a successful search, then we can construct a
proof of Γ in wGLG

n from π.

Proof. Let π′ be a successful search of π. Then from π′ we can construct a
proof of Γ in wGLG

n by Lemma 11.2 and transforming each application of
(!′

n) as follows:

....
♦nΓ,Γ,♦nϕi,ϕi

L,♦Γ,!Σ
(!′

n)
....

@−→

....
♦nΓ,Γ,♦nϕi,ϕi

♦Γ,!ϕi
(!n)

L,♦Γ,!Σ
(weak)

.... .
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11.2 Cut-admissibility

For a sequnt Γ, let Γ# be the formula
∨
{ϕ | ϕ ∈ Γ}. We prove the following

theorem.

Theorem 11.6. For any sequent Γ, the following are equivalent:

1. wGLn $ Γ#;

2. Γ# is valid in all finite wGLn-frames;

3. For the input Γ, the proof search procedure P generates a derivation
which has a successful search of Γ;

4. wGLG
n $ Γ;

5. wGLG
n + (cut) $ Γ.

Proof. (3 ⇒ 4): Clearly follows from Proposition 11.5.
(4 ⇒ 5): Trivial.
(5 ⇒ 1): By induction on the length of proofs in wGLG

n + (cut).
(1 ⇒ 2): Due to Sacchetti [20].
We prove (2 ⇒ 3). We construct a finite countermodel of Γ from the

derivation of Γ which is generated by P and has no successful searches.

Definition 11.7. Let π be a derivation of a sequent Γ in wGLG
n

′
. We define

that π is unsuccessful inductively as follows:

• If π consists of a single sequent Γ, then π is unsuccessful iff Γ = (L,♦Π)
where L is a set of literals and the constant ⊥ satisfying that there is
no propositional variable p such that p, p ∈ L;

• If the last application of π is (∨) or (∧), then π is unsuccessful iff for
some sub-derivation of the assumption sequent is unsuccessful;

• If the last application of π is !′
n, then π is unsuccessful iff every sub-

derivation of the assumption sequent is unsuccessful.

Clearly if π has no searches then π is unsuccessful. It suffices to show the
following lemma.

Lemma 11.8. For any unsuccessful derivation in wGLG
n

′
, if π is a derivation

of Γ, then there is a finite wGLn-model M such that M 7|= Γ#.

Proof. Induction on the height of unsuccessful π.
Suppose that π consists of a single sequent Γ = (L,♦Π). Define M =

〈W,≺, V 〉 as follows:
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• W := {w}, and ≺:= ∅;

• w |= p : ⇐⇒ p ∈ L.

Then it is clear that for any ϕ ∈ Γ, M, w 7|= ϕ, and hence M 7|= Γ#.
Suppose that the last application of π is (∨) or (∧). By Definition 11.7

and the induction hypothesis, for some assumption sequent ∆, there is a
Kripke model M such that M 7|= ∆#. It is clear that M also falsifies Γ#.

Suppose that Γ = (L,♦Π,!Σ) and the last application of π is (!′
n).

π1....
♦nΠ,Π,♦nϕ1,ϕ1 · · ·

πm....
♦nΠ,Π,♦nϕm,ϕm

L,♦Π,!Σ
!′

n

By Definition 11.7 and the induction hypothesis, each πi (1 ≤ i ≤ m) has
a Kripke model Mi = 〈Wi,≺i, Vi〉 such that Mi 7|= (♦nΠ,Π,♦nϕi,ϕi)

#.
We assume for any 1 ≤ i, j ≤ m, if i 7= j then the sets Wi and Wj are
disjoint. Moreover, we may assume each Mi has the root wi ∈ Wi and
Mi, wi 7|= (♦nΠ,Π,♦nϕi,ϕi)

#. Define a Kripke model M = 〈W,≺, V 〉 as
follows:

• W :=
⋃

Wi ∪ {w} where w is a new object not contained in
⋃

Wi;

• x ≺ y :⇔
{

x ∈ Wi and x ≺i y for some 1 ≤ i ≤ m, or
x = w and wi ≺kn

i y for some 1 ≤ i ≤ m and k ≥ 0
;

• For any p and x ∈ W , if x ∈ Wi for some i, then M, x |= p :⇔ Mi, x |=
p;

• M, w |= p :⇔ p ∈ L.

Clearly the relation ≺ is irreflexive and acyclic. We show that ≺ is (n+ 1)-
transitive. Suppose that x ≺n+1 y. If x ∈ Wi for some i, then x ≺ y
immediately follows from the (n + 1)-transitivity of ≺i. Assume x = w.
Then there are x1, . . . , xn ∈ W such that x ≺ x1 ≺ · · · ≺ xn ≺ y. By
the definition of ≺, we have wi ≺kn

i x1 and x1 ≺i · · · ≺i xn ≺i y for some

1 ≤ i ≤ m and k ≥ 0. Thus we obtain wi ≺(k+1)n
i y, i.e., x ≺ y. Thus, our

M is a finite wGLn-frame.
It suffices to show that for any formula ϕ ∈ Γ, M, w 7|= ϕ. If ϕ ∈ L, then

M, w 7|= ϕ clearly follows from the definition of V . Assume ϕ ≡ !ϕi ∈ !Σ
for some 1 ≤ i ≤ m. Then we have w ≺ wi. By the induction hypothesis,
Mi, wi 7|= ϕi. Note that if x ∈ Wi, then Mi, x |= ϕ ⇐⇒ M, x |= ϕ.
Therefore M, wi 7|= ϕi, i.e., M, w 7|= !ϕi. Assume ϕ ≡ ♦ψ ∈ ♦Π. We have
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to show that for every x, if w ≺ x, then M, x 7|= ψ. By the definition of ≺,
we have wi ≺kn

i x for some 1 ≤ i ≤ m and k ≥ 0. If k = 0, then x = wi. In
this case, Mi, wi 7|= ψ by the induction hypothesis, i.e., M, wi 7|= ψ. If k ≥ 1,
then by Lemma 4.3, wi ≺n

i x. By the induction hypothesis, Mi, wi 7|= ♦nψ,
and hence Mi, x 7|= ψ, i.e., M, x 7|= ψ.

Now the proof of (2 ⇒ 3) is completed.

Corollary 11.9. The rules (cut) and (Löb) are admissible in wGLG
n .

Proof. The (cut)-admissibility immediately holds from Theorem 11.6. Sup-
pose that wGLG

n $ (♦nΓ,Γ,♦nϕ,ϕ). Let π be a proof of this sequent. Then
we can infer (♦nΓ,Γ,ϕ) in wGLG

n + (cut) as follows:

π
...

♦nΓ,Γ,ϕ,♦nϕ

π
...

♦nΓ,Γ,♦nϕ,ϕ
♦Γ,!ϕ

(!n)

♦n♦Γ,♦Γ,♦n!ϕ,!ϕ
(weak)

♦2Γ,!2ϕ
(!n)

...
♦nΓ,!nϕ

♦nΓ,Γ,ϕ,!nϕ
(weak)

♦nΓ,Γ,ϕ
(cut)

By Theorem 11.6, (♦nΓ,Γ,ϕ) is provable in wGLG
n . Thus the rule (Löb) is

admissible.

11.3 Craig interpolation for wGLn

In this section, we give a new proof of the Craig interpolation theorem for
Sacchetti’s logics via wGLG

n . For a formula ϕ, we define var (ϕ) := {p | p
occurs in ϕ}∪ {q | q occurs in ϕ}. For a sequent Γ, we also define var (Γ) :=⋃
{var (ϕ) | ϕ ∈ Γ}. Put Γ := {ϕ | ϕ ∈ Γ}.

Theorem 11.10 (Craig interpolation theorem for wGLn). Assume n ≥ 1.
If wGLn $ ϕ → ψ, then there is a formula θ (called a Craig interpolant of
ϕ → ψ) such that:

1. wGLn $ ϕ → θ and wGLn $ θ → ψ;

2. var (θ) ⊆ var (ϕ) ∩ var (ψ).

Moreover, such a θ is effectively constructible from ϕ and ψ.
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In order to prove Theorem 11.10, we introduce a split derivation system.
A split sequent is one of the form [θ] Γ1 | Γ2 where θ is a formula and Γ1 and

Γ2 are sequents. The natural meaning of (Γ1 | Γ2) is the formula Γ#
1 → Γ#

2 .
The formula θ in the bracket is a corresponding interpolant of (Γ1 | Γ2).

Definition 11.11. The split derivation system wGLSp
n consists of the fol-

lowing axioms and rules.
Axioms:

[⊥] p, p | ∅ [p] p | p [p] p | p [(] ∅ | p, p
[⊥] ( | ∅ [(] ∅ | (

Rules:

[θ] Γ1 | Γ2

[θ] Γ1,∆1 | Γ2,∆2
(weak)

[θ] Γ1,ϕ,ψ | Γ2

[θ] Γ1,ϕ ∨ ψ | Γ2
(∨l)

[θ] Γ1 | Γ2,ϕ,ψ

[θ] Γ1 | Γ2,ϕ ∨ ψ
(∨r)

[θ1] Γ1,ϕ | Γ2 [θ2] Γ1,ψ | Γ2

[θ1 ∨ θ2] Γ1,ϕ ∧ ψ | Γ2
(∧l)

[θ1] Γ1 | Γ2,ϕ [θ2] Γ1 | Γ2,ψ

[θ1 ∧ θ2] Γ1 | Γ2,ϕ ∧ ψ
(∧r)

[θ] ♦nΓ1,Γ1,♦nϕ,ϕ | ♦nΓ2,Γ2

[♦θ] ♦Γ1,!ϕ | ♦Γ2
(!l

n)
[θ] ♦nΓ1,Γ1 | ♦nΓ2,Γ2,♦nϕ,ϕ

[!θ] ♦Γ1 | ♦Γ2,!ϕ
(!r

n)

Lemma 11.12. Assume n ≥ 1, and let Γ1 and Γ2 be sequents. Then the
following statements are equivalent:

1. wGLn $ Γ#
1 → Γ#

2 ;

2. wGLG
n $ (Γ1,Γ2);

3. wGLSp
n $ (Γ1 | Γ2).

Proof. (1⇔2): Clearly follows from Theorem 11.6.
(2⇒3): Let π be a proof of (Γ1,Γ2) in wGLG

n . By bottom-up splitting
of sequents, we obtain a proof of (Γ1 | Γ2) in wGLSp

n .
(3⇒2): Let π′ be a proof of (Γ1 | Γ2). We can obtain a proof of (Γ1,Γ2)

in wGLG
n by removing all splittings in π′.

Note that if a proof π of (Γ1,Γ2) is given, then a proof π′ of (Γ1 | Γ2) in
wGLSp

n is effectively constructible from π.

Lemma 11.13. Assume n ≥ 1. Suppose that wGLSp
n $ (Γ1 | Γ2), and let π

be a proof of [θ] (Γ1 | Γ2) in wGLSp
n . Then:
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1. var (θ) ⊆ var
(
Γ1

)
∩ var (Γ2);

2. wGLG
n $ (Γ1, θ) and wGLG

n $
(
Γ2, θ

)
.

Proof. By induction on the length of π.
Suppose that π consists of an axiom [θ] Γ1 | Γ2. Then it is clear that the

corresponding formula θ satisfies the conditions 1 and 2.
Suppose that π is one of the following derivations:

π1
...

[θ1] ∆11 | ∆12

[θ] Γ1 | Γ2
(R)

,

π1
...

[θ1] ∆11 | ∆12

π2
...

[θ2] ∆21 | ∆22

[θ] Γ1 | Γ2
(R)

where πi (i = 1, 2) is the subproof of each hypothesis, and θi is the formula
according to the rules in πi. By the induction hypothesis for πi, θi satisfies
the following conditions:

• var (θi) ⊆ var
(
∆i1

)
∪ var (∆i2);

• wGLG
n $ (∆i1, θ) and wGLG

n $
(
∆i2, θ

)
.

Then we can easily deduce from the above facts that θ enjoys the conditions
1 and 2. We only describe the case for (!r

n). Assume the last application of
π is (!r

n).

π1
...

[θ] ♦n∆1,∆1 | ♦n∆2,∆2,♦nϕ,ϕ

[!θ] ♦∆1 | ♦∆2,!ϕ
(!r

n) (∗)

By the induction hypothesis,

• var (θ) ⊆ var
(
♦n∆1,∆1

)
∩ var (♦n∆2,∆2,♦nϕ,ϕ);

• wGLG
n $ (♦n∆1,∆1, θ) and wGLG

n $
(
♦n∆2,∆2,♦nϕ,ϕ, θ

)
.

1. We have

var (!θ) = var (θ) ⊆ var
(
♦n∆1,∆1

)
∩ var (♦n∆2,∆2,♦nϕ,ϕ) ,

= var
(
♦∆1

)
∩ var (♦∆2,!ϕ) .

45



2. Consider the following derivations:

ρ1
...

♦n∆1,∆1, θ

♦n∆1,∆1,♦nθ, θ
(weak)

♦∆1,!θ
(!n) ,

ρ2
...

♦n∆2,∆2,♦nϕ,ϕ, θ

♦n∆2,∆2,♦nϕ,ϕ,♦nθ, θ
(weak)

♦∆2,!ϕ,♦θ
(!n)

.

Proof of Theorem 11.10. Assume wGLn $ ϕ → ψ. By Theorem 11.6 and
Lemma 11.12, we can effectively obtain a proof π of [θ] (ϕ | ψ) in wGLSp

n .
By Lemma 11.13, we have var(θ) ⊆ var(ϕ) ∩ var(ψ), wGLG

n $ ϕ, θ and
wGLG

n $ ψ, θ. Thus θ is indeed a Craig interpolant of ϕ → ψ.

Remark 11.14. Let ϕ be a formula. We define var+ (ϕ) (resp. var− (ϕ)) as
the set of literals occurring positively (resp. negatively) in ϕ. Suppose that
wGLn $ ϕ → ψ. A Lyndon interpolant of ϕ → ψ is a formula θ satisfying
the following conditions:

• wGLn $ ϕ → θ and wGLn $ θ → ψ;

• var+ (θ) ⊆ var+ (ϕ) ∩ var+ (ψ) and var− (θ) ⊆ var− (ϕ) ∩ var− (ψ).

It is not always true that wGLSp
n supplies a Lyndon interpolant of ϕ →

ψ. Consider the derication π as in (∗), and suppose that θ is a Lyndon

interpolant of (♦n∆1,∆1)
# → (♦n∆2,∆2,♦nϕ,ϕ)#. Then θ may contain a

literal l such that:

• l occurs in both ∆1 and ϕ;

• l does not occur in ϕ nor any formula in ∆2.

Then the formula !θ also contains l, however, the assumption ♦nϕ is elimi-
nated in the conclusion sequent of (!r

n). Thus, l is not a common literal of the

conclusion sequent, and!θ is no longer a Lyndon interpolant of ♦∆1
# → !ϕ.

To avoid this problem, in the next section we will develop a system which
preserves the positiveness of formulas, and is equivalent to wGLSp

n .
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12 Lyndon interpolation property for wGLn

12.1 Circular proof system

We describe the calculus which admits circular proofs, and is equivalent to
wGLG

n .

Definition 12.1. The sequent calculus wK4G
n is obtained from wGLG

n by
replacing the rule !n by the following rule

♦nΓ,Γ,ϕ
♦Γ,!ϕ

('n).

A circular derivation of a calculus is a pair π = (κ, d) where κ is a
derivation in the calculus and d is a back-link function from some leaf x to
an interior node y with an identical sequent, such that y lies on the path from
the root of κ to x, and there exists at least one application of 'n between x
and y. We call such an (x, y) a circular pair. (In other words, d is the set of
circular pairs in κ.) A circular proof is a circular derivation such that every
leaf is either marked by an axiom or connected by the back-link function. The
circular proof system ◦wK4G

n is obtained from wK4G
n by admitting circular

proofs.
The following diagram is an example of a circular proof in ◦wK4G

2 .

♦(!2p ∧ p),!p

♦3(!2p ∧ p),♦(!2p ∧ p),!p
(weak)

♦2(!2p ∧ p),!2p
('2)

♦2(!2p ∧ p),!2p, p
(weak)

p, p

♦2(!2p ∧ p), p, p
(weak)

♦2(!2p ∧ p),!2p ∧ p, p
(∧)

♦(!2p ∧ p),!p
('2)

Let n be an arbitrary natural number, and consider the following diagram:

p ∨ q
p ∨ q, p, q (weak)

p ∨ q (∨)

This diagram contains a pair of nodes labeled by the same sequent (p ∨ q),
however, there is no application of the rule 'n. Therefore this diagram is
not a circular proof in ◦wK4G

n .
In the rest of this subsection we prove the following theorem.

Theorem 12.2. Assume n ≥ 1. For any sequent Γ,
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wGLG
n $ Γ ⇐⇒ ◦wK4G

n $ Γ.

Lemma 12.3. Assume n ≥ 1. For any sequent Γ, wGLG
n $ Γ =⇒ ◦wK4G

n $
Γ. Moreover, if π is a proof of Γ in wGLG

n , then we can construct a proof
π′ = (κ, d) of Γ in ◦wK4G

n from π in an effective way.

Proof. Assume wGLG
n $ Γ, and let κ be a proof of Γ in wGLG

n . First we
introduce a complexity of formulas in κ. Let ϕ be a formula occurring in
some sequent in κ. By the definition of wGLG

n , ϕ is either an element of
Sub(Γ) or of the form ♦kψ where ψ ∈ Sub(Γ). The complexity of ϕ (write
c(ϕ)) is defined as the least natural number k such that ϕ ≡ ♦kψ for some
ψ ∈ Sub(Γ).

In order to obtain a circular proof of Γ in ◦wK4G
n , we construct the se-

quence {πi = (κi, di)}i≤j of circular derivation satisfying the following prop-
erties:

• Each πi is a circular derivation in the system wGLG
n ∪wK4G

n ;

• For any κi and application of 'n in κi, there is no application of !n in
the path from the root of κi to the conclusion of 'n;

• πj is a circular proof of Γ in ◦wK4G
n .

We construct such a sequence {πi = (κi, di)}i≤j from a given κ in the
following steps.

1. Let π0 := (κ0, d0), where κ0 := κ and d0 := ∅.

2. If πi contains no application of !n, then the sequence stops. Otherwise,
consider the lowest application of !n in κi:

...
♦n∆,∆,♦nϕ,ϕ

♦∆,!ϕ
(!n)

...

3. Search the path below (♦∆,!ϕ) for a pair (x, y) such that x and y
are marked by an identical sequent and there is an application of 'n

between x and y. If we find such a pair (x, y), then cut away all
nodes higher than x. Let κi+1 be the obtained derivation and di+1 :=
di ∪ (x, y), and return to Step 2. Otherwise, go to Step 4.
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4. Let ρ be the subproof of the sequent (♦n∆,∆,♦nϕ,ϕ). Note that ρ
contains no application of 'n, and hence is a proof in wGLG

n . By
Corollary 11.9, there is a proof ρ′ of (♦n∆,∆,ϕ) in wGLG

n . Replace
κi by:

ρ
...

♦n∆,∆,♦nϕ,ϕ
♦∆,!ϕ

(!n)

...

@−→

ρ′
...

♦n∆,∆,ϕ
♦∆,!ϕ

('n)

...

If ♦n∆ contains no formula ψ such that c(ψ) > n, then let πi+1 be the
obtained derivation, and return to Step 2. Otherwise, go to Step 5.

5. Let Σ ⊆ ∆ be the set of all formulas ψ such that c(♦nψ) > n, and put
Π := ∆\Σ. Recall that for any ψ ∈ Σ, wGLG

n $ ψ,!nψ. By Corollary
11.9, the assumptions ♦nΣ can be eliminated. Let ρ′′ be a proof of
(Σ,♦nΠ,Π,ϕ) in wGLG

n . Replace the derivation by:

ρ′
...

♦nΣ,Σ,♦nΠ,Π,ϕ
♦∆,!ϕ

('n)

...

@−→

ρ′′
...

Σ,♦nΠ,Π,ϕ
♦nΣ,Σ,♦nΠ,Π,ϕ

(weak)

♦∆,!ϕ
('n)

...

(The sequent (Σ,♦nΠ,Π,ϕ) consists of formulas of which complexities
are ≤ n.) Let πi+1 be the obtained derivation, and return to Step 2.

In Steps 4-5 the procedure always generates a new sequent which consists
of formulas having complexity ≤ n. Since the number of such sequents is
finite, the sequence must stop at some j. Suppose that the construction
terminates at πj. This is our desired circular proof of Γ in ◦wK4G

n .

Lemma 12.4. ◦wK4G
n $ Γ =⇒ wGLG

n $ Γ.

Proof. For a circular derivation π = (κ, d) in ◦wK4G
n and a leaf a of π, a

is called an assumption leaf if a is non-axiomatic and not connected by the
back-link function d. An assumption leaf a is boxed if there is an application
of 'n on the path from the root to a. Let BH(π) and H(π) be the sets of
boxed, respectively not boxed assumption leaves of π. The sequent of a is
denoted by ∆a.
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Claim 12.5. For any circular derivation π = (κ, d) of Γ,

wGLn $
∧

[n]+{∆#
a | a ∈ H(π)} ∧

∧
[n]{∆#

a | a ∈ BH(π)} → Γ#.

Proof. Induction on the construction of κ.

• Assume κ consists of a single node a. The claim clearly holds if ∆a

is an axiom of wK4G
n . Otherwise, since a ∈ H(π) and by Proposition

10.3.1, we have wGLn $ [n]+∆#
a → ∆#

a .

• Consider π is one of the following derivations:

π1
...
∆

∆,Σ
(weak)

,

π1
...

∆,ϕ,ψ
∆,ϕ ∨ ψ

(∨)
,

π1
...

∆,ϕ

π2
...

∆,ψ
∆,ϕ ∧ ψ

(∧)
.

Suppose that Γ is not connected by d. In this case,

H(π) =
⋃

i=1,2 H(πi), and BH(π) =
⋃

i=1,2 BH(πi).

Note that

wGLn $ ∆# → (∆,Σ)# , wGLn $ (∆,ϕ,ψ)# → (∆,ϕ ∨ ψ)# ,

wGLn $ (∆,ϕ)# ∧ (∆,ψ)# → (∆,ϕ ∧ ψ)# .

By the induction hypotheses for π1 and π2, the claim holds.

Suppose that Γ is connected by d. Let b be such a leaf connecting with
the root. In this case,

H(π) =
⋃

i=1,2 H(πi) and BH(π) =
⋃

i=1,2 BH(πi)\{b}.

From a similar argument as above, we obtain

wGLn $
∧

[n]+{∆#
a | a ∈ H(π)} ∧

∧
[n]{∆#

a | a ∈ BH(π)} ∧ [n]∆#
b

→ Γ#,

where ∆b is exactly Γ. By Proposition 10.3.3,

wGLn $
∧

[n]+{∆#
a | a ∈ H(π)} ∧

∧
[n]{∆#

a | a ∈ BH(π)} → Γ#.
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• Assume the last application of π is 'n:

π1
...

♦n∆,∆,ϕ
♦∆,!ϕ

('n).

Suppose that Γ is not connected by d. In this case,

H(π) = ∅ and BH(π) = H(π1) ∪ BH(π1).

By the induction hypothesis for π1,

wGLn $
∧

[n]+{∆#
a | a ∈ H(π1)} ∧

∧
[n]{∆#

a | a ∈ BH(π1)}

→ (♦n∆,∆,ϕ)# .

By Proposition 10.3.2,

wGLn $
∧

[n]{∆#
a | a ∈ BH(π)} → !(♦n∆,∆,ϕ)#.

Note that wGLn $ !(♦n∆,∆,ϕ)# → !
(
(♦n∆,∆)# → ϕ

)
.

By Proposition 10.1, wGLn $ ♦∆# → !(♦n∆,∆)#.

Hence wGLn $ !(♦n∆,∆,ϕ)# →
(
♦∆# → !ϕ

)
, i.e.,

wGLn $ ! (♦n∆,∆,ϕ)# → (♦∆,!ϕ)#. Thus we obtain

wGLn $
∧

[n]{∆#
a | a ∈ BH(π)} → Γ#.

Suppose that Γ is connected with b by d. In this case,

H(π) = ∅ and BH(π) = H(π1) ∪ BH(π1)\{b}.

Again by the induction hypothesis for π1 and Proposition 10.3.2, we
obtain

wGLn $
∧

[n]{∆#
a | a ∈ BH(π)} ∧ [n]Γ# → Γ#.

By Proposition 10.3.3, we conclude

wGLn $
∧

[n]{∆#
a | a ∈ BH(π)} → Γ#.
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The proof of the claim is completed.

Now if π is a circular proof of ◦wK4G
n , then H(π) = BH(π) = ∅, and

hence wGLn $ Γ#. By Theorem 11.6, we conclude wGLG
n $ Γ.

Theorem 12.2 immediately follows from Lemma 12.3 and Lemma 12.4.

Remark 12.6. Iemhoff [10] studies some sufficient conditions for a type of
modal sequent calculus to have an equivalent circular proof system. The cal-
culus wGLG

n does not enjoy Iemhoff’s conditions, however, has an equivalent
circular proof counterpart.

12.2 Proof of Lyndon interpolation theorem

Shamkanov [23] originally showed that the standard provability logic GL
enjoys the Lyndon interpolation property. In [24] he also gave a syntactical
proof of the Lyndon interpolation theorem for GL by using the circular proof
argument.

In this subsection, we show that Shamkanov’s argument can be applied to
the case for wGLn, i.e., for n ≥ 2, if wGLn $ ϕ → ψ, then we can construct
a Lyndon interpolant of ϕ → ψ effectively. Before proving, we give some
terminology. Definitions and Notations are according to Shamkanov [24].

For any formula ϕ, we define u(ϕ) as the set of literals l occurring in ϕ
out of the scope of all modal operators. We use new symbols of the form p◦

and p◦ (we call them marked literals.) to specify literals within the scope of
modal operators. We define v(ϕ) as the set of marked literals l◦ such that l
occurs in ϕ within the scope of a modal operator. Let w(ϕ) := u(ϕ) ∪ v(ϕ),
and w(Γ) :=

⋃
{w(ϕ) | ϕ ∈ Γ}.

Theorem 12.7 (Lyndon interpolation theorem for wGLn). Assume n ≥ 2.
If wGLn $ ϕ → ψ, then there is a formula θ (called a Lyndon interpolant of
ϕ → ψ) such that:

1. wGLn $ ϕ → θ and wGLn $ θ → ψ;

2. w(θ) ⊆ w(ϕ) ∩ w(ψ).

Moreover, such a θ is effectively constructible from ϕ and ψ.

First, we develop a split derivation system based on wK4G
n .

Definition 12.8. The system wK4Sp
n is obtained from wGLSp

n by replacing
the rules (!l

n) and (!r
n) by:
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[θ] ♦nΓ1,Γ1,ϕ | ♦nΓ2,Γ2

[♦θ] ♦Γ1,!ϕ | ♦Γ2
('l

n), and

[θ] ♦nΓ1,Γ1 | ♦nΓ2,Γ2,ϕ

[!θ] ♦Γ1 | ♦Γ2,!ϕ
('r

n).

Similarly, the split circular proof system ◦wK4Sp
n is obtained from wK4Sp

n

by admitting circular proofs.

Proposition 12.9.

◦wK4G
n $ Γ1,Γ2 ⇐⇒ ◦wK4Sp

n $ Γ1 | Γ2.

Proof. (=⇒): Let π be a proof of (Γ1,Γ2) in ◦wK4G
n . First we expand π to

an infinite derivation by adding subproofs to each leaf a connected by d. By
the bottom-up splitting of sequents, we obtain an infinite derivation π∞ of
(Γ1 | Γ2) in wK4Sp

n . Since π consists of only finitely many different sequents,
each sequent can be split into only finitely many split sequents. Therefore,
π∞ consists of finitely many different split sequents.

(⇐=): For a given split circular proof π in ◦wK4Sp
n , we obtain a circular

proof in ◦wK4G
n by removing all splittings in π.

Notice that for a given circular proof π of (Γ1,Γ2) in ◦wK4G
n , we can

effectively construct a split circular proof of (Γ1 | Γ2) in ◦wK4Sp
n .

We describe several facts that will be used in the proof of Theorem 12.7.
Let ϕ be a formula and w(ϕ) := u(ϕ)∪ v(ϕ) as before. For a set S of literals
and marked literals, we define S◦ := {l◦ | l ∈ S or l◦ ∈ S}, and w∗(ϕ) :=
w(ϕ) ∪ w(ϕ)◦. The following theorem states that wGLn has effective fixed-
points.

Theorem 12.10 (Fixed-point theorem forwGLn, Kurahashi & Okawa [12]).
Let ϕ(p) be a formula in which p occurs only within the scope of a modal
operator. Then there is a formula ψ satisfying the following conditions:

1. w(ψ) ⊆ w∗(ϕ) ∪ w∗(ϕ)\{p◦, p◦};

2. wGLn $ ψ ↔ ϕ(ψ).

Moreover, if ϕ does not contain p, then w(ψ) ⊆ w∗(ϕ)\{p}.

The last property “w(ψ) ⊆ w∗(ϕ)\{p}” will be essentially needed in our
proof. Kurahashi & Okawa [12] gave an effective procedure which produces a
fixed-point ψ of a given formula ϕ(p). Moreover, by the construction of fixed-
points in [12], such a ψ also satisfies the conditions in Theorem 12.10, and
the procedure does not use any kind of interpolation. Briefly, a fixed-point of
ϕ(p) is obtained by multi-substituting formulas containing only literals which
occur in A, for each occurrence of p. Therefore ψ enjoys the condition 1.
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Moreover, if ϕ(p) contains no occurrences of p, then the procedure preserves
the positiveness of literals in every substitution (see Lindström [13], and
Kurahashi & Okawa [12]).

Lemma 12.11. For each rule of wK4Sp
n , the following corresponding state-

ment holds:

1. wGLn $
(
Γ#
1 → θ

)
∧
(
θ → Γ#

2

)

→
(
(Γ1,∆1)

# → θ
)
∧
(
θ → (Γ2,∆2)

#
)
;

2. wGLn $
(
(Γ1,ϕ,ψ)

# → θ
)
∧
(
θ → Γ#

2

)

→
(
(Γ1,ϕ ∨ ψ)# → θ

)
∧
(
θ → Γ#

2

)
;

3. wGLn $
(
Γ#
1 → θ

)
∧
(
θ → (Γ2,ϕ,ψ)

#
)

→
(
Γ#
1 → θ

)
∧
(
θ → (Γ2,ϕ ∨ ψ)#

)
;

4. wGLn $
(
(Γ1,ϕ)

# → θ1
)
∧
(
θ1 → Γ#

2

)
∧
(
(Γ1,ψ)

# → θ2
)
∧
(
θ2 → Γ#

2

)

→
(
(Γ1,ϕ ∧ ψ)# → θ1 ∨ θ2

)
∧
(
θ1 ∨ θ2 → Γ#

2

)
;

5. wGLn $
(
Γ#
1 → θ1

)
∧
(
θ1 → (Γ2,ϕ)

#
)
∧
(
Γ#
1 → θ2

)
∧
(
θ2 → (Γ2,ψ)

#
)

→
(
Γ#
1 → θ1 ∧ θ2

)
∧
(
θ1 ∧ θ2 → (Γ2,ϕ ∧ ψ)#

)
;

6. wGLn $ !
[(

(♦nΓ1,Γ1,ϕ)
# → θ

)
∧
(
θ → (♦nΓ2,Γ2)

#
)]

→
(
(♦Γ1,!ϕ)# → ♦θ

)
∧
(
♦θ → (♦Γ2)

#
)
;

7. wGLn $ !
[(

(♦nΓ1,Γ1)
# → θ

)
∧
(
θ → (♦nΓ2,Γ2,ϕ)

#
)]

→
(
(♦Γ1)

# → !θ
)
∧
(
!θ → (♦Γ2,!ϕ)#

)
.
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Suppose that ◦wK4Sp
n $ Γ1 | Γ2. We define an interpolant of Γ1 | Γ2 as a

Lyndon interpolant of Γ#
1 → Γ#

2 .
For a given split circular derivation π = (κ, d) of (Γ1 | Γ2), we define

two sets of leaves BH(π) and H(π) as in Section 4. For each non-axiomatic
leaf a of κ, we fix two variables xa and wa. The first variable xa plays a
role of the provisional interpolant of a. The second variavle wa ranges over
sets of literals and marked literals. We interpret the second variable wa as
w(xa). Let (∆1 | ∆2) be the split sequent of a. Define the formula Ia and
the statement I ′a as follows:

Ia :≡
(
∆#

1 → xa

)
∧
(
xa → ∆#

2

)
;

I ′a :⇔ wa ⊆ w(∆1) ∩ w(∆2).

Lemma 12.12. Let π be a split circular derivation of (Γ1 | Γ2). Then there
is a formula θ satisfying the following conditions:

1. θ does not contain literals of the form xa;

2. If a ∈ BH(π), then xa occurs in θ only within the scope of modal
operators;

3. wGLn $
∧
{[n]Ia | a ∈ BH(π)} ∧

∧
{[n]+Ia | a ∈ H(π)}

→
(
Γ#
1 → θ

)
∧
(
θ → Γ#

2

)
;

4. T (π) ⇒ wX(θ) ∪
⋃
{w◦

a | a ∈ BH(π)} ∪
⋃
{wa | a ∈ H(π)} ⊆ w(Γ1) ∩

w(Γ2), where T (π) is the statement
∧
{I ′a | a ∈ BH(π) ∪ H(π)}, and

wX(θ) := w(θ)\{xa, x◦
a | xa occurs in θ}.

Proof. Induction on the construction of κ. We argue five cases.

Case 1 Assume κ consists of a single node a. If (Γ1 | Γ2) is an axiom of
wK4Sp

n , then we take θ as the formula bracketed in the corresponding
axiom. Otherwise, we put θ :≡ xa (Note that H(π) = {a}). In both
cases, θ clearly satisfies the conditions 1-4.

Case 2 Assume the last application of κ is weak or one of the propositional
rules, and (Γ1 | Γ2) is not connected by d. We show that the formula θ
bracketed in each conclusion satisfies Conditions 1-4.

π1....
[θ1] ∆11 | ∆12

[θ] Γ1 | Γ2

π1....
[θ1] ∆11 | ∆12

π2....
[θ2] ∆21 | ∆22

[θ] Γ1 | Γ2
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Conditions 1 and 2 are clear.

Condition 3 By the induction hypotheses, we have for i = 1, 2,

wGLn $
∧

{[n]Ia | a ∈ BH(πi)} ∧
∧

{[n]+Ia | a ∈ H(πi)}

→
(
∆#

i1 → θi
)
∧
(
θi → ∆#

i2

)
,

Recall that BH(π) =
⋃

i=1,2 BH(πi) and H(π) =
⋃

i=1,2 H(πi). By
Lemma 12.3.1-5, we obtain

wGLn $
∧

{[n]Ia | a ∈ BH(π)} ∧
∧

{[n]+Ia | a ∈ H(π)}

→
(
Γ#
1 → θ

)
∧
(
θ → Γ#

2

)
.

Thus θ satisfies the condition 3.

Condition 4 By the induction hypothesis, we have for i = 1, 2,

T (πi) ⇒ wX(θi) ∪
⋃

{w◦
a | a ∈ BH(πi)} ∪

⋃
{wa | a ∈ H(πi)}

⊆ w(∆i1) ∩ w(∆i2).

Suppose T (π) holds. (Note that T (π) ⇔ T (π1) ∧ T (π2).) By wX(θ) =
wX(θ1) ∪ wX(θ2) and w(∆i1) ∩ w(∆i2) ⊆ w(Γ1) ∩ w(Γ2), we conclude

wX(θ) ∪
⋃

{w◦
a | a ∈ BH(π)} ∪

⋃
{wa | a ∈ H(π)} ⊆ w(Γ1) ∩ w(Γ2).

Case 3 Assume the last application of κ is 'l
n or 'r

n, and (Γ1 | Γ2) is not
connected by d. Again we show that the formula θ bracketed in the
corresponding conclusion satisfies the conditions 1-4.

π1
...

[θ1] ∆1 | ∆2

[θ] Γ1 | Γ2

The conditions 1 and 2 are clear.

Condition 3 By the induction hypotheses, we have

wGLn $
∧

{[n]Ia | a ∈ BH(π1)} ∧
∧

{[n]+Ia | a ∈ H(π1)}

→
(
∆#

1 → θ1
)
∧
(
θ1 → ∆#

2

)
.
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By Proposition 10.3.2,

wGLn $
∧

{[n]Ia | a ∈ BH(π1)} ∧
∧

{[n]Ia | a ∈ H(π1)}

→ !
[(

∆#
1 → θ1

)
∧
(
θ1 → ∆#

2

)]
.

Note that BH(π) = BH(π1) ∪ H(π1) and H(π) = ∅. By Lemma
12.3.6-7, we obtain

wGLn $
∧

{[n]Ia | a ∈ BH(π)} →
(
Γ#
1 → θ

)
∧
(
θ → Γ#

2

)
.

Condintion 4 By the induction hypothesis,

T (π1) ⇒ wX(θ1) ∪
⋃

{w◦
a | a ∈ BH(π1)} ∪

⋃
{wa | a ∈ H(π1)}

⊆ w(∆1) ∩ w(∆2). (4)

Suppose that T (π) is true. Since T (π) ⇔ T (π1), the consequence of
(4) is also true. It suffices to show that: (i) wX(θ) ⊆ w(Γ1) ∩ w(Γ2)
and (ii) if a ∈ BH(π), then w◦

a ⊆ w(Γ1) ∩ w(Γ2).

(i): By the conclusion of (4), wX(θ1) ⊆ w(∆1)∩w(∆2). Then wX(θ1)◦ ⊆
w(∆1)◦∩w(∆2)◦. In this case, we have w(∆1)◦ ⊆ w(Γ1) and w(∆2)◦ ⊆
w(Γ2). Hence wX(θ) = wX(θ1)◦ ⊆ w(Γ1) ∩ w(Γ2).

(ii): Let a ∈ BH(π) = BH(π1) ∪ H(π1). If a ∈ BH(π1), then w◦
a ⊆

w(∆1)∩w(∆2) by (4). If a ∈ H(π1), then wa ⊆ w(∆1)∩w(∆2) by (4).
In either case, we have w◦

a ⊆ w(∆1)◦ ∩ w(∆2)◦ ⊆ w(Γ1) ∩ w(Γ2).

Case 4 Assume that the last application of κ is weak or one of the proposi-
tional rules, and (Γ1 | Γ2) is connected with b by d.

π1....
[θ1] ∆11 | ∆12

[θ] Γ1 | Γ2

π1....
[θ1] ∆11 | ∆12

π2....
[θ2] ∆21 | ∆22

[θ] Γ1 | Γ2

(By the construction of θ, θ contains xb.) There is at least one applica-
tion of modal rules between b and the root of κ, and hence b ∈ BH(π1)
or b ∈ BH(π2). By the induction hypothesis, for i = 1, 2,

wGLn $
∧

{[n]Ia : a ∈ BH(πi)} ∧
∧

{[n]+Ia : a ∈ H(πi)}

→
(
∆#

i1 → θi
)
∧
(
θi → ∆#

i2

)
.
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Note that BH(π) =
⋃

i=1,2 BH(πi)\{b}, H(π) =
⋃

i=1,2 H(πi). By
Lemma 12.3.1-5,

wGLn $
∧

{[n]Ia : a ∈ BH(π)} ∧
∧

{[n]+Ia : a ∈ H(π)} ∧ [n]Ib

→
(
Γ#
1 → θ

)
∧
(
θ → Γ#

2

)
.

By the construction of θ, xb only occurs in θ positively and within
the scope of modal operators. By Theorem 12.10, we can construct
a formula ψ satisfying w(ψ) ⊆ w∗(θ)\{x◦

b}, and wGLn $ θ(ψ) ↔ ψ.
(Here θ(ψ) is the formula obtained from θ by substituting ψ for all
occurrences of xb.) Thus we have

wGLn $
∧

{[n]Ia : a ∈ BH(π)} ∧
∧

{[n]+Ia : a ∈ H(π)}

∧[n]Ib(ψ) →
(
Γ#
1 → θ(ψ)

)
∧
(
θ(ψ) → Γ#

2

)
. (5)

By wGLG
n $ θ(ψ) ↔ ψ and the definition of Ib,

wGLn $
(
Γ#
1 → θ(ψ)

)
∧
(
θ(ψ) → Γ#

2

)
↔ Ib(ψ). (6)

From (5) and (6),

wGLn $
∧

{[n]Ia : a ∈ BH(π)} ∧
∧

{[n]+Ia : a ∈ H(π)} ∧ [n]Ib(ψ)

→ Ib(ψ).

By Proposition 10.3.3,

wGLn $
∧

{[n]Ia : a ∈ BH(π)} ∧
∧

{[n]+Ia : a ∈ H(π)} → Ib(ψ).

Again by (6),

wGLn $
∧

{[n]Ia : a ∈ BH(π)} ∧
∧

{[n]+Ia : a ∈ H(π)}

→
(
Γ#
1 → θ(ψ)

)
∧
(
θ(ψ) → Γ#

2

)
,

i.e., θ(ψ) satisfies the condition 3.

Moreover, by the constructions of θ and ψ, θ(ψ) does not contain literals
of the form xa, and if a ∈ BH(π), then xa occurs only within the scope
of modal operators. Thus θ(ψ) enjoys the conditions 1-2.
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Condition 4 By the induction hypothesis, for i = 1, 2,

T (πi) ⇒ wX(θi) ∪
⋃

{w◦
a | a ∈ BH(πi)} ∪

⋃
{wa | a ∈ H(πi)}

⊆ w(∆i1) ∩ w(∆i2).

Suppose that T (π) is true. Since T (π) ∧ I ′b implies T (π1) ∧ T (π2),

I ′b ⇒ wX(θi) ∪
⋃

{w◦
a | a ∈ BH(πi)} ∪

⋃
{wa | a ∈ H(πi)}

⊆ w(∆i1) ∩ w(∆i2).

Note that wX(θ) = wX(θ1) ∪ wX(θ2) and w(∆i1) ∩ w(∆i2) ⊆ w(Γ1) ∩
w(Γ2). We have

I ′b ⇒ wX(θ) ∪
⋃

{w◦
a | a ∈ BH(π)} ∪ w◦

b ∪
⋃

{wa | a ∈ H(π)}

⊆ w(Γ1) ∩ w(Γ2). (7)

We show that wX(θ(ψ)) ⊆ w(Γ1) ∩ w(Γ2). From (7),

I ′b ⇒ wX(θ) ∪ w◦
b ⊆ w(Γ1) ∩ w(Γ2). (8)

Substituting ∅ for wb in (8), we have

wX(θ) ⊆ w(Γ1) ∩ w(Γ2).

This statement is equivalent to I ′b (wX(θ)), and hence I ′b(wX(θ)) is valid.

Substituting wX(θ) for wb in (8), we get

I ′b (wX(θ)) ⇒ wX(θ) ∪ wX(θ)
◦ ⊆ w(Γ1) ∩ w(Γ2),

and hence
wX(θ) ∪ wX(θ)

◦ ⊆ w(Γ1) ∩ w(Γ2).

By the constructions of θ and ψ, wX(θ(ψ)) ⊆ wX(θ)∪wX(ψ)
◦. On the

other hand, since w(ψ) ⊆ w∗(θ)\{x◦
b}, we have w(ψ)◦ ⊆ w(θ)◦\{x◦

b},
and hence wX(ψ)◦ ⊆ wX(θ)◦. Thus,

wX(θ(ψ)) ⊆ wX(θ)∪wX(ψ)
◦ ⊆ wX(θ)∪wX(θ)

◦ ⊆ w(Γ1)∩w(Γ2). (9)

From (4), we get

I ′b ⇒
⋃

{w◦
a | a ∈ BH(π)} ∪

⋃
{wa | a ∈ H(π)} ⊆ w(Γ1) ∩ w(Γ2).

Substituting ∅ for wb, we obtain
⋃

{w◦
a | a ∈ BH(π)} ∪

⋃
{wa | a ∈ H(π)} ⊆ w(Γ1) ∩ w(Γ2).

From this and (9), we conclude that θ(ψ) satisfies the condition 4.
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Case 5 Assume the last application of κ is 'l
n or 'r

n, and (Γ1 | Γ2) is
connected with b by d.

π1....
[θ1] ∆1 | ∆2

[θ] Γ1 | Γ2

By the induction hypothesis,

wGLn $
∧

{[n]Ia : a ∈ BH(π1)} ∧
∧

{[n]+Ia : a ∈ H(π1)}

→
(
∆#

1 → θ1
)
∧
(
θ1 → ∆#

2

)
.

By Proposition 10.3.2 and Lemma 12.3.6-7, we have

wGLn $
∧

{[n]Ia : a ∈ BH(π1)} ∧
∧

{[n]Ia : a ∈ H(π1)}

→
(
Γ#
1 → θ

)
∧
(
θ → Γ#

2

)
.

Note that BH(π) = BH(π1) ∪H(π1)\{b} and H(π) = ∅. We have

wGLn $
∧

{[n]Ia : a ∈ BH(π)} ∧ [n]Ib →
(
Γ#
1 → θ

)
∧
(
θ → Γ#

2

)
.

By Theorem 12.10, we can construct the fixed-point ψ of θ(xb). Ap-
plying a similar argument as in Case 4, we obtain

wGLn $
∧

{[n]Ia : a ∈ BH(π)} ∧ [n]Ib(ψ) → Ib(ψ).

By Propostion 10.3.3,

wGLn $
∧

{[n]Ia : a ∈ BH(π)} → Ib(ψ),

i.e.,

wGLn $
∧

{[n]Ia : a ∈ BH(π)} →
(
Γ#
1 → θ(ψ)

)
∧
(
θ(ψ) → Γ#

2

)
.

From this and by the constructions of θ and ψ, θ(ψ) enjoys the condi-
tions 1-3.

Condition 4 By the induction hypothesis,

T (π1) ⇒ wX(θ1) ∪
⋃

{w◦
a | a ∈ BH(π1)} ∪

⋃
{wa | a ∈ H(π1)}

⊆ w(∆1) ∩ w(∆2).
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Assume T (π) is true. Since T (π) ∧ I ′b implies T (π1), we have

I ′b ⇒ wX(θ1) ∪
⋃

{w◦
a | a ∈ BH(π1)} ∪

⋃
{wa | a ∈ H(π1)}

⊆ w(∆1) ∩ w(∆2).

As in Case 4, we obtain

I ′b =⇒ wX(θ) ∪
⋃

{w◦
a | a ∈ BH(π)} ∪ w◦

b ⊆ w(Γ1) ∩ w(Γ2).

Applying a similar argument as in Case 4, we can show that wX(θ(ψ)) ⊆
w(Γ1) ∩ w(Γ2) and

⋃
{w◦

a | a ∈ BH(π)} ⊆ w(Γ1) ∩ w(Γ2).

The proof of Lemma 12.12 is now completed.

Lemma 12.13. If ◦wK4Sp
n $ Γ1 | Γ2, then we can construct an interpolant

θ of (Γ1 | Γ2) in an effective way.

Proof. Let π = (κ, d) be a split circular proof of (Γ1 | Γ2). Then we can
construct an interpolant of (Γ1 | Γ2) by the following way. For each non-
axiomatic leaf a, we put xa as the provisional interpolant. From the leaf to
the root, construct θ in accordance with rules of wK4Sp

n . If we find a node
n which is connected by a non-axiomatic leaf a, then apply Theorem 12.10,
substitute the fixed-point for all occurrences of xa, and continue to the next
application. Since every non-axiomatic leaf a is connected to some interior
node b by d, xa must be eliminated. Therefore the resulting formula θ does
not contain any literal of the form xa, and satisfies that

wGLn $
(
Γ#
1 → θ

)
∧
(
θ → Γ#

2

)
and

w(θ) ⊆ w(Γ1) ∩ w(Γ2),

by Lemma 12.12. Thus, θ is indeed an interpolant of (Γ1 | Γ2).

Theorem 12.7 follows from Lemma 12.13 immediately.

Proof of Theorem 12.7. Assume wGLn $ ϕ → ψ. Then by Theorem 11.6,
we can construct a proof π of ϕ,ψ inwGLG

n . By Lemma 12.3 and Proposition
12.9, we obtain a split circular proof of (ϕ | ψ) in ◦wK4Sp

n . Let θ be an
interpolant of ϕ | ψ. Then θ is indeed a Lyndon interpolant of ϕ → ψ.
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Chapter V

Fixed-point properties for
predicate modal logics

13 Preliminaries for Chapter V

13.1 Classes of predicate Kripke frames

We specify several classes of Kripke frames. Let F = 〈W,≺, {Dw}w∈W 〉 be a
Kripke frame.

Suppose that F is conversely well-founded. For each w ∈ W , the height
of w (written by h(w)) is inductively defined by:

h(w) := sup{h(v) + 1 : w ≺ v}.

(In particular, sup ∅ = 0.) A Kripke frame F is of bounded length if for any
w ∈ W , h(w) is finite. For a Kripke frame F , the height of F (written by
h(F)) is defined by sup{h(w) : w ∈ W}, and F is said to be finite height if
h(F) is finite.

We define the following five classes of Kripke frames:

1. CW := {F | F is transitive and conversely well-founded};

2. BL := {F | F is transitive and of bounded length};

3. FH := {F | F is transitive and finite height};

4. FI := {F | F is finite, transitive and irreflexive};

5. FIFD := {F | F is finite, transitive and irreflexive, and for every w ∈
W , Dw is finite}.

For a class C of Kripke frames, MQ(C) denotes the set of all LQ-formulas
which are valid in any F in C. It is easy to show that QGL ⊆ MQ(CW).
Since FIFD ⊆ FI ⊆ FH ⊆ BL ⊆ CW, we obtain QGL ⊆ MQ(CW) ⊆
MQ(BL) ⊆ MQ(FH) ⊆ MQ(FI) ⊆ MQ(FIFD). The class BL is introduced
by Tanaka [28].

It is easy to show MQ(BL) = MQ(FH). For, if A 7∈ MQ(BL), then
there exsist a model M = 〈W,≺, {Dw}w∈W ,&〉 and w ∈ W such that
〈W,≺, {Dw}w∈W 〉 belongs to BL and M, w 7|= A. Let M∗ be the gener-
ated submodel of M by w. Then the frame of M∗ is finite height, and
M∗, w 7|= A. Hence, A 7∈ MQ(FH).
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Tanaka also showed that NQGL is Kripke complete with respect to BL.
We obtain the following theorem:

Theorem 13.1 (Tanaka [28]). NQGL = MQ(BL) (= MQ(FH)).

By Theorem 13.1, we obtain QGL ⊆ NQGL.

13.2 Fixed point properties

To describe the semantical fixed-point properties for predicate modal logic,
we need an auxiliary propositional variable to specify where to substitute
fixed-points in predicate modal formulas. For this purpose, we define the
following language L′

Q. The language L′
Q consists of LQ and one certain fixed

propositional variable p. An L′
Q-formula ϕ is constructed as the following

manner:

ϕ ::= ( | ⊥ | p | P (u1, . . . , un) | ¬ϕ | ϕ → ϕ | ∀uϕ | !ϕ

Montagna [17] showed that the predicate version of Theorem 5.3 does not
hold in QGL.

Theorem 13.2 (Montagna [17]). Let ϕ(p) :≡ ∀u∃v! (p → P (u, v)). Then
A(p) has no fixed-points in QGL, that is, for any LQ-sentence ψ containing
only the predicate symbol P , QGL ! ψ ↔ ϕ(ψ).

Here we define two semantical fixed-point properties for classes of frames.

Definition 13.3. Let C be a class of Kripke frames.

1. The class C has the fixed-point property if for any L′
Q-formula ϕ(p)

which is modalized in p, there exists an LQ-formula ψ such that:

(a) The formula ψ contains only predicate symbols occurring in ϕ;

(b) For any Kripke frame F in C, F |= ψ ↔ ϕ(ψ).

2. The class C has the local fixed-point property if for any L′
Q-formula ϕ(p)

which is modalized in p, and for any Kripke frame F in C, there exists
an LQ-formula ψ such that:

(a) The formula ψ contains only predicate symbols occurring in ϕ;

(b) F |= ψ ↔ ϕ(ψ).

Clearly if C has the fixed-point property, then C has the local fixed-point
property. Montagna proved Theorem 13.2 by constructing a Kripke model
M in BL such that for any LQ-sentence ψ containing only P , the formula
ψ ↔ ϕ(ψ) is not valid in M. Thus we obtain the following corollary:
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Corollary 13.4.

1. The classes CW and BL have neither the local fixed-point property, nor
the fixed-point property.

2. The fixed-point theorem for NQGL does not hold.

The second clause immediately follows from the first clause and Theorem
13.1.

13.3 The substitution lemma

The following substitution lemma will be used in the later sections.

Lemma 13.5 (Substitution lemma). Let ϕ(p) be any L′
Q-formula. Let α and

β be LQ-formulas containing no free variables which are bounded in ϕ(p).
Then QK4 $ #(α ↔ β) → (ϕ(α) ↔ ϕ(β)). Moreover, if ϕ(p) is modalized
in p, then QK4 $ !(α ↔ β) → (ϕ(α) ↔ ϕ(β)).

Proof. Induction on the construction of ϕ(p).

• If ϕ(p) does not contain p, then Lemma trivially holds.

• Assume ϕ(p) ≡ p. Then ϕ(α) ≡ α and ϕ(β) ≡ β, and thus Lemma
holds.

• The cases ϕ(p) ≡ ¬ψ(p) and ϕ(p) ≡ ψ(p) → χ(p) are clear.

• Assume ϕ(p) ≡ ∀uψ(p) and Lemma holds for ψ(p). If α and β con-
tain no free variables which are bounded in ϕ(p), then every free vari-
able of α and β is not equal to u, and hence is not bounded in ψ(p).
By the induction hypothesis, QK4 $ #(α ↔ β) → (ψ(α) ↔ ψ(β)).
Since u does not occur freely in α and β, we have QK4 $ #(α ↔
β) → ∀u (ψ(α) ↔ ψ(β)). Distributing ∀, we conclude QK4 $ #(α ↔
β) → (∀uψ(α) ↔ ∀uψ(β)). (If ϕ(p) is modalized in p, then so is ψ(p).
By the induction hypothesis, QK4 $ !(α ↔ β) → (ψ(α) ↔ ψ(β)).
Applying a similar argument, we conclude QK4 $ !(α ↔ β) →
(∀uψ(α) ↔ ∀uψ(β)).)

• Assume ϕ(p) ≡ !ψ(p) and Lemma holds for ψ(p). By the induction
hypothesis, QK4 $ #(α ↔ β) → (ψ(α) ↔ ψ(β)). By the derivation
of QK, QK4 $ ! # (α ↔ β) → (!ψ(α) ↔ !ψ(β)). Recall that
QK4 $ !ξ → !#ξ for any ξ. Thus we conclude QK4 $ !(α ↔ β) →
(!ψ(α) ↔ !ψ(β)).
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14 Semantical fixed-point properties

14.1 Failure of the fixed-point property for FIFD and
NQGL

In this section, we prove that the class FIFD dos not enjoy the fixed-point
property. As a consequence, we obtain that the classes FH and FI also do not
have the fixed-point property.

In our proof, we borrow an idea from the following Smoryński’s improve-
ment of Montagna’s theorem (Theorem 13.2).

Theorem 14.1 (Smoryński [26]). The L′-formula ∀u! (p → P (u)) has no
fixed-points in QGL.

We describe the proof of Theorem 14.1. Let MS := 〈W,≺, {Dn}n∈W ,&〉
where

• W := ω;

• m ≺ n :⇔ n < m;

• Dn := {m ∈ ω | m ≥ n};

• n & P (m) :⇔ m 7= n+ 1.

The Kripke frame 〈W,≺, {Dn}n∈W 〉 is a member of BL. The following claim
holds for MS.

Claim 14.2 (Smoryński [26]). Let ϕ be an LQ-sentence containing only the
predicate symbol P . Then the set {n ∈ ω | MS, n |= ϕ} is either finite or
co-finite.

Using this fact, Smoryński showed that for any LQ-sentence ψ containing
only P , the formula ψ ↔ ϕ(ψ) is not valid in MS, and hence QGL ! ψ ↔
ϕ(ψ).

We prove the following lemma concerning Smoryński’s model MS.

Lemma 14.3. Let n ∈ ω and ϕ(u) be an LQ-formula with parameters from
Dn containing only the predicate symbol P . Then for any m1,m2 ≥ n+ 2,

MS, n |= ϕ(m1) ↔ ϕ(m2).

Proof. Induction on the construction of ϕ(u).

• The cases ϕ(u) ≡ ( and ϕ(u) ≡ ⊥ are trivial.
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• Assume ϕ(u) ≡ P (u). Then by the definition of &, for any m1,m2 ≥
n+ 2, MS, n |= P (m1) and MS, n |= P (m2).

• The cases ϕ(u) ≡ ¬ψ(u) and ϕ(u) ≡ ψ(u) → χ(u) are clear by the
induction hypothesis.

• Assume ϕ(u) ≡ ∀vψ(u, v). Then

MS, n |= ∀vψ(m1, v) ⇐⇒ MS, n |= ψ(m1,m
′) for any m′ ∈ Dn,

⇐⇒ MS, n |= ψ(m2,m
′) for any m′ ∈ Dn, (I.H.)

⇐⇒ MS, n |= ∀vψ(m2, v).

• Assume ϕ(u) ≡ !ψ(u). Then

MS, n |= !ψ(m1) ⇐⇒ MS, k |= ψ(m1) for any k < n.

By Dn ⊆ Dk for any k < n, ψ(u) is an LQ-formula with parameters
from Dk. By the induction hypothesis (note that k + 2 < n + 2 ≤
m1,m2),

MS, k |= ψ(m1) for any k < n ⇐⇒ MS, k |= ψ(m2) for any k < n,

⇐⇒ MS, n |= !ψ(m2).

Next we define Kripke models which are finite part of Smoryński’s model
MS. For each k ∈ ω, we define Mk := 〈Wk,≺k, {Dk

n}n∈Wk
,&k〉 where

• Wk := {0, 1, . . . , k};

• m ≺k n :⇔ m ≺ n(⇔ n < m);

• Dk
n := {n, n+ 1, . . . , k + 2};

• n &k P (m) :⇔ n & P (m)(⇔ m 7= n+ 1).

For each k ∈ ω, the Kripke frame 〈Wk,≺k, {Dk
n}n∈Wk

〉 belongs to FIFD.

Lemma 14.4. Fix k ∈ ω. For any n ≤ k and LQ-sentence ϕ with parameters
from Dk

n containing only P ,

MS, n |= ϕ ⇐⇒ Mk, n |=k ϕ.

Proof. Induction on the construction of ϕ.

66



• The cases ϕ ≡ ( and ϕ ≡ ⊥ are trivial.

• Assume ϕ ≡ P (m) for some m ∈ Dk
n. By the definition of &k, MS, n |=

P (m) ⇔ Mk, n |= P (m).

• The cases for ϕ ≡ ¬ψ, and ϕ ≡ ψ ∨ χ are clear by the induction
hypothesis.

• Assume ϕ ≡ ∀uψ(u). Then

MS, n |= ∀uψ(u) ⇐⇒ MS, n |= ψ(m) for all m ∈ Dn,

⇐⇒ MS, n |= ψ(n), . . . ,MS, n |= ψ(k + 1) and

MS, n |= ψ(m) for all m ≥ k + 2. ())

By Lemma 14.3, the statement ()) is equivalent to MS, n |= ψ(k + 2).
Thus

MS, n |= ∀uψ(u) ⇐⇒ MS, n |= ψ(n), . . . ,MS, n |= ψ(k + 2),

⇐⇒ Mk, n |= ψ(n), . . . ,Mk, n |= ψ(k + 2), (I.H.)

⇐⇒ Mk, n |= ∀uψ(u).

• If ϕ ≡ !ψ, then

MS, n |= !ψ ⇐⇒ MS,m |= ψ for all m < n.

Since Dk
n ⊆ Dk

m for any m < n, ψ is an LQ-sentence with parameters
from

⋂
m<n D

k
m, and hence

MS,m |= ψ for all m < n ⇐⇒ Mk,m |= ψ for all m < n, (I.H.)

⇐⇒ Mk, n |= !ψ.

Lemma 14.5. Fix some k ∈ ω. For any LQ-sentence ϕ, if Mk |= ϕ ↔
∀u! (ϕ → P (u)), then for any n ≤ k,

Mk, n |= ϕ ⇐⇒ n is even.

Proof. Induction on n.
Assume n = 0. Since Mk, 0 |= !(ϕ → P (m)) for any m ∈ Dk

0 , we have
Mk, 0 |= ∀u!(ϕ → P (u)). By the assumption, Mk, 0 |= ϕ.

(Inductive case) Assume Lemma holds for m < n.
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(⇒) Suppose that n is odd. Since Mk, n− 1 |= ϕ and Mk, n− 1 7|= P (n),
we have Mk, n 7|= !(ϕ → P (n)). This implies Mk, n 7|= ∀u!(ϕ →
P (u)). By the assumption, Mk, n 7|= ϕ.

(⇐) Suppose that n 7= 0 and n is even. We claim that Mk, n |= !(ϕ →
P (m)) for any m ∈ Dk

n. Take an arbitrary l < n. If l < n − 1, then
for every m ∈ Dk

n, l + 1 < n ≤ m, and hence m 7= l + 1. Therefore for
every m ∈ Dk

n, Mk, l |= P (m). This implies that for every l < n − 1
and m ∈ Dk

n, Mk, l |= ϕ → P (m).

If l = n − 1, then l is odd. By the induction hypothesis, Mk, l 7|= ϕ,
and hence for every m ∈ Dk

n, Mk, l |= ϕ → P (m).

We obtain that for every l < n and m ∈ Dk
n, Mk, l |= ϕ → P (m), and

hence the claim is verified. Thus, Mk, n |= ∀u!(ϕ → P (u)). By the
assumption, Mk, n |= ϕ.

Conforming to Smoryński’s argument, we prove the following theorem.

Theorem 14.6. The class FIFD does not have the fixed-point property.

Proof. Let ϕ be any LQ-sentence containing only P . It suffices to show that
there is k ∈ ω such that Mk 7|= ϕ ↔ ∀u! (ϕ → P (u)). By Claim 14.2, the
set {n ∈ ω | MS, n |= ϕ} is either finite or co-finite. Then for some k ∈ ω,
either

k is odd and MS, k |= ϕ or k is even and MS, k 7|= ϕ.

By Lemma 14.4, MS, k |= ϕ ⇔ Mk, k |= ϕ. Therefore we have either

k is odd and Mk, k |= ϕ or k is even and Mk, k 7|= ϕ.

By Lemma 14.5, we conclude Mk 7|= ϕ ↔ ∀u! (ϕ → P (u)).

Corollary 14.7. The classes FH and FI do not have the fixed-point property.

14.2 The fixed-point theorem for QK+!n+1⊥ and the
local fixed-point property for FH

In this subsection, we prove the effective fixed-point theorem for QK +
!n+1⊥. As a consequence, we show the class FH has the local fixed-point
property.
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Theorem 14.8. Let n ∈ ω. Suppose that an L′
Q-formula ϕ(p) is modalized

in p. Then there is an LQ-formula ψ such that ψ contains only predicate
symbols and free variables occurring in ϕ(p), and

QK $ !n+1⊥ → (ψ ↔ ϕ(ψ)).

Moreover, such a formula ψ is effectively calculable from ϕ(p).

Before proving Theorem 14.8, we give some definitions, and prove several
lemmas.

Definition 14.9.

1. Let ϕ be an L′
Q-formula, and ψ be a subformula of ϕ. The depth of

an occurrence of ψ in ϕ is the total number of subformulas !χ of ϕ,
containing the occurrence of ψ, not ψ itself.

2. For an L′
Q-formula ϕ, ϕ*(n) denotes the formula obtained from ϕ by

replacing every occurrence of the form !ψ of depth n by (.

3. For an L′
Q-formula ϕ(p), ϕ(p)[ψ0, . . . ,ψn] denotes the formula obtained

from ϕ(p) by substituting ψi for all occurrences of p of depth i for each
i ≤ n, respectively.

For instance, put ϕ(p) :≡ ! (p → ∀u(Q(u) → !p)). Then the depth of ϕ
is 0, and the depth of !p is 1. By Definition 14.9.2,

ϕ*(0) ≡ (, ϕ*(1) ≡ ! (p → ∀u (Q(u) → ()) , and ϕ*(2) ≡ ϕ.

The depth of the left p is 1, and the depth of the right p is 2. By Definition
14.9.3,

ϕ(p)[ψ0,ψ1,ψ2] ≡ ! (ψ1 → ∀u (Q(u) → !ψ2)) .

The following lemma immediately follows from Definition 14.9.

Lemma 14.10. Let m,n ∈ ω with m ≥ n. Let ϕ(p) be any L′
Q-formula,

and ψ0, . . .ψm be any LQ-formulas. Then the followings hold:

1. ϕ*(n) contains only occurrences of p of depth ≤ n. Thus

ϕ*(n)(p) [ψ0, . . . ,ψn] is an LQ-formula;

2.
(
ϕ*(m)

)*(n) ≡ ϕ*(n);

3. (ϕ(p) [ψ0, . . . ,ψm])
*(n) ≡ ϕ*(n)(p) [ψ0, . . . ,ψn].

69



Lemma 14.11. For any n ∈ ω and LQ-formula ϕ,

QK $ !n+1⊥ →
(
ϕ ↔ ϕ*(n)

)
.

Proof. By the induction on the construction of ϕ, we show that for any n ∈ ω,
QK $ !n+1⊥ →

(
ϕ ↔ ϕ*(n)

)
.

• If ϕ is an atomic formula, then for any n ∈ ω, ϕ*(n) ≡ ϕ. Clearly
QK $ ϕ ↔ ϕ*(n), and hence QK $ !n+1⊥ →

(
ϕ ↔ ϕ*(n)

)
.

• The cases for ϕ ≡ ¬ψ and ϕ ≡ ψ → χ, Lemma clearly follows from the
definition of ϕ*(n) and the induction hypothesis.

• Suppose that ϕ ≡ ∀uψ, and Lemma holds for ψ. In this case for any n ∈
ω, ϕ*(n) ≡ ∀u

(
ψ*(n)

)
. By the induction hypothesis, QK $ !n+1⊥ →(

ψ ↔ ψ*(n)
)
and hence QK $ !n+1⊥ →

(
∀uψ ↔ ∀u

(
ψ*(n)

))
. There-

fore QK $ !n+1⊥ →
(
ϕ ↔ ϕ*(n)

)
.

• Suppose that ϕ ≡ !ψ and Lemma holds for ψ. We distinguish the
following two cases.

– If n = 0, then ϕ*(0) ≡ (. Since QK $ !⊥ → (!ψ ↔ () for any
L-formula ψ, QK $ !⊥ →

(
ϕ ↔ ϕ*(0)

)
.

– Suppose that n > 0. By the inductive hypothesis for ψ, QK $
!n⊥ →

(
ψ ↔ ψ*(n−1)

)
. By the derivation of QK, we have QK $

!n+1⊥ →
(
!ψ ↔ !

(
ψ*(n−1)

))
. Note that each occurrence of

!χ in !ψ of depth ≥ n is the one in ψ of depth ≥ n− 1. There-
fore ϕ*(n) ≡ (!ψ)*(n) ≡ !

(
ψ*(n−1)

)
. Thus, QK $ !n+1⊥ →(

ϕ ↔ ϕ*(n)
)
.

Lemma 14.12. Suppose that ϕ(p) is an L′
Q-formula containing only occur-

rences of p of depth ≤ n, and LQ-formulas α0, . . . ,αn and β0, . . . , βn contain
no free variables which are bounded in ϕ(p). Then

QK $ !n+1⊥ ∧
∧

i≤n

!n−i
(
!i+1⊥ → (αi ↔ βi)

)

→ (ϕ(p) [αn, . . . ,α0] ↔ ϕ(p) [βn, . . . , β0]) .

Proof. Induction on the construction of ϕ(p).

70



• Assume ϕ(p) ≡ p. Then for any n ∈ ω, the depth of each occurrence
of p is ≤ n, and ϕ(p) contains no free variables. For any LQ-formula
α0, . . . ,αn and β0, . . . , βn, QK $ (αn ↔ βn) ↔ (αn ↔ βn), and hence

QK $ !n+1⊥ ∧
(
!n+1⊥ → (αn ↔ βn)

)
→ (αn ↔ βn) .

Adding the assumptions, we obtain

QK $ !n+1⊥ ∧
∧

i≤n

!n−i
(
!i+1⊥ → (αi ↔ βi)

)
→ (αn ↔ βn).

Since ϕ(p)[αn, . . . ,α0] ≡ αn and ϕ(p)[βn, . . . , β0] ≡ βn, Lemma holds
for ϕ(p).

• Suppose that ϕ(p) is one of the form ¬ψ(p), ψ(p) → χ(p) or ∀uψ(p).
If ϕ(p) contains only the occurrences of p of depth ≤ n, then so does
ψ(p) and χ(p). Moreover, for any LQ-formula F , if all free variables
occurring in F are not bounded in ϕ(p), then they are not bounded in
ψ(p) and χ(p), too. By the induction hypothesis and the derivation of
predicate logic, Lemma holds for ϕ(p).

• Assume ϕ(p) ≡ !ψ(p). If ϕ(p) contains only the occurrences of p of
depth ≤ n, ψ(p) contains only the occurrence of p of depth ≤ n − 1.
Let α0, . . . ,αn and β0, . . . , βn be LQ-formulas satisfying the assumption
of Lemma. Every free variables occurring freely in αi or βi occur freely
in ψ(p). By the induction hypothesis,

QK $ !n⊥ ∧
∧

i≤n−1

!n−1−i
(
!i+1⊥ → (αi ↔ βi)

)

→ (ψ(p)[αn−1, . . . ,α0] ↔ ψ(p)[βn−1, . . . , β0]) .

By the derivation of QK,

QK $ !n+1⊥ ∧
∧

i≤n−1

!n−i
(
!i+1⊥ → (αi ↔ βi)

)

→ (! (ψ(p)[αn−1, . . . ,α0]) ↔ ! (ψ(p)[βn−1, . . . , β0])) .

Since ϕ(p) does not contain the occurrence of p of depth 0,

! (ψ(p)[αn−1, . . . ,α0]) ≡ ϕ(p)[αn, . . . ,α0], and

! (ψ(p)[βn−1, . . . , β0]) ≡ ϕ(p)[βn, . . . , β0].
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Therefore

QK $ !n+1⊥ ∧
∧

i≤n−1

!n−i
(
!i+1⊥ → (αi ↔ βi)

)

→ (ϕ(p)[αn, . . . ,α0] ↔ ϕ(p)[βn, . . . , β0]) .

Adding the assumptions, we obtain

QK $ !n+1⊥ ∧
∧

i≤n

!n−i
(
!i+1⊥ → (αi ↔ βi)

)

→ (ϕ(p)[αn, . . . ,α0] ↔ ϕ(p)[βn, . . . , β0]) .

In the remainder of this section, we fix an L′
Q-formula ϕ(p) which is

modalized in p, i.e., ϕ(p) contains no occurrences of p of depth 0. By replacing
variables appropriately, we assume that every free variable occurring in ϕ(p)
does not occur in ϕ(p) as a bound variable. We define the sequence {Φn}n∈ω
of LQ-formulas recursively as follows:

1. Φ0 :≡ ϕ*(0)(p) [(]
(
≡ ϕ*(0)(p)

)
;

2. Φn+1 :≡ ϕ*(n+1)(p) [(,Φn, . . . ,Φ0].

By the definition and Lemma 14.10.1, every Φn is an LQ-formula and contains
only predicate symbols and free variables occurring in ϕ(p).

Lemma 14.13. For any m,n ∈ ω, if m ≥ n, then QK $ !n+1⊥ → (Φm ↔
Φn).

Proof. Induction on n.

• Assume n = 0, and take m ≥ 0 arbitrarily. Then

Φ*(0)
m ≡

(
ϕ*(m)(p)[(,Φm−1, . . . ,Φ0]

)*(0)
,

≡
(
ϕ*(m)

)*(0)
(p)[(], (by Lemma 14.10.3)

≡ ϕ*(0)(p)[(], (by Lemma 14.10.2)

≡ Φ0.

By Lemma 14.11, QK $ !⊥ →
(
Φm ↔ Φ*(0)

m

)
. Thus we have QK $

!⊥ → (Φm ↔ Φ0).
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• Suppose that Lemma holds for ≤ n. Take m + 1 ≥ n + 1 arbitrarily.
Then by the induction hypothesis,

QK $
∧

i<n+1

!i+1⊥ → (Φi+(m−n) ↔ Φi),

and hence

QK $
∧

i<n+1

!n+1−i(!i+1⊥ → (Φi+(m−n) ↔ Φi)).

Note that QK $ !0(!n+2⊥ → (( ↔ ()),2 and ϕ*(n+1)(p) contains no
free variables which is bounded in each Φi. From these and by Lemma
14.12, we obtain

QK $ !n+2⊥ →
(
ϕ*(n+1)(p)[(,Φm, . . . ,Φm−n]

↔ ϕ*(n+1)(p)[(,Φn, . . . ,Φ0]
)
. (10)

On the other hand, by Lemma 14.11,

QK $ !n+2⊥ →
(
Φm+1 ↔ Φ*(n+1)

m+1

)
.

Recall that

Φ*(n+1)
m+1 ≡

(
ϕ*(m+1)(p)[(,Φm, . . . ,Φ0]

)*(n+1)
,

≡
(
ϕ*(m+1)

)*(n+1)
(p)[(,Φm, . . . ,Φm−n], (by Lemma 14.10.3)

≡ ϕ*(n+1)(p)[(,Φm, . . . ,Φm−n], (by Lemma 14.10.2)

Thus

QK $ !n+2⊥ →
(
Φm+1 ↔ ϕ*(n+1)(p)[(,Φm, . . . ,Φm−n]

)
. (11)

From (10) and (11), we conclude QK $ !n+2⊥ → (Φm+1 ↔ Φn+1).

Let ψ(p) be an L′
Q-formula. For n ∈ ω, we define

Ψn :≡ ψ*(n)(p)[Φn, . . . ,Φ0].

By Lemma 14.10.1, the formula Ψn is an LQ-formula. Since ϕ(p) is modalized
in p, we obtain

Φn ≡ ϕ*(n)(p)[Φn,Φn−1, . . . ,Φ0],

≡ ϕ*(n)(p)[(,Φn−1, . . . ,Φ0],

≡ Φn.
2Here !0ϕ ≡ ϕ.
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Lemma 14.14. For any L′
Q-formula ψ(p) and m,n ∈ ω, if m ≥ n, then

QK $ !n+1⊥ → (Ψn ↔ ψ(Φm)) .

Proof. Induction on the construction of ψ(p). Assume m ≥ n.

• Assume ψ(p) ≡ p. In this case, Ψn ≡ ψ*(n)(p)[Φn, . . . ,Φ0] ≡ Φn,
and ψ(Φm) ≡ Φm. By Lemma 14.13, QK $ !n+1⊥ → (Φm ↔ Φn).
Therefore QK $ !n+1⊥ → (Ψn ↔ ψ(Φm)).

• The cases for ψ(p) ≡ ¬χ(p) and ψ(p) ≡ χ(p) → ξ(p) are clear.

• Assume ψ(p) ≡ ∀uχ(p) and Lemma holds for χ(p). By the induction
hypothesis, QK $ !n+1⊥ → (Xn ↔ χ(Φm)). Recall that ∀u(Xn) ≡
(∀uχ)n. By the generalization, we have QK $ !n+1⊥ → ((∀uχ)n ↔
∀uχ(Φm)), i.e., QK $ !n+1⊥ → (Ψn ↔ ψ(Φm)).

• Assume ψ(p) ≡ !χ(p) and Lemma holds for χ(p). We distinguish the
following two cases.

– If n = 0, then we have Ψ0 ≡ (!χ)0 ≡ (!χ)*(0)(p)[Φ0] ≡ (. Since
QK $ !⊥ → !χ(Φm), we obtain QK $ !⊥ → (Ψ0 ↔ ψ(Φm)).

– Suppose that n > 0. Take m ≥ n arbitrarily. Then m > n −
1. By the induction hypothesis for χ(p), m and n − 1, QK $
!n⊥ → (Xn−1 ↔ χ(Φm)). By the derivation of QK, we have
QK $ !n+1⊥ → (!(Xn−1) ↔ !χ(Φm)). Since ψ(p) contains no
occurrences of p of depth 0, we obtain

!(Xn−1) ≡ !
(
χ*(n−1)(p)[Φn−1, . . . ,Φ0]

)

≡ (!χ)*(n)(p)[Φn,Φn−1, . . . ,Φ0]

≡ Ψn.

Thus, QK $ !n+1⊥ → (Ψn ↔ ψ(Φm)).

Here we are ready to prove Theorem 14.8.

Proof of Theorem 14.8. Let ϕ(p) be the fixed L′
Q-formula which is modalized

in p, and it suffices to show that Φn is a fixed-point of ϕ(p) in QK+!n+1⊥.
By Lemma 14.14, we obtainQK $ !n+1⊥ → (Φn ↔ ϕ(Φn)). Since Φn ≡ Φn,
QK $ !n+1⊥ → (Φn ↔ ϕ(Φn)). The formula Φn contains only predicate
symbols and free variables occurring in ϕ. Thus, Φn is a fixed-point of ϕ(p)
in QK+!n+1⊥.
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Remark 14.15. In [19], Sacchetti proved the fixed-point theorem for propo-
sitional modal logics K+!n+1⊥ without giving an algorithm for calculating
fixed-points in these logics. Our proof of Theorem 14.8 provides such an
algorithm even for the logics K+!n+1⊥.

Corollary 14.16. The classes FH, FI and FIFD have the local fixed-point
properties.

Proof. It suffices to prove only the case for FH. Let F = 〈W,≺, {Dw}w∈W 〉
be a Kripke frame in the class FH. Put h(F) = n. Then for any w ∈ W ,
h(w) ≤ n, i.e., F |= !n+1⊥. Let ϕ(p) be any L′

Q-formula which is modalized
in p. From Theorem 14.8, we have QK $ !n+1⊥ → (Φn ↔ ϕ(Φn)). Recall
that QK ⊆ QGL ⊆ MQ(FH). Thus we have F |= !n+1⊥ → (Φn ↔ ϕ(Φn)).
From this and F |= !n+1⊥, we conclude F |= Φn ↔ ϕ(Φn). The formula Φn

is indeed a local fixed-point of ϕ(p) in F .

15 Further results

15.1 Failure of the Craig interpolation property for
NQGL

In this section, we prove that the logic NQGL does not enjoy the Craig
interpolation property.

Theorem 15.1. The system NQGL does not have the Craig interpolation
property.

Before proving Theorem 15.1, we prepare several lemmas.

Lemma 15.2. Suppose that ϕ(p) is an L′
Q-formula not containing the unary

predicate P , and not containing occurrences of u and v as bound variables. If
NQGL $ ∀uϕ (P (u)), then for any L′

Q-formula ψ(v), NQGL $ ∀vϕ (ψ(v)).

Proof. Suppose that for some ψ(v), NQGL ! ∀vϕ (ψ(v)). By Theorem 13.1,
there exists a Kripke model M = 〈F ,&〉 = 〈W,≺, {Dw}w∈W ,&〉 such that
F ∈ BL, and for some w ∈ W and c ∈ Dw, M, w 7|= ϕ (ψ(c)). We may
assume w is the root of F . Then for every x ∈ W , c ∈ Dx. We define an
interpretation &∗ of F as follows:

• For any predicate symbol Q other than P , &∗ 〈w,Q〉 = & 〈w,Q〉 for
every w ∈ W ;

• For every x ∈ W and a ∈ Dx, x &∗ P (a) :⇔ x & ψ(c).
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Let M∗ := 〈F ,&∗〉. We claim that for any L′
Q-formula χ(p), x ∈ W and

a ∈ Dx, M, x |= χ (ψ(c)) ⇐⇒ M∗, x |= χ (P (a)). We prove the claim by
induction on the construction of χ(p).

• If χ(p) contains no occurrences of p, then the claim trivially holds.

• Assume χ(p) ≡ p. Then χ (ψ(c)) ≡ ψ(c) and χ (P (a)) ≡ P (a). By the
definition of &∗, we have M, x |= χ (ψ(c)) ⇐⇒ M∗, x |= χ (P (a)).

• The cases χ(p) ≡ ¬ξ(p) and χ(p) ≡ ξ(p) → π(p) are clear by the
induction hypothesis.

• Assume χ(p) ≡ ∀vξ(p). Then

M, x |= ∀vξ (ψ(c)) ⇐⇒ M, x |= ξ (ψ(c)) [v/b] for all b ∈ Dx,

⇐⇒ M∗, x |= ξ (P (a)) [v/b] for all b ∈ Dx,
(I.H.)

⇐⇒ M∗, x |= ∀vξ (P (a)) .

• Assume χ(p) ≡ !ξ(p). Then

M, x |= !ξ (ψ(c)) ⇐⇒ M, y |= ξ (ψ(c)) for any y C x,

⇐⇒ M∗, y |= ξ (P (a)) for any y C x, (I.H.)

⇐⇒ M∗, x |= !ξ (P (a)) .

The proof of the claim is completed. From M, w 7|= ϕ (ψ(c)) and by the
claim, M∗, w 7|= ϕ (P (a)), and hence M∗, w 7|= ∀uϕ (P (u)). By Theorem
13.1, NQGL ! ∀uϕ (P (u)).

We prove the following uniqueness lemma of fixed-points in NQGL.

Lemma 15.3 (Uniqueness of fixed-points in NQGL). Let ϕ(p) be any L′
Q-

formula which is modalized in p. Let ψ0 and ψ1 be any LQ-formulas which
contain no bounded variables occurring freely in ϕ(p). Then

NQGL $ # (ϕ (ψ0) ↔ ψ0) ∧# (ϕ (ψ1) ↔ ψ1) → (ψ0 ↔ ψ1) .

Proof. We claim that, for any n ∈ ω, L′-formula ϕ(p) which is modalized in
p, and L-formula ψ which contains no bounded variables occurring freely in
ϕ(p),

QGL $ !n+1⊥ → (# (ϕ(ψ) ↔ ψ) → (ψ ↔ Φn)) ,
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where Φn is the LQ-formula defined in Section 14.2. By Lemma 13.5, QK4 $
! (ψ ↔ Φn) → (ϕ(ψ) ↔ ϕ(Φn)). In particular, by Theorem 14.8, QK $
!n+1⊥ → (ϕ(Φn) ↔ Φn). Thus

QK4 $ !n+1⊥ → (! (ψ ↔ Φn) → (ϕ(ψ) ↔ Φn)) .

From this, we have

QK4 $ !n+1⊥ ∧ (ϕ(ψ) ↔ ψ) → (! (ψ ↔ Φn) → (ψ ↔ Φn)) , (12)

QK4 $ !n+2⊥ ∧! (ϕ(ψ) ↔ ψ) → ! (! (ψ ↔ Φn) → (ψ ↔ Φn)) ,

QGL $ !n+2⊥ ∧! (ϕ(ψ) ↔ ψ) → ! (ψ ↔ Φn) . (by L)

Since QK4 $ !n+1⊥ → !n+2⊥, we obtain

QGL $ !n+1⊥ ∧! (ϕ(ψ) ↔ ψ) → ! (ψ ↔ Φn) .

From this and (12), QGL $ !n+1⊥ → (# (ϕ(ψ) ↔ ψ) → (ψ ↔ Φn)). The
proof of the claim is completed.

Let ϕ(p), ψ0 and ψ1 be formulas as in the statement of Lemma. By the
claim, for any n ∈ ω,

QGL $ !n+1⊥ → (# (ϕ (ψ0) ↔ ψ0) → (ψ0 ↔ Φn)) , and

QGL $ !n+1⊥ → (# (ϕ (ψ1) ↔ ψ1) → (ψ1 ↔ Φn)) .

Therefore

QGL $ !n+1⊥ → (# (ϕ (ψ0) ↔ ψ0) ∧# (ϕ (ψ1) ↔ ψ1) → (ψ0 ↔ ψ1)) .

Applying the rule BL of NQGL, we conclude

NQGL $ # (ϕ (ψ0) ↔ ψ0) ∧# (ϕ (ψ1) ↔ ψ1) → (ψ0 ↔ ψ1) .

Proof of Theorem 15.1. Let ϕ(p) ≡ ∀u! (p → P (u)). By Lemma 15.3, for
any unary predicate symbols Q and R other than P , and any variables v0
and v1,

NQGL $ # (ϕ (Q(v0)) ↔ Q(v0)) ∧# (ϕ (R(v1)) ↔ R(v1))

→ (Q(v0) ↔ R(v1)) ,

NQGL $ ∀v0∀v1 (# (ϕ (Q(v0)) ↔ Q(v0)) ∧# (ϕ (R(v1)) ↔ R(v1))

→ (Q(v0) ↔ R(v1))) ,
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and hence

NQGL $ ∃v0 (# (ϕ (Q(v0)) ↔ Q(v0)) ∧Q(v0))

→ ∀v1 (# (ϕ (R(v1)) ↔ R(v1)) → R(v1)) . (13)

We show that the implication (13) has no Craig interpolants. Suppose,
for the contradiction, that (13) has a Craig interpolant ψ, then ψ is an LQ-
sentence containing only the predicate symbol P such that

NQGL $ ∃v0 (# (ϕ (Q(v0)) ↔ Q(v0)) ∧Q(v0)) → ψ, and

NQGL $ ψ → ∀v1 (# (ϕ (R(v1)) ↔ R(v1)) → R(v1)) .

Hence

NQGL $ ∀v0 (# (ϕ (Q(v0)) ↔ Q(v0)) → (Q(v0) → ψ)) , and (14)

NQGL $ ∀v1 (# (ϕ (R(v1)) ↔ R(v1)) → (ψ → R(v1))) . (15)

We may assume ψ does not contain v0 and v1. By Lemma 15.2, substituting
Q(v0) for R(v1) in (15), we have

NQGL $ ∀v0 (# (ϕ (Q(v0)) ↔ Q(v0)) → (ψ → Q(v0))) .

From this and (14),

NQGL $ ∀v0 (# (ϕ (Q(v0)) ↔ Q(v0)) → (Q(v0) ↔ ψ)) .

By Lemma 15.2, substituting ϕ(ψ) for Q(v0), we have

NQGL $ # (ϕ (ϕ(ψ)) ↔ ϕ(ψ)) → (ϕ(ψ) ↔ ψ) . (16)

By the derivation of QK4, we get

NQGL $ ! (ϕ (ϕ(ψ)) ↔ ϕ(ψ)) → ! (ϕ(ψ) ↔ ψ) .

By the substituion lemma (Lemma 13.5),

QK4 $ !(ϕ(ψ) ↔ ψ) → (ϕ(ϕ(ψ)) ↔ ϕ(ψ)).

Thus
NQGL $ ! (ϕ (ϕ(ψ)) ↔ ϕ(ψ)) → (ϕ (ϕ(ψ)) ↔ ϕ(ψ)) .

Since the Löb rule is admissible in NQGL, we obtain NQGL $ ϕ (ϕ(ψ)) ↔
ϕ(ψ), and hence NQGL $ # (ϕ (ϕ(ψ)) ↔ ϕ(ψ)). From this and (16),

NQGL $ ϕ(ψ) ↔ ψ.

This means that ψ would be a fixed-point of ϕ(p) inNQGL. However, by the
proof of Theorem 14.6, ϕ(p) has no fixed-points inNQGL, contradiction.
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15.2 Formulas having a fixed-point in QGL

In this section, we investigate a sufficient condition for formulas to have a
fixed-points in QGL. We introduce the notion of Σ-formulas3, and then
we prove that if ϕ(p) is a Boolean combination of Σ-formulas and formulas
without p, then ϕ(p) has a fixed-point in QGL.

Let L′′
Q be the language LQ together with Boolean connectives ∨,∧, the

existential quantifier ∃, and countably infinite propositional variables p, q, . . ..
We assume that an L′′

Q-formula ϕ(p) may contain propositional variables
other than p. Let QGL′′ be the natural extension of the system QGL to
the language L′′

Q. It is easy to show that if an L′′
Q-formula ϕ is proved in

QGL′′, then the LQ-formula obtained by substituting ( for all propositional
variables appearing in ϕ is proved in QGL. This shows that the system
QGL′′ is a conservative extension of QGL. Thus in this section, we write
simply QGL instead of QGL′′. Also it is easy to see that the substitution
lemma (Lemma 13.5) is extended to the language L′′.

Definition 15.4 (Σ-formulas). Σ-formulas are defined inductively as follows:

• An L′′
Q-formula of the form !ψ is a Σ-formula;

• If ψ and χ are Σ-formulas, then ψ ∨ χ, ψ ∧ χ and ∃uψ are Σ-formulas.

If ϕ(p) is a Σ-formula, then ϕ(p) contains no occurrences of p of depth 0,
and for any L′′

Q-formula ψ, the formula ϕ(ψ) is also a Σ-formula.

Theorem 15.5. If ϕ(p) is a Boolean combination of Σ-formulas and L′′-
formulas containing no occurrences of p, then there exist an L′′-formula ξ such
that F contains only predicate symbols, propositional variables, free variables
occurring in ϕ(p), not containing p, and such that QGL $ ξ ↔ ϕ(ξ).

Before proving the theorem, we give a definition and prove some lemmas.

Definition 15.6 (Self-provers). An L′′
Q-formula ϕ is said to be a self-prover

if QGL $ ϕ → !ϕ.

Lemma 15.7. The Boolean constant ( and L′′-formulas of the form !ϕ
are self-provers. Moreover, the set of self-provers is closed under ∧,∨, ∃.
Consequently, every Σ-formula is a self-prover.

Proof. Since QGL $ ( → !( and QGL $ !ϕ → !!ϕ, ( and !ϕ are
self-provers. Suppose that ϕ and ψ are self-provers.

3This is a definition for predicate modal formulas, not for arithmetical formulas.
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• Since ϕ and ψ are self-provers, QGL $ ϕ ∧ ψ → !ϕ ∧ !ψ. On the
other hand, QGL $ !ϕ ∧ !ψ → !(ϕ ∧ ψ). Thus we have QGL $
ϕ ∧ ψ → !(ϕ ∧ ψ), and hence ϕ ∧ ψ is a self-prover.

• Since QGL $ ϕ → ϕ ∨ ψ, we have QGL $ !ϕ → !(ϕ ∨ ψ). Since ϕ
is a self-prover, we get QGL $ ϕ → !(ϕ∨ ψ). By a similar argument,
QGL $ ψ → !(ϕ ∨ ψ). Thus, QGL $ ϕ ∨ ψ → !(ϕ ∨ ψ), and hence
ϕ ∨ ψ is a self-prover.

• Since QGL $ ϕ → !ϕ, we have QGL $ ∃uϕ → ∃u!ϕ. On the other
hand, from QGL $ ϕ → ∃uϕ, we have QGL $ !ϕ → !∃uϕ, and
hence QGL $ ∃u!ϕ → !∃uϕ. Thus, QGL $ ∃uϕ → !∃uϕ, and
hence ∃uϕ is a self-prover.

Lemma 15.8. Let ϕ and ψ be self-provers. If QGL $ !ϕ → (ϕ ↔ ψ), then
QGL $ ϕ ↔ ψ.

Proof. Since ϕ is a self-prover, QGL $ ϕ → !ϕ. From this and the as-
sumption, QGL $ ϕ → (ϕ ↔ ψ), and hence QGL $ ϕ → ψ. On the
other hand, by the assumption, QGL $ ψ → (!ϕ → ϕ), and hence QGL $
!ψ → !(!ϕ → ϕ). Applying the axiom L, we get QGL $ !ψ → !ϕ.
Since ψ is a self-prover, QGL $ ψ → !ϕ. From this and the assumption,
QGL $ ψ → (ϕ ↔ ψ), and hence QGL $ ψ → ϕ. Thus QGL $ ϕ ↔ ψ.

We assume that, by replacing variables appropriately, for any formula ϕ,
the set of free variables of ϕ and the set of bound variables of ϕ are disjoint.
(†)

Lemma 15.9. For any Σ-formula σ(p), there is an L′′
Q-formula ξ containing

only predicate symbols, propositional variables and free variables occurring
in σ, not containing p, and such that QGL $ ξ ↔ σ(ξ).

Proof. Induction on the construction of σ(p).

• Assume σ(p) ≡ !ϕ(p). Then QGL $ σ(() ↔ (( ↔ σ(()). By the
derivation of QGL, we have

QGL $ !σ(() ↔ ! (( ↔ σ(()) . (17)

Recall that σ(p) contains no occurrences of p of depth 0, and there is
no variable which occurs freely in σ(() and is bounded in σ(p). By the
substitution lemma,

QGL $ ! (( ↔ σ(()) → (σ(() ↔ σ(σ(())) .
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From this and (17), we obtain QGL $ !σ(() → (σ(() ↔ σ(σ(())).
Since the formula σ(p) is a Σ-formula, so are σ(() and σ(σ(()). By
Lemma 15.7, σ(() and σ(σ(()) are self-provers. By Lemma 15.8,
QGL $ σ(() ↔ σ(σ(()).

• Assume σ(p) ≡ ϕ(p) ∧ ψ(p), and let ξ and π be L′′
Q-formulas such that

QGL $ ξ ↔ ϕ(ξ) and QGL $ π ↔ ψ(π). First, we have QGL $
(ξ ∧ π) → (ξ ↔ (ξ ∧ π)). By the derivation in QGL, we get

QGL $ !(ξ ∧ π) → ! (ξ ↔ (ξ ∧ π)) . (18)

Note that all free variables occurring in ξ (or π) are free variables
occurring in ϕ(p) (or ψ(p), resp.). By our supposition (†), no free
variable occurring in ξ or ξ ∧ π is bounded in σ(p), i.e., bounded in
ϕ(p). By the substitution lemma,

QGL $ !(ξ ↔ ξ ∧ π) → (ϕ(ξ) ↔ ϕ(ξ ∧ π)) .

From this and (18), QGL $ !(ξ∧π) → (ϕ(ξ) ↔ ϕ(ξ ∧ π)). ByQGL $
ξ ↔ ϕ(ξ), we obtain QGL $ !(ξ ∧ π) → (ξ ↔ ϕ(ξ ∧ π)). Similarly,
we can derive QGL $ !(ξ ∧ π) → (π ↔ ψ(ξ ∧ π)). Thus, QGL $
!(ξ ∧ π) → (ξ ∧ π ↔ ϕ(ξ ∧ π) ∧ ψ(ξ ∧ π)), i.e., QGL $ !(ξ ∧ π) →
(ξ ∧ π ↔ σ(ξ ∧ π)).

We claim that ξ and π are self-provers. We show this only for ξ. Since
ϕ(ξ) is a Σ-formula, by Lemma 15.7, ϕ(ξ) is a self-prover, and hence
QGL $ ϕ(ξ) → !ϕ(ξ). By the induction hypothesis, QGL $ ξ ↔
ϕ(ξ), and hence QGL $ !ξ ↔ !ϕ(ξ). Thus QGL $ ξ → !ξ.

By Lemma 15.7, ξ ∧ π is a self-prover. Since σ(p) is a Σ-formula, and
so is σ(ξ ∧ π). By Lemma 15.7, σ(ξ ∧ π) is a self-prover. By Lemma
15.8, QGL $ ξ ∧ π ↔ σ(ξ ∧ π).

• Assume σ(p) ≡ ϕ(p) ∨ ψ(p), and let ξ and π be L′′
Q-formulas such that

QGL $ ξ ↔ ϕ(ξ) and QGL $ π ↔ ψ(π). First, we have QGL $ ξ →
(ξ ↔ ξ ∨ π). Then

QGL $ !ξ → !(ξ ↔ ξ ∨ π). (19)

Note that all free variables occurring in ξ (or π) are free variables
occurring in ϕ(p) (or ψ(p), resp.). By our supposition (†), every free
variable occurring in ξ or ξ∨π is not bounded in σ(p), i.e., not bounded
in ϕ(p). By the substitution lemma,

QK4 $ !(ξ ↔ ξ ∨ π) → (ϕ(ξ) ↔ ϕ(ξ ∨ π)) .
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From this and (19), QK4 $ !ξ → (ϕ(ξ) ↔ ϕ(ξ ∨ π)). By the in-
duction hypothesis, QGL $ !ξ → (ξ ↔ ϕ(ξ ∨ π)). Note that ξ and
ϕ(ξ ∨ π) are self-provers. By Lemma 15.8, QGL $ ξ ↔ ϕ(ξ ∨ π).
Similarly, we can derive QGL $ π ↔ ψ(ξ ∨ π). Thus QGL $ ξ ∨ π ↔
ϕ(ξ ∨ π) ∨ ψ(ξ ∨ π), i.e., QGL $ ξ ∨ π ↔ σ(ξ ∨ π).

• Assume σ(p) ≡ ∃uϕ(u), and let ξ be an L′′
Q-formula such that QGL $

ξ ↔ ϕ(ξ). Since QGL $ ξ → (ξ ↔ ∃uξ), we have QGL $ !ξ →
!(ξ ↔ ∃uξ). Note that no free variable occurring in ξ or ∃uξ is
bounded in ϕ(p). By the substitution lemma, QGL $ !ξ → (ϕ(ξ) ↔
ϕ(∃uξ)). By the induction hypothesis, QGL $ !ξ → (ξ ↔ ϕ(∃uξ)).
Recall that ξ and ∃uξ are self-provers. By Lemma 15.8, QGL $ ξ ↔
ϕ(∃uξ), and hence QGL $ ∃uξ ↔ ∃uϕ(∃uξ), i.e., QGL $ ∃uξ ↔
σ(∃uξ).

Lemma 15.10. For any Σ-formulas σ0(p0, . . . , pn), . . . , σn(p0, . . . , pn), there
are L′′

Q-formulas ξ0, . . . , ξn satisfying the desired properties such that for any
i ≤ n, QGL $ ξi ↔ σi(ξ0, . . . , ξn).

Proof. We prove by the induction on n. If n = 0, then it follows from Lemma
15.9. Assume Lemma holds for ≤ n. Let

σ0(p0, . . . , pn+1), . . . , σn+1(p0, . . . , pn+1)

be Σ-formulas. By the induction hypothesis, there are L′′
Q-formulas

ξ0(pn+1), . . . , ξn(pn+1)

such that for any i ≤ n, QGL $ ξi(pn+1) ↔ σi (ξ0(pn+1), . . . , ξn(pn+1), pn+1).
Let ξ be an L′-formula such that QGL $ ξ ↔ σn+1 (ξ0(ξ), . . . , ξn(ξ), ξ). (The
existence of such an ξ is guaranteed by Lemma 15.9.) Then for any i ≤ n,
QGL $ ξi(ξ) ↔ σi (ξ0(ξ), . . . , ξn(ξ), ξ). Therefore, 〈ξ0(ξ), . . . , ξn(ξ), ξ〉 are
desired formulas. The proof of the case n+ 1 is completed.

Finally, we prove Theorem 15.5.

Proof of Theorem 15.5. Let ϕ(p) be a Boolean combination of Σ-formulas
and formulas containing no occurrences of p. Then there are a propositional
formula ψ(q0, . . . , qn−1, r0, . . . , rm−1), Σ-formulas σ0(p), . . . , σn−1(p), and L′′

Q-
formulas χ0, . . . ,χm−1 containing no occurrences of p, such that

ϕ(p) ≡ ψ (σ0(p), . . . , σn−1(p),χ0, . . . ,χm−1) .
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For each i < n, put ϕi(q0, . . . , qn−1) :≡ σi (ψ(q0, . . . , qn−1,χ0, . . . ,χm−1)).
By Lemma 15.10, there are ξ0, . . . , ξn−1 such that for each i < n, QGL $
ξi ↔ ϕi (ξ0, . . . , ξn−1). Let ξ :≡ ψ(ξ0, . . . , ξn−1,χ0, . . . ,χm−1). Then we have
QGL $ ξi ↔ σi(ξ), and hence

QGL $ ξ ↔ ψ(σ0(ξ), . . . , σn−1(ξ),χ0, . . . ,χm−1),

i.e., QGL $ ξ ↔ ϕ(ξ).
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Chapter VI

Concluding remarks
We close this dissertation with some further problems of our studies.

In the beginning of Section 8.2, we described that the arithmetical com-
pleteness of LP0 does not hold with only the Gödel multi-conclusion proof
predicate Proof. We showed that the arithmetical completeness of LP0 holds
with respect to a modified version of Artemov’s ∆1 normal proof predicate
Prf (Theorem 8.6). Moreover, we also proved that there exist a Σ1 proof pred-
icate Prf, Prf-functions 〈m, a, c〉 and an arithmetical interpretation ∗ based
on Prf such that for any LP-formula F , LP0 $ F if and only if PA $ F ∗ (The-
orem 9.2). However, as mentioned in Remark 9.14, the statement of Theorem
9.2 is incomplete as compared to one of the so-called uniform arithmetical
completeness theorem.

Problem 15.11.

1. Does the uniform arithmetical completeness of LP0 hold with respect
to some Σ1 normal proof predicate?

2. Does the uniform arithmetical completeness of LP0 hold with respect
to some Σ1 proof predicate for which arithmetical soundness of LP0

holds?

In Chapter IV we proved the interpolation properties for Sacchetti’s log-
ics wGLn, and the effectiveness of interpolants. However, we used Kripke
semantics in the proof of the cut-admissibility for wGLG

n . Therefore our
argument is not purely syntactical at this time.

Problem 15.12. Can we prove the cut-elimination theorem for wGLG
n syn-

tactically? In particular, for a given proof π of Γ in wGLG
n + (cut), is there

an effective way to obtain a proof π′ of Γ without the rule (cut)?

Shamkanov [24] used the multi-set based sequent calculus which satisfies
the admissibility of structural rules. It is under consideration whether our
proof works even in a multi-set setting. The proof transforming procedure
described in Section 12.1 does not take care of degrees of formulas. Further-
more, the existence of the rule (weak) is essential in the proof of Theorem
12.2. For these reasons, our proof transforming procedure needs to a little
change in a multi-set setting.

In Chapter V we discussed semantical fixed-point properties for classes
of Kripke frames. The following table summarizes the situation of these
properties.

84



Table 2: Five classes and the fixed-point properties

class FPP local FPP

FIFD No (Theorem 14.6) Yes
(Corollary 14.16)FI No

(Corollary 14.7)
Yes

FH No Yes
BL No

(Corollary 13.4.1)
No

(Corollary 13.4.1)
CW No No

In Section 14.1, we proved that the class FIFD does not have the fixed-
point property (Theorem 14.6). Corollary 14.16 shows that MQ(FIFD) is
consistent with the fixed-point property, that is, there exists a consistent
extension of MQ(FIFD) for which the fixed-point theorem holds. In Section
13.1, we mentioned that MQ(BL) equals to MQ(FH), and thus the classes
BL and FH are not distinguished by the validity of formulas. On the other
hand, BL does not have the local fixed-point property (Corollary 13.4.1),
and FH has the one (Corollary 14.16). Hence we can capture some a logical
difference between BL and FH through the local fixed-point property.

Montagna [17] raised some questions about fixed-points in QGL: (1) Can
we find a procedure for deciding if a formula ϕ(p) has a fixed-point in QGL?
(2) Does it exist a procedure for calculating the possible fixed-points of a
given formula ϕ(p)? These problems have not been settled completely yet.

Problem 15.13. Is there a formula ϕ(p) satisfying the following conditions?

• ϕ(p) is modalized in p;

• ϕ(p) is not provably equivalent to any Boolean combination of Σ-
formulas and formulas containing no occurrences of p:

• ϕ(p) has a fixed-point in QGL.

85



Acknowledgement

My supervisor Makoto Kikuchi introduced me to the area of mathematical
logic, in particular modal logic and formal arithmetic. During the doctoral
course, I faced some doubts about my study as well as adversities concerning
my health. This thesis would not have been possible without his generous
advice and encouragement. I would like to express my deepest appreciation
to him for his guidance during the course of my study.

I would like to thank Taishi Kurahashi who is a co-researcher of my
research for giving insightful suggestions. I would also like to thank him
for his advise on writing papers. I would like to offer my special thanks to
all teachers and colleagues of Fuchino group and my parents for enormous
support.

86



References

[1] S. Artemov, Arithmetically complete modal theories. Semiot. Inform. Sci.
14(14): 115-133, 1980. Translation in Amer. Math. Soc. Transl. 135(2):
39-54, 1987.

[2] S. Artemov, Explicit provability and constructive semantics. Bulletin of
Symbolic Logic 7(1): 1-36, 2001.

[3] S. Artemov and G. Dzhaparidze (Japaridze), Finite Kripke models and
predicate logics of provability. The Journal of Symbolic Logic 55(3): 1090-
1098, 1990.

[4] A. Avron, On modal systems having arithmetical interpretations. J. Sym-
bolic Logic 49(3): 935-942, 1984.

[5] G. Boolos, The unprovability of consistency: An essay in modal logic.
Cambridge University Press, 1979.

[6] G. Boolos, Extremely undecidable sentences. Journal of Symbolic Logic
47(1): 191-196, 1982.

[7] G. Boolos, The logic of provability. Cambridge University Press, 1993.
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