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SUMMARY

This thesis focuses on the image-based learning methods that contribute to the natural

Human-Computer Interaction (HCI). Compare to physical equipments, human body is a

much more natural medium for many HCI applications in both egocentric (first-person)

and conventional (third-person) viewpoint, such as hand segmentation for virtual keyboard

interaction of smart wearable glasses and human pose estimation for automatic stage lights

control system. Therefore, this thesis targets to analyze images of human body and un-

consciously recognize their diversity activities in the wild. This task is challenging due

to unpredictable environmental condition in the natural application scene, such as rapid

changes in illuminations, background clutter, multiple persons with variant articulation

of body limbs, diverse appearance, self-occlusion, different scales, significant overlap be-

tween neighbor persons and crowd. To overcome the problems and meet the target, we

develop image-based learning methods for hand segmentation and multi-person pose esti-

mation.

In this thesis, we first present an unsupervised on-the-fly hand segmentation approach

which consists of top-down classification and bottom-up optimization. From the point of

view of egocentric interaction loop, an unsupervised frame-level hand detector is proposed

for the purpose of reducing the false positive caused by hand absence. We implement the

frame-level detection by setting a non-interactive border based on an assumption that the

hand is hardly to enter the view field from the top side for egocentric interaction. Based on

the frame-level detection result, the superpixel-level and pixel-level classifiers are trained

on-the-fly sequentially aimed at improving reliability of hand segmentation. To get stable

samples for superpixel-level training, we select the candidates based on steps of confidence

score calculation and energy optimization. In order to be robust to vary environmental con-

ditions, the classifiers are updated from the bottom up based on the proposed performance

evaluation method. This online-learning strategy makes our approach robust to varying

xi



illumination conditions and hand appearances.

This thesis also discusses three approaches of multi-person pose estimation from per-

spectives network head and backbone structure. The cluster-wise learning method illus-

trates the benefits of using multiple task heads to enforce the network learn richer con-

textual information. The lite hourglass network presents the potential way of balancing

performance and computational cost by using hybrid dilated blocks in the network back-

bone. The joint bottom-up and top-down learning method demonstrates the effectiveness

of integrating instance and keypoint detection heads and the bottom-up integral regression.

The overview of these three approaches are presented as following.

The recent popular method for pose estimation is extracting the local maximum re-

sponse from each heatmap that trained for a specific type of keypoint. Learning each key-

point individually makes the approach difficult to parse from occlusion and variant pose.

To target this problem, our cluster-wise feature aggregation method simultaneously learns

complementary semantic information to encourage the detected keypoints subject to a cer-

tain contextual constraint. Specifically, we adopt stacked hourglass networks to generate

paired multi-peak heatmaps for clusters of keypoints and the cluster configuration varies

from stack to stack. Our network encodes global and local consistency of entire body and

parts by dense and sparse cluster branches. To enhance feature passing from shallow stack

to deep stack, we aggregate information from different branches. The in-branch aggrega-

tion enriches the detection features in each branch by absorbing the holistic human region

attention. The cross-branch aggregation further strengthens the detection features by fus-

ing global and local context information between dense and sparse branches. Meanwhile,

the intra-cluster and inter-cluster relationships are embedded with tag learning to guide the

instance grouping and individual keypoint identification. Thus, our network optimizes the

features at a specific keypoint by the received information from multi-level context.

From the structure point of view, the previous proposed method relies on sequential

downsampling and upsampling procedures to capture multi-scale features and stacking ba-
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sic modules to reassess local and global contexts. However, the network parameters be-

come huge and difficult to be trained under limited computational resource. Motived by this

observation, we design a lite version of conventional module that uses hybrid convolution

blocks to reduce the number of parameters while maintaining performance. Moreover, due

to the limitation of heatmap representation, the networks need extra and non-differentiable

post-processing to convert heatmaps to keypoint coordinates. Therefore, we also introduce

a novel bottom-up integral regression operation to reduce the quantization error of convert-

ing heatmaps to keypoint coordinates specifically for bottom-up pipeline multi-person pose

estimation methods.

Multi-person pose estimation is mostly challenged by occlusion and variant postures.

Existing bottom-up and top-down methods have their own advantages and limitations. The

bottom-up approaches detect body keypoints without advance knowledge of person loca-

tions which are firstly explored in the top-down pipelines. However, the benefit of unifying

the two pipeline is lack of exploration. Motived by this observation, we further propose a

joint bottom-up and top-down learning method to better predict multi-person join locations.

Our network not only learns the body keypoints but also the centers which indicate different

person instances. Meanwhile, the offsets from body keypoints to the centers are encoded for

both retrieving and grouping the joints. Based on shared features of keypoints-to-instances

and instances-to-keypoints branches, our method can efficiently perform multi-person pose

estimation. Moreover, we improve the bottom-up integral regression by adding a local

restriction to complement the over-segmentation.

We will introduce the significance of our research topic as well as our contribution sep-

arately in each of the following part: In Chapter 1, we introduce our research background,

related previous research, research objective and overview of our research. In Chapter 2,

we review the basic knowledge related to our research. In Chapter 3, we present an online

learning approach that fully exploits the traits of egocentric vision. In Chapter 4, a deep

convolution neural network is proposed for estimating multi-human poses in the wild. We

xiii



use cluster-wise learning and feature aggregation to achieve this goal. In Chapter 5, we

present a lite hourglass network for learning human body keypoints with less parameters

and computational cost. In Chapter 6, we introduce a joint learning method which explores

more geometric information from the top-down pipeline to complement the appearance

features learnt from the bottom-up pipeline. Finally in Chapter 7, we give a conclusion of

our research topic and discuss the remaining issues.

xiv



CHAPTER 1

INTRODUCTION

1.1 Background

The Human-Computer Interaction (HCI) domain is a field of study that focuses on inter-

preting human intent to computer systems and feeding computer responses back to human.

One of its essential targets is to provide user a natural interaction system that is simple and

easy to learn. The most common systems are wearable sensor-based and computer vision-

based, as illustrated in Figure 1.1. The wearable sensor-based system infers human activi-

ties according to the signals collected from sensors such as accelerometer, magnetometer,

and gyroscope that are broadly used in smart phones, watches and bands. By contrast, the

computer vision-based system relies much less on multiple devices while captures richer

semantic information. It analyses images of the users and unconsciously recognizes their

diversity activities. Comparatively speaking, computer vision-based approaches provide

more natural interaction between human and computers than the sensor-based methods. To

meet the end of natural HCI, this thesis focuses on the image-based methods for learning

human body information which is the fundamental medium to the computer vision-based

system.

Generally, computer vision enables computers to understand images or videos from the

perspective of human visual system. It transforms the visual images into descriptions that

can interact with other processes and trigger response actions. Computer vision-based HCI

system benefits to a more natural way of interaction by using human body information as

inputs rather than physical equipments. The human and scene of the interaction are cap-

tured by camera of the HCI system and then inferred by computer vision technology, such

as hand segmentation, human detection, pose estimation, activity recognition, etc. Based

1



Figure 1.1: Illustration of the concept of sensor-based and vision-based HCI.

Figure 1.2: Example of egocentric vision-based HCI.

on the viewpoint of camera, computer vision-based HCI system can be further catalogued

into egocentric vision-based and conventional vision-based, as illustrated in Figure 1.1(b).

The conventional vision acquires images of the interaction subjects from the third-person

viewpoint, as shown in Figure 1.1(b2). Compare to the conventional vision, the egocentric

vision mainly focuses on understanding images from the first-person viewpoint of the in-

teraction subjects, such as the hand image from the viewpoint of the smart camera wearer

which is shown in Figure 1.1(b1).

The head mounted display and smart glasses are typical devices for the egocentric

vision-based HCI system. As an example of egocentric vision based system shown in Fig-
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Figure 1.3: Example of conventional vision based HCI.

ure 1.2, the user wearing a head mounted display (Microsoft HoloLens [1]) utilizes hand

gesture to browse the immersive content captured by a panoramic camera, such as Ricoh

THETA [2]. Beside that, the egocentric vision also benefits the concentration of daily life

records based on analysis of hand-object interaction. The essential technology supporting

the system is to segment hand region from the captured image. Figure 1.3 illustrates an

example of the conventional vision-based HCI system. The system camera captures the

images of the stage, extracts body keypoints of the actors, analyzes their body poses and

automatically adjusts the stage lights based on some certain kinds of poses, such as stand

with arms akimbo. The fundamental process of the system is human pose estimation.

Due to the practical application scene of natural HCI is complex, there are a lot of chal-

lenges for computer vision-based system to interpret human body information, as examples

shown in Figure 1.4. To segment hand region from natural scene, the HCI system needs

to confront the challenges of varying illumination or background having similar skin color.

To accurately estimate human pose, the HCI system has to overcome the occlusion between

body parts or different people.
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Figure 1.4: Example of challenge cases for learning human body information.

1.2 Previous Research

According to a survey of egocentric vision [3], the most commonly explored objective of

egocentric vision is object recognition and tracking. Furthermore, hands are among the

most common objects in the user’s field of view, and a proper detection, localization, and

tracking could be a main input for other objectives. G. Serra et al. [4] develop a gesture

recognition algorithm to be used in an interactive museum using 5 different hand gestures.

Moreover, people in the visual field are also the important objects need to be understood. Lu

and Grauman [5] and Lee et al. [6] summarize an egocentric video based on the important

objects and faces. Singletary and Starner [7] use face detection to identify when first-

person is involved in a social interaction. Ng et al. [8] infers body pose in egocentric video

by leveraging interactions with another person whose body pose can be directly observed.

Their research also shows that the human pose estimation from third-person viewpoint can

be easily transferred and applied to the egocentric vision. The most recent research from

G. Hidalgo et al. [9] presents a single-network approach integrating hand, body, face and

foot pose estimation.

1.2.1 Hand Segmentation

Great efforts have been made in detecting user’s hand from the egocentric video especially

in pixel-level detection [10, 11, 4, 12, 13, 14, 15]. Most of these methods are under an

implicit assumption that the hand presents in the video all the time. But, the assumption

fails in many situations in which the hand is not used, such as before or after the human-
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Figure 1.5: Example of failure prediction at underexposure illumination.
(a) is the overview of training dataset [10]. (b) is the prediction result generated by code of [10].

computer interaction. Subsequently, some cascade detection methods are put forwarded

to get rid of the assumption by checking out hand presence before performing pixel-by-

pixel classification [16, 17, 18]. However, these approaches rely on the existence of a

large training set containing a broad variety of data which are collected from multiple users

under diverse illumination conditions. Hand appearance varies greatly in diverse users and

environmental conditions. Not only does the training set cost a lot of manual effort in

data collection and labelling but also it does not guarantee to make the approach adapt to

any hand appearance and environmental condition, as shown in Figure 1.5. However, the

egocentric view also brings opportunities for hand detection and segmentation. Since the

video is recorded from a first-person perspective, the occlusions are less likely to happen at

the attention hand and the user prefers to concentrate on region in the center of view field.

From this point of view, we devote to robust hand segmentation by utilizing coarse-to-fine

online learning.

1.2.2 Human Pose Estimation

Human pose estimation refers to the task of locating and recognizing the body keypoints

or joints (such as nose, eyes, ears, shoulders, elbows, wrists, hips, knees, ankles, etc.) from

single or multiple persons in a single RGB image or a frame of videos. It is an essential

component in many computer vision applications, such as human computer interaction
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Figure 1.6: Examples of human pose estimation for sports video analytics.

Figure 1.7: Examples of related tasks of human pose estimation.
(a) Human semantic part segmentation [40]. (b) Fashion landmarks detection [41].

system, somatosensory gaming, human action recognition, video surveillance and sports

video analytics. Figure 1.6 shows examples of human pose estimation. Beside body joints,

keypoints can be extended to refer to the small visual units with semantic information

indicating the compositions, shapes and poses of the target objects, such as finger joints or

key positions of any other objects. Therefore, accurate keypoint detection in unconstrained

environments brings benefit to other more detailed visual understanding tasks, including

hand segmentation [19, 20] and pose estimation [21, 22], human action recognition [23, 24,

25, 26], human parsing [27, 28, 29], person re-identification [30, 31], viewpoint estimation

[32, 33], salient object detection [34, 35], fashion landmark [36] and 3D reconstruction

[37, 38, 39]. Figure 1.7 shows examples of human pose estimation related computer vision

tasks.
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Figure 1.8: Illustration of single person pose estimation pipeline.

Single Person Pose Estimation

Similar as many computer vision tasks, the progress on human pose estimation problem is

significantly improved by deep convolutional neural networks, especially by the network

with structure of encoding-decoding. Figure 1.8 demonstrates the general pipeline of single

person pose estimation. Generally, instead of directly regressing the keypoint coordinates,

the network generates a likelihood heatmap for each keypoint and locates the keypoint as

the point with the maximum likelihood in the heatmap. Therefore, the supervision of the

network is a set of heatmaps which are converted from the input keypoint coordinates. Fig-

ure 1.8 also shows the detail of ground truth heatmap generation. The predicted heatmaps

are then converted to keypoint coordinates by find the local maximums from the heatmaps.

The type of each keypoint is retrieved by the order of the output. The final human pose

can be obtained by connecting all detected keypoints. Since the natural HCI scene always

contains multiple people, the hot spot has been focused on the much more complex task of

multi-person pose estimation.
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Figure 1.9: Illustration of multi-person pose estimation pipelines.

Multi-person Pose Estimation

In spite the good performance of extensive prior arts of single person pose estimation, it

remains challenging to get accurate keypoint detection from variant articulation of body

limbs, diverse appearance, self-occlusion, different scales, significant overlap between

neighbor persons and crowd. Moreover, for multi-person pose estimation, it is also de-

manding to allocate the detected keypoints to multiple scales and unknown number of per-

sons. The two major branches of approaches in multi-person pose estimation are structured

in top-down and bottom-up. Figure 1.9 illustrates overview of these two pipelines. On

one hand, the top-down methods [42, 43, 44, 45, 46, 47, 48] firstly detect persons and

then repeatedly estimate pose for each of them. On the other hand, the bottom-up methods

[49, 50, 51, 52, 53] detect body keypoints without advance knowledge of person locations

and then group them into person instances. Comparatively, the bottom-up methods are the

less costly processes, since they do not need to repeat the single person pose estimation

for each person detection. However, current methods are still challenged by the occlusion.

Figure 1.10 shows predictions generated by a state-of-the-art bottom-up method [52]. Be-
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Figure 1.10: Illustration of challenge cases for existing method.

sides occlusion, the number of parameters is also another crucial factor effecting the overall

performance of the network.

1.3 Research Objective

Compared with sensor-based methods, computer vision-based approaches provide more

natural interaction between human and computers. This thesis aims at developing image-

based approaches to learn human body information that is the natural medium contributing

to computer vision-based HCI system. More specifically, this thesis proposes image-based

approaches of hand segmentation that is robust to varying illumination and human pose

estimation that is robust to occlusion with low computational cost.

For contributing to the egocentric vision-based HCI system, we target to segment user’s

hand from varying illumination and appearance conditions. Most previous approaches rely

on the existence of a large training set containing a broad variety of data which are collected

from multiple users under diverse illumination conditions. Hand appearance varies greatly

in diverse users and environmental conditions. Not only does the training set cost a lot of

manual effort in data collection and labelling but also it does not guarantee to make the ap-

proach adapt to any hand appearance and environmental condition. To meet this target, we

explore properties of interaction loop and propose a coarse-to-fine online learning method.

To be helpful to the conventional vision-based HCI system, we aim to estimate body
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pose of user’s social objects robust to occlusion. In most recent methods, the body key-

points are inferred separately from each other according to their corresponding heatmaps.

This separately learning may not fully exploit the relation between keypoints since the ap-

proaches are still struggling in overcoming the problem of occlusions and complex multi-

person situations. To this end, we exploit relation between body keypoints by using cluster-

wise learning. We also integrate bottom-up and top-down learning to explore geometric in-

formation that complements the appearance information. Besides that, we devote to make

a balance between performance and computation cost. Existing methods are based on

stacked modules which bring huge parameters. To solve the problem, we develop a lite

version network which reduces the number of parameters while maintain the performance.

1.4 Overview of Our Research

Overall, one hand segmentation and three human pose estimation approaches constitute the

basic structure and main content of our research.

1.4.1 Hand Segmentation

Coarse-to-fine Online Learning for Hand Segmentation in Egocentric Video

Egocentric view brings benefit that the video is recorded from a first-person perspective,

the occlusions are less likely to happen at the attention hand and the user prefers to con-

centrate on region in the center of view field. However, the egocentric video also presents

new challenges including rapid changes in illuminations, significant camera motion and

background clutter. To address this issue, we propose a method for unsupervised hand

detection and segmentation in egocentric video. In our approach, the frame-level hand

presence or absence is observed based on motion saliency which is particular in the ego-

centric view. By combining motion and appearance property, we get unsupervised labeling

results for the superpixel-level hand classification. Then, the pixel samples of hand are ex-

tracted according to confidences of the superpixels and used to train a pixel-level classifier
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which produces fine-grained hand segmentation. In order to be robust with varying envi-

ronmental condition, we constantly update the classifier and detector by using a bottom-up

optimization method.

1.4.2 Human Pose Estimation

Cluster-wise Learning for Multi-person Pose Estimation

Similar with most recent methods [42, 45, 54, 55], the number of detection channels are in-

tuitively set as the same of the number of keypoints. The keypoints are inferred separately

from each other according to their corresponding heatmaps. This brings us an intuitive

thinking that the separately learning may not fully exploit the relation between keypoints

since the approaches are still struggling in overcoming the problem of occlusions and com-

plex multi-person situations. Based on this point, we propose a cluster-wise feature ag-

gregation network that exploits multi-level contextual association for multi-person pose

estimation. Moreover, due to the limitation of heatmap representation, the networks need

extra and non-differentiable post-processing to convert heatmaps to keypoint coordinates.

Therefore,we propose a simple and efficient operation based on integral loss to fill this gap

specifically for bottom-up pose estimation methods.

Lite Hourglass Network for Multi-person Pose Estimation

Recent multi-person pose estimation networks rely on sequential downsampling and up-

sampling procedures to capture multi-scale features and stacking basic modules to reassess

local and global contexts. However, the network parameters become huge and difficult to

be trained under limited computational resource. Motived by this observation, we design a

lite version of Hourglass module that uses hybrid convolution blocks to reduce the number

of parameters while maintaining performance.
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Joint Bottom-up and Top-down Learning for Multi-person Pose Estimation

Multi-person pose estimation is mostly challenged by occlusion and variant postures. Ex-

isting bottom-up and top-down methods have their own advantages and limitations. The

bottom-up approaches detect body keypoints without advance knowledge of person loca-

tions which are firstly explored in the top-down pipelines. However, the benefit of unifying

the two pipeline is lack of exploration. Motived by this observation, we propose a joint

bottom-up and top-down learning method to better predict multi-person join locations.
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CHAPTER 2

REVIEW ON BASIC KNOWLEDGE

In this Chapter, we review the basic knowledge enlightening our research. Image segmen-

tation results are crucial cues for locating objects and boundaries in images. Superpixel

generation and saliency detection are important processing related to image segmentation.

In following sections, we first briefly review these basic knowledge that inspire our pro-

posed approach for hand segmentation. With development of deep learning, the Convolu-

tional Neural Network (CNN/ConvNet) [56] becomes one of the mainstream tool to solve

the problem of human pose estimation. Unlike handcrafted features used in classical ap-

proaches, CNN-based methods perform well with regard to both good feature extraction

and strong discrimination ability. To design an effective CNN achieving enhanced perfor-

mance, it is crucial to understand the principle of CNN components, the typical approaches

representing the evolution of human pose estimation task and the evaluation metrics. There-

fore, we also give a brief introduction of CNN-based methods with regard to human pose

estimation.

2.1 Image segmentation

Image segmentation is the process of partitioning an image into perceptually meaningful

segments such as superpixels or salient regions. The goal is to represent the image in an

meaningful way and make it easier to further analyse. From the classification point of view,

image segmentation is the process of assigning a label to every pixel in an image such that

pixels with the same label share common characteristics.
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2.1.1 Superpixel

Pixels are the foundational components in most computer vision and image processing

tasks. However, they are not the natural representation of visual scenes but a set of dis-

crete units. It would be more efficient to work with perceptually meaningful entities called

superpixels that consist of pixels sharing common properties, such as color and texture.

Compare to pixels, superpixels encode more information and reduce complexity of images

to only a few hundred processing units. Superpixels are the results of an image overseg-

mentation that align better with object edges than rectangular image patches, as illustrated

in Figure 2.1(b). They provide a convenient and compact representation of images that can

be very useful for computationally demanding tasks, such as image segmentation, semantic

labelling, etc.

Simple Linear Iterative Clustering (SLIC) [57] algorithm generates superpixels by clus-

tering pixels having similar color and neighbouring position. This is done in the five-

dimensional labxy space, where lab is the pixel color vector in CIELAB color space and

(x, y) is the pixel coordinate in image plane. The maximum possible distance between two

colors in the CIELAB space is limited whereas the spatial distance in the xy plane depends

on the image size. In order to cluster pixels in the five-dimensional labxy space, the al-

gorithm introduces a new distance measure that considers superpixel size. By using this

distance measurement, the expected cluster sizes and their spatial extent are approximately

equal. The normalized distance measure Ds to be used in the five-dimensional space is

defined as follows:

Ds = dlab +
m

S
dxy (2.1)

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2 (2.2)

dxy =
√

(xk − xi)2 + (yk − yi)2 (2.3)
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Figure 2.1: Illustration of superpixel generation.
The superpixel map is generated by SLIC [57].

where dlab is the lab distance and dxy is the xy plane distance and normalized by the gird

interval S, m controls the compactness of a superpixel. The greater the value of m, the

more spatial proximity is emphasized and the more compact the cluster.

SLIC [57] algorithm begins by samplingK regularly spaced cluster centers and moving

them to seed locations corresponding to the lowest gradient position in a 3x3 neighborhood.

This is done to avoid placing them at an edge and to reduce the chances of choosing a noisy

pixel. Image gradients G(x, y) are computed using both color and intensity information.

G(x, y) = ||I(x+ 1, y)− I(x− 1, y)||2 + ||I(x, y + 1)− I(x, y − 1)||2 (2.4)

where I(x, y) is the lab vector corresponding to the pixel at position (x, y). Each pixel in

the image is associated with the nearest cluster center whose search area overlaps this pixel.

A new center is computed as the average labxy vector of all the pixels belonging to the clus-

ter. The process of associating pixels with the nearest cluster center and recomputing the

cluster center is repeated until convergence. Connectivity can be enforced in the last step
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Figure 2.2: Illustration of saliency region detection.
The saliency map is generated by global contrast based method [58].

of the algorithm by relabeling disjoint segments with the labels of the largest neighboring

cluster. Figure 2.1 illustrates an example of superpixel generation with different sizes.

2.1.2 Saliency

Visual saliency indicates the most relevant parts that stand out from the image and attract

the viewer’s attention. It simulates the attention mechanism in organisms to filter the im-

portant regions of what they see. The filtered regions are then perceived and processed in

finer details for the extraction of richer high-level information. Saliency detection has been

widely used in many computer vision tasks since it helps find the objects or regions that

efficiently represent a scene and thus harness complex vision problems such as fine grained

segmentation.

A key step in detecting salient regions is to distinguish them from distractors [59]. To

this end, some methods [60, 61, 58] firstly segment an input image into regions aligned with

intensity edges using region generation methods such as SLIC [57]. Then, it computes a

regional saliency map based on the uniqueness in terms of global regional contrast. In

the global contrast based method [58], a region-based saliency algorithm is introduced by

measuring the global contrast between the target region with respect to all other image

regions. The image is first segmented into N regions {ri}Ni=1 and then saliency of each
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region ri is estimated as:

s(ri) =
N∑
j=1

wijDr(ri, rj) (2.5)

where Dr(ri, rj) captures the appearance contrast between two regions, such as color, tex-

ture and structure.The higher saliency scores are assigned to regions with the larger global

contrast. wij is a weight term between ri and rj , which incorporates spatial distance and

region size. Figure 2.2 shows an example of saliency map generated by the global contrast

based method [58].

2.2 Convolutional Neural Network

CNNs can be considered as the special case of ordinary Neural Networks, which extract

representative features of the input images and have shown state-of-the-art performance on

various computer vision tasks. By using large amount of multiple type of layers, CNNs

have powerful learning ability and can automatically learn complex representations from

the training data.

2.2.1 Foundational Components

A simple CNN structure for keypoint location regression may consist of a sequence of

foundational components, including convolutional layers, activation layers, pooling layers

and fully connected layers. To output coordinate predictions, the CNN transforms the input

image layer by layer from the original pixel values to the final keypoint coordinates. Each

layer transforms an input volume to an output volume with some differentiable function

that may or may not have parameters. The convolutional layer extracts locally correlated

features by computing dot product between learned weights and a slice that relates to a

small region of the input. The activation layer applies an elementwise activation function

and embeds non-linearity in the feature space. The pooling layer performs a downsampling

operation along the spatial dimensions and summarizes the results. The fully connected
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Figure 2.3: Illustration of convolution.

layer connects all outputs of previous layer and computes the keypoint coordinates. The

details of each component are presented in following sections.

Convolutional Layer

The convolutional layer is the core component of a CNN. The layer is composed of a set

of learnable kernels (filters) which associate each position in the feature map with a small

area of the input image. The convolution operation is carried out by sweeping the kernels

through out the inputs and calculating dot product between the weights and pixel values. It

produces convolved features which encode the relevance between local pixels and develop

visual context for analysis the image. Note that the weights are shared within each input

which makes CNNs having condensed number of parameters compare to fully connected

neural networks. Moreover, the sweeping stride may be different for all kernels and the

feature map may be padded to fit the kernel sizes. The more kernels are deployed, the

more channels (depth dimension) that the convolved features will contain but with more

computational cost. Figure 2.3 illustrates the process of a 3x3 kernel convolution.

Pooling Layer

To reduce the dimensions of the feature maps, CNNs may include pooling layers which

streamline the feature representation with a local aggregation approach. Generally, the
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Figure 2.4: Illustration of pooling.

pooling layer is inserted in-between successive convolutional layers to progressively re-

duce the spatial size of the feature maps. Pooling layers not only decrease the redundant

information but also make the features invariant to translational shifts and small distortions.

The pooling operation may select out the maximum or average value from a local region to

represent the dominant response. The most common form is a pooling layer with filters of

size 2x2 applied with a stride of 2 downsamples every depth slice in the input by 2 along

both width and height. In an extreme case, the pooling globally combines the output all the

neurons of the convolutional layer into a single neuron in the next layer. Figure 2.4 shows

examples of max pooling and average pooling.

Activation Function

Activation functions determine the output of a neural network. The function is attached to

each neuron in the network and activates the neuron whose input is relevant for the network

prediction. Non-linear activation functions enhance the network representation ability and

makes the model to generalize or adapt with variety of data and to differentiate between the

output. The Rectified Linear Unit (ReLU) is the most popular activation function used in

almost all the convolutional neural networks or deep learning. It is defines as the positive
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Figure 2.5: Illustration of ReLU.

part of its argument:

A(x) = max(0, x) (2.6)

where x is the input to a neuron. ReLU is simple in mathematical operations and less

computationally expensive than other non-linear functions, such as tanh or sigmoid. Figure

2.5 illustrates the activation of ReLU.

Batch Normalization

The batch normalization [62] layer aims to solve the problems of training caused by vary-

ing distribution of each layer’s inputs. It normalizes a part of the model architecture and

performs the normalization for each training mini-batch. With this regard, the CNN train-

ing is carried out under much higher learning rates and relaxing method of the parameter

initialization. Generally, the batch normalization transform can be added to a network fol-

lowed an activation layer. Formally, the batch normalization transforms a feature map Fi
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Figure 2.6: Illustration of Dropout [63].

to have zero mean and unit variance by following equations.

Ni =
Fi − µB√
σ2
B + ε

(2.7)

Yi = γ ∗Ni + β (2.8)

where Fi is the input feature map, Ni is the normalized feature map, µB denotes the mini-

batch mean and σB indicates the mini-batch variance, ε is a constant added to the mini-

batch variance for numerical stability. Yi is the linear transforms of normalized values with

learnable scale and shift parameters γ and β. By doing this, batch normalization preserves

the representation ability of the network but not brings too many parameters.

Dropout Layer

The Dropout [63] is an approach to prevent over-fitting in neural networks by reducing in-

terdependent learning amongst the neurons. The key idea of dropout layer is to randomly

drop neurons in accordance with a certain probability from the networks during training.

The abandoned neurons are not contributed to a particular forward or backward pass. This

operation reduces the over-fitting caused by co-dependency amongst neurons and improves
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Figure 2.7: Illustration of fully connection.

network generalization. At test time, all dropped neurons are used but with reduced activa-

tions based on the dropout proportion. Figure 2.6 demonstrates the process of dropout.

Fully Connected Layer

In fully connected layer, all neurons are connected to learn non-linear combinations of the

high-level features as represented by the output of the convolutional or pooling layer. It

drives the network to produce a final label to describe the input image. More specifically,

the output of convolution or pooling layer is flattened into a single vector of values that

represent the probabilities of certain features belongs to a specific label. The final label is

decided with the highest probability. However, the fully connected layers have fixed di-

mensions and throw away spatial coordinates. Recent networks replace the fully connected

layers with 1x1 convolutions that make the networks can take input of any size and output

classification maps. Figure 2.7 shows an example of fully connection.
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Figure 2.8: Illustration of the Residual block [64].

2.2.2 Evolutionary Components

To improve the CNNs performance, recent designed architectures become deeper and wider

and the foundational components are evolved from layers to blocks. By increasing the

network depth, more abstractive high level features are combined with the lower and mid-

level features and the representational capacity of a CNN can be gradually enhanced. In

addition, another major improvement in representational capacity of the CNN is achieved

by the evolution of the foundational components. Different ideas in the component design

have been explored such as the use of multi-path and different convolutional kernel sizes,

residual connection and attention processing. With this regard, the subsequent sections

cover the elementary understanding of various CNN components.

Residual Block

As more layers using certain activation functions are added to neural networks, the gra-

dients of the loss function approaches zero, making the network hard to train. Residual

block [64] is a popular solution to solve the gradient vanishing problem. It provides resid-

ual connections straight to earlier layers. The core idea of residual block is introducing a

so-called identity shortcut connection that skips one or more layers. As seen in Figure 2.8,

the residual connection (pink path) directly adds the value at the beginning of the block, x,

to the end of the block (F (x) + x). This residual connection doesn’t go through activation

functions that squashes the derivatives, resulting in a higher overall derivative of the block.
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Figure 2.9: Illustraion of the Bottleneck block [64].

The Residual block [64] is defined as:

y = F (x) + x (2.9)

where x and y are the input and output vectors of the layers. The function F (x) denotes

the residual mapping to be learned and can represent multiple convolutioal layers. The

element-wise addition is performed on two feature maps, channel by channel. The shortcut

connections in Eqn.(2.9) introduce neither extra parameter nor computation complexity.

Bottleneck Block

The Bottleneck block [64] is an improved version of residual block for deeper networks.

It preserves the identity shortcut but uses a 1x1 convolutional layers to reduce the number

of feature maps before and after the expensive 3x3 convolution. For each residual function

F , the Bottleneck block uses a stack of three convolutional layers instead of two. Figure

2.9 illustrates the Bottleneck block. In the variant form of the Bottleneck block, the divide-

transform-concatenate is done by pointwise grouped convolutional layer, which divides

its input into groups of feature maps and perform normal convolution respectively, their

outputs are depth-concatenated and then fed to a 1x1 convolutional layer.

Fire Block

The Fire block from Squeezenet [65] is designed to reduce number of parameters while

maintaining competitive accuracy. It also replaces 3x3 convolutional kernels with 1x1 ker-

nels, since a 1x1 kernel has 9X fewer parameters than a 3x3 kernel. Moreover, it decreases
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Figure 2.10: Illustration of the Fire block [65].

the number of input channels by 1x1 kernels and feed the low dimension features into 3x3

kernels. Compare to the Bottleneck block [64], the Fire block uses multi-path in the di-

mension expansion phase, as illustrated in Figure 2.10. The multi-path consists of not only

3x3 but also 1x1 convolitonal kernels which helps increasing the output dimension without

introducing too many parameters.

2.3 Human Pose Estimation with CNN

With the introduction of DeepPose by Toshev et al. [66], CNN-based approaches are re-

placing the classic feature engineering-based methods and become the dominant tools for

human pose estimation. By carefully designed learning targets and network architectures,

recent pose estimation systems yield drastic improvements on standard benchmarks.

2.3.1 DeepPose: Human Pose Estimation via Deep Neural Networks

The DeepPose [66] was the first major approach that applied deep learning to human pose

estimation. By using CNN, there is no need to explicitly design feature representations,

detectors for parts and interactions between joints. This approach formulates the pose

estimation as a CNN-based regression problem towards body joints.

As shown in Figure 2.11, it utilizes a 7-layered convolutional neural network to regress

the location of each body joint from the input image. The network outputs 2k joint co-

ordinates (xi, yi) ∗ 2 for i ∈ 1, 2, ..., k, where k is the number of joints. Since each joint

regressor uses the full image as a signal, the CNN is capable of capturing the full context

of each body joint. Moreover, this approach uses a cascade of such regressors to refine
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Figure 2.11: Architecture of DeepPose [66].
Table 2.1: Compare DeepPose [66] with prior-art: LSP dataset(PCP@0.5).

Method Upper Arm Lower Arm Upper Leg Lower Leg Ave.

Johnson et al. [67] 0.54 0.38 0.75 0.66 0.58
Wang et al. [68] 0.565 0.37 0.76 0.68 0.59
DeepPose [66] 0.56 0.38 0.77 0.71 0.61

the pose estimates and get better predictions. Images are cropped around the initially pre-

dicted joint and fed to the next stage, in this way the subsequent pose regressors see higher

resolution images and thus learn features for finer scales which ultimately leads to higher

precision. It trains a linear regression on top of the last network layer to predict a pose

vector by minimizing L2 distance between the prediction and the true pose vector. Then

the L2 loss for obtaining optimal network parameters reads:

L =
∑

(xi,yi)∈(DN )

k∑
i=1

||yi − ψi(x; θ)||22 (2.10)

where DN is the normalized training set, k is the number of keypoints, yi is the ground

truth, ψi(x; θ) is the prediction under parameter θ. The network performance is shown in

Table 2.1.

DeepPose [66] innovatively applied CNN to human pose estimation and provoked an

research boom in this direction. However, directly regressing to keypoint coordinate is

difficult and adds learning complexity which weakens generalization and hence performs
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Figure 2.12: Architecture of Tompson et al. [69].

poorly in certain regions. Recent state-of-the-art methods transform the problem to esti-

mating K heatmaps to indicate the probability of keypoint locations. The next approach

was fundamental in introducing this idea.

2.3.2 Efficient Object Localization Using Convolutional Networks

Rather than directly regressing body joint coordinates, Tompson et al. [69] propose a

method that outputs heatmaps that describe the likelihood of a joint occurring in each spa-

tial location. The input image is fed into multiple resolution banks in parallel to simulta-

neously capture features at a variety of scales. The outputs are a set of discrete heatmaps

instead of continuous regressions. Each heatmap predicts the probability of a specific type

of joint occurring at each pixel. Inspired by this network, many following approaches pre-

dict heatmaps instead of direct coordinates regression.

As shown in Figure 2.12, a multi-resolution CNN architecture is used to implement

a sliding window detector to produce a coarse heatmap output. The model is trained

by minimizing the Mean-Squared-Error (MSE) distance between the predicted and tar-

get heatmaps. The target is a 2D Gaussain of constant variance centered at the ground truth
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Table 2.2: Compare Tompson et al. [69] with prior-art: MPII dataset(PCKh@0.5)

Method Head Shoulder Elbow Wrist Hip Knee Ankle UpperBody FullBody

Yang et al. [70] 73.2 56.2 41.3 32.1 36.2 33.2 34.5 43.2 44.5
Pischulin et al. [71] 74.2 49.0 40.8 34.1 36.5 34.4 35.1 41.3 44.0
Tompson et al. [69] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 84.5 82.0

coordinate (x, y). The objective function is:

E =
1

N

N∑
k=1

∑
x,y

||H∗k(x, y)−Hk(x, y)||2 (2.11)

where H∗ and H are the predicted and ground truth heatmaps for the the k − th keypoint.

To produce fine predictions, this approach uses a graphical model to learn typical spatial

relationships between joints from the coarse heatmap model. In essence, the model consists

of the heat-map-based parts model for coarse localization, a module to sample and crop the

convolution features at a specified (x, y) location for each joint, as well as an additional

convolutional model for fine-tuning. The network performance is shown in Table 2.2.

The method of Tompson et al. [69] verified that heatmaps work better than direct joint

regression. It jointly uses CNN and graphical model to produce fine results. However,

these methods lack structure modelling. The space of 2D human poses is highly structured

because of body part proportions, left-right symmetries, interpenetration constraints, joint

limits (e.g. elbows do not bend back) and physical connectivity (e.g. wrists are rigidly

related to elbows), among others. Modelling this structure should make it easier to pinpoint

the visible keypoints and make it possible to estimate the occluded ones. The next approach

tackles this by an innovative network structure.
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2.3.3 Stacked Hourglass Networks for Human Pose Estimation

The Stacked Hourglass Network (SHN) [45] introduces a remarkable convolutional net-

work architecture for the task of human pose estimation. Its main principle is to utilize

repeated bottom-up (from high resolutions to low resolutions) and top-down (from low res-

olutions to high resolutions) feature processing to capture the various spatial relationships

associated with the body. The basic module is called Hourglass based on the successive

steps of pooling and upsampling to capture information at multiple scales. Moreover, each

Hourglass module uses skip connections to preserve spatial information at each resolution

and passes it along for upsampling until reach the largest scale. Further, the network stacks

multiple hourglass modules with intermediate supervisions to improving the performance.

Figure 2.13 illustrates the architecture of the stacked hourglass network. The network

pools down the feature maps to a very low resolution, and then upsamples and combines

features across multiple resolutions. The most significant attribute of the network is the

symmetric topology that consists of a series of convolution, pooling and upsampling lay-

ers. This architecture provides the benefit of capturing both global and local features for

the pixel-wise prediction tasks. Moreover, the network is extended by repeating multiple

Hourglass modules. Each layer in the Hourglass makes extensive use of the residual bot-

tleneck block with special setting for the number of feature channels. The MSE loss is

applied comparing the predicted heatmap to a ground-truth heatmap consisting of a 2D

Gaussian (with standard deviation of 1 pixel) centered on the joint location. The network

performance is shown in Table 2.3.

This innovative design shows the importance of multi-scale feature extraction and inter-

mediate supervision for human pose estimation. Its idea enlightens the research afterwards

with the thoughts on fully usage of global and local information and coarse-to-fine strategy

to enforce the network produce better predictions.
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Figure 2.13: Architecture of SHN [45].
Table 2.3: Compare SHN [45] with prior-art: MPII dataset(PCKh@0.5)

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

Hu et al. [72] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4
Wei et al. [73] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5

SHN [45] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

2.4 Evaluation for Human Pose Estimation

In this section, we introduce the common evaluation datasets and metrics which are used

to measure the performance of human pose estimation models.

2.4.1 Datasets

The two main datasets for human pose estimation task are MSCOCO [74] and PoseTrack

[75]. Figure 2.14 gives intuitive introduction of the annotations of these two datasets.

There are 17 keypoints from body parts of face and limbs. The annotation for each people

is a sequence of 17 keypoints with a certain order. Therefore, we can retrieve the type

of each keypoint from a predefined dictionary (e.g., the second keypoint is the left eye).

Moreover, the body keypoints are highly related with their adjacent keypoints based on the

physical structure. Figure 2.14 uses blue arrows to indicate the adjacent relation between

keypoints and the front point is more stable than the gear point. Besides the difference in
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Figure 2.14: Definition of keypoints.
(a) MSCOCO [74] datasets. (b) PoseTrack [75] datasets. The center point is the average of the all keypoints.
The arrows show the adjacent relation between keypoints. The ear keypoints of PoseTrack have placeholders
rather than real labels.

keypoint types from one to four, the annotation format of PoseTrack [75] is compatible

with MSCOCO [74]. The ear keypoints of PoseTrack have placeholders rather than real

labels. By averaging locations of all keypoints, we can obtain the center point which is

a useful cue to identify instance. More specifically, the MSCOCO [74] dataset consists

of 118,287 training, 5000 validation and 40,670 testing images (including 20,880 test-dev

and 19,790 test-challenge). And over 150K labeled person instances from 56,599 training

and 2346 validation images are publicly available. The PoseTrack [75] dataset is a large-

scale benchmark for human pose estimation and tracking in video and based on the diverse

real-world activity videos from the MPII Human Pose dataset [76]. It annotates 15 body

keypoints from 550 video sequences (292 training, 50 validation and 208 testing) with

66, 374 frames. The length of the most videos ranges between 41 and 151 frames, and 30

frames from the middle of the sequence have annotations. The validation and test sequences

are densely annotated with a step of four frames. In total, PoseTrack2018 provides around
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Figure 2.15: Illustration of keypoint connections and color coding.

23,000 labeled frames and 153,615 pose annotations. To further semantic understanding,

we usually connect the detected keypoints based on the body part structure with predefined

colors, as shown in Figure 2.15.

2.4.2 Metrics

Percentage of Correct Parts (PCP)

The metric named Percentage of Correct Parts (PCP) [77] measures the detection rate of

limbs (body parts). A candidate body part is labelled as correct if its segment endpoints

lie within 50% of the length of the ground-truth annotated endpoints. This is commonly

denoted as PCP@0.5. The PCP penalizes shorter limbs more since shorter limbs have

smaller thresholds. For a specific part ,

PCPi =
Ci
Ti

(2.12)
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where Ci is the number of correct parts for entire dataset and Ti is the number of total parts

of entire dataset. The higher the PCP, the better the model performance. However, PCP has

the drawback of penalizing shorter limbs, such as lower arms, which are usually harder to

detect.

Percentage of Correct Keypoints (PCK)

The metric named Percentage of Correct Keypoints (PCK) [28] defines a candidate key-

point to be correct if the distance between the predicted and the true joint is within a certain

threshold. If the candidate keypoint falls within α ∗max(h,w) pixels of the ground truth

keypoint, where h and w are the height and width of the bounding box respectively, and α

controls the relative threshold for considering correctness. Commonly, the PCK is calcu-

lated refer to the head bounding box with α = 0.5 and denoted as PCKh@0.5. This metric

alleviates the drawback of PCP since the detection criteria for all joints are based on the

same distance threshold.

Object Keypoint Similarity (OKS)

The Object Keypoint Similarity (OKS) [74] measures the similarity between ground truth

keypoints and predicted keypoints based on distance rather than the bounding box overlap.

Given the OKS, we can compute average precision (AP) and average recall (AR) of the

keypoint detection just as the IoU (Intersection Over Union) allows us to compute these

metrics for object detection. The OKS is defined as

OKS =

∑
i [exp(−d2/2s2ki

2δ(vi > 0))]∑
i [δ(vi > 0)]

(2.13)

Where, di is the Euclidean distance between detected keypoint and ground truth, the vi

indicates visibility of the ground truth, ski is the standard deviation of an unnormalized

Guassian, where s is the object scale and ki is a per-keypiont constant that controls falloff.
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For each keypoint, this yields a keypoint similarity that ranges between 0 and 1. To put it

simply, OKS plays the same role that IoU plays in object detection. It is calculated from the

distance between predicted points and ground truth points normalized by the scale of the

person. Typically, the following standard average precision and recall scores are reported

in papers: AP/AR (the mean of AP and AR scores at 10 positions, OKS = 0.50, 0.55, . . . ,

0.90, 0.95), AP50/AR50 (AP and AR at OKS = 0.50), AP75/AR75 (AP and AR at OKS =

0.75), APM/ARM for medium objects, and APL/ARL for large objects.

Error Diagnosis

Images of natural HCI scene may contain multiple instances of people, and a variable num-

ber of body parts (or keypoints) are visible. However, the evaluation metrics like PCK [28]

or OKS [74] are not sufficient for analysis the underlying causes of error that may affect

performance. Ronchi et al. [78] propose an error diagnosis system for fully understanding

the behaviour of algorithms.

The error diagnosis system [78] defines four types of localization errors, including Jit-

ter, Miss, Inversion and Swap, as a function of the keypoint similarity ks(., .) between the

detected keypoint θ̂(p)
i and the ground truth annotation θ(p)

i of a person p. Every keypoint

detection having a keypoint similarity with its ground truth that exceeds 0.85 is considered

Good.

ks(θ̂
(p)
i , θ

(p)
i ) = exp

−
||θ̂(p)
i
−θ(p)
i
||22

2s2k2
i (2.14)

The Jitter is defined as a small error around the correct keypoint location.

0.5 ≤ ks(θ̂
(p)
i , θ

(p)
i ) < 0.85 (2.15)

The Miss denotes large localization error which means that the detected keypoint is not
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within the proximity of any body part.

ks(θ̂
(p)
i , θ

(q)
i ) < 0.5,∀q ∈ P and ∀j ∈ J (2.16)

where P is the set of people, J is the set of keypoints. The Inversion measures confusion

between semantically similar parts belonging to the same instance. The detection is in the

proximity of the true keypoint location of the wrong body part.

ks(θ̂
(p)
i , θ

(p)
i ) < 0.5 (2.17)

∃j ∈ J | ks(θ̂
(p)
i , θ

(p)
i ) ≥ 0.5 (2.18)

The Swap indicates confusion between semantically similar parts of different instances.

The detection is within the proximity of a body part belonging to a different person.

ks(θ̂
(p)
i , θ

(p)
i ) < 0.5 (2.19)

∃j ∈ J and ∃q ∈ P | ks(θ̂
(p)
i , θ

(q)
i ) ≥ 0.5 (2.20)

The false positive keypoint localizations are typically caused by the self occlusion of body

parts or occlusion by other objects. In these circumstances, the OKS scores of detected

keypoints are lower than the evaluation thresholds.
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CHAPTER 3

COARSE-TO-FINE ONLINE LEARNING

FOR HAND SEGMENTATION IN EGOCENTRIC VIDEO

3.1 Introduction

Hand segmentation is one of the most fundamental and crucial steps for egocentric human-

computer interaction. The special egocentric view brings new challenges to hand seg-

mentation task, such as the unpredictable environmental conditions. The performance of

traditional hand segmentation methods depend on abundant manually labeled training data.

However, these approaches do not appropriately capture the whole properties of egocentric

human-computer interaction for neglecting the user specific context. It is only necessary

to build a personalized hand model of the active user. Based on this observation, we pro-

pose an online-learning hand segmentation approach without using manually labeled data

for training. Our approach consists of top-down classifications and bottom-up optimiza-

tions. More specifically, we divide the segmentation task into three parts, a frame-level

hand detection which detects the presence of the interactive hand using motion saliency

and initializes hand masks for online learning, a superpixel-level hand classification which

coarsely segments hand regions from which stable samples are selected for next level, and a

pixel-level hand classification which produces a fine-grained hand segmentation. Based on

the pixel level classification result, we update the hand appearance model and optimize the

upper layer classifier and detector. This online-learning strategy makes our approach robust

to varying illumination conditions and hand appearances. Experimental results demonstrate

the robustness of our approach.

Egocentric view brings benefit that the video is recorded from a first-person perspective,

the occlusions are less likely to happen at the attention hand and the user prefers to concen-

36



trate on region in the center of view field. However, the egocentric video also presents new

challenges including rapid changes in illuminations, significant camera motion and back-

ground clutter. To address this issue, we propose a method for unsupervised hand detection

and segmentation in egocentric video. In our approach, the frame-level hand presence or

absence is observed based on motion saliency which is particular in the egocentric view.

By combining motion and appearance property, we get unsupervised labeling results for

the superpixel-level hand classification. Then, the pixel samples of hand are extracted

according to confidences of the superpixels and used to train a pixel-level classifier which

produces fine-grained hand segmentation. In order to be robust with varying environmental

condition, we constantly update the classifier and detector by using a bottom-up optimiza-

tion method. We test our method on challenging datasets and the experimental results show

that our method robustly produces precise segmentation, as illustrated in Figure 3.1.

In summary, our method makes three main contributions:

• We propose a frame-level hand presence detection method that utilizes hand mo-

tion saliency in the egocentric human-computer interaction, which reduces the false

positive rate for the final target of pixel-level hand segmentation.

• We present a top-down cascaded classification method which segments hand hierar-

chically in levels of frame, superpixel and pixel so as to reduce computational cost,

in which the classifiers are trained on-the-fly so as to be robust to diverse users.

• We analyze and optimize the online trained classifiers by a bottom-up method which

makes the hand segmentation robust to varying environmental conditions.

3.2 Related Work

Egocentric vision is an emerging area in computer vision. According to survey of [3]

that the most commonly explored objective of egocentric vision is object recognition and

tracking. Furthermore, hands are among the most common objects in the user’s field of
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Figure 3.1: Results of proposed method in challenge cases.
From (a) to (g) are cases of hands are motion blur, background having skin-color, frames are overexposed,

hands in contrast shadow, frames are underexposed, hands interacting with objects, and hands in varies
poses.
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view, and a proper detection, localization, and tracking could be a main input for other

objectives, such as gesture recognition, understanding hand-object interactions and activity

recognition [13, 79, 80, 81, 82, 5]. Recently, egocentric pixel-level hand detection has

attracted more and more attention.

Most of the proposed methods are based on pre-training classifiers using abundant man-

ually labeled data. Li et al. [10, 12] propose a pixel-level hand detection method using color

and texture based features. Zhu et al. [11] propose a method which use local hand shape

information in the training data and enforces shape constraints in the estimation. Serra

et al. [4] integrate temporal and spatial consistency to complement the appearance fea-

tures. Betancourt et al. [83] identify the left and right hands and models hand occlusions

to improve the accuracy of hand segmentation. These methods improve the precision of

pixel-level hand detection but still under the implicit assumption of hand presence in all

frames. This assumption is not always true since that the hand may be absence before or

after the egocentric human-computer interaction.

Some of the proposed methods conquer the hand segmentation task sequentially. Betan-

court [16] proposes a sequential classifier consists of a hand-detector and a hand-segmentator.

Betancourt et al. [17] extend SVM-based hand detector with a dynamic bayesian network.

These methods reduce false positive rate of hand segmentation but also needs the offline

training which requires manual labeled data. Kumar et al. [18] illustrate an on-the-fly hand

detection training method which is initialized by a calibration gesture performed by the

user. This simple preprocessing step saves a great deal of manual labeling but may not be

friendly to the user. Zhu et al. [84] propose a two-stage detector which firstly generates

bounding box proposals and secondly evaluates the proposals by a convolutional neural

network. Moreover, all of these methods are still challenged with varying environment

conditions since they don’t have any model updating strategy.

In this chapter, we are going to illustrate our fine-grained hand segmentation method

which leverages unsupervised online learning pattern to robustly segment the hand in pixel-
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Figure 3.2: Framework of proposed method.

level from egocentric video.

3.3 Method

In this section, we discuss an unsupervised online learning method for fine-grained hand

segmentation based on top-down classification and bottom-up optimization. By learning

hand appearance and motion features on-the-fly, we segment out the hand with precise

boundary from the egocentric video which is captured in varying illumination condition.

From the point view of top-down strategy, we divide the classification task into three parts:

frame-level detection, superpixel-level and pixel-level classifications. Before scanning

pixel by pixel, we firstly estimate whether a frame contains a hand and whether a region of

the frame contains hand pixels. By doing this, we reduce the false positive and initialize

samples for further online training. After that, we learn feature from the labeled region and

train two-level classifiers. To make sure the classifiers adapt to varying hand appearance,

we update the hand appearance model and optimize the upper layer classifier and detector.

Figure 3.2 shows the framework of our method.
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3.3.1 Ego-saliency Based Hand Detection

Before scanning the frame pixel-by-pixel, the first task is detecting presence of hand from a

frame-level perspective and then automatically initialize hand masks for subsequent classi-

fications. Motion-based methods [85, 86, 87] are proposed for background subtraction for

freely moving camera. In general, it is difficult to determine whether the hand is presence

or not without prior information about the environment or appearance of the hand. Fortu-

nately, the egocentric interaction scenario provides many constraints that are suggestive of

the hand’s presence.

From the point view of an interaction cycle, the motion of hand in egocentric view has

periodical specialty. In the interaction preparatory phase, the whole hand and part of the

arm together gradually enter into the view field. During the interaction, the whole hand

moves around the center of view field and the fingers are likely to make more vigorous

motion than the palm and arm, such as making a gesture. When the interaction is finished,

the whole hand and part of the arm together gradually move out of the view field. We

observe that the preparatory phase is a natural bootstrap since the hand motion is more

salient than other regions and the hand is hardly to enter into the view field from the top

side.

Based on this observation, we define an ego-saliency metric Ef consists of spatial and

temporal terms to estimate how likely the hand is presence in the frame f . The higher the

ego-saliency value, the more likely the hand is presence.

EIN
f =

W∑
i=1

H∑
j=1

(
1

1 + eλ(h−j) − 0.5
∗Mf (i, j)) +

f∑
t=f−n

sgn(Nt −Nt−1) (3.1)

Where, the first term is the spatial cue that restricts the hand motion should be salient

and happened in the right position. The second term is the temporal cue that restricts

the hand motion should be consequently increased. W and H denote width and height
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Figure 3.3: Initialize hand label based on ego-saliency.
(a)-(e) are original image, optical flow to the next frame, motion saliency of (b), clustering result of (b) with

non-interactive border labeled in red, and estimate hand regions.

of the frame respectively. Mf (i, j) is the motion saliency of a pixel at position (i, j) and

calculated based on optical flow map using method [26]. As shown in Figure 3.3 d, we set

a non-interactive border with width W and height h from the top of the frame. We set h

as one tenth of the frame height in experiments. And we use a distance-based exponential

weight to restrict that hand motion should happen away from the non-interactive border. λ

is the weight response control factor. The farther a pixel is away from the non-interactive

border, the greater its weight is assigned. Nt is the number of non-zero values in the motion

saliency map Mt. The consequent motion increment is observed by a sign function sgn(·)

based on the number of pixels having salient motion in adjacent n frames.

After detecting the presence of hands, we initially segment moving hand regions based

on motion and appearance clustering. By using dual TV-L1 optical flow [88], we extract

dense motion flow fields and get a motion map. We cluster the motion map into k groups

of regions using K-means and we set k as 10 in the experiments. The motion clustering

naturally divides foreground and skin-colored background into different regions since they
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usually move differently. Figure 3.3 (d) shows the regions got from motion clustering and

the non-interactive border. With the help of non-interactive border, we easily select out a

set of background regions RBG which intersect with the border. The rest unknown regions

are further determined based on appearance clustering. According to equation 3.2, we

calculate the likelihood Hf (Ri) of an unknown region Ri belonging to hand region based

on the similarity between the unknown region Ri and background regions RBG. S(·, ·) is a

function calculating color histograms similarity of two regions. Then, we find out the hand

regions which have low color similarity with all the background regions. Figure 3.3 (d)

shows the initialized hand mask which is generated by using motion and color clustering.

Hf (Ri) =
∑
j∈BG

S(Ri, Rj) (3.2)

3.3.2 Online Training Two-level Hand Classifiers

With the ending of the interaction preparatory phase, hands motion is attenuating and may

eventually become much less salient, such as only the fingers move to make a gesture while

the palm holds still. Moreover, motion-based segmentation usually produces the result with

blurry and noise boundaries around objects. Therefore, the appearance feature is more

discriminative than motion cue for fine-grained hand segmentation during the interaction

phase.

Here we address a coarse-to-fine strategy based hand segmentation method that learns

appearance feature of hand and background on-the-fly. Based on the initial set of hand

masks Bt got from the frame-level detection, we firstly train a superpixel-level hand clas-

sifier so as to segment frames into superpixel regions from which the stable pixel samples

are selected out. Then, we utilize the selected pixel samples to train a pixel-level classifier

which produces fine-grained hand segmentations.

In the frame-level detection step, we obtain a coarse segmentation of the hands using

motion and ego-saliency cues. It initially provides the ground truth labels of hand regions
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Figure 3.4: Example of two-level classification.
(a)-(d) are Superpixel segmentation overlaid on original image, probability map of superpixel-level

classification, probability map of pixel-level classification, final segmentation overlaid on original image.

for superpixel-level training. We overly segment the recent n consecutive frames Ft into

superpixels by using a modification of a state-of-the-art algorithm termed simple linear

iterative clustering (SLIC) [57].

The K-means clustering of motion map derives a binary segmentation separating the

foreground from the background. However, the K-means segmentation has coarse bound-

aries which are sometimes inconsistent with the superpixels’. To select good samples for

superpixel-level training, we initialize a label map based on the portion of positive pixels

in each superpixel and refine it by energy optimization. Figure 3.5 illustrates the process

of superpixel sample selection. Given a binary mask of the K-means segmentation, we

assign the superpixels having 80 percent positive pixels as foreground candidates and their

dilated superpixels as background candidates. The candidates are further selected based on

confidence score calculation and energy optimization.

We define a confidence score to describe how much the superpixel is more similar to its

homogeneous neighbors than the heterogeneous neighbors. For a candidate superpixel, we
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calculate its confidence score as equation 3.3. After normalization, we get a score map as

shown in Figure 3.5 (d).

Scorei =
1

Z

∑
i∈Ω−i

∑
k∈Ω+

i

D(hi, hj)

D(hk, hj)
(3.3)

D(hi, hj) =
1∑
k ck

c1D(hiSIFT , h
j
SIFT ) + c2D(hiRGB, h

j
RGB) (3.4)

where Ω−i and Ω+
i are sets containing samples collected from the neighborhood of super-

pixel i, the superscript “-” indicates that the samples have different class label with super-

pixel i while “+” stands for the contrary situation, and Z is a normalization factor. And,

hSIFT and hRGB denote the SIFT and RGB histograms respectively, D(hi, hj) is the Chi-

square distance between the histograms hi and hj , ck is a constant to normalize the k-th

descriptor.

We take the score as a label and optimize it for each superpixel by using Ising model

[89][90]. The foreground and background candidates constitute a foreground system and

a background system respectively. The energy of each system consists of the affinities and

consistencies of superpixels to their neighborhood within the system. Color and texture are

useful cues since foreground tends to have a difference appearance than the background

behind it. Therefore, the affinity between a superpixel and its neighbor is computed as the

Chi-square distance between their color and texture histograms. Higher affinity indicates

stronger consistency for belonging to the same class. Therefore, we optimize the label

based on an energy which encourages coherence in superpixels of similar appearance. For

a superpixel, we inverse its label and calculate the energy change caused by the inversion.

This label inversion is directly accepted if the system energy is increased. On the contrary,

the process is further judged by an acceptance function. This routine is repeatedly executed

until the system reaches equilibrium. Then, the superpixel labels are optimized.

Given a labelled region, we calculate the energy of each superpixel within it and ac-
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cumulate them together to describe its system energy. For a superpixel, we first compute

an affinity score and a label consistency score for each pair of adjacent superpixels. Af-

ter normalizing the scores, we calculate their correspondence which is proportional to the

superpixel energy. Based on the exponential correspondence, we obtain the superpixel

energy. After that, we compute the system energy as

E =
∑
i

∑
j∈Ωoi

e−|S(i,j)−L(i,j)| (3.5)

where Ωo
i is the neighborhood of superpixel i within the system, S(i, j) is the affinity and

L(i, j) is the label consistency between two adjacent superpixels.

To describe the appearance of a superpixel, we compute the histograms of SIFT features

and RGB values from the image area of it occupies. Considering the appearance feature is

prone to be coherence in a local region, we use the distance between two adjacent super-

pixels to restrict the contribution of the neighboring superpixel. Larger distance indicates

smaller contribution. Moreover, the superpixels nearing to the system boundary are tend to

be unstable. Hence, the distance from superpixel to boundary is also a term of the affinity

score. Based on these four descriptors, the affinity score S(i, j) is defined for superpixel

pair (i, j) as equation 3.6.

S(i, j) = 1− 1∑
k ck

(c1D(hiSIFT ), hjSIFT ) + (c2D(hiRGB), hjRGB) + c3A(i, j) + c4B(j)

(3.6)

where A(i, j) is the Euclidean distance between the adjacent superpixel centers, and B(j)

is the Euclidean distance from superpixel j to the system boundary.

We inverse the label of superpixel i and get its updated label consistency score Li(i, j)

with the adjacent superpixel j. The energy of the system is renovated correspondingly.

Then, we compute the increment ∆E of the system energy. Based on the increment, we
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Figure 3.5: Select superpixel samples based on energy optimization.
(a)-(i) show the process of selection. Blue, pink and brick in (g) illustrate the selected background,

foreground and abandoned samples respectively.

decide if it should accept the label inversion.

label(i) =


label(i), ∆E ≤ 0&&exp(−β∆E),

lable−1(i), otherwise.

(3.7)

where label−1(i) is the inversion value of label(i), βis a weight factor and R is a pseudo

random number from uniform distribution. In a word, the label inversion will be accepted

if it increases the correspondence between the superpixel’s appearance similarity and clas-

sification type.

Given the notations of all superpixels, we initially train the superpixel-level classifier

based on appearance features which consist of color and gradient statistic in each super-

pixel. The classifier is able to select out the superpixels belonging to hands with confidence

values. Note that the motion cue may eventually become much less discriminative. There-

fore, we apply the SLIC [57] on color frame to get the superpixel segmentation in the

subsequent online training. Because of benefiting from the relatively accurate boundaries
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produced by the SLIC [57], the segmentation in superpixel-level is improved than the re-

sult of frame-level detection. However, the superpixel having low confidence value may

partially contain hand region. It will cause misclassification if we take that kinds of super-

pixels as background and select negative pixel samples from them. Therefore, we proposed

a sample selection strategy for pixel-level classifier training.

For pixel-level training, we select samples from the superpixels based on their classi-

fication confidence values. The negative samples are selected from the superpixel having

confidence smaller than a threshold value TU . The positive samples are selected from

the candidate superpixels which have confidences greater than a threshold value TL. The

unstable superpixels having confidences between TU and TL are abandoned as unknown.

Moreover, the higher the confidence of a superpixel belongs to the hand region, the more

positive samples are extracted from it. Based on the property of superpixel generated by

SLIC [57] method, we suppose that pixels nearing to the center of the superpixel are more

likely to be in the same class with the superpixel. Therefore, we divide the pixels of candi-

date superpixels into training and unknown groups based on the distance between the pixel

and the superpixel’s center. By combining the areaAsp and confidenceWsp of a superpixel,

we define the distance threshold Tsp as equation 3.8. Then, the candidate superpixels are

eroded based on the threshold Tsp. The pixels in the shrunk region are put into unknown

group while the others are selected as positive training samples.

Tsp = Asp ∗Wsp (3.8)

Following the previous pixel-level segmentation approach [10], we extract color features

from RGB, HSV and LAB color spaces and texture feature using HOG [91]. By using a

pool of combination of features and random forest classifiers [92], we classify the unknown

pixels and obtain fine-grained hand segmentations. After that, we also get a more precision

description of the confidence of a superpixel belonging to the hand region. The confidence
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values of superpixels are updated with their portion of positive labeled pixels. Then, we re-

train the superpixel-level classifier by using the superpixel having high confidence values.

By doing this, we update the hand and background models on-the-fly which makes the

method more robust to varying environment.

Note that the two-level classifiers select out the pixels that are most likely to be in the

hands. The motion cue becomes salient and discriminative again when the interactive hand

gradually moves out of the view field. Therefore, we still have to monitor the hand absence

by aid of the egocentric saliency metric which is added a confidence term, as described in

equation 3.9.

EOUT
f =

W∑
i=1

H∑
j=1

(
1

1 + eλ(h− j)
− 0.5) ∗Mf (i, j) +

f∑
t=f−n

sgn(Nt−1−Nt)−
1

m

m∑
k=1

Wspk

(3.9)

Where, the first term denotes the motion saliency, the second term observes the consequent

motion decrement, the third term is the average superpixel confidence of the frame f and m

is the number of superpixels having confidence greater than 0.5.

3.3.3 Evaluation to Update Classifier

In evaluation stage, we use a bottom-up strategy. We evaluate bottom classifiers and feed-

back loss to the upper levels. The superpixel-level classifier is directly affected by precision

of pixel-level classification since the confidence of superpixel is calculated based on pixel

classification results. In the initialization step, we consider frames of a sequence equally

to contribute to pixel-level classifier. Since background changes constantly, the appearance

of hand varies a lot and becomes different from previous situation, such as hand enters

into a shadow place. Therefore, the history frames contribute differently and we calculate

weights Wt for n history frames of the training set Ft to make their contributions more

rational based on error of pixel-level classifier. The weight Wt consists of a local metric
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W t
L and a global metric W t

G.

Wt =
1

(W t
L +W t

G)
(3.10)

Given a labelled training set Ft, we train a collection of classifiersCt. By using the classifier

Ct, we get the confidence value W t
spk

of a superpixel SPk belonging to the hand regions in

current test frame f. The local metric SPk restricts that the result of classifier Ct has low

variance with other classifiers of the set. Therefore, we calculate the loss of using training

data from frame t based on the difference between classification results of test frame f

produced by Ct and the average classifier C{Ft}.

W t
L =

1

m

m∑
k=1

(W t
spk
− C{Ft}) (3.11)

C{Ft} =
1

n

∑
l∈Ft

W l
spk

(3.12)

Where, m is the number of superpixels in current test frame f , n is the number of frames in

the training set Ft. From a global point of view, we estimate the loss of using training data

from frame t based on the difference between the classification result of frame f produced

by Ct and the classification result of frame f − 1 produced by the previous classifier Cf−1
Fp

which is trained using data from Fp under the constraint of weightWp. Generally speaking,

precise classification can segment hand region from background with clear boundary while

smooth and flat inside the region. We calculate gradient map of the classification probabil-

ity map and define three gradient-based constraints to evaluate the global loss. Firstly, the

magnitude of the biggest contour in the gradient map should be large. Then, the gradient

in the conjunction of two superpixels should be small. That is, the number of contours

in the gradient map should be small. And last, the shapes of the biggest contours in cur-

rent and previous gradient maps should be similar. Based on these three constraints, we

calculate a global loss function having terms based on the average magnitude Gf of the
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biggest contour, the number Nf of contours, and the shape Sf of the biggest contour in the

classification result of test frame f .

W t
G = (Gt

f −G
f−1
f−1) + (N t

f −N
f−1
f−1 ) +D(Stf , S

f−1
f−1) (3.13)

Where, the right hand superscript denotes the classifier has been used, Ct or Cf−1
Fp

. D(·, ·)

is a function estimating the difference between two shapes. By combining W t
L and W t

G,

we evaluate the effectiveness of training samples from frame t not only in local superpixels

but also in the global hand region. Based on the weight Wt, we optimize the pixel-level

classification result which is used to update the superpixel-level classifiers. Note that the

terms of the weight function will be normalized before combination.

3.4 Results and Discussion

We evaluate our cascaded hand segmentation method on two types of egocentric data which

correspond to different levels of human-computer interaction. The first type contains the

both hands are exposed with little varying gesture and interacting with objects, such as

holding a cup. The second type contains the hands performing gestures, such as virtual

keyboard typing, without directly interacting with any object. We firstly compare our cas-

caded hand segmentation with the state-of-the-art methods and analyze the validity of our

framework. Then, we illustrate that the egocentric human-computer interaction can benefit

from our hand segmentation approach.

3.4.1 Evaluation on Benchmark Dataset

To compare with baseline methods, we first test our approach on the benchmark dataset

CMU EDSH [10] which consists of egocentric videos containing diverse indoor and out-

door illumination and hand poses. The videos were collected by a subject wearing the

head-mounted standard color camera and passing through scenes with varying illumination
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Table 3.1: Comparison with state-of-the-art on F-score

Data Li’s[10] Zhu’s[11] Baraldi’s[13] Ours

EDSH1 Training Training Training 0.8667
EDSH2 0.835 0.835 0.852 0.899
EDSHK 0.840 0.935 0.901 0.913

Table 3.2: Comparison with state-of-the-art on time

- Li’s[10] Zhu’s[11] Baraldi’s[13] Ours

Time(ms) 2138 3277 1092 3497

including the extreme cases of underexposed and overexposed at a resolution of 720p and

a speed of 30 FPS. Besides the change of skin color, the hand pose also changes during

the subject doing daily activities. The dataset contains 19,788 frames and 743 ground truth

labels from 3 video clips, including EDSH1, EDSH2 and EDSHK. EDSH1 and EDSH2

involve data of bare hands with a few intentional gestures while EDSHK records hand in-

teracting with objects in a kitchen. In order to match the scale of the ground truth, we

downsample the resolution of the frame from 1280x720 to 640x480 pixels. We conduct

quantitative and qualitative evaluation on the benchmark dataset to compare our detection

performance with the prior arts.

In Table 3.1, we compare our method with the three state-of-the-arts on F-score. Li et

al. [10] predict hand pixel using color and gradient features based on Random Forest clas-

sifiers. Zhu et al. [11] extend the pixel-level method by introducing shape information of

pixels based on structured forests. Baraldi et al. [13] utilize temporal and spatial coherence

strategy to improve the hand segmentation of the pixel-level method. The state-of-arts use

video clip EDSH1 as the training data and test their approaches on the rest clips of EDSH2

and EDSHK. The corresponding F-scores are provided by their papers. Since our approach

using online training strategy, we give out our F-scores on all the clips. As the F-scores

shown in Table 3.1, our approach improves the detection precision in most experiments.

We have implemented our algorithm and tested the non-optimized code on an Intel based
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Figure 3.6: Challenge illumination cases comparison.
From top to bottom are cases of overexposed, underexposed, overexposed, and high contrast shadows. The

first column shows the original images. The middle column shows results of Li et al. [10] and the last
column shows our results.

PC, with a i7-4500U CPU that runs at 1.80 GHz. Most of time is spent on superpixel

sample selection and online training. The time cost can be reduced by decreasing the num-

ber of samples used in all stages. In Table 3.2, we compare our method with of the three

state-of-the-arts on time.

Figure 3.6 and Figure 3.7 show the visually comparison of test images overlapped by

detection results provided by their papers and our method in the challenge cases of extreme

lighting conditions and background color. In Figure 3.6, the test frames of EDSH2 were
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Figure 3.7: The original image has similar color in background and hand regions.
From (b) to (c) are corresponding results of ours, Li et al. [10] and Zhu et al. [11].

taken under extreme lighting conditions of overexposed, underexposed and high contrast

shadows. Parts of the hand are blended into background by the strong or insufficient light

while the color and texture of the other parts are faded inordinately. Li et al. [10] fail to

give good prediction in these cases. In contrast, our approach has much higher detection

precision. Our continuously online training strategy makes the classifiers robust to varying

illumination even in the extreme conditions. Figure 3.7 shows the case of background shar-

ing similar color and texture with hand. Both methods of Li et al. [10] and Zhu et al. [11]

fail to distinguish the hand from the textureless and skin-colored background. In contrast,

our approach gives more correctly prediction in this case. By using online learning, our

method gradually updates the hand and background models so that the classifiers are more

robust to varying scene.
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Figure 3.8: Virtual keyboard interaction.
(a)-(d) illustrate examples of fingertip detection for virtual keyboard interaction. Columns from left to right

are original images, hand segmentation results overlapping on original images, fingertip detection by
analyzing convex of hand segmentation result, and virtual keyboard interaction.

3.4.2 Evaluation on Egocentric Application

Fingertip position is one the most practical information for egocentric vision based human-

computer interaction, such as the user inputs command via a virtual keyboard. Fingertip

detection can directly benefit or suffer from the precision of the hand segmentation. There-

fore, we use a simple fingertip detection method to further evaluate our hand segmentation

method from the practical point of view.

As shown in Figure 3.8, we evaluate the applicability of hand segmentation by an ap-
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plication of virtual keyboard interaction. The ready gesture of index finger up triggers the

virtual keyboard to show up. Then the egocentric view field is divided into girds each of

which corresponds to a key. In the experiment, we divide the view field into 5x7 grids

which provide relative comfortable interaction scale for the user. The duration of fingertip

activates the key input and the corresponding position will light up. We extract tip posi-

tion of the index finger from the hand segmentation result by convex hull analysis. The

video was recorded by a subject wearing the head-mounted Logitech camera in the indoor

scene at a resolution of 640x480 and a speed of 30 FPS. The test video totally contains

1439 frames consist of the whole interaction procedure including hand moving into the

view field, ready gesture showing up, fingertip hovering and moving through keys, and

hand moving out of the view field. Figure 3.8(a)-(c) illustrate the robustness of our hand

segmentation-based fingertip detection. Figure 3.8(d) shows the failure case caused by the

noise of the segmentation which could be removed by extra post-process.

Figure 3.9 shows the performance of our hand segmentation method in the virtual key-

board interaction application. The red and blue dots are the detected fingertip interaction

frames. We can see that the detected fingertip position and the ground truth respectively

in the keyboard position is stable and with little jitter. And the fingertip detection accu-

racy rate is 0.9867 over the test video. Figure 3.9 (b) shows the total 17 failure cases over

the 1277 interactive frames. It proves that our hand segmentation approach is reliable and

prone to be used in egocentric vision based human-computer interaction.

3.5 Conclusion

In this chapter, we presented an unsupervised on-the-fly hand segmentation method which

consists of top-down classification and bottom-up optimization. From the point of view of

egocentric interaction loop, an unsupervised frame-level hand detector is proposed for the

purpose of reducing the false positive caused by hand absence. We implement the frame-

level detection by setting a non-interactive border based on an assumption that the hand is
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Figure 3.9: Performance of hand segmentation in virtual keyboard interaction.
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hardly to enter into the view field from the top side for egocentric interaction. Based on

the frame-level detection result, the superpixel-level and pixel-level classifiers are trained

on-the-fly sequentially aimed at improving reliability of hand segmentation. To get stable

samples for superpixel-level training, we select the candidates based on steps of confidence

score calculation and energy optimization. In order to be robust to vary environmental con-

ditions, the classifiers are updated from the bottom up based on the proposed performance

evaluation method. Experiments carried on public datasets validate the generality of the

proposed approach. This chapter shows the potential of unsupervised method for pixel-

level hand segmentation in egocentric interaction. We believe that it can be transferred

to the pixel-level object segmentation by combining with gaze analysis and contribute to

activity recognition.
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CHAPTER 4

CLUSTER-WISE LEARNING FOR MULTI-PERSON POSE ESTIMATION

4.1 Introduction

In this chapter, we propose a cluster-wise feature aggregation network that exploits multi-

level contextual association for multi-person pose estimation. The recent popular approach

for pose estimation is extracting the local maximum response from each detection heatmap

that trained for a specific keypoint type. To exploit more contextual information, our

network simultaneously learns complementary semantic information to encourage the de-

tected keypoints subject to a certain contextual constraint. Specifically, our network uses

dense and sparse branches to generate paired multi-peak detection heatmaps for clusters of

keypoints. To enhance the feature passing through the network, we aggregate information

from different branches. The in-branch aggregation enriches the detection features in each

branch by absorbing the holistic human region attention. The cross-branch aggregation

further strengthens the detection features by fusing global and local context information

between dense and sparse branches. We demonstrate competitive performance of our net-

work on the benchmark dataset for multi-person pose estimation.

To capture and consolidate information across all scales of the image, the pipeline

of first encoding and then decoding is broadly used in both top-down and bottom-up ap-

proahces, such as the Stacked Hourglass Network [45] and Associative Embedding (PoseAE)

[52]. The backbone of these networks are based on multiple Hourglass modules [45] which

firstly pool down the feature maps to a very low scale, and then upsamples and combines

features across multiple resolutions. This architecture provides the benefit of capturing both

global and local features for the pixel-wise prediction tasks. One commonality of these ap-

proaches is that they separately regress keypoint locations from each other according to
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their corresponding detection heatmaps. However, since body parts connect to each other,

such as hip-knee-ankle, positions of some parts provide important contextual information

and constraints on locating other related parts and the cues are hard to find if the keypoint

representations are separated. This brings us an intuitive thinking of utilizing structural

knowledge to enforce the model to exploit clues of related body parts to overcome ambigu-

ous problem caused by occlusions and complex multi-person situations. Therefore, we pro-

pose to learn keypoints by clusters to exploit more contextual information. Our backbone

structure for multi-scale feature extraction is same as the Stacked Hourglass Network’s.

However, the prediction heads are different. Our method utilizes multi-peak ground truth

heatmaps to supervise the network exploiting contextual information between related body

parts while the Stacked Hourglass Network uses a single-peak heatmap to present each

keypoint separately.

Without prior assumption of person locations, the bottom-up methods have to estimate

tags that guide the detected keypoints to form individual poses for person instances. For

grouping the detected keypoints into instances, PoseAE [52] integrates associative embed-

ding with the Stacked Hourglass Network [45], which produces a tagging heatmap for each

detection heatmap. The idea of associative embedding is to predict an embedding in ad-

dition to the detection score for each keypoint. The embeddings serve as tags that group

keypoints from same instances while separate keypoints from different instances. Follow-

ing PoseAE [52], our network predicts tagging heatmaps in addition to detection heatmaps.

Different from PoseAE [52], our tag embedding is applied cluster-wise. Since we divide

keypoints into clusters, our tagging heatmaps contain multi-peak responses according to

the keypoints in same cluster. Then the tags are normalized within each keypoint cluster.

Specifically, we represent each tag by the cluser-wise mean value with an offset factor to

distinguish the keypoints by their relative orders. We supervise the cluster-wise embedded

tags with a pull loss that encourages similar tags for clusters from same group and a push

loss that enforces different tags for clusters across different groups.
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In this chapter, we propose a bottom-up method that learns keypoints by clusters with

different configurations to exploit more contextual information. The keypoint cluster con-

tains a group of keypoints to be learnt simultaneously according to the connection between

body parts. Based on the number of related body parts, we define the dense and sparse

cluster representations, such as divide the keypoints of head part into one cluster and the

keypoints of limb part into another cluster. Comparing to the sparse cluster representation,

the dense keypoint clusters reveal more global contextual information between more related

parts. Therefore, our network is a multi-branch architecture that learns dense and sparse

cluster of keypoints under the supervise of multi-peak heatmaps. This architecture imposes

multi-level contextual relationships among multi-type abstractions of the keypoints.

To group the detected keypoints into instances, our network predicts tagging heatmaps

in addition to the detection heatmaps. Therefore, each cluster branch consists of two sub-

branches for keypoint detection and tag embedding. The pixels in the tagging heatmap

serve to group keypoint clusters belong to the same instance. Besides that, the regions of

person instances are simultaneously exposed in tagging heatmaps. Hence, our architecture

can be taken as a multi-task learning, which can jointly handle the keypoint detection and

coarse person segmentation problems. Despite the coarse boundaries of person regions

generated by the tag embedding branch, it unveils holistic context information that benefits

to keypoint detection. Based on this observation, we use an in-branch block to aggregate

the tag features to the detection features in each branch to generate a region attention for

keypoint detection. In addition, the detection features from dense and sparse branches

complement each other. We design a cross-branch block to aggregate the sparse detection

features to the dense detection features to improve the flow of information between different

branches. Thus, our network optimizes the features at a specific keypoint by the received

information from diverse context.

Figure 4.1 illustrates overview of the proposed cluster-wise learning network. The

backbone of our network consists of multi-stack Hourglass modules. Each stack module
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Figure 4.1: Overview of cluster-wise learning based keypoint detection.
Our network learns keypoints by cluster. The two branches of the network simultaneously learn different

clusters containing dense and sparse keypoint divisions. To take advantage of multi-level contextual
information, each stack is set with different cluster configuration in both dense and sparse flows.

consists of branches of dense and sparse keypoint clusters. Specifically, the dense keypoint

cluster contains more related keypoints than the sparse keypoint cluster,such as entire body

parts versus only one body part in each heatmap. By doing this, the network learns global

and local contextual information for each keypoint. For each branch, the network predicts

multi-peak detection heatmaps that indicate keypoint locations. To retrieve instance identi-

fication, our network exploits tag embedding to predict instance tagging heatmaps that nat-

urally serves as a rough instance segmentation. Therefore, before passing features to next

stack, we aggregate the tagging heatmaps and detection heatmaps in and cross branches

to enforce the network focus on global and local consistency of entire body and different

parts. In summary, this chapter makes three main contributions:

• Cluster-wise keypoint detection. Instead of detect each keypoint separately, our net-

work predicts multi-peak detection heatmaps for clusters of dense and sparse key-

points, which exploits global and local contextual information to improve the detec-

tion robustness.

62



• Feature aggregation. To enhance feature passing from shallow stack to deep stack,

we aggregate information from different branches. The in-branch aggregation en-

riches the detection features in each branch by absorbing the holistic human region

attention. The cross-branch aggregation further strengthens the detection features by

fusing global and local context information between dense and sparse branches.

• Cluster-wise tag embedding. To better grouping the detected keypoints into in-

stances, our network embedds relationships among the intra-cluster and inter-cluster

keypoints with offset learning, which not only benefits the instance grouping but also

individual keypoint identification.

4.2 Related Work

Keypoint detection, human joint [42, 48, 49, 50, 51, 52, 53, 93] and rigid object keypoints

[33, 94, 95, 96, 97] detection in particular, is an important issue extensively discussed

and researched in computer vision in recent years. This problem is firstly converted to a

supervised regression of the (x, y) coordinates of the keypoints. Note that human pose

estimation requires type information of each keypoint but object keypoint detection may

not. DeepPose [66] proposed by Toshev et al. is the pioneer work in using the deep neural

network to estimate 2D human pose. Since DeepPose [66], the pose estimation solutions

thrive in the presence of deep neural network and branch out into top-down and bottom-up

approaches.

By integrating person detection with single person pose estimation, the top-down ap-

proaches generates keypoints for all persons in the given image. Since the pose estimator

only have to focus on single instance, these two-stage methods usually produce fine local-

ization. G-RMI [98] by Papandreou et al. predicts dense detection heatmaps and offsets

for each keypoint type by using ResNet [64] and combined these outputs by an aggregation

procedure to obtain highly localized keypoint predictions. In contrast to Gaussian detection

heatmaps, the authors estimated a disk-shaped keypoint masks and 2-D offset vector fields
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to accurately localize keypoints. G-RMI [98] also uses a novel form of keypoint-based

NonMaximum-Suppression (NMS), instead of the cruder box-level NMS, and a novel form

of keypoint-based confidence score estimation, instead of box-level scoring. Xia et al.[27]

ultilize a PoseFCN and a PartFCN to provide initial estimation of pose joint potential and

semantic part potential. They declare that the estimated pose provides object-level shape

prior to regularize part segments while the part-level segments constrain the variation of

pose locations. RMPE[43] by Fang et al. integrates the Symmetric Spatial Transformer

Network (SSTN), Parametric Pose NonMaximum-Suppression (NMS), and Pose-Guided

Proposals Generator (PGPG) with stacked Hourglass modules [45] to handle inaccurate

bounding boxes. MaskRCNN [44] by He et al. solves multi-task of object detection, in-

stance segmentation and keypoint prediction together based on the RoI aligned feature

maps extracted from ResNet [64] integrated with FPN [99]. CMUpose [49] by Cao et

al. uses a nonparametric representation named as Part Affinity Fields to learn to associate

body parts with individuals in the image. The architecture is designed to jointly learn part

locations and their association via two branches of the same sequential prediction process.

Bottom-up multi-person pose estimation approaches firstly detect body parts instead of

full persons and subsequently associate these parts to human instances. Methods of this

fashion are similar in part detectors that generate detection heatmaps and differ in how to

associate parts with each other and group into person instances. Compare to top-down ap-

proaches, they are faster in test time and smaller in model size. However, their accuracy

always lower than the top-down methods since they are lack of prior knowledge of the

number of people, their locations and detailed high resolution features. Deepcut [93] by

Pishchulin et al. proposes a partitioning and labeling formulation of a set of body-part hy-

potheses generated with CNN-based part detectors. Due to proposed clustering algorithm,

Deepcut [93] is very slow and its processing time is in the order of hours even though it

doesn’t use person detections. Following Deepcut [93], Deepercut [50] by Insafutdinov et

al. benefits from deeper ResNet[64] architectures as part detectors and improves the parsing
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efficiency of Deepcut [93] with an incremental optimization strategy. Iqbal et al. [51] also

formulate the problem as part grouping and labeling via a linear programming. Different

from Deepcut [93] and Deepercut [50], Iqbal et al. [51] propose to solve the densely con-

nected graphical model locally to improve time efficiency significantly. Following CPM

[47], CMUPose by Cao et al. [49] uses a part affinity field learn to associate body parts and

group them to person instances with greedy bottom-up parsing steps. PoseAE [52] pro-

poses associative embedding to simultaneously generate and group detections. Chu et al.

[42] use geometrical transform kernels and a bi-direction tree structured model to capture

and pass relationships between joints. PersonLab [53] proposes a part-induced geometric

embedding descriptor to associate semantic person pixels with their corresponding person

instance. MultiPoseNet [100] receives keypoint and person detections, and produces accu-

rate poses by assigning keypoints to person instances.

Among the most dominant approaches to pose estimation from videos is a two-stage

approach, which first deploys a frame-level keypoint estimator, and then connects these

keypoints in space and time using optimization techniques. For frame-level keypoint esti-

mation, Detect-and-track by Girdhar et al. [101] experiment with Mask R-CNN [44], as

well as their proposed 3D extension of this model, which leverages temporal information

over small clips to generate more robust frame predictions. SimpleBaseline by Xiao et al.

[102] builds a frame-level keypoint detector by simply adding a few deconvlutional lay-

ers over the last convolution stage in the residual network (ResNet) by He et al.[64]. The

one-stage approach Poseflow by Xiu et al. [103] proposes a functionally structured spatial-

temporal deep network, PoseFlow Net (PFN), to jointly solve the skeleton localization and

matching problems of PoseFlow. Its spatial derivative reasoning branch is an encoder-

decoder(convolution, pooling-deconvolution, upsampling) network architecture with input

as the f th video frame.

Inspired by recent works, we propose a network simultaneously detecting and grouping

keypoints with the help of multi-level contextual exploration. Overall, two branches of our
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Figure 4.2: Illustration of our cluster-wise learning network.
The backbone of our network consists of multi-stack Hourglass modules. Each Hourglass module is

followed by two branches for predicting keypoints based on dense and sparse clusters. For each branch, the
network predicts detection heatmaps to indicate keypoint positions and tagging heatmaps to group the

detected keypoints into instances. Additionally, the detection heatmaps and tagging heatmaps are fused to
enhanced feature maps by in-branch and cross-branch aggregation. All feature maps are fused together by

1x1 convolutions and passed to next Hourglass module. The details of feature aggregation are shown in
Figure 4.4.

network learns keypoints by clusters. The cluster structures are set in different keypoint

densities. The denser the cluster, the higher the global information capacity. To group

instance while retrieve individual keypoint identification, our network learns offset embed-

ding. To enhance feature passing from stack to stack, the network aggregates features in

and cross branches. The in-branch aggregation enhances keypoint detection features by

fusing them with holistic instance region attention maps in each branch. The cross-branch

aggregation further strengthens the keypoint detection feature by fusing global and local

context information between dense and sparse branches.
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4.3 Method

4.3.1 Network Overview

In this section, we introduce a multi-person pose estimation network consists of feature

extraction backbone, keypoint detection and tag embedding. As illustrate in Figure 4.2,

the network stacks multiple Hourglass modules [45] to extracts multi-scale features by re-

peating top-down and bottom-up information passing. The Hourglass module [45] has the

symmetric topology that consists of a series of convolution, pooling and upsampling lay-

ers. This architecture provides the benefit of capturing both global and local features for

the pixel-wise prediction tasks. We stack multiple Hourglass modules under supervision

of multi-dense keypoint clusters to make the network gradually strengthen the capacity of

accurate prediction. Figure 4.3 illustrates predictions of each stack module. To consider

all keypoints simultaneously and learn configurations of keypoints, each stack outputs two

branches of keypoint clusters. Different cluster conveys different semantic information and

are complementary to each other. This enforces the module to have different localization

abilities. To enhance features passing from stack to stack, the network aggregate informa-

tion from different branches. As shown in Figure 4.5 (b), the tag value obviously changes

across instances that makes the tapmaps to be a rough instance segmentation. Therefore,

the combination of detection heatmaps and tagging heatmaps serves as a bootstrap for

passing semantic enhanced features from stack to stack. The module embeds multiple re-

lation of the keypoints and provides instance information for grouping the keypoints and

individual identification. The design of these modules is motivated by the need to cap-

ture contextual correlation of keypoints and use that to produce accurate detection. Under

supervisions of variant ground truth, these consecutive modules gradually transform the

features into detection and tag heatmaps that respectively indicate keypoint locations and

groups. More specifically, the network contains multiple stacks which consists of sparse

and dense branches. The predictions of all branches in all stacks are used for training. The
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sparse branch of the last stack is used for inference.

To detect keypoints of an object, a popular way is detecting each of them as an in-

dividual class. This kind of independent detection can produce accurate localizations for

the keypoints having distinctive appearances. However, they often fail to output desirable

results for the keypoints with ambiguous appearances. Since spatial distributions and se-

mantic meaning of adjacent keypoints are highly correlated, context information should be

learnt together with the appearance features. Thus, we take a cluster of keypoints as an en-

tity of the network rather than each individual keypoint. Our network consists of branches

of dense and sparse keypoint clusters. The denser the cluster, the higher the global infor-

mation capacity. More specifically, the dense keypoint cluster contains keypoints of entire

body while the sparse keypoint clusters are consists of part of them. By doing this, the

network learns global and local contextual information for each keypoint. For each branch,

the network predicts multi-peak detection heatmaps that indicate keypoint locations.

By supervising multiple keypoint detectors built on hierarchical features with multi-

level semantic supervisors, our network fully explores the diversities of keypoint contex-

tual structures. Then, the detection heatmaps produced by each branch will be unified to

produce the final keypoint locations. So far, we only know where are the keypoints but

have no idea about how do they relate to each other and which instances do they belong

to. In addition to producing the detection heatmaps, the network correspondingly outputs

tagging heatmaps for keypoint-wise relation embedding and instance retrieving. In the tag-

ging heatmaps, pixels having similar values indicate the locations from the same instance.

Finally, we use a loss function that enforces the keypoints detection close to the ground

truth and encourages pairs of tags to have similar values if the corresponding detections

belong to the same instance or different values otherwise.
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4.3.2 Cluster-wise Keypoint Detection

In most recent keypoint detection network, ordered multi-channel detection heatmaps are

widely used for representing keypoints. The number of channels is fixed by the object

category, e.g. 17-channel detection heatmaps for human data from MSCOCO [74] dataset.

Each channel detection heatmap associates one category specific keypoint and is learnt

independently with the others. The relation and restriction among keypoints are not being

fully explored and exploited. In addition, although these representations are compatible

with invisible keypoints, it is difficult to learn categories with varying number of keypoints

together. One brute force approach is to stack all detection heatmaps from all categories

and certainly results in high computational costs.

In this chapter, we propose a novel keypoint representation which encodes multi-level

relation of keypoints while provides flexibility to represent varying numbers of keypoints

across different categories. Our representation consists of two level entities. One is the

dense keypoint cluster that contains global information by using more keypoints in a clus-

ter, such as all keypoints of the entire body. The other is the sparse keypoint cluster that

are consists of partial keypoints to be learnt simultaneously. To extract multiple levels of

relations, we stack multiple single stage modules. The dense and sparse cluster configura-

tions can be varied from stack to stack and the detection heatmaps from dense and sparse

flow are fused and passed to next stack. As shown in Figure 4.3, we predict Ci
d and Ci

s

detection heatmaps for the dense and sparse keypoint cluster, where Ci is the number of

keypoint clusters in i-th stack, such as C0
d = 1, C0

s = 5 in the 0-th stack. Local peak values

in each detection heatmap indicate the most probably locations for the entities from multi-

ple instances of the same specific cluster. The StarMap [33] proposes a category-agnostic

keypoint representation, which combines all keypoints of one object together and forms a

multi-peak detection heatmap (called StarMap). This is in contrast to our method which

uses multi-peak detection heatmaps to detect multiple instances of the same specific cluster

of keypoints. We divide the keypoints into clusters based on the structure of body joints
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connection, such as divide the keypoints of head part into one cluster and the keypoints of

limb part into another cluster.

Given a set of ground truth keypoint locations, we divide them into Ci
d and Ci

s groups

and generate a set of ground truth detection heatmaps for training the dense and sparse

keypoint clusters. More specifically, the input labels for supervision are the keypoint co-

ordinates which are converted to ground truth heatmaps by using Gaussian kernel. Thus,

each pixel in the ground truth heatmaps represents the probability of location being the key-

point. The prediction penalty is increased along the radius with the amount given by a 2D

Gaussian kernel. To detect the keypoint locations, we enforce the prediction loss that en-

courages the prediction detection heatmaps having consistent local peaks with the ground

truth. The topK local peaks will be selected as the candidate keypoints for each channel.

The K indicates the number of visible keypoints based on the maximum number of people

can be detected and the cluster setting. In our experiments, we set K as 30ci where the

maximum number of people is 30 and the ci is the number of keypoints in the ith cluster.

Specifically, this loss is the mean Euclidean distance over all pairs of prediction and ground

truth detection heatmap. For each keypoint cluster, the loss of location prediction is defined

as

LBdet =
1

M

∑
i

(pi − gi)2 (4.1)

Where, B indicates branch of dense or sparse cluster, M is the number of pixels in the

detection heatmap, pi and gi are pixel values at position i in the detection heatmap and

ground truth heatmap respectively.

4.3.3 Cluster-wise Tag Embedding

Following Newell et al. [52], we group detected keypoints into instances by tag embedding.

For each detection heatmap, the network predicts a tagging heatmap which is responsible

for guiding the corresponding keypoint to group with other keypoints. The difference is

that our tag embedding is applied in a cluster-wise way. Similar as detection heatmaps,

70



our tagging heatmaps contain multi-peak responses since we divide keypoints into clusters.

The tag values are normalized within each tagging heatmap. Specifically, we represent each

tag by the cluser-wise mean value with an offset factor to distinguish the keypoints by their

relative orders. By doing this, we can refine the detected position by checking whether the

difference between two tags satisfies the offset setting. The generation of tagging heatmaps

does not need specific ground truth labels for supervision since the clusters can be grouped

into instances based on the differences between the tag values. Therefore, we supervise

the cluster-wise embedded tags with a pull loss that encourages similar tags for clusters

from same instance and a push loss that enforces different tags for clusters across different

instances. Figure 4.3 visualizes the tagging heatmaps.

In general, the tagging heatmaps for Bth branch are trained with embedding loss.

LBemb = Lpull + Lpush (4.2)

The pull loss Lpull is defined as the squared distance between the normalized embedding

and the reference embedding of each keypoint.

Lpull =
1

NJ

∑
n

∑
k

(ĥk − hn)2 (4.3)

Where, N is the number of instances, J is the total number of visible keypoints and as-

suming all instances have J visible keypoints, ĥk is the normalized embedding for the kth

keypoint, hn is the reference embeddings for the nth instance.

The normalized embedding is calculated as the cluster-wise mean value h̃k with the

offset that encodes the keypoint index dk in the cluster, such as dk = 0 for the first keypoint.

ĥk = h̃k + dk ∗ δ (4.4)
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Figure 4.3: Illustration of heatmaps of each stack module.
The heatmaps indicate keypoints(left) and tags(right). The network consists of four stack modules with

dense(a,c,e,g) and sparse(b,d,f,h) cluster settings (1,1,1,3) and (5,5,5,17). For simplicity, we only display a
part of each cluster.

72



h̃k =
1

ci

∑
k

hk (4.5)

Where, dk ∈ [0,max(ci)] and ci is the number of visible keypoints in ith cluster, δ is the

base factor for the offset, hk is the predicted tagging heatmap for the kth keypoint.

The push loss Lpush is computed between reference embeddings of different instances

with a penalty that drops exponentially to zero as the increase of embedding difference.

Lpush =
1

N(N − 1)

∑
n

∑
m 6=n

exp(− 1

2∆2
(hn − hm)2) (4.6)

hn =
1

J

∑
k

h̃k (4.7)

Where, hn and hm are the reference embeddings for different instances, ∆ leads a margin

for distance between each pair of reference embeddings. Considering inter-instance differ-

ence should be much larger than intra-instance difference, we assign the margin ∆ based

on the offset dkδ to far apart reference embeddings from each other. Then, the embedding

values are separated both in clusters and instances and benefitted to individual keypoint

retrieving. We set (∆,δ) as (4, 0.03) in our experiments.

Given the predicted keypoints and tagging heatmaps, we group the keypoints across

channels by retrieving the tag values at keypoint locations from corresponding channels.

To decode the output of the network, the keypoints having similar tag values are matched

up to form instances. The full training loss is

L =
∑
B

(λdL
B
det + λeL

B
emb) (4.8)

Where λd and λe are the weights for the detection and embedding loss respectively. We set

(λd, λe) as (1, 1e-3) in our experiments.
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4.3.4 Feature Aggregation

For each detected keypoint, we have to estimate a tag to indicate which person instance

it belongs to. Thus, we separate each cluster branch into two sub-branches for keypoint

detection and tag embedding. Then, the intra and inter relation of keypoint clusters are

embedded to tagging heatmaps. The pixels in the tagging heatmap serve to group keypoint

clusters belong to the same instance. Besides that, the regions of person instances are

simultaneously exposed, as shown in Figure 4.5. Hence, our architecture can be taken as

a multi-task learning, which can jointly handle the keypoint detection and coarse person

segmentation problems. Despite the coarse boundaries of person regions generated by

the tag embedding branch, it unveils holistic context information that benefits to keypoint

detection. Moreover, the stacking strategy of Hourglass modules can be taken as refinement

process. Multi-scale features in shallow stack are aggregated into high-level features to be

further exploited by deep stack. To enhance the features passing from shallow stack to deep

stack, we aggregate information from different branches. More specifically, we enrich the

features to be passed to next stack by aggregating tag to detection in-branch and sparse to

dense detections cross-branch. We use an in-branch block to aggregate the tag features to

the detection features in each branch to generate a region attention for keypoint detection.

In addition, the detection features from dense and sparse branches complement each other.

We design a cross-branch block to aggregate the sparse detection features to the dense

detection features to improve the flow of information between different branches. Thus,

our network optimizes the features at a specific keypoint by the received information from

diverse context.

The in-branch aggregation targets to enhance keypoint detection features by fusing

holistic human region attention maps that are byproducts of tag embedding. The tag em-

bedding generates tagging heatmaps by pulling together the keypoints from same instance

while pushing away those from different instances. The supervision is realized through

comparison of relative tag values between keypoints but not all pixels in the map. Then,
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Figure 4.4: Demonstration of feature aggregation.
In-branch aggregation combines tag and detection features in each branch and cross-branch aggregation

fuses detection features from dense and sparse branches.
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Figure 4.5: Visualization of tag embeddings of dense keypoint cluster.
Columns from left to right are pose predictions overlapping on inputs(cropped for simplicity illustration),
tagging heatmaps and combination of detection heatmaps and tagging heatmaps. Note that, the tag value

obviously changes across instances.

the keypoints can be grouped into instances based on the differences between the tag val-

ues. Moreover, the non-keypoint pixels obtain tag values through convolution propagation,

and aggregate into body regions around keypoints and eventually form human regions.

Therefore, tagging heatmaps also provide crucial clues of semantic regions for keypoint

detection. Based on this observation, we aggregate tag features to detection features, as

demonstrated in Figure 4.4 (a). The tag and detection features are firstly concatenated and

then fused by a 1x1 convolution layer to generate merged features. Then, the residual con-

nection adds the identity mapping of detection feature to the merged features. Figure 4.5 c

visualizes some examples of in-branch aggregation.

The cross-branch aggregation focuses on fusing global and local context information

between dense and sparse branches for keypoint detection. To balance features in different

branches and make the network easier to extend, the number of channels are same in dense
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and sparse branches. The feature maps of each branch are composed of the supervised

predictions and the unsupervised general features. In addition, the proportions of these two

components in dense and sparse branches are different. The dims of predictions correspond

to the number of supervisions while the extra features are the rest channels of total amount.

Therefore, we apply different aggregation strategy to these two kinds of feature maps, as

illustrated in Figure 4.4 (b). The numbers of channels are different in two branches due to

the dense and sparse cluster settings. Therefore, we firstly unify the numbers of channels

of two branches before feature aggregation. We use group convolution to merge the feature

maps of sparse branch and the group setting is according to the dense branch, such as the

feature maps of keypoints in head part are merged together. Thus, we align the channels of

sparse branch to dense branch based on their semantic meaning. Considering parameters

and computation burden, we use 1x1 kernels to do the channel-wise fusion. Through 1x1

kernels, the prediction features are mapped from sparse to dense and the general features

are enriched by aggregating the supervised information. We aggregate the aligned features

from sparse branch to dense branch by element-wise sum.

4.4 Results and Discussion

4.4.1 Implementation

We train and evaluate our network on the MSCOCO [74] dataset which is introduced in

Chaper 2. Our network is implemented under the PyTorch framework and trained and

tested on two GTX 1080 GPUs. The test experiments are also developed on the same envi-

ronment. We tried on combinations of different randomly initialization and found out that

the training works well under the default setting of PyTorch. During training, we set the in-

put resolution of the network to 512x512, which leads to an output resolution of 128x128.

To reduce overfitting, we adopt standard data augmentation techniques including random

horizontal flipping, scaling, cropping and adjusting the brightness, saturation and contrast

of an image. We train the network using a batch size of 8 for 200 epochs with an initial
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learning rate of 2e-4 (dropped to 1e-5 after 150 epochs). We find that larger values of

learning rate lead to diverging gradient and kill some neural units. The forward passing

is terminated by a 1x1 convolution and output detection heatmaps corresponding to each

cluster. We use Adam to optimize the full training loss L defined in Eq(8). The loss mini-

mizes the differences between the predicted and the ground truth locations and groupings.

The relation embedding term is weighted by a factor of 1e-3 relative to the keypoint detec-

tion term. During each round of iterations, 1000 training steps and 10 evaluation steps are

alternatively carried on. The network performance is evaluated and samples of each batch

are randomly shuffled. Our pipeline needs totally around 0.229 seconds for generating the

final detection heatmaps and keypoints converting. Following state-of-the-art, our methods

are trained and evaluated on these MSCOCO and PoseTrack datasets.

4.4.2 Performance

To get an intuitive sense of the network’s predictions, we firstly visualize the final keypoint

locations of our system extracted from validation dataset. Figure 4.6 illustrates the typical

cases of occlusion, crowding, deformation and low resolution. We see that our system has

superior and robust performance on self-occluded joints with variant deformation of human

poses. Our system also makes better balance between false detection and miss detection for

the intractable cases caused by dense mutual occlusions and low resolutions. This is quite

encouraging since our approach is designed to be a general purpose keypoint predictor. The

quantitative evaluation for keypoint detection on MSCOCO is presented in Table 4.1. The

primary challenge metric AP and AR are averaged over multiple OKS values with 0.05

interval. The AP 50 means AP at OKS = 0.50. Small objects (segment area < 322) do not

contain keypoint annotations. The APM is for the medium objects having areas between

of 322 and 962 and the APL is for large objects having area larger than 962.

We test the effectiveness of cluster-wise learning by testing the network under different

clustering configurations. The cluster configuration (1,1,1,1) means that the 17 keypoints
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Table 4.1: Comparison results on MSCOCO testdev dataset with OKS.

Method AP AP 50 AP 75 APM APL AR AR50 AR75 ARM ARL

CMUPose[49] 0.618 0.849 0.675 0.571 0.682 0.665 0.872 0.718 0.606 0.746
RMPE[43] 0.618 0.837 0.698 0.586 0.673 0.676 0.875 0.746 0.630 0.740

MaskRCNN[44] 0.631 0.873 0.687 0.578 0.714 - - - - -
G-RMI[98] 0.649 0.855 0.713 0.623 0.700 0.679 0.887 0.755 0.644 0.771

PoseAE[52](baseline) 0.633 0.857 0.689 0.580 0.704 0.688 0.884 0.742 0.620 0.781

Cluster1 0.617 0.852 0.675 0.564 0.691 0.682 0.894 0.735 0.617 0.769
Cluster2 0.620 0.852 0.677 0.564 0.698 0.682 0.891 0.734 0.615 0.773
In-branch 0.625 0.855 0.682 0.570 0.703 0.687 0.897 0.739 0.621 0.777

Cross-branch 0.625 0.854 0.681 0.571 0.701 0.687 0.895 0.739 0.622 0.776
In-Cross-branch 0.627 0.857 0.687 0.572 0.702 0.688 0.896 0.742 0.623 0.777

are divided into 1 cluster and will be learnt simultaneously in each stack. Similarly, the 17

keypoints are evenly divided into 3 clusters and 5 clusters with (5,6,6) and (3,3,3,4,4) points

in each cluster. Thus, for experiment Cluster-1, the dense cluster configuration is (1,1,1,3)

and the sparse cluster configuration is (5,5,5,17). And for experiment Cluster-2,the dense

cluster configuration is (1,1,1,1) and the sparse cluster configuration is (17,17,17,17). Fol-

lowing prior arts, we use four stacks of corresponding networks for each experiment. Based

on Cluster-2, we further study the benefits of feature aggregation by training and testing

the networks with/without In-branch and Cross-branch aggregation blocks. Overall, the

In-Cross branch achieves our best result by enforcing the network learns more complex

contextual information and semantic consistency for keypoint detection. This result indi-

cates that the more global information encoded, the finer the detection result.

In Table 4.1, we compare our network with other state-of-the-art detectors based on

results from their public implementation. The result of PoseAE [52] is our baseline. Com-

paring with the baseline, our method has better performance at AR50 and ARM and com-

parable performance at most other metrics, like AP 50, AP 75, APL, AR and AR75. The

overall performance of our network is higher than the state-of-the-art CMUpose [49] and

RMPE [43] and reaches a competitive result over the other recent methods. Note that our
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Table 4.2: Comparison results on PoseTrack validation dataset with mAP.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

DetectTrack[101] 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6
PoseFlow[103] 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5

SimpleBaseline[102] 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7

In-Cross-branch 83.4 80.9 66.4 56.0 72.5 64.8 52.0 70.3

recalls (AR50, AR50 and ARL) are higher than most of the compared methods. The dense

branch encodes global consistency information by using more keypoints in a cluster, such

as all keypoints of the entire body. By using dense branch, our network explores more

keypoints which are difficult to be found.

We retrain our network for multi-person pose estimation on the PoseTrack2018 train-

ing set which is introduced in Chapter 2 and we use the model pre-trained on MSCOCO

dataset to initialize the network. Since it is a fine-tuning, the training iteration converges

within 20 epochs and the base learning rate 1e-5 is changed to 1e-6 after 15 epochs. The

other training configures are the same as that for MSCOCO. We use the PoseTrack evalu-

ation toolkit for results on validation set and report results on test set from the evaluation

server. Since our network is designed for single-frame pose estimation, we estimate our

frame-wise prediction results on validation set. Figure 4.7 and Table 4.2 illustrate results

of our approach on PoseTrack validation dataset. Overall, our network performs better in

exploring keypoints of head region and competitive in detecting keypoints of shoulders and

hips. Figure 4.8 shows some failure cases of our method on MSCOCO and PoseTrack

datasets.

4.5 Conclusion

In this chapter, we propose the idea of exploring global and local contextual relations

from dense and sparse cluster-wise multi-peak detection heatmaps for keypoint detection.

To enhance repeated bottom-up and top-down feature passing, we aggregate information

80



Figure 4.6: Visualization of our results on MSCOCO validation dataset.
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Figure 4.7: Visualization of our results on PoseTrack test dataset.
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Figure 4.8: Visualization of failure cases.
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Figure 4.9: More examples of feature aggregation.
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from different branches. The in-branch aggregation enriches the detection features in each

branch by absorbing the holistic human region attention. The cross-branch aggregation

further strengthens the detection features by fusing global and local context information

between dense and sparse branches. Meanwhile, the intra-cluster and inter-cluster rela-

tionships are embedded with tag learning to guide the instance grouping and individual

keypoint identification. However, since the network stacked hourglass modules , its param-

eters become huge and difficult to be trained under limited computational resource. In next

chapter, we introduce a lite version of the network to solve the problems.
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CHAPTER 5

LITE HOURGLASS NETWORK FOR MULTI-PERSON POSE ESTIMATION

5.1 Introduction

Recent multi-person pose estimation networks rely on sequential downsampling and up-

sampling procedures to capture multi-scale features and stacking basic modules to reassess

local and global contexts. However, the network parameters become huge and difficult to

be trained under limited computational resource. Motived by this observation, we design a

lite version of Hourglass module that uses hybrid convolution blocks to reduce the number

of parameters while maintaining performance. The hybrid convolution block builds multi-

context paths with dilated convolutions with different rates which not only reduces the

number of parameters but also enlarges the receptive field. Moreover, due to the limitation

of heatmap representation, the networks need extra and non-differentiable post-processing

to convert heatmaps to keypoint coordinates. Therefore,we propose a simple and efficient

operation based on integral loss to fill this gap specifically for bottom-up pose estimation

methods. We demonstrate that the proposed approach achieves better performance than

the baseline methods on the challenge benchmark MSCOCO dataset for multi-person pose

estimation.

To capture and consolidate information across all scales of the image, the pipeline of

repeated downsampling and upsampling are broadly used, such as the classical architec-

ture of the Hourglass network [45, 52]. The Hourglass network pools down the feature

maps to a very low resolution, and then upsamples and combines features across multiple

resolutions. The most significant attribute of the network is the symmetric topology that

consists of a series of convolution, pooling and upsampling layers. This architecture pro-

vides the benefit of capturing both global and local features for the pixel-wise prediction
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Figure 5.1: Overview of proposed approach.
We propose a lite Hourglass network with bottom-up integral regression.

tasks. However, with the using of stacking multiple Hourglass modules, the network pa-

rameters become huge and difficult to be trained under limited computational resource. The

top-down pipeline method Stacked Hourglass Network (SHN) [45] uses the bottleneck [64]

in each layer of the Hourglass module and achieves good performance. However, due to the

needs of simultaneously detecting and grouping keypoints, the bottom-up pipeline method

PoseAE [52] uses standard 3x3 convolutional kernels in each layer of the Hourglass mod-

ule. Motivated by this observations, we propose a lite version of Hourglass module which

is able to use much less parameters while maintaining the performance. As shown in Figure

5.1, our module uses hybrid convolution kernels in each scale rather than uniformly using

3x3 kernels. It reduces the number of parameters by using combination of 1x1 and 3x3

convolutional kernels in each scale. The network outputs heatmaps which are usually con-

verted to keypoint coordinates by non-differentiable post-processing. Integral loss [104]

proposed by Sun et. al reduces the quantization error. However, it can’t be directly used

for bottom-up pipeline method. Therefore, we propose a bottom-up integral regression
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approach to improve the network performance.

The main contributions of this chapter can be summarized as follows:

• Lite multi-context block. We propose a novel hybrid convolution block which

builds multi-context paths with dilated convolutions with different rates. The pro-

posed block not only reduces the number of parameters but also enlarges the re-

ceptive field. We perform extensive experiments to analyse the properties and the

performance of the proposed block.

• Bottom-up integral regression. We propose a bottom-up integral regression to

transform the heatmap representation to keypoint coordinates by a differentiable way

specifically for bottom-up multi-person pose estimation methods. Our approach re-

sults in performance improvement over the baseline methods.

5.2 Related Work

Since DeepPose [66], the pose estimation solutions thrive in the presence of deep neural

network. The pose estimation network branched out into bottom-up and top-down struc-

tures. In the bottom-up branch, the approaches firstly detect body keypoints (or joints) and

then group them into person instances. Deepcut [93] proposes a partitioning and labeling

formulation of a set of body-part hypotheses generated with CNN-based part detectors.

Deepercut [50] and Iqbal et al. [51] also formulate the problem as part grouping and la-

beling via a linear programming. Following PoseMachine [47], OpenPose [49] uses a part

affinity field learn to associate body parts and group them to person instances with greedy

bottom-up parsing steps. PoseAE [52] proposes associative embedding to simultaneously

generate and group detections. Chu et al. [42] use geometrical transform kernels and a bi-

direction tree structured model to capture and pass relationships between joints. PersonLab

[53] proposes a part-induced geometric embedding descriptor to associate semantic person

pixels with their corresponding person instance. MultiPoseNet [100] receives keypoint and
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person detections, and produces accurate poses by assigning keypoints to person instances.

On the contrary, top-down methods [42, 43, 44, 45, 46, 47, 48] detect people first and then

apply a single person pose estimation to each person detection result.

From the architecture point of view, recent pose estimation networks have universally

adopted the architecture consisting of successive bottom-up (from high resolutions to low

resolutions) and top-down (from low resolutions to high resolutions) processing. This

high-low-high architecture captures and consolidates features across all scales of image

with a sequence of downsampling and upsampling. The typical case is the Hourglass

Network [45] proposed by Newell et al. which produces keypoint heatmaps by pooling

down features to a very low resolution, then unsampling and combining features across

multi-resolution. Methods of [52, 54, 95] are also based on the Hourglass module pro-

posed by [45]. In addition, Xia et al. [27] detect keypoints of the human pose by using a

fully convolution network (FCN) [105] which also processes spatial information at multi-

ple scales for dense prediction. Compare to FCN [105], the Hourglass has more symmetric

distribution of capacity between bottom-up and top-down processing. Unlike the classical

high-low-high structures, the recent pose estimation network names HRNet [106] main-

tains high-resolution representations through the whole network and gradually connects to

lower resolutions in parallel.

5.3 Method

5.3.1 Network Overview

As shown in Figure 5.1, the main pipeline of the Hourglass module is the repeated pro-

cess of bottom-up encoding and top-down decoding. It firstly downsamples the feature

maps several times to reach the lowest resolution and then upsamples the feature maps to

restore the original scale. Meanwhile, it builds a residual connection between the feature

maps from shallow and deep layers having same scale and merges them together. By do-

ing this, it captures and consolidates the information across all scales of the input image.
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For each scale, the computation consists of a main path for the fully multi-scale feature

extraction and an identity path for current scale feature strengthen. As points verified by

methods [45, 52], stacking multiple Hourglass modules with intermediate supervision grad-

ually produces a more accurate final prediction due to the repeated bottom-up and top-down

inference. However, the network parameters become huge and difficult to be trained under

limited computational resource. Motived by this observation, we design a lite version of

Hourglass module that uses hybrid convolution blocks to reduce the number of parameters

while maintaining performance.

To detect keypoints from multiple instances, our network is constructed based on the

bottom-up pipeline which stacks multiple lite Hourglass modules with two head networks:

one head network predicts confidence and precise locations of keypoints, and the other

head network predicts associations between keypoints. The network first decreases the in-

put resolution with convolutions and poolings to reduce computational burden. Moreover,

the feature maps from previous stack are merged and passed to next stack repeatedly. This

processing makes the network process features at both local and global contexts and grad-

ually strengthen the capacity of accurate prediction. With intermediate supervision, each

Hourglass module outputs a set of heatmaps indicating keypoints positions and tagmaps

for grouping the keypoints into instances. Since the body keypoints only occupy a small

area in images, the heatmap matrix is very sparse. Therefore, we propose a bottom-up inte-

gral regression approach to reduce the noise of background areas and improve the network

performance.

5.3.2 Lite Multi-context Block

The standard convolution layer with 3x3 kernels has more flexible ability of expression

while higher computational cost than the one with 1x1 kernels. With the increasing number

of the 3x3 convolution layers, the amount of parameters increases to a large extent and at

the risk of being redundant, especially for the case of stacking four or more Hourglass
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Figure 5.2: Illustration of lite blocks for compacting Hourglass module.
(a) is the BottleNeck of ResNet [64]. (b) is the FireBlock of SqueezeNet [65]. (c) is our proposed hybrid

block.

modules. To reduce the amount of parameters, the 1x1 convolution kernels are integrated

with 3x3 kernels in a block to harmonize the feature map dimensions. Generally, each

block consists of head, core and tail parts. The core part is a 3x3 convolution layer that

responses for heavy feature extraction. The block uses a head 1x1 convolution layer to

reduce the input dimension and a tail 1x1 convolution layer to harmonize the number of

output channels. The typical examples of this kind of block are the BottleNeck from ResNet

[64] and the FireBlock from SqueezeNet [65], as shown in Figure 5.2 (a) and 5.2 (b).

The BottleNeck from ResNet [64] is a quite effective structure and broadly used in

many computer vision tasks. It consists of a sequence of 1x1, 3x3, and 1x1 convolution

layers, where the 1x1 layers are responsible for reducing and then restoring the amount of

feature channels, leaving the 3x3 layer a bottleneck with smaller input/output dimensions.

The shortcut connection with 1x1 convolutions is used to harmonize dimensions. To com-

pact network complexity, SqueezeNet [65] proposes a FireBlock and uses it to replace 3x3

convolution layers. The FireBlock utilizes 1x1 convolution kernels to squeeze the amount

of input channels that fed to the following 3x3 convolution kernels and expands the number

of output channels by the other 1x1 convolution kernels. The output of the fire module is a

concatenation of 1x1 and 3x3 convolution results. Figure 5.2 (a) and 5.2 (b) show the detail

structures of the BottleNeck and FireBlock and input/output dimensions of each layer.
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Inspired by the insight of ResNet [64] and SqueezeNet [65], we propose a HybridBlock

that integrates ResBlock and FireBlock by using 3x3 convolution kernels with different

dilation rates and sharing a projection path based on 1x1 convolution kernels. The basic

intention of our hybrid convolution block is to generate more expressive feature maps with

less parameters. As shown in Figure 5.2 (c), the proposed HybridBlock is a multi-branch

convolution block which integrates the BottleNeck and FireBlock with different squeez-

ing and expansion factors. The numbers beside each layer indicated the input and output

dimensions. To be specific, its inner structure can be components: the squeezing convo-

lution layer with 1x1 kernels to decrease the number of channels in the feature map, the

expanding convolution layers with 1x1 and 3x3 kernels, and the shortcut connection with

1x1 convolution kernels to match the output dimensions. Take FireBlock branch as an ex-

ample, the input channels are firstly squeezed into 1/8 of the amount of output k by 1x1

convolution kernels. Then, it expands the feature maps by concatenating two sets of k’/2

channels from 1x1 and 3x3 kernels. Similar with the BottleNeck, to aggregate feature and

avoid gradient vanishing, the shortcut connection is set through 1x1 convolution kernels

in the HybridBlock. Eventually, the feature maps of all the branches are concatenated and

merged into the output feature maps.

By using the HybridBlock, we reduce the computational cost and make it possible

to use higher resolution feature maps in the limited computation budget. Retaining high

resolution provides more spatial information and is important for spatially detailed image

understanding, especially for keypoint detection from smaller objects. However, it also

reduces the receptive field that corresponds to context cues for prediction. According to

[107], for a unit in a certain layer in the network, its receptive field is defined as the region

in the input that the unit affected by. As for this point, we use the dilated convolution [108]

to enlarge the receptive field of the higher resolution layers.
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Figure 5.3: Illustration of bottom-up integral regression.

5.3.3 Bottom-up Integral Regression

For each type of keypoint, there is only a few ground-truth positive locations and all other

locations are negative. Instead of equally penalizing negative locations, the common ap-

proaches [44, 52, 98] reduce the penalty given to negative locations within a radius of

the positive location. Therefore, by using a 2D Gaussian, the ground-truth locations are

converted to a ground-truth heatmap in which each pixel represents the probability of the

location being the keypoint. Thus, the amount of penalty is reduced with the reduction

of distance from the keypoint location. The groundtruth heatmap representation can be

formed as:

Hk(i, j) = exp(−(i− ik)2 + (j − jk)2

2σ2
) (5.1)

where (ik, jk) is the groundtruth coordinate of the k-th keypoint and Hk is the generated

heatmap by using the Gaussian kernel with the standard deviation σ.

Since the body keypoints only occupy a small area in images, the heatmap matrix is
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very sparse. Moreover, the integral loss [104] is designed for top-down pipeline method

which assumes only one person exists in the cropped region of input image. Therefore, we

propose a bottom-up integral regression approach to reduce the noise of background areas

and quantization error of converting heatmaps to coordinates specifically for bottom-up

pipeline method. Our network is trained by minimizing the bottom-up integral loss which

is defined as follows:

Ldetk =
1

G

∑
k

∑
g

(Lg,kI + Lg,kH ) (5.2)

where Ldetk is the bottom-up integral loss integrates local grid loss to global heatmap loss.

For each grid, the loss consists of a coordinate loss LgI and a heatmap loss LgH . The LgI

enables the network learns keypoint locations in a differentiable way without quantization

errors and LgH forces the network to focus on relevant areas. As shown in Figure 5.3, we

select top-m grids and top-n heatmaps for final loss calculation.

The coordinate loss LgI is calculated in a local region between the predicted heatmap

and groundtruth heatmap which are equally divided into grids. The softmax function is

applied to each heatmap grid along the spatial axis to generate the coordinate Cg
k for the

k-th keypoint of multi-person in a differentiable manner. The definition of the LgI is as

follows:

Lg,kI = ||Cg,k − C∗g,k|| (5.3)

Cg,k = (
w∑
i

h∑
j

iĤg,k(i, j),
w∑
i

h∑
j

jĤg,k(i, j)) (5.4)

where K is the number of keypoints, Cg,k is the groundtruth coordinates for the g-th grid

of k-th heatmap, (w, h) indicates the size of a grid patch, Ĥg,k is the predicted heatmap

with softmax applied, the groundtruth heatmaps are processed in the same way. For the

predicted detection heatmap of each grid, the Mean Square Error (MSE) loss is computed
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by

Lg,kH =
1

M

∑
i

(pi − gi)2 (5.5)

Where, M is the number of pixels in the heatmap grid, pi and qi are pixel values at position

i in the heatmap grid and ground-truth map grid respectively.

Given a set of keypoints extracted from local peaks of the heatmaps, we have to group

them into person instances. Following PoseAE [52], we calculate the loss for grouping

keypoints based on “pulling” together those from the same instance and “pushing” away the

others from different instances. Therefore, in addition to producing the detection heatmaps,

the network correspondingly outputs tagmaps for keypoint-wise relation embedding and

instance retrieving. In each tagmap, pixels having similar values indicate the locations

belong to the same instance. The loss for grouping keypoints into instances is calculated

by

Lemb =
1

NK

∑
n

∑
i

(hi − hn)])2+

1

N(N − 1)

∑
n

∑
m6=n

exp(− 1

2δ2
(hn − hm)2)

(5.6)

Where, N is the number of instances, K is the number of visible keypoints, hi is pixel

values at position i in the tagmap, hn and hm are the reference tag embeddings for different

instances.

Finally, the fully training loss L enforces the keypoints detection close to the ground-

truth and encourages pairs of indexes to have similar values if the corresponding detections

belong to the same instance or different values otherwise.

L = λdLdet + λeLemb (5.7)

Where λd and λe are the weights for the detection and embedding loss respectively.
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Table 5.1: Dilation setting on COCO held-out500 with training resolution of 512x512.

Blocks AP AP 50 AP 75 APM APL AR AR50 AR75 ARM ARL

OurBlock-f1r1 0.590 0.829 0.645 0.522 0.699 0.635 0.850 0.677 0.555 0.749
OurBlock-f2r1 0.590 0.835 0.656 0.521 0.695 0.633 0.850 0.684 0.556 0.744
OurBlock-f2r2 0.584 0.825 0.645 0.513 0.696 0.629 0.841 0.675 0.548 0.745
OurBlock-f1r2 0.591 0.834 0.650 0.522 0.695 0.635 0.850 0.681 0.556 0.747

Table 5.2: Performances of lite blocks on COCO test-dev with training resolution of
512x512.

Blocks # Parameters GFLOPs AP AP 50 AP 75 APM APL AR AR50 AR75 ARM ARL

FireBlock [65] 25,799,568 112.16 0.562 0.821 0.609 0.51 0.636 0.62 0.852 0.666 0.555 0.708
Bottleneck [64] 30,447,248 116.54 0.579 0.831 0.63 0.527 0.651 0.635 0.863 0.683 0.572 0.721

OurBlock 41,789,328 127.52 0.623 0.848 0.682 0.578 0.689 0.672 0.877 0.782 0.615 0.751
3x3Conv 138,933,904 222.57 0.633 0.857 0.689 0.580 0.704 0.688 0.884 0.742 0.620 0.781

5.4 Results and Discussion

5.4.1 Performance

Our network is trained MSCOCO [74] and its details can be found in Chapter 2. And the

training implementation is similar with Chapter 4. We evaluate our networks from two as-

pects: computational cost under the number of parameters and GFLOPs and performance

under OKS metrics. We study each major change in our network to understand its contribu-

tion to achieve the performance. Table 5.1 shows the results with different dilation settings.

By using dilation rates of 1 and 2 for paths of fireblock and bottleneck respectively, our
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Table 5.3: Comparison on COCO test-dev dataset.

Methods AP AP 50 AP 75 APM APL AR AR50 AR75 ARM ARL

CMU-Pose [49] 0.618 0.849 0.675 0.571 0.682 0.665 0.872 0.718 0.606 0.746
RMPE[43] 0.618 0.837 0.689 0.586 0.673 0.676 0.875 0.746 0.630 0.740

Mask-RCNN(ResNet50) [44] 0.629 0.871 0.689 0.576 0.713 0.697 0.913 0.751 0.639 0.776
PoseAE [52] 0.633 0.857 0.689 0.580 0.704 0.688 0.884 0.742 0.620 0.781

OurBlock+OurLoss 0.621 0.851 0.683 0.58 0.685 0.677 0.886 0.732 0.622 0.751
PoseAE+OurLoss 0.642 0.863 0.706 0.586 0.719 0.696 0.892 0.751 0.630 0.785

hybrid block achieves best performance on a held-out set containing 500 images. The

primary challenge metric AP and AR are averaged over multiple OKS values with 0.05

interval. Small objects (segment area < 322) do not contain keypoint annotations. The

APM is for the medium objects having areas between of 322 and 962 and the APL is for

large objects having area larger than 962. Table 5.2 shows our results compared with the

baselines under the input size 512x512. The original structure of PoseAE [52] uses the

standard 3x3 convolutional filters in most layers and results in huge number of parameters

and GFLOPs. By replacing the 3x3 convolution with the conventional lite blocks of Bottle-

Neck or FireBlock, the number of parameters is greatly reduced but the performance is also

drastically degraded. On the contrast, our network not only reduces the computational cost

but also maintains the performance compare to using standard 3x3 convolutional layers.

We also study the error distributions in our network to understand its contribution to

achieve the performance. As introduced in Chapter 2, Ronchi et al. [78] categorize the

error distributions include the frequency of pose errors of jitter, inversion, swap, and miss

according to the keypoint type, number of visible keypoints, and overlap in the input im-

age. There may also be keypoints that do not have any error and are called good status.

More specifically, good status is defined as a very small displacement from the groundtruth
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Figure 5.4: Analysis of error distributions.
Error distributions change after applying the proposed bottom-up integral loss to PoseAE [52] network.

Figure 5.5: Visualization of pose errors correction comparison.

keypoint. Jitter error is a small displacement error around the groundtruth keypoint locatin.

Inversion error occurs when a pose estimation model is confused between semantically

similar parts that belong to the same instance. Swap error represents a confusion between

the same or similar parts which belong to different instances. Miss error represents a large

displacement from the groundtruth keypoint position. The part experiments are carried on

the held-out 500 images set. Figure 5.4 shows the error distributions change after applying

the proposed bottom-up integral regression to the PoseAE [52] network. Our method not

98



Figure 5.6: Illustration the performance improvement according to the size of targets.

Figure 5.7: Confidence score and OKS comparison.

only corrects the small displacement error of jitter but also the large displacement errors of

inversion and swap. To give an intuitive sense of the improvement, Figure 5.5 visualizes

the comparison results of pose errors correction. Figure 5.6 illustrates the performance

improvement according to the size of targets. The precision-recall curves showing the

performance of PoseAE [52] without and with our loss by progressively increasing the

OKS evaluation threshold with 0.05 increment. For both large and medium size targets,

the proposed loss improves the network performance. Figure 5.7 represents the changes of

heatmap confidence scores which should be OKS monotonic increasing and reflect as much
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as possible the probability of being a True Positive. It shows the enlarged amount of overlap

between the histogram of detection scores with the highest with a given groundtruth (solid

line) and all other detections with a lower OKS (dash line). It indicates that the improved

heatmap prediction makes less error and its confidence score is a better OKS predictor.

Finally, we compare our method with state-of-the-art of methods on COCO test-dev

set and the results are shown in Table 5.3. Except Mask-RCNN [44], all methods follow

the bottom-up detection pipeline which detects keypoints firstly and groups them into in-

stances. As shown in Figure 5.4, the PoseAE [52] achieves better performance with the

help of our proposed bottom-up integral loss. It obtains 1.3 point higher AP than the top-

down method Mask-RCNN [44] which utilize the extra knowledge of person region. The

lite Hourglass network degrades the performance comparing to the PoseAE [52] since it

uses much less parameters but it still outperforms CMU-Pose [49] and RMPE [43].

5.5 Conclusion

In this chapter, we present a hybrid block for compact Hourglass module while maintaining

the network performance. Unlike standard Hourglass module, we use the hybrid convolu-

tion block instead of uniformly using 3x3 convolutional kernels in all layers. The hybrid

block builds multi-context paths with dilated convolutions with different rates which not

only reduces the number of parameters but also enlarges the receptive field. We also in-

troduce a novel bottom-up integral regression operation to reduce the quantization error

of converting heatmaps to keypoint coordinates specifically for bottom-up pipeline multi-

person pose estimation methods. However, the network performance is reduced by the lite

version. In next chapter, we present an improved method which is easy to train and achieves

better performance.
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CHAPTER 6

JOINT BOTTOM-UP AND TOP-DOWN LEARNING

FOR MULTI-PERSON POSE ESTIMATION

6.1 Introduction

Multi-person pose estimation is mostly challenged by occlusion and variant postures. Ex-

isting bottom-up and top-down methods have their own advantages and limitations. The

bottom-up approaches detect body keypoints without advance knowledge of person loca-

tions which are firstly explored in the top-down pipelines. However, the benefit of unifying

the two pipeline is lack of exploration. Motived by this observation, we propose a joint

bottom-up and top-down learning method to better predict multi-person join locations. Our

network not only learns the body keypoints but also the centers which indicate different

person instances. Meanwhile, the offsets from body keypoints to the centers are encoded

for both retrieving and grouping the keypoints. Based on shared features of keypoints-to-

instances and instances-to-keypoints branches, our method can efficiently perform multi-

person pose estimation. Moreover, due to the limitation of heatmap representation, the

networks need extra and non-differentiable post-processing to convert heatmaps to key-

point coordinates. Therefore,we propose a simple and efficient operation based on integral

loss to fill this gap specifically for bottom-up pose estimation methods. We demonstrate

that the proposed approach achieves better performance than the baseline methods on the

challenge benchmark MSCOCO dataset for multi-person pose estimation.

The two major approaches in multi-person pose estimation are structured in top-down

and bottom-up. On one hand, the top-down methods [42, 43, 44, 45, 46, 47, 48] firstly

detect persons and then repeatedly estimate pose for each of them. On the other hand,

the bottom-up methods [49, 50, 51, 52, 53, 109] detect body keypoints without advance
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Figure 6.1: Overview of proposed joint bottom-up and top-down learning.
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knowledge of person locations and then group them into person instances. Most top-down

methods use an isolated human detector to firstly extract instance reigons which are further

feeded into the single-person pose estimation network. Without simultaneously training,

the context feature from instance regions is not fully contributed to keypoint detection.

Recently, instance center with other object properties is creatively utilized for object detec-

tion, such as CenterNet [110] and SPM [111]. From this point of view, the human detector

of top-down method can be converted to point prediction with heatmap learning which is

consistent with the bottom-up methods. Then, the keypoints can be retrieved based on the

center points and their offsets with respect to the keypoints. Thus, the top-down pipeline

encodes more geometric information which complements the appearance features learnt

from bottom-up pipeline. Based on these consideration, we integrate the bottom-up and

top-down learning in a single framework to improve the performance, as shown in Figure

6.1.

Existing methods prove that the heatmap learning is more suitable for keypoint detec-

tion than the directly coordinates regression. The network outputs heatmaps which are

usually converted to keypoint coordinates by non-differentiable post-processing. Integral

loss [104] proposed by Sun et. al reduces the quantization error. However, it can’t be di-

rectly used for bottom-up pipeline method. Therefore, we propose a bottom-up integral

regression approach to improve the network performance.

The center offset is the displacement from the keypoint to its instance center. It encodes

the retrieving cue to calculate keypoint locations with the detected centers. Its variation

acts as an extra grouping tag to assign individual keypoint detections to their closest per-

son instance. Due to the situation of occlusion, different type of keypoints from different

instances may be at same location of the image. The occluded keypoints will unable to be

retrieved from the missing information. To conquer this problem, our network simultane-

ously learns holistic and separate offset maps for each keypoints.

The main contributions of this chapter can be summarized as follows:
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• Joint bottom-up and top-down learning. We propose a unified pipeline to predict

body keypoints from both bottom-up and top-down perspectives. Our meth-od ex-

plores the benefit of jointly learning muli-person body keypoints from branches of

keypoints-to-instan-ces and instances-to-keypoints.

• Bottom-up integral regression. We propose to integrate local losses of predicting

heatmaps and coordiates together and use a bottom-up integral regression to trans-

form the heatmap representation to keypoint coordinates by a differentiable way

specifically for bottom-up multi-person pose estimation methods. The coordinate

loss complements the over-segmentat-ion of heatmaps caused by local calculation.

Our approach results in performance improvement over the baseline methods.

• Offset encoding. We explore the affection of holistically and separately encoding

the offsets from body keypoints to centers. We propose a refine method by utilizing

both holistically and separately encoded offsets.

6.2 Related Works

Since DeepPose [66], the pose estimation solutions thrive in the presence of deep neural

network. The pose estimation network branched out into bottom-up and top-down struc-

tures.

In the bottom-up branch, the approaches firstly detect body keypoints (or joints) and

then group them into person instances. Deepcut [93] proposes a partitioning and labeling

formulation of a set of body-part hypotheses generated with CNN-based part detectors.

Deepercut [50] and Iqbal et al. [51] also formulate the problem as part grouping and label-

ing via a linear programming. Following PoseMachine [47], CMU-Pose [49] uses a part

affinity field learn to associate body parts and group them to person instances with greedy

bottom-up parsing steps. PoseAE [52] proposes associative embedding to simultaneously

generate and group detections. PersonLab [53] introduces a part-induced geometric em-
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bedding descriptor to associate semantic person pixels with their corresponding person

instance. Clusterwise [109] proposes to learn connected keypoints simultaneously. It uses

dense and sparse branches to generate paired multi-peak detection heatmaps for clusters of

keypoints. To enhance the feature passing through the network, it aggregates information

from different branches. STIE [112] introduces a fully differentiable pose-guided grouping

module for both pose estimation and tracking.

On the contrary, top-down methods detect people first and then apply a single person

pose estimation to each person detection result. Since the pose estimator only have to fo-

cus on single instance, these two-stage methods usually produce fine localization. RMPE

[43] by Fang et al. integrates the symmetric spatial transformer network, parametric pose

nonmaximum-suppression, and pose-guided proposals generator with stacked Hourglass

modules [45] to handle inaccurate bounding boxes. G-RMI [98] by Papandreou et al. pre-

dicts dense detection heatmaps and offsets for each keypoint type by using ResNet [64]

and combined these outputs by an aggregation procedure to obtain highly localized key-

point predictions. Mask-RCNN [44] by He et al. solves multi-task of object detection,

instance segmentation and keypoint prediction together based on the RoI aligned feature

maps extracted from ResNet [64] integrated with FPN [99]. MultiPoseNet [100] receives

keypoint and person detections, and produces accurate poses by assigning keypoints to per-

son instances. Xia et al. [27] ultilize a PoseFCN and a PartFCN to provide initial estimation

of pose joint potential and semantic part potential.

6.3 Method

6.3.1 Joint Bottom-up and Top-down Learning

As shown in Figure 6.1, we unify the bottom-up and top-down pose estimation in a single

framework which is referred as BUTDI in the following chapters. The bottom-up pipeline

learns keypoint heatmaps and their association tagmaps and captures appearance features,

while the top-down pipeline explores instance center point heatmaps and their offset maps
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Figure 6.2: The overview of our model architecture.
The network outputs three type of outputs for different tasks. The heatmaps in the top row are detected
keypoints and centers. The middle row illustrates the tagmaps for grouping the detected keypoints into

instances. The bottom row shows the separately learnt offsets between keypoints and their centers.

with respect to the keypoints and extracts geometric features. Therefore, the network com-

bines them together can simultaneously learn the complementary information. Moreover,

since the detection part of both pipelines are points prediction with heatmaps, it is more

reasonable and suitable to integrate the bottom-up and top-down learning in a single frame-

work.

Figure 6.2 shows the detail of our framework which consists of three types of outputs:

heatmaps for 17-dim keypoints and 1-dim center point detection, 17-dim association tags

and 2-dim offset tags for grouping the detected keypoints into instances, and 32-dim off-

set components for retrieving keypoints and refining results. To use the pre-trained model

for initialization, we keep the total output dim as 68. Note that, the offset tags and com-

ponents are not used at same time. For using offset tag, the supervised dim is 37. For

using offset components, the first three keypoints (nose, left-eye, right-eye) are packed as

one component and the dim of offset components is 32. In this case, the supervised dim

is 67. In summary, 68-dim outputs are produced from a common backbone with different

supervisions. We take the Stacked Hourglass Network [52] as the backbone. The network

first decreases the input resolution with convolutions and poolings to reduce computational
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burden. Moreover, the feature maps from previous stack are merged and passed to next

stack repeatedly. This processing makes the network process features at both local and

global contexts and gradually strengthen the capacity of accurate prediction. With interme-

diate supervision, each Hourglass module outputs a set of heatmaps indicating keypoints

positions and tagmaps for grouping the keypoints into instances. Since the body keypoints

only occupy a small area in images, the heatmap matrix is very sparse. Therefore, we pro-

pose a bottom-up integral regression approach to reduce the noise of background areas and

improve the network performance.

6.3.2 Bottom-up Integral Regression

We introduce a bottom-up integral regression method in the Chapter 5. Since the heatmap

is evenly divided into patches, the keypoint regions may be over-segmented and reduce the

regression precision. Therefore, we improve the bottom-up integral regression approach by

adding a coordinate loss. Our network is trained by minimizing the bottom-up integral loss

which is defined as follows:

Ldetk =
1

KG

∑
k

(
∑
g

(Lg,kH + Lg,kI ) + LkC) (6.1)

where Ldetk integrates each local grid loss into a global detection loss for the k-th key-

point, K is the number of keypoints, G is the number of grids. For each grid, the loss

consists of a heatmap loss Lg,kH , an integral loss Lg,kI and a coordinate loss Lg,kC . The Lg,kH

forces the network to focus on relevant areas. The LgI enables the network learns keypoint

locations in a differentiable way without quantization errors. The LgC complements the

over-segmentation caused by gridding. As shown in Figure 6.3, we select top-m grids and

top-n heatmaps for final loss calculation.

The predicted heatmap and groundtruth heatmap are equally divided into grids. For the

predicted detection heatmap of each grid, the heatmap loss LgH is computed based on the
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Mean Square Error.

Lg,kH =
1

M

∑
i

(pi − gi)2 (6.2)

Where, M is the number of pixels in each grid, pi and qi are pixel values at the i-th grid of

the predicted heatmap and ground-truth map respectively.

The integral loss LgI is calculated with the coordinates generated from both the pre-

dicted heatmap and ground-truth map. The softmax function is applied to each grid of the

predicted heatmap and groundtruth map along the spatial axis to generate the coordinate

Cg,k and C∗g,k in a differentiable manner. The definition of the LgI is as follows:

Lg,kI = ||Cg,k − C∗g,k|| (6.3)

Cg,k = (
w∑
i

h∑
j

iĤg,k(i, j),
w∑
i

h∑
j

jĤg,k(i, j)) (6.4)

where (w, h) indicates the size of the g-th grid patch, (i, j) is the coordinate refers to the

grid, Ĥg,k is the predicted heatmap with softmax applied, and C∗g,k is the ground-truth

coordinates for the g-th grid of k-th ground-truth map in the same way of Equation 6.4.

The coordinate loss LkC measures the accuracy of coordinate generation given a neigh-

bourhood of the k-th keypoint, as the blue regions shown in Figure 6.3. LkC is calculated by

distance between the positions of predicted point Cb,k and ground-truth keypoint Tk.

LkC = ||Cb,k − Tk|| (6.5)

where b indicates the neighbourhood of the k-th keypoint and its size is 5 in our exper-

iments. The Cb,k is generated by Equation 6.4 and converted to the position in image

coordinate.

Given a set of keypoints extracted from local peaks of the heatmaps, we have to group

them into person instances. Following PoseAE [52], we calculate the loss for grouping key-
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Figure 6.3: Illustration of bottom-up integral regression.

points based on “pulling” together those from the same instance and “pushing” away the

others from different instances. Therefore, in addition to producing the detection heatmaps,

the network correspondingly outputs associative tagmaps for keypoint-wise relation em-

bedding and instance retrieving, as shown in Figure 6.4 (d). Compare to PoseAE [52], our

associative tagmap removes the noise of background. In each tagmap, pixels having similar

values indicate the locations belong to the same instance. The loss for grouping keypoints

into instances is calculated by

Lemb =
1

NK

∑
n

∑
i

(hi − hn)])2+

1

N(N − 1)

∑
n

∑
m6=n

exp(− 1

2δ2
(hn − hm)2)

(6.6)

Where, N is the number of instances, K is the number of visible keypoints, hi is pixel

values at position i in the tagmap, hn and hm are the reference tag embeddings for different

instances.
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Figure 6.4: Illustration of associative tagmaps.
The tagmaps are respectively generated by (a) PoseAE [52], (b) BUI [113], (c) BUTD and (d) BUTDI. The

input is shown in Figure 6.2.

6.3.3 Offset Encoding

The center offset is the displacement from the keypoint to its instance center, as shown

in Figure 6.5 (a). It encodes the retrieving cue to calculate keypoint locations with the

detected centers. Its variation acts as an extra grouping tag to assign individual keypoint

detections to their closest person instance. We construct two dense offset maps Sx and Sy

which encode x and y component of the relative displacement from the keypoints to their

instance center locations. Since the offsets of all keypoints are encoded together, we call

these two offset maps as holistic offset maps. We denote the center location by (xc, yc),

the neighbours of each keypoint by (xik, y
j
k) and the ground truth of offset learning by

D(xik, y
j
k).

D(xik, y
j
k) = (xik, y

j
k)− (xc, yc), where(i, j) ∈ Rk (6.7)

whereRk denotes the neighbouring positions of the k-th keypoint. Then, we directly regress

to the keypoint offsets with an L1 loss.

Loffset =
1

NK

∑
n

∑
k

||Sn(xik, y
j
k)−Dn(xik, y

j
k)|| (6.8)

where N is the number of instances, K is the number of visible keypoints, the neighbour-

hood size is set as 3 in our experiments. Figure 6.5 (c) and 6.5 (d) show examples for the

constructed holistic offset maps Sx and Sy respectively. By subtracting the offset value
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Figure 6.5: Illustration of holistically and separately learnt offsets.
(a) Center heatmap overlap with an offset structure example. (b) Tagmap in center-based offset pipeline. (c)
and (d) are holistically learnt offset maps in x and y directions. (e) and (g) are converted tagmaps from (c)

and (d). (h) and (i) are instance-based tagmaps from (e) and (g). (j) and (k) are separately learnt
keypoint-based offset maps in x and y directions. (l) and (m) are separately learnt center-based offset maps

in x and y directions.The input is shown in Figure 6.2.

with its coordinate, the holistic offset maps can be converted to offset-based tagmaps in

which the keypoint tags are the coordinates of their instance centers. Figure 6.5(e) and

6.5(g) visualize the offset-based tagmaps corresponding to the x and y coordinates of the

instance centers.

By combining the detected centers and offset-based tag-maps together, we can roughly

get each instance region, as the dark green zones shown in Figure 6.5 (h) and 6.5 (i). Due

to the situation of occlusion, different type of keypoints from different instances may be at

same location of the image. The occluded keypoints will unable to be retrieved from the

missing information. To conquer this problem, our network simultaneously learns a set of

separate offset maps Skn for each keypoints. Different from the holistic offset maps, each

separate offset map encodes the offset for a specific keypoint. Figure 6.5 (j) and 6.5 (k)

show example of the left-shoulder keypoint. Compare with Figure 6.5 (h), Figure 6.5 (j)

has more complete instance region in the highlight zone. Since the offsets are encoded at

the locations of keypoints, we call this kind of separate offset map as keypoint-based offset

map.

Optionally, we can encode the offset value at the location of the center. Once the center
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point is detected, the keypoints can be retrieved by subtracting the offset from the coor-

dinates of the centers. This process implicitly uses center locations as the tag to group

keypoints. Therefore, we call them as center-based offset maps. Figure 6.5 (l) and 6.5 (m)

illustrate the examples of the center-based offset maps for the left-ankle keypoint. We note

that the centers are also encoded into the tagmaps if we use the center-based offset learning,

as shown in Figure 6.5 (b).

Based on the offset maps, we refine the bottom-up detected keypoints with the top-

down reference. As shown in Figure 6.5 (i) and 6.5 (j), the keypoint-based offset maps

are firstly converted to tagmaps according to the locations of detected centers. Given a

detected keypoint, we search a reference position that has the minimum value in its sliding

neighbourhood in the tagmaps. Then, we update the keypoint location with the weighted

reference and detected positions. Similarly, we construct reference maps for each keypoint

by adding the center coordinates to its center-based offset maps. In a neighbourhood of the

center point, the nearest point to the detected keypoint is selected out and its offset is used

to update the keypoint location.

Finally, the fully training loss L enforces the keypoints detection close to the ground-

truth and encourages pairs of indexes to have similar values if the corresponding detections

belong to the same instance or different values otherwise.

L = λdLdet + λeLemb + λoLoffset (6.9)

Where λd, λe and λo are the weights for the detection, embedding and offset learning loss

respectively.
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Table 6.1: Results on MSCOCO validation500 dataset.

Experiemnts AP AP 50 AP 75 APM APL AR AR50 AR75 ARM ARL

PoseAE [52] 0.593 0.820 0.649 0.505 0.727 0.639 0.839 0.685 0.540 0.780
BUI [113] 0.599 0.829 0.649 0.508 0.734 0.642 0.840 0.684 0.544 0.782

BUTD 0.600 0.829 0.666 0.515 0.732 0.642 0.843 0.693 0.548 0.775
BUTDI 0.604 0.829 0.662 0.515 0.738 0.648 0.846 0.694 0.553 0.783

BUTDI-k 0.601 0.827 0.670 0.516 0.732 0.646 0.843 0.701 0.554 0.776
BUTDI-kr 0.600 0.827 0.664 0.515 0.732 0.645 0.843 0.700 0.553 0.775
BUTDI-c 0.604 0.826 0.659 0.519 0.733 0.648 0.843 0.692 0.557 0.778
BUTDI-cr 0.604 0.826 0.662 0.520 0.734 0.649 0.843 0.695 0.558 0.778

Table 6.2: Multi-scale results on MSCOCO validation500 dataset.

Experiments AP AP 50 AP 75 APM APL AR AR50 AR75 ARM ARL

PoseAE [52] 0.665 0.849 0.726 0.612 0.744 0.701 0.867 0.755 0.640 0.789
STIE [112] 0.680 0.878 0.747 0.626 0.761 − − − − −
BUI [113] 0.671 0.852 0.732 0.617 0.749 0.706 0.890 0.760 0.647 0.789

BUTDI 0.678 0.862 0.751 0.630 0.751 0.713 0.878 0.772 0.657 0.792
BUTDI-k 0.678 0.862 0.751 0.628 0.752 0.713 0.879 0.776 0.656 0.794
BUTDI-cr 0.679 0.860 0.751 0.631 0.747 0.714 0.877 0.776 0.661 0.790
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6.4 Results and Discussion

6.4.1 Performance

We train the proposed network on MSCOCO [74] under the similar setting of Chapter

4. We evaluate our networks performance under OKS metrics. The primary challenge

metric AP and AR are averaged over multiple OKS values with 0.05 interval. Small objects

(segment area < 322) do not contain keypoint annotations. The APM is for the medium

objects having areas between of 322 and 962 and the APL is for large objects having area

larger than 962. We study each major change in our network to understand its contribution

to achieve the performance.

Table 6.1 shows the results with different supervisions for training. By using bottom-up

integral (BUI) loss to supervise the heatmap learning, our network achieves better perfor-

mance than the baseline PoseAE [52] on a held-out set containing 500 images, referred as

MSCOCO validation500 dataset. The performance of our network is further improved by

introducing the supervision of top-down pipeline (BUTD) which learns the instance cen-

ters and the holistic offsets. Compare to result of the second experiment, the introducing of

keypoint-based (BUTDI-k) separate offset improves AP 75 and AR75 but reduces the per-

formance on other metrics. The refine process (BUTDI-kr) with keypoint-based offset map

just keeps the performance. The center-based (BUTDI-c) offset improves the performance

on APM and ARM . And the refine process (BUTDI-cr) further improves its performance.

Table 6.2 shows the results of multi-scale testing on the held-out set. Moreover, we com-

pare our method with state-of-the-art of methods on MSCOCO test-dev set and the results

are shown in Table 6.3. We can see that the proposed joint bottom-up and top-down learn-

ing achieves overall 0.648 AP which is better than the most competitors. We also note that

the proposed method performance better even on the challenge case of medium size objects

with 0.603 APM and 0.641 ARM . Overall, our method achieves better performance than

the baseline and competitive performance with state-of-the-arts.
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Table 6.3: Comparison on MSCOCO test-dev dataset.

Experiments AP AP 50 AP 75 APM APL AR AR50 AR75 ARM ARL

CMU-Pose [49] 0.618 0.849 0.675 0.571 0.682 0.665 0.872 0.718 0.606 0.746
RMPE [43] 0.618 0.837 0.689 0.586 0.673 0.676 0.875 0.746 0.630 0.740

Mask-RCNN[44] 0.629 0.871 0.689 0.576 0.713 0.697 0.913 0.751 0.639 0.776
PoseAE[52] 0.633 0.857 0.689 0.580 0.704 0.688 0.884 0.742 0.620 0.781

Clusterwise[109] 0.627 0.857 0.687 0.572 0.702 0.688 0.896 0.742 0.623 0.777
G-RMI[98] 0.649 0.855 0.713 0.623 0.700 0.697 0.887 0.755 0.644 0.771
BUI[113] 0.642 0.863 0.706 0.586 0.719 0.696 0.892 0.751 0.630 0.785
BUTDI 0.646 0.861 0.707 0.593 0.720 0.694 0.887 0.749 0.630 0.782

BUTDI-k 0.645 0.860 0.707 0.593 0.719 0.693 0.887 0.749 0.631 0.779
BUTDI-cr 0.648 0.860 0.712 0.603 0.712 0.698 0.890 0.753 0.641 0.776

Figure 6.6: Comparison of error distributions.
Results are from (a) PoseAE [52], (b) BUI [113] and (c) BUTDI.
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Figure 6.7: Comparison of the performance improvement according to the size of targets.
Results are from (a) PoseAE [52], (b) BUI [113] and (c) BUTDI.
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Figure 6.8: Qualitative results on MSCOCO validation500 dataset.
Results of (a) PoseAE [52] and (b) Ours.

We also study the error distributions in our network to understand its contribution to

achieve the performance. We follow the analysis method proposed by Ronchi et al. [78]

which categorize the error distributions include the frequency of pose errors of jitter, in-

version, swap, and miss according to the keypoint type, number of visible keypoints, and

overlap in the input image. Figure 6.6 shows the error distributions change after applying

the proposed bottom-up integral regression to the PoseAE [52] network. Our method not

only corrects the small displacement error of jitter but also the large displacement errors

of inversion and swap. Figure 6.7 illustrates the performance improvement according to

the size of targets. The precision-recall curves showing the performance of PoseAE [52]

without and with our loss by progressively increasing the OKS evaluation threshold with

0.05 increment. For both large and medium size targets, the proposed loss improves the

network performance. To give an intuitive sense of the improvement, Figure 6.8 visualizes

the comparison results of pose errors correction.

6.5 Conclusion

In this chapter, we propose a joint bottom-up and top-down learning method to better pre-

dict multi-person join locations. Our network not only learns the body keypoints but also

the centers which indicate different person instances. Meanwhile, the offsets from body
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keypoints to the centers are encoded for both retrieving and grouping the keypoints. Based

on shared features of bottom-up and top-down branches, our method can efficiently per-

form multi-person pose estimation. We also introduce an improved bottom-up integral

regression operation to reduce the quantization error of converting heatmaps to keypoint

coordinates specifically for bottom-up pipeline multi-person pose estimation methods.
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CHAPTER 7

CONCLUSION

The thesis characterizes the benefits of image-based learning methods for natural Human-

Computer Interaction (HCI) that unconsciously recognizes diversity human activities in

the wild. Due to unpredictable environmental condition in the natural application scene,

such as rapid changes in illuminations, background clutter, multiple persons with variant

articulation of body limbs, diverse appearance, self-occlusion, different scales, significant

overlap between neighbor persons and crowd, it is challenging to extract human body in-

formation from the images. The recent promising wearable cameras for egocentric vision

complement the traditional way of vision data capturing. This thesis demonstrates a hand

segmentation approach that exploits the traits of egocentric viewpoint. Meanwhile, the

thesis presents three approaches of multi-human pose estimation using unconstrained vi-

sion which offers extensive and diverse clues for not only the human activity but also the

scene understanding. Experiments carried on public datasets validate the generality of the

proposed approaches.

To robust segment user’s hand from varying illumination and appearance conditions,

we propose a coarse-to-fine online learning approach. We introduce a frame-level hand

presence detection approach that utilizes hand motion saliency in the egocentric HCI, which

reduces the false positive rate for the final target of pixel-level hand segmentation. We

present a top-down cascaded classification method which segments hand hierarchically

in levels of frame, superpixel and pixel so as to reduce computational cost, in which the

classifiers are trained on-the-fly so as to be robust to diverse users. We analyze and optimize

the online trained classifiers by a bottom-up method which makes the hand segmentation

robust to varying environmental conditions. Experiments carried on public datasets validate

the generality of the proposed approach. This method shows the potential of unsupervised

119



method for pixel-level hand segmentation in egocentric interaction. In the future, it is

worth to try to combine hand segmentation with hand keypoint estimation to provide more

dimensions for HCI.

To robust estimate human pose from practical application scene, we discuss three meth-

ods from perspectives network head and backbone structure. The cluster-wise feature ag-

gregation method illustrates the benefits of using multiple task heads to enforce the network

learn richer contextual information. The lite hourglass network introduces the potential

way of balancing performance and computational cost by using hybrid dilated blocks in

the network backbone. The joint bottom-up and top-down learning method encodes more

geometric information which complements the appearance features and improves the net-

work performance.

Firstly, we introduce our cluster-wise learning approach for multi-person pose estima-

tion. Instead of detect each keypoint separately, our network predicts multi-peak detection

heatmaps for clusters of dense and sparse keypoints, which exploits global and local con-

textual information to improve the detection robustness. To enhance feature passing from

shallow stack to deep stack, we aggregate information from different branches. The in-

branch aggregation enriches the detection features in each branch by absorbing the holistic

human region attention. The cross-branch aggregation further strengthens the detection fea-

tures by fusing global and local context information between dense and sparse branches.

To better grouping the detected keypoints into instances, our network embeds relationships

among the intra-cluster and inter-cluster keypoints with offset learning, which not only

benefits the instance grouping but also individual keypoint identification. We demonstrate

competitive performance of our network on the benchmark dataset for multi-person pose

estimation. In the future, we are keeping on exploring more effective restriction of keypoint

relations.

Secondly, we present our lite version of hourglass network for reducing the compu-

tational cost while maintaining the performance. We propose a novel hybrid convolution
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block which builds multi-context paths with dilated convolutions with different rates. The

proposed block not only reduces the number of parameters but also enlarges the receptive

field. We perform extensive experiments to analyse the properties and the performance of

the proposed block. We propose a bottom-up integral regression to transform the heatmap

representation to keypoint coordinates by a differentiable way specifically for bottom-up

multi-person pose estimation methods. Our approach results in performance improvement

over the baseline methods. We demonstrate competitive performance of our network on

the benchmark dataset for multi-person pose estimation.

Last but not least, we introduce a joint bottom-up and top-down learning approach that

integrates complementary appearance and geometric information. We propose a unified

pipeline to predict body keypoints from both bottom-up and top-down perspectives. Our

approach explores the benefit of jointly learning muli-person body keypoints from branches

of keypoints-to-instances and instances-to-keypoints. We explore the affection of holisti-

cally and separately encoding the offsets from body keypoints to centers. We propose a

refine method by utilizing both holistically and separately encoded offsets. Moreover, due

to the limitation of heatmap representation, the networks need extra and non-differentiable

post-processing to convert heatmaps to keypoint coordinates. Therefore,we propose a sim-

ple and efficient operation based on integral loss to fill this gap specifically for bottom-up

pose estimation methods. We demonstrate that the proposed approach achieves better per-

formance than the baseline methods on the challenge benchmark dataset for multi-person

pose estimation.

In the future, we believe that these methods can be extended to or integrated with other

computer vision tasks, such as object detection by exploring keypoints, sparse-to-dense

tasks like depth recovering, image matting, instance segmentation, etc. Our hand segmen-

tation method also can be transferred to the pixel-level object segmentation by combining

with gaze analysis and contribute to activity recognition. Moreover, it also can be integrated

with deep convolution neural networks to achieve better performance by using higher di-
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mension features. For pose estimation, further improvement is expected by integrating with

more advanced existing techniques of flownet [114] tracking, relation extraction [115] and

information passing [116]. Moreover, to meet the end of real-time application, further im-

provement will be expected by integrating the architecture with more lightweight kernels

and multi-scale supervision to achieve better performance. Considering integration of hand

segmentation and human pose estimation, it brings us to a more exciting and challenging

future topic of whole-body keypoint detection [9].
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