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Abstract

In this dissertation, we investigate several properties for the following logics having
arithinetical interpretations, the modal logic GL, Sacchetti’s logics wGLy,, and Arte-
mov’s logic of proofs LPg. The dissertation is divided into three parts. In the first
part, we prove stronger versions of the arithmetical completeness theorem of LPg. In
the second part, we study interpolation properties for Sacchetti's logic wGL,. An
effective procedure which calculates Lyndon interpolants in wGL,, is also given. In
the final part, we discuss semantical fixed-point properties for predicate modal logics
containing QGL, which is the natural predicate extension of GL.

The modal logic GL is obtained from K by adding an axiom O(Op — ) — Oep.
This logic enjoys two significant properties, the arithmetical completeness and the
fixed-point property.

Modal formulas can be interpreted into first-order arithmetical sentences of for-
mal arithmetic, for example, Peano Arithmetic PA. An arithmetical interpretation of
modal formula is defined as a mapping * from all propositional variables into arith-
metical sentences. In particular, the modal operator O is interpreted as Bew(z) where:
Bew(z) is the standard provability predicate of PA. The provability logic of PA is the
set of all modal formulas ¢ satisfying PA b ™ for any arithmetical interpretation *.

Solovay (1976) established the arithmetical completeness theorem of GL. It asserts
that, GL coincides with the logic of provability of PA, i.e., for any modal formula
©», GL F y if and only if PA I ¢* for any arithmetical interpretation *. Thus
GL captures some properties of the provability predicate Bew(z). Moreover, the
uniform arithmetical completeness theorem also holds for GL. That is, there is a
fixed arithmetical interpretation * such that for any modal formula ¢, GL - ¢ if and
only if PAF *.

De Jongh and Sambin (1976) independently proved the fixed-point theorem for
GL. Let ¢(p) be a modal formula containing p. We say o(p) is modalized in p if all
occurrences of the propositional variable p in (p) are within the scope of the modal
operator. The fixed-point theorem states that if ¢(p) is modalized in p, then there is
a modal formula 3 containing only propositional variables occurring in ¢(p) without
p and such that GL F ¢ < ¢(¢). Moreover, effective procedures of constructing
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fixed-points in GL has been studied by several researchers.

1 Logic of Proofs

A proof predica;te is a formula Prf(z,y) which represents the explicit provability
of formulas in PA. The formula Prf(z,y) intuitively means “there exists a proof in
PA with the code (the Gédel number) x of the formula with the code y.”For a proof
predicate Prf(z,y), we call a 3; formula Pr(z) = JyPrf(y, z) a provability predicate.

Artemov (2001) developed the Logic of Proofs, which analyzes proof predicates in
PA. The logic of proofs deals with LP-formulas, especially formulas of the form
t : F, where t is called a proof term. An arithmetical interpretation of LP-formulas
is defined as a collection of mapping * and Fnctions from proof terms to natural
numbers. The intended meaning of # : F is “% is a (code of a) proof of F.”

Artemov proved the arithmetical completeness theorem of LPy: for any LP-formula
F, LPy + F if and only if for any A; normal proof predicate Prf(z,y) and any
arithmetical interpretation * based on Prf, PA - F*,

Technically, there is a substantial difference between Solovay’s theorem and Arte-
mov’s theorem.. The arithmetical completeness theorem of GL holds for each’ canoni-
cal provability predicate. On the other hand, in the case of LPg the arithmetical com-
pleteness theoremn does not hold with only the standard proof predicate Proof(z,y).
Moreover, it is not known whether the uniform arithmetical completeness theorem
holds for LP,.

‘We examine the following problems: (i) Does the arithmetical completeness theorem
for LPg hold with respect to some fixed proof predicate? (ii) Does the uniform
arithinetical completeness theorem for LPg hold?

For these problems, we prove the following two statements:

(i) There exists a normal A; proof predicate Prf(z, y) such that for any LP-formula
F, LPy I F if and only if for any arithmetical interpretation * based on Prf,
PAF F*;

(i) There exist a £; (but not normal) proof predicate Prf(x, ¥) and an arithmetical
interpretation * based on Prf such that for any LP-formnula F', LPg + F if and
only PAF F*.
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2 Interpolation properties

A logic L is said to have the Craig interpolation property if for any formula ¢ — 9
which is provable in L, there exists a formula @ (called an interpolant of ¢ — )
such that @ consists of common variables of ¢ and 3, and satisfies L - ¢ — 6 and
L 6 — 9. Alogic L is said to have the Lyndon interpolation property if for any
provable implication ¢ — 1, there is a stronger interpolant § which preserves the
positivity of variables, that is, every positive (negative) occurrence of a variable also
occurs both in ¢ and 1 positively (resp. negatively).

In GL, there is a close connection between the fixed-point properties and the in-
terpolation properties, since the following facts:

(i) The fixed-point theorem for GL can be derived from the Craig interpolation
property for the logic;

(if) Using the effective fixed-point theorem, we can prove the effective Lyndon in-
terpolation property for GL.

Proofs of the Craig interpolation property for GL and the fact (i) are independently
given by Boolos (1979) and Smorytiski (1978).

It had been opened whether the Lyndon interpolation property posses for GL until
Shamkanov solved in 2011. He proved the Lyndon interpolation property for GL by
a modified version of Smoryriski’s semantical argument, without applying the fixed-
point theorem. Later in 2014 he also proved the fact (i) by using a cut-free sequent
calculus for GL. A benefit of Shamkanov’s second proof of the Lyndon interpolation
property is that, from ¢ — 1, we can effectively construct a Lyndon interpolant 6 of
@ — 7 whenever ¢ — 9 is provable in GL.

In the proof of Shamkanov’s second result, he also introduced a circular proof
system. A circular proof system °L of L is one which has the same axioms and rules
of L and admits “circular proofs.” A circular proof is a derivation trec of L whosc
leaves are either axioms of L or identical to a sequent below that leaf. Shamkanov
showed that GL is provably equivalent to the circular proof system °K4. He gave an
effective way of constructing a Lyndon interpolant of ¢ — 9 by using °K4 and the
effective fixed-point theorem for GL.
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In Chapter IV, we discuss the interpolation properties for Sacchetti’s logics wGLy,,
which are proper fragments of GL.

Sacchetti (2001) studied modal logics having the fixed-point property. In particular,
he introduced a new modal logic wGL,. The logic wGL,, is obtained from GL by
replacing the axiom D(Oyp — ) — Dg by (0% —~+ ¢) — O, where n is a nonzero

natural mmber, and (0% denotes ﬁcp

Sacchetti’s logics wGL, have several properties like GL. Origiuallj/ Sacchetti
'(2001) showed that wGL,, enjoys all the Kripke completeness, the Craig interpolation
property. Moreover, he proved the fixed-point theorem for wGL,,. Later Kurahashi
(2018) proved the arithmetical completeness theoremn for wGL,, with respect to a £z
provability predicate.

It is expected that wGL,, posses the Lyndon interpolation property, however, this
conjecture has not been clarified.

We develop two one-sided sequent calculi wGLS and wK4S, and prove the fol-

lowing results:

(i) The calculus w@GLS is provably equivalent to the circular proof system
°wK4,(f;

(i) Using °wK4$ and the effective fixed-point theorem for wGLy, (Kurahashi and
Okawa), we can construct a Lyndon interpolant of ¢ — 9 in wGLy,, whenever

@ — 9 is provable.

Iewhoff (2016) studied some sufficient conditions for a type of modal sequent cal-
culus to have an equivalent circular proof system. Although the calculus wGL,? does
not enjoy lemhoff’s conditions, it has an equivalent circular proof counterpart.

3 Fixed-point properties in predicate logic of provability

Tt is natural to extend the studies of the logic of provability to a predicate modal
logic. However, the situation of the predicate logic of provability is quite complex and
most of the properties for GL do not hold for the predicate modal system QGL, which
is the natural predicate extension of GL. In particular, Montagna (1984) proved that
QGL enjoys neither the Kripke completeness, nor the arithmetical completeness.
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He also showed the failure of the fixed-point theorem for QGL, that is, he found a
predicate modal formula ¢(p) which has no fixed-points in QGL.

On the other hand, there is a room for investigations of the fixed-point propertics
in predicate modal logics. The logic QGL is not only the candidate of an extension of

. GL. Recently Tanaka (2018) introduced a new predicate modal logic NQGL, which

is strictly stronger than QGL and enjoys the Kripke completeness with respect to a
proper subclass of transitive and conversely well-founded Kripke frames. There is a
possibility that the fixed-point theorem holds for some extension of QGL.

Sacchetti (1999) showed the fixed-point theorem for the modal logic K + O™+l L.
Also it has not been known that the fixed-point theorem even holds for the predicate
extension of this logic.

In Chapter V we discuss some versions of the fixed-point properties for predicate .
modal logics. We define the following classes of Kripke frames in which all theorems
of QGL are valid: CW (the class of transitive and conversely well-founded frames),
FH (the class of transitive frames with finite height), Fl (the class of finite transitive
irreflexive frames) and FIFD (the class of finite transitive irreflexive frames of which
domains are finite). The class FH is a proper subclass of BL (the class of transitive
of which are bounded length), which is introduced by Tanaka (2018). The Tanaka’s
systemn NQGUL is Kripke complete with respect to the class BL. The class FIFD was
originally investigated by Artemov and Dzhaparidze (1990).

We study two semantical fixed-point properties for a class of Kripke frames, the
fixed-point property and the local fixed-point property. By Montagna's result, it
follows that the classes CW and BL enjoy neither the fixed-point property nor the
local fixed-point property. We discuss whether the classes FH, Fl and FIFD enjoy
these two propertics. We prove the following results:

(i) The classes FH, Fl and FIFD do not enjoy the fixed-point property;

(ii) We prove the fixed-point theoremn for the predicate modal logic QK + 0O+ L,
An algorithm for calculating fixed-points in QK 4"+ L is given in the proof.
Consequently, we obtain that the classes FH, Fl and FIFD enjoy the local fixed-
point property.

As a consequence, we prove that Tanaka’s system NQGL does not enjoy the Craig
interpolation property.
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As mentioned above, Montagna showed that the fixed-point theorem does not hold
for QGL. Although there is a possibility that the fixed-point theorem holds for some
classes of formulas. It has not been known sufficient (or necessary) conditions for a
formula to have a fixed-point in QGL. In the end of Chapter V, we investigate these
conditions. We prove that if ¢(p) is a Boolean combination of X-formulas, then ¢(p)
has a fixed-point in QGL.
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