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Abstract 

 

Aging population is causing a steep increase in number of people with vision 

impairment. Selecting proper treatments at the early stage is important to prevent 

vision loss. Conventional diagnose methods tremendously depend on the doctors’ 

experience to detect and classify diseases to determine the treatment plan. Recently, 

there are lots of researches and social implementations trying to assist the clinical 

decision making via machine learning. Machine learning especially deep learning 

requires a large amount of labelled data, and the more data they are provided, the 

better the machine learning models typically perform. However, the amount of labelled 

data in medical field is limited. 

The major theme of this dissertation is focused on building high accurate machine 

learning models for ophthalmologic disease detection and classification with small-size 

dataset. To achieve this goal, the doctors’ diagnostic processes are analyzed first as 

follows. First, doctors perform disease classification after discriminating diseased cases 

from healthy cases (disease detection). Second, doctors classify diseases into 

subcategories by reusing the knowledge of classifying healthy and diseased cases. Third, 

doctors use multiple information to make an optimal diagnosis.  

Based on the characteristic of doctors’ diagnostic processes analyzed, a framework 

for building machine learning models of ophthalmologic disease detection and 

classification is proposed and implemented with newly created training methods. First, 

hierarchical classification method of two-step is used to build the machine learning 

models for disease classification, after building the models for disease detection. Second, 

hierarchy transfer learning method is used to build the machine learning model for 

disease classification by reusing parameters of the disease detection model in the 

hierarchical model above. Third, stacking ensemble method is used to extend the two-

step framework to handle multiple input data by combining the machine learning 

models trained separately on single input data with the hierarchical classification 

method and hierarchy transfer learning method.    

A series of experiments are performed to demonstrate the proposed framework for 

training machine learning models of ophthalmologic disease detection and classification 

in achieving high accuracy and the applicability to small size dataset.  

In chapter 3, based on quantified parameters extracted from the medical images 

and demographic data, a two-step hierarchical classification with feature selection in 
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each step is proposed. This method is evaluated by building machine learning 

classification models of detection and classification for an ophthalmologic disease 

(glaucoma). 

In chapter 4, deep learning technique is applied to handle medical images directly, 

and the deep learning models are trained with hierarchical classification method and 

hierarchy transfer learning method. Concept of this framework is first demonstrated 

with a natural image dataset, labels of which are hierarchically related. Then the 

framework is evaluated using a real clinical image dataset relevant with an 

ophthalmologic disease (age-related macular degeneration) diagnosis.   

In chapter 5, extension method for the proposed two-step framework using 

hierarchical classification method and hierarchy transfer learning method is proposed to 

build machine learning models based on multiple medical images, trying to combine 

models built with each type of input images in a stacking manner. The effectiveness of 

this extended two-step framework is demonstrated using a retinal image dataset 

consisting four types of images extracted from volumetric data by building machine 

learning models for glaucoma detection and classification.  

All the proposed methods enable machine learning models to achieve high 

accuracies and have good applicability to small size dataset. Conclusively, this 

dissertation demonstrates that the two-step hierarchical framework has a high potential 

of deploying high accurate machine learning models for ophthalmologic disease 

detection and classification with limited labelled data, to assist the clinical decision 

making of selecting the proper treatments for the patients to prevent the vision loss.  
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Chapter 1.  

 

Introduction 

 

1.1. Ophthalmologic Disease Detection and Classification 

The world is experiencing growth in the number of older persons in the population [1]. 

Compared to 2017, the number of persons aged 60 or above is expected to more than double 

by 2050 and to more than triple by 2100. The number of persons aged 80 or over is growing 

even faster, and is projected to triple by 2050, and nearly seven times by 2100 [1]. Aging of the 

world's population is causing a steep increase in number of people with vision impairment, 

which affects their ability to interact with the surroundings severely [2]. At present, there are 

more than 250 million people with vision impairment, of which 36 million are suffering with 

blindness, and these number would increase to about 700 million vision impaired and 115 

million of these blind, after 30 years from now [2]. The worldwide societal costs of visual 

impairment have been estimated at $3 trillion in 2010, most of which was direct health costs, 

and this burden is projected to increase by approximately 20% by 2020 [3]. Moreover, nearly 

90% of the patients suffering vision impairment are from low and middle income countries 

(LMICs) [3], and the need for solving this social problem in LMICs is more acute.  

    Early detection and proper treatment at the early stage of the ophthalmologic diseases 

are important to prevent vision loss and improve the patients’ quality of life [4], which are 

useful for solving the problem of increasing social costs of visual impairment. Conventional 

diagnose methods are tremendously depend on the ophthalmologists’ knowledge and 

experience to detect and classify diseases subjectively to determine the proper treatment plan 

[5]. Major shortage and maldistribution of trained ophthalmologists are the main obstacle of 

realizing global eye healthcare [6]. Many of the interventions for the ophthalmologic diseases 

remain out of reach for millions living in underserved regions in LMICs as well as 

disadvantaged populations in high-income countries [6]. The appropriate distribution of the 

eye care workforce and the development of comprehensive eye care delivery systems are 

needed to ensure that eye care needs are universally met [6]. 
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1.2. Artificial Intelligence for Disease Detection and Classification  

In the healthcare industry, huge amount of data including hospital records, medical records 

of patients, results of medical examinations, and medical image data from different devices 

are now being accumulated in everyday clinical practice. Among these medical data, medical 

imaging plays a critical role in establishing the diagnoses for innumerable conditions and it is 

used routinely in nearly every branch of medicine [7]. With the development of technologies, 

many medical imaging techniques help doctors to understand the symptoms more thoroughly 

by providing more valuable information such as volumetric and time-series data [8], which 

lead to better diagnosis and more proper treatments for the patients. However, interpreting 

huge amount of volumetric and time-series image data is a big burden for the doctors including 

ophthalmologists, resulting in the big volume of data is not fully used [8]. 

Recently, there are lots of researches and social implementations trying to process the 

massive data to extract useful information via machine learning, a subset of artificial 

intelligence (AI) for assisting doctors in the clinical decision making [6]–[8]. There are two 

main features of AI as below. The first feature of AI is the ability to handle enormous amounts 

of information instantaneously with stable performance. The second feature is that AI can 

improve its accuracy by learning, which has progressed rapidly especially deep learning enters 

the stage. Because of these features of AI, AI is being paid more and more attention, and is 

being developed positively for solving many various social problems.  

There are mainly two types of machine learning: one is supervised learning and the other 

is unsupervised learning. Supervised learning is to train a model from already labelled data, 

and until now methods adopted in most medical field research are performed in supervised 

manner because the accuracy and efficacy of supervised learning are better than unsupervised 

learning [9]. There have been lots of studies for diagnosis using medical data in supervised 

conditions, most of which have aimed at automatic detection of some diseases, not classifying 

diseases into subtypes that is relevant with determining proper treatment plans [7].  

Machine learning, especially deep learning requires a large amount of supervised data, 

and the more input data they are provided, the better a machine learning-based model 

typically performs [10]. However, it is difficult to collect many supervised data by doctors in 

medical field [6]–[8]. Regarding the disease classification which is more needed in clinical use 

for treating patients properly, it is more difficult, because it requires much more experience 

for the doctors who label the data, compared with the disease detection. In most studies, the 

size of the data used for training machine learning models is from hundreds to thousands [6]–
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[8]. To overcome the obstacle of insufficient labelled data in the medical field, there are many 

machine learning techniques are being proposed. There are mainly two aspects to consider for 

machine learning achieving good performance, data and optimization, according to its 

definition: to solve an optimization task using collected sample data. First, some approaches 

are focusing on making good data for building machine learning models, such as synthetically 

increasing the number of available samples or decreasing unnecessary information (features) 

of the sample data [9], [10]. Second, some approaches are focusing on how to optimize, such as 

designing better optimization method of machine learning classifiers, or decreasing difficulty 

of optimization for specific tasks. Recently, ‘not-so-supervised’ learning methods, which 

include semi-supervised, multi-instance, and transfer learning, among which transfer 

learning inspired by human thought processes has become the most popular [10], [11]. 

 

1.3. Proposed Framework of Developing AIs for Disease Detection 

and Classification Based on Analysis of Diagnostic Processes 

The major theme of this dissertation focused on building high accurate machine learning 

models for ophthalmologic disease detection and classification with small-size dataset. 

To achieve this goal, first I analyzed the doctors’ diagnostic processes of disease detection 

and classification as follows (Fig.1.1). Note that diseases here are not limited to 

ophthalmologic diseases. 

1) Doctors perform disease classification after classifying healthy and diseased cases 

(disease detection), because the disease classification is difficult, which is based on 

complex symptoms, and it should be performed in the status of normal cases excluded 

thoroughly. 

2) Doctors classify diseases into subcategories by reusing the knowledge of classifying 

healthy and diseased cases. 

3) Doctors use multiple information (e.g., multiple types of medical images) to make 

optimal diagnosis. 
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Fig. 1.1. Analysis of doctors’ diagnostic processes for disease detection and classification 

 

Based on the analysis of the doctors’ diagnostic processes above, a framework of building 

machine learning models for disease detection and classification in two steps was proposed. 

In the first step, the model for classifying healthy and disease (disease detection) was built. 

In the second step the model for disease classification was built by reusing parameters of the 

model for disease detection. This two-step framework was further extended to handle multiple 

input data by combining the machine learning models trained separately on single input data. 

In detail, in this dissertation, I proposed a training framework composing of three 

different methods, those were newly created based on the analysis of the doctors’ diagnostic 

processes to build high accurate machine learning models, those can be used for disease 

detection and classification with limited training data, as below.  

1) Hierarchical classification method, to build machine learning models for disease 

classification, after building the models for classifying healthy and disease (disease detection).  

2) Hierarchy transfer learning method, to build machine learning models for disease 

classification by reusing parameters of the model for disease detection. 

3) Stacking ensemble method, to build machine learning models handling multiple 

input data by combining the machine learning models trained separately on single input data 

with the training method of 1) hierarchical classification and 2) hierarchy transfer learning. 

To demonstrate the effect and efficiency of the proposed framework for building machine 

learning models of disease detection and classification, a series of experiments using labelled 

medical datasets have been devised. 



 1.4 Structure of This Dissertation  

 

5 

 

1.4. Structure of This Dissertation 

The rest of this dissertation is organized as follows.  

Chapter 2 gives a review on the principal AI techniques relevant with disease detection 

and classification, prior to the delineation of the three methods those form the framework of 

building machine learning models for ophthalmologic disease detection and classification 

based on the analysis of the doctors’ diagnostic processes to achieve high accuracy with small 

size datasets. 

Chapter 3 presents the first approach of building machine learning models handling 

quantified parameters in two steps: building machine learning models for classifying diseases 

after building the disease detection models. It is implemented by the two-step hierarchical 

classification method. In each step, feature selection that is one field of feature engineering is 

used to build machine learning models with the optimized subset of quantified parameters. 

Chapter 4 presents the second approach attempting to apply deep learning technique for 

handling medical images directly without feature engineering to build machine learning 

models for ophthalmologic disease detection and classification. A two-step framework to build 

deep learning models for ophthalmologic disease detection and classification is proposed. In 

the first step, the machine learning model for disease detection is built, and in the second step 

the machine learning model for disease classification is built by reusing parameters of the 

model for disease detection. In detail, besides the two-step hierarchical classification method 

introduced in Chapter 3, hierarchy transfer learning method is used.  

Chapter 5 presents an extension approach for the proposed two-step framework 

introduced in Chapter 4 to handle multiple input data. The machine learning models are 

trained separately based on each type of input image data extracted from a volumetric data 

with the two-step framework using hierarchical classification and hierarchy transfer learning 

method. Then the separate models were combined by the superior model in stacked manner 

(stacking ensemble method) to build machine learning models handling multiple images for 

ophthalmologic disease detection and classification.  

Chapter 6 summarizes overall contribution of this dissertation, and discusses the 

necessary works in the future. 

    On the path to building high accurate machine learning models for ophthalmologic 

disease detection and classification with small-size dataset, three novel methods based on 
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hierarchical classification method are presented. I wish this dissertation will steer away from 

current research orientation of flat classification to hierarchical classification in building 

machine learning ophthalmologic disease detection and classification for high accuracy. 
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Chapter 2.  

 

Literature Review of Artificial Intelligence for 

Disease Detection and Classification 

 

As mentioned in Chapter 1, the essence of the artificial intelligence (AI) for disease detection 

and classification has been briefly discussed. This chapter is devoted to give the readers the 

review of the principal AI techniques applied in medical field mainly ophthalmologic field for 

disease detection and classification, prior to the delineation of three researches to build high 

accurate machine learning models with small size dataset for ophthalmologic disease 

detection and classification.  

 

2.1. Artificial Intelligence in Medical Field 

In this section, artificial intelligence (AI), machine learning and deep learning are talked, and 

the current status of AIs in medical field especially ophthalmology is discussed. 

AI was first proposed in 1950s, is defined as the intelligence of machines, as opposed to 

the intelligence of humans or other living species [12], [13]. AI also refers to situations wherein 

machines can simulate human thoughts in learning and analyzing, and thus can be applied 

in problem solving [14]. Machine learning (ML) is a subset of AI (Fig.2.1), and is proposed in 

1980s. It is defined as a set of methods that automatically detect patterns in sample data and 

then incorporate this information to predict the data not included in the sample data under 

uncertain conditions [6], [15]. Deep learning (DL) is a subset of ML (Fig.2.1), and is a 

revolutionary technology of ML gathering attention occurred in 2000s. These technologies 

have been used in many aspects of modern society, such as object recognition based on images, 

language translation, etc. 
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Fig. 2.1. Relationship between AI, machine learning and deep learning 

 

The medical field has been the frontier field of the AI application in recent years. Many 

studies have shown that DL algorithms achieved a high accurate classification performance 

when applied to detection and classification for skin, breast and lung cancer [16]–[18]. These 

inspirable research drives numerous studies to research and develop AI in ophthalmology. 

Traditional machine learning (TML) techniques not including DL applied in ophthalmologic 

filed were introduced and reviewed in the review paper by M. Caixinha and S. Nunes [19]. 

Daniel Shu Wei Ting, et al. detailly introduced and reviewed the DL applications in the 

ophthalmology field [20]. Moreover, Akkara John Davis, et al. introduced generally about the 

AI development in ophthalmology [21].  

Depending on whether to incorporate the outcomes, there are mainly two types of 

machine learning: one is unsupervised learning and the other is supervised learning. 

Unsupervised learning is to train a model with unlabeled data, and has the ability of finding 

new knowledge in medical field, such as histopathology image analysis [22]. Although it is 

exciting to find new knowledge, it is very difficult to handle it properly, and validate its 

achievement. Supervised learning is to train a model from already labeled training data, 

tuning the parameters of the machine learning to improve the accuracy of its predictions 

until they are optimized. It may expedite classification process and would be useful for 

discriminating clinical outcomes of interest [6]. More recently, semi-supervised learning has 
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been proposed as a combination method of unsupervised learning and supervised learning, 

which is applicable for scenarios in which the outcome is missing for certain subjects. 

Supervised learning is to train a model from already labelled data by the specialists, and 

until now methods adopted in most medical field research are performed in supervised 

manner, because the accuracy and efficacy of supervised learning are better than 

unsupervised learning [9]. There have been lots of studies for diagnosis using medical image 

data in supervised manner, most of which have aimed at automatic detection, not 

classification aiming to assist treatment [7].  

In this dissertation, I built all the machine learning models in supervised manner to 

demonstrate my proposed framework of building machine learning models for 

ophthalmologic disease detection and classification. 

Machine learning, especially deep learning requires a large amount of supervised data, 

and the more input data they are provided, the better a machine learning-based model 

typically performs [10]. However, it is difficult to collect many supervised data by doctors in 

medical field [6]–[8]. Regarding the disease classification which is more needed in clinical 

use for treating patients properly, it is more difficult, because it requires much more 

experience for the doctors who label the data, compared with the disease detection. This 

might be a reason for the number of research relevant with disease classification is much 

less than the number of the research of disease detection. In most studies, the size of the 

data is from hundreds to thousands [6]–[8]. The most of research intensively studied are 

concentrating on the diseases, patients of which are large. In ophthalmology, the most 

intensively studied are diabetic retinopathy, glaucoma, age-related macular degeneration, 

cataract, all of which are the leading causes of world-wide blindness [6]. 

The rest of this chapter is organized as follows. Traditional machine leaning techniques 

to develop medical AIs are presented in Section 2.2, while the deep learning techniques to 

develop medical AIs are presented in Section 2.3. 

 

2.2. Traditional Machine Leaning Techniques to Develop Medical AIs 

In this section, the basic traditional machine leaning (TML) techniques including the 

overview of achieving high accuracy are introduced. 
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Existing traditional machine leaning (TML) algorithms applied in ophthalmologic field 

include decision trees [23], random forests (RF) [24], support vector machines (SVM) [25], k-

nearest neighbors [26], and neural networks (NN) [27]. TML can get satisfactory outcome 

with small datasets, but a cumbersome step to select specific effective features manually 

prior to classification is indispensable [28]. As the steps of building TML is shown in Fig.2.2, 

all the input data should be processed with the feature engineering method as the key step 

before being input into the TML algorithms for higher accuracy, for example the manually 

designed features should be extracted for machine learning. 

 

 

Fig. 2.2. Medical image analysis with traditional machine learning techniques 

 

Let the inputs for the TML algorithms are patients’ features (X) including the 

demographic data such as age, gender, etc., and disease-specific data such as medical image, 

etc., sometimes medical outcomes of interest (y) such as treatment or diagnosis and so on. 

The TML algorithms constructing AI trying to solve optimization problems by extracting 

effective features from data (X), and further finding the relationship function between X and 

y, when medical outcomes of interest are inputted. To fix ideas, the jth feature of the ith 

patient by Xij, and the outcome of interest by Yi was used. Generally speaking, the number of 

subjects (j) increases, the performance of AI will improve. Meanwhile, the number of feature 

(i) increases, the performance of AI will also increase to some extent, but after some points, 

the performance of AI will decrease, as the difficulty of optimization increases rapidly 

(Fig.2.3). Thus, it is required to consider the trade-offs between number of features and 

achieving a good accuracy for the AIs. 
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Fig. 2.3. Relationship between AI classification performance and the number of features 

 

A critical part of the success of a machine learning model needs a good set of features to 

train on, in other words find the proper features j in X described above. In the past dozens of 

years, the dimensionality of the data involved in machine learning tasks has increased 

explosively, such as from 2D images to 3D images. With the presence of a large number of 

features, performance of a machine learning model tends to degenerate. To address the 

problem, dimensionality reduction techniques including feature extraction and feature 

selection subset of feature engineering have been studied in the machine learning research 

field.  

Feature engineering, involves: 

- Creating new features: create more powerful features based on the knowledge of 

specialists 

- Feature extraction: methods that select or combine features into more powerful ones, 

effectively reducing the amount of input data, while keeping the ability of presenting 

the data accurately and completely  

- Feature selection: selecting the most useful features to train on existing features 

Feature selection is a widely employed technique for reducing dimensionality. It aims to 

choose a small subset of the relevant features from the original ones according to certain 

relevance evaluation criterion, which usually leads to better classification performance (e.g., 
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higher accuracy), lower computational cost, and better model interpretability. According to 

whether the training set is labelled or not, feature selection algorithms can be categorized into 

supervised, unsupervised and semi-supervised feature selection [29]. Supervised feature 

selection methods can further be broadly categorized into filter models, wrapper models and 

embedded models [29]. The filter model separates feature selection from classifier learning so 

that the bias of a learning algorithm does not interact with the bias of a feature selection 

algorithm [29]. It relies on measures of the general characteristics of the training data such 

as distance, consistency, and Information Gain based methods [29]. The wrapper model uses 

the predictive accuracy of a predetermined learning algorithm to determine the quality of 

selected features, which is time-consuming to run for data with a large number of features 

[29]. Due to these shortcomings in each model, the embedded model, was proposed to bridge 

the gap between the filter and wrapper models [30]. 

In this dissertation, I applied feature selection method combining filter and wrapper 

method when applying TML techniques, which is described in detail in Chapter 3. 

 

2.3. Deep Learning Techniques to Develop Medical AIs  

In this section, the neural network, that is a kind of TML method is introduced in detail, as 

its basic principles are same with deep learning, and deep learning techniques, which are well 

used in creating high accurate medical AIs recently are introduced. 

Neural networks [27] are a TML method inspired from how the brain is structured, with 

hidden layers representing interneurons. Neural networks have several layers and units per 

layer to include in its architecture, designed initially (Fig.2.4). Each unit stores a numeric 

value (black circle in Fig.2.4), and each connection between units represents a weight (red line 

in Fig.2.4). Weights connect the units in different layers and represent the strength of 

connections between the units. The suitable value of these weights is estimated and tuned 

through the training process, that is necessary to obtain a correct classification result. A fully 

connected layer in which all units in one layer are connected to all neurons in the next can be 

interpreted and implemented by multiplication. The final layer encodes the desired outcomes 

or labelled categories, such as disease categories shown in Fig.2.4.  
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Fig. 2.4. An example of a neural network with a single hidden layer 

 

A deep learning (DL) network is an neural network with multiple layers between the 

input and output layers. It has dramatically improved the state-of-the-art in image recognition 

[9]. When applied to image classification, a key difference between DL and TML algorithms is 

how they select and process image features. Features of input data are automatically earned 

in an unsupervised way by DL algorithms (Fig.2.5) [9]. Generally, TML is used when there is 

more limited, structured data available, while DL typically requires a large quantity of 

training data to ensure that the network that has millions of parameters does not overfit, that 

is not able to classify data other than the sample data for training the model. In other words, 

it is more difficult to build machine learning models with limited data via DL than via TML.  

 

 

Fig. 2.5. Medical image analysis with deep learning techniques 
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A convolutional neural network (CNN) is a special case of the neural network that the 

most used DL method in the medical image recognition field is CNN. As Fig.2.6 shows, CNN 

consists of multiple convolutional layers that detect local conjunctions of features from the 

previous layer and mapping their appearance to a feature map and transform input images 

into hierarchical feature maps from simple features, such as edges and lines, to complicated 

features, such as shapes and colors [9]. In this phase, the activation function of units is used 

defining the output of that unit given an input or set of inputs should be used [9], and recently 

ReLU function, which returns the element-wise maximum of 0 and the input data, is most 

common used. The pooling layer is responsible for reducing the spatial size of the activation 

maps [9]. In general, they are used after multiple stages of other layers (i.e. convolutional 

layers) in order to reduce the computational requirements progressively through the network 

as well as minimizing the likelihood of overfitting [9]. The convolutional layer, pooling layer, 

activation layer form the automatic feature extraction part of a CNN model. Regarding the 

classification, fully connect layers that can combine these features and output a final 

probability value for the class [9]. Gulshan et al. [31] used deep learning to create an algorithm 

for the automated detection of two ocular diseases in retinal fundus photographs, using a 

dataset of 128,175 retinal images. 

 

 

Fig. 2.6. An example of convolutional neural network 

 

However, deep learning requires a large amount of supervised data, and the more input 

data they are provided, the better a deep learning-based model typically performs [6]. There 

are mainly two aspects to consider for machine learning achieving good performance, data and 

optimization, according to its definition: to solve an optimization task using collected sample 

data. Since deep learning is also a machine learning, there is no doubt to consider these 
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elements to overcome the obstacle of insufficient labelled data in the medical field using deep 

learning. Some approaches are focusing on more data for training by synthetically increasing 

the number of available samples, through data augmentation, via the geometrical 

transformation of medical images. There are three examples of data augmentation shown in 

Fig.2.7 with random rotation and shift. More recently, generative adversarial networks 

(GANs) are currently receiving tremendous attention in the computer vision community for 

their ability to mimic the distributions from which images are sampled [7], [32]. 

 

 

Fig. 2.7. An example of data augmentation method 

 

The other approaches are focusing on how to optimize, such as designing better 

optimization method of machine learning classifiers, or decreasing difficulty of optimization 

for specific tasks. Recently, ‘not-so-supervised’ learning methods, which include semi-

supervised, multi-instance, and transfer learning, among which transfer learning inspired by 

human thought processes has become the most popular [10], [11]. Transfer learning, inspired 

by human thought processes, is a method in which model parameter is effectively transferred 

across partially related or unrelated tasks [33]. Humans have an inherent ability to transfer 

knowledge across tasks. As Fig.2.8 shows, a pretrained model on a large visual dataset 
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(ImageNet) with more than 14 million natural images for visual object recognition can be 

reused regarding the parameters for disease detection (classifying healthy and not healthy 

subjects) via transfer learning. A study by Kermany, et al. [34] demonstrated the competitive 

performance of deep learning models built with transfer learning in classifying normal eyes 

and eyes with three macular diseases, using 4,000 optical coherence tomography images. In 

my previous work, a deep learning system using transfer learning technique in it can 

accurately differentiate between healthy and glaucomatous subjects based on their from 

retina image datasets [35].  

 

 

Fig. 2.8. Transfer learning from ImageNet pre-trained deep learning model in medical field 

 

    In this dissertation, I applied data augmentation method and transfer learning method 

for training deep learning models shown in Chapter 4 and Chapter 5.  
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Chapter 3.  

 

Hierarchical Machine Learning Models Using 

Feature Selection Based on Quantified Parameters 

 

3.1. Overview 

In this chapter, to break the ice of building machine learning models of ophthalmologic 

disease detection and classification using proposed framework based on the analyzed doctors’ 

diagnostic processes, a hierarchical classification method using feature selection was 

discussed in the status of using quantified parameters on the effectiveness of building high 

accurate machine learning models and the applicability of using small sized dataset.  

    As mentioned in the previous chapter, existing traditional machine leaning (TML) 

algorithms applied in ophthalmologic field include decision trees [23], random forests (RF) 

[24], support vector machines (SVM) [25], k-nearest neighbors [26], and neural networks 

(NN) [27] have achieved good accuracy [6]. Moreover, in some cases, the feature selection is a 

useful method to achieve a higher accuracy for the machine learning models with quantified 

parameters [6]. However, those researches simply applied straight forward approach of one-

step directly to detect and classify diseases (flat classification). Although the obvious 

advantage of flat classification is its simplicity, it obviously loses some important 

information. The natural hierarchy of the data while the task of disease detection and 

classification would have highly valuable classification, thus ignoring those hierarchical 

class relationships would reduce performance to some extent. In this research, I try to 

improve the classification performance of machine learning models for ophthalmologic 

disease and classification, by building a hierarchical classification model using feature 

selection based on quantified parameters.  
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The rest of this chapter is organized as follows. Section 3.2 presents a two-step 

hierarchical classification model handling quantified parameters using feature selection in 

each step of the hierarchical classification model. Finally, experimental evaluations and 

concluding remarks are respectively presented in Section 3.3 and Section 3.4.  

The contents of this work are based on the journal papers of Guangzhou An, et al. 

(2018) “Comparison of machine-learning classification models for glaucoma management” 

Journal of healthcare engineering, Kazuko Omodaka, et al. (2017) “Classification of optic 

disc shape in glaucoma using machine learning based on quantified ocular parameters” 

PLoS One, and Guangzhou An, et al. (2019) “Glaucoma Diagnosis with Machine Learning 

Based on Optical Coherence Tomography and Color Fundus Images,” Journal of healthcare 

engineering. 

3.2. Hierarchical Machine Learning Models Using Feature Selection  

In this section, a training framework of building machine learning models based on 

quantified parameters for disease detection and classification is proposed and implemented 

by a two-step hierarchical classification method and a feature selection method.  

  

Fig. 3.1. Overview of building machine learning models based on quantified parameters 
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Sketched in upper part of Fig.3.1, first I analyzed the doctors’ diagnostic processes as 

follows. Doctors first use extracted information (i.e. quantified ocular parameters) from image 

data together with the metadata to diagnose diseases. The determination of a treatment plan 

is difficult, as it requires disease classification based on complex symptoms, and it should be 

performed after disease detection. In other words, doctors classify healthy and diseased cases 

and to classify diseased cases into subcategories after excluding the healthy cases. Second, in 

each step, doctors select valid information to classify healthy and diseased cases, or to classify 

diseased cases into subcategories. 

A novel training framework for machine learning models is proposed and created based 

on the analysis of the diagnostic process to achieve high accuracy in bottom part of Fig.3.1. 

The key components of the methods are hierarchical classification, feature selection, and they 

are used to build machine learning classification models based on quantified parameters. A 

hierarchical classification method is an efficient solution for building classification models 

with hierarchically structured local classification models according to a predefined hierarchy 

[36]. Thus, a two-step hierarchical classification method is created and used to separate the 

training steps of the model classifying healthy versus diseased cases and the model for disease 

classification, and to build the disease classification model after building the disease detection 

model. Moreover, feature selection is performed separately in the step of building models for 

classifying healthy versus diseased cases and the step of building models for classifying 

diseases into subcategories. 

 

3.3. Experiments Using a Dataset of Quantified Parameters 

In this section, the description of the experimental setup and input data features are 

introduced in detail. The performances for the machine learning models built with proposed 

method are validated via quantitative evaluation. Two experiments are designed and 

performed to verify the proposed methods. One experiment compares the classification 

performance of models built with different training approaches, whereas the other 

experiment evaluates the applicability of the proposed approaches in training high accurate 

machine learning models using small size training dataset. 
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3.3.1. Datasets 

Glaucoma is a disease that causes progressive damage of the optic nerves, and it is the 

leading cause of blindness globally. The neurodegeneration is irreversible and patients may 

not be aware of it until its later stages; thus, early diagnosis and treatment are essential to 

prevent blindness. The optic disc is the point of exit for all retinal nerve fibers to the brain, 

and thus, it is important to observe the optic disc in glaucoma management. Besides 

intraocular pressure, which is an evidenced and treatable influencing factor, glaucoma is 

considered to be a multi-factorial disease: some of these factors are myopia, ocular blood 

flow, and oxidative stress [37]. However, there are no clear guidelines for the treatments. 

Nicolela proposed a guideline for identifying a glaucomatous optic disc based on its shape 

[38]. Nicolela’s classification contains four types of glaucoma: local ischemic type (focal 

ischemic, FI), age-related hardening type (senile sclerotic, SS), myopic type (myopic, MY), 

and generalized enlargement (GE) [38]. Many studies have shown that this classification is 

helpful for understanding glaucoma pathogenesis [39]–[41]. Clinically, doctors always 

diagnose glaucoma by reading color fundus photos and subjectively identifying the specific 

optic disc type for glaucoma management. Unfortunately, some doctors have reported 

unmatched cases that make it difficult to decide further glaucoma treatment. Thus, accurate 

and objective methods are required for classifying optic discs. Relevant with the application 

of AI in ophthalmology field, the studies have used AI for classifying glaucoma and healthy 

eyes [42]–[44]. However, relevant studies for glaucoma management have not been 

conducted yet and more research efforts are required. 

In some previous literature, the average intergrader or interobserver difference has 

been researched between ophthalmologists on the task of classifying healthy and diseased 

cases, and classifying diseases into their subcategories. For disease classification, according 

to the work by Abramoff, et al. [45] evaluated the sensitivity and specificity for detecting 

referable ophthalmologic disease (diabetic retinopathy) of the 3 masked independent retina 

specialists were 0.80 / 0.98, 0.71 / 1.00, and 0.91 / 0.95, and the average intergrader or 

interobserver difference (Cohen’s kappa) was 0.822, which can be described as very good 

coincidence according to the guideline of Cohen’s kappa [46]. On the other hand, for disease 

classification, it is more difficult for the doctors even the experienced ophthalmologists, for 

example, in the task of classification of age-related macular degeneration severity from color 

fundus photographs according to research by Peng et al. [47], the specialists’ ability is 

Cohen’s kappa: 0.517 to recognize large drusen and Cohen’s kappa: 0.535 in recognizing 

pigmentary abnormalities. This means the specialists’ agreement is just moderate level, 
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according to the guideline of Cohen’s kappa. 

Hence, in this study to demonstrate the effectiveness of the training framework using a 

two-step hierarchical classification method, eyes reviewed and classified into four categories 

according to Nicolela’s definition and normal by three glaucoma specialists, labels of which 

are consistent. In other words, only the labels of the same opinion by three different doctors 

were included in this research. Finally, totally 273 eyes were collected for evaluation of the 

machine learning models built with different proposed approaches (Table 3.1).  

 

Table 3.1. Collected cases for evaluation of training methods 

 Normal Glaucoma 

FI GE MY SS 

Total data number 

n=273 

55 27 56 89 46 

 

With the development of measuring techniques, many methodologies are available for 

observing the optic disc by shape, which has close relevance with the glaucomatous 

characteristics. Compared with color fundus photography, optical coherence tomography 

(OCT) based on low-coherence interferometry can image the tissue morphology with 

micrometer resolution, and therefore, it is being used widely in the ophthalmological field 

(Fig. 3.2). All the eyes in Table 3.1, All participants were additionally examined with swept 

source domain OCT (DRI OCT Atlantis, Topcon Corp., Tokyo, Japan), using a horizontal disc 

volumetric scan (6mm×6mm, 512 A-scans×256 frames). Cross-sectional OCT image at yellow 

line in a color fundus photography of the optic disc area (Fig. 3.2.c) is shown in Fig.3.2.a. The 

green lines in that OCT image show the detected layer information for calculating the 

retinal nerve fiber layer (RNFL) thickness. Using this RNFL thickness, a RNFL thickness 

map is created, where the number indicates the thickness in micrometers in 12 sectors 

around the optic disc and cyan and magenta circles show automatically detected disc and 

cup boundaries. 

In recent years, the power of OCT in observing the optic disc more detailly is 

demonstrated to reveal the relationship of optic disc shape and glaucoma risk factors. For 

example, in my previous paper, OCT was used to develop a method to quantify the 3D 
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structure of the laminar pores; providing a useful tool to assess lamina cribrosa-associated 

risk factors for glaucoma [48]. 

There have been lots of commercial product to quantify the shapes of optic discs. For 

instance, by using integrated layer analysis software (DRI OCT Atlantis FastMap ver.9.30), 

48 ocular parameters relevant to the circumpapillary retinal nerve fiber layer thickness 

(cpRNFLT) and optic disc morphology were quantified [49]–[51]. The evaluation result 

against OCT segmentation has been published online as a whitepaper (available at 

http://www.topcon.co.jp/eyecare/handout) [52]. 

 

Fig. 3.2. Quantified parameters from volumetric optical coherence tomography images. Cross-

sectional OCT image at yellow line in (c) where green lines in (a) show the detected layer 

information for calculating the retinal nerve fiber layer (RNFL) thickness, (b) RNFL thickness 

map, where the number indicates the thickness in micrometers in 12 sectors around the optic 

disc and cyan and magenta circles show automatically detected disc and cup boundaries, and 

(c) a color fundus photo of the optic disc area. 
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Table 3.2. Extracted quantified parameters as the input data for machine learning 

No. Quantification  Features 

1 

patient’s 

metadata 

gender 

2 age 

3 spherical equivalent 

4 mean deviation 

5 pattern standard deviation 

6 internal ocular pressure 

7 central corneal thickness 

8 

optic disc 

shape 

parameters 

obtained from 

OCT 

disc area 

9 cup area 

10 rim area 

11 vertical disc diameter 

12 horizontal disc diameter 

13 vertical cup/disc diameter ratio 

14 horizontal cup/disc diameter ratio 

15 cup/disc area ratio 

16 rim/disc area ratio 

17 maximum cup depth 

18 average cup depth 

19–24 average rim/disc area ratio (six sectors) 

25 rim decentering area ratio 

26 horizontal disc angle 

27 disc height difference 

28 retinal pigment epithelium (RPE) height difference 

29 disc tilt angle 

30 

cpRNFLT 

average 

thickness 

obtained from 

OCT 

average cpRNFLT 

31–34 cpRNFLT (quadrants) 

35 difference in cpRNFLT (superior and inferior in four sectors) 

36–42 cpRNFLT (six sectors) 

42 rim decentering cpRNFLT ratio 

43 
difference in cpRNFLT (temporal superior and temporal 

inferior in six sectors) 

44–55 cpRNFLT (clockwise sectors) 
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Seven demographic parameters, such as gender, age, and spherical equivalent, were also 

extracted among the 48 quantified ocular parameters for each eye after rudimentary 

judgement of various ocular parameters, as shown in Table 3.2. OCT parameters, including 

22 parameters related to disc topography and 26 parameters related to cpRNFLT, were 

measured with SS-OCT software. The cpRNFLT was calculated in the quadrants, 6 radial sec- 

tors, and the clockwise sectors. Some parameters were demonstrated powerful to build a high 

accurate (partial area under receiver operating characteristic curve = 0.864) machine learning 

model to classify healthy and glaucomatous eyes, in my previous work [35]. 

 

3.3.2. Built Machine Learning Models and Training Details 

In this sub-section, the built machine learning model trained with different proposed 

approaches are presented, and training details are also shown in detail. 
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Fig. 3.3. Built machine learning models with proposed approaches. (a) Proposed approach 1: 

flat classification method is used to directly classify normal, FI, GE, MY, SS by training a 

traditional machine learning (TML) classifier to create Model 1. (b) Proposed approach 2: flat 

classification method is used to directly classify normal, FI, GE, MY, SS by training a TML 

classifier with feature selection applied to create Model 2. (c) Proposed approach 3: 

hierarchical classification method is used to create a low-level model (Model 3) for classifying 

normal versus glaucoma and a high-level model (Model 4) for classifying glaucoma 

classification. (d) Proposed approach 4: hierarchical classification method is used to create a 

low-level model (Model 5) for classifying normal versus glaucoma and a high-level model 

(Model 6) for classifying glaucoma classification, with feature selection method applied in each 

level. 

 

The first experiment was performed as described below, using the entire set of training 

data to compare classification performances among models trained using four proposed 

approaches (Fig. 3.3). Machine learning models for glaucoma detection and classification were 

trained separately with traditional machine learning techniques. A neural network (NN), with 

a fixed unit number 8 of the just one hidden layer, was used as the classifier. The flat 

classification method was used to directly classify normal, FI, GE, MY, SS by training a NN 

to create Model 1 (Fig. 3.3.a) The flat classification method was used to directly classify normal, 

FI, GE, MY, SS by training the NN with feature selection applied to create Model 2 (Fig. 3.3.b). 
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The hierarchical classification method was used to create a low-level model (Model 3) for 

classifying normal versus glaucoma and a high-level model (Model 4) for classifying glaucoma 

classification (Fig. 3.3.c). The hierarchical classification method was used to create a low-level 

model (Model 5) for classifying normal versus glaucoma and a high-level model (Model 6) for 

classifying glaucoma classification, with feature selection method applied in each level (Fig. 

3.3.d). 

The second experiment was performed to evaluate the proposed approaches’ applicability 

by small amounts of training data in building with just half training data, which was created 

using a stratified random sampling strategy. With the size-decreased training datasets, 

machine learning models were newly built with the proposed approaches (Fig. 3.3). 

 

Feature selection details 

In this chapter, regarding the feature selection method, a combination of a filter method of 

Minimum redundancy maximum relevance (mRMR) and a wrapper method of genetic-

algorithm-based feature selection (GAFS) is applied (Fig.3.4). 

The mRMR algorithm tends to select a subset of features having the most correlation with 

the labels and the least correlation among themselves [53]. It ranks features according to the 

minimal-redundancy-maximal-relevance criterion which is based on mutual information. In 

other words, it has been widely used recently because it assesses the tradeoff of maximizing 

the relevance between each feature and label and minimizing the feature redundancy [53]. In 

wrappers, a heuristic search shows higher performance but is too time-consuming, especially 

for a large number of features. Thus, instead of brute-force selection, more efficient strategies 

have been developed, such as genetic-algorithm-based feature selection (GAFS) using 

randomness that mimics natural evolution [54]. Filters are often used in combination with 

heuristic wrappers for principal selection [55].  

The feature selection steps are as below. First standardization that is a scaling technique 

let the mean of the feature becomes zero and the resultant distribution has a unit standard 

deviation, is applied on the input data, then with mRMR candidate features (15 features) are 

found, and then GAFS using the neural network with one hidden layer (number of units: 8) 

as the classifier is applied to find the most valid features and classifiers (Fig. 3.4). The details 

of the GAFS and 5-fold cross validation will be presented in the next sub sections. 
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Fig. 3.4. Flowchart of the proposed approach of feature selection applied 
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Genetic Algorithm Based Feature Selection 

A genetic algorithm (GA) is a method for solving optimization tasks based on a natural 

selection process that mimics biological evolution [56]. This algorithm mimics the process of 

natural selection where the fittest individuals which are well adapted to the environment. 

This algorithm can be adopted in the feature selection field [54]. 

Following phases should be considered in usage of a genetic algorithm [56].  

1) Initial population. The process begins with a set of individuals which is called a 

Population. Each individual is a solution to the problem to be solved, for example a subset 

of features in feature selection task. An individual is characterized by a set of features 

known as genes. In a genetic algorithm, the set of genes of an individual is represented 

usually, binary values are used: one means the feature selected while zero means the 

feature not selected. 

2) Fitness function. The ability of an individual to compete with other individuals is 

calculated with fitness function. It gives a fitness score to each individual such as 

classification performance in feature selection. 

3) Selection. One pair of individuals called parents, are selected based on their fitness 

scores. Individuals with high fitness score have more chance to be selected to next 

generation.  

4) Crossover. For each pair of parents to be mated, a crossover point is chosen randomly 

from within the genes. 

5) Mutation. Some of the genes of certain new offspring formed are subjected to a mutation 

with a low random probability.  

6) Termination. The process terminates if the population has converged. Then it is 

recognized as a set of solutions for the task by genetic algorithm. 
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Based on the elements of genetic algorithm, the pseudocode can be described as Fig.3.5. 

 

Fig. 3.5. Pseudocode of generic algorithm 

 

Table 3.3 lists the parameters used in GAFS of this research. 

Table 3.3. Parameters used in genetic algorithm based feature selection 

GAFS Parameter Value 

Population size 20 

Crossover probability 0.7 

Mutation probability  0.2 

Number of generations 1000 

Early stopping Used 

 

3.3.3. Evaluation Metrics 

In this work, to compare the performance of different training approaches of whether using a 

hierarchical classification method or feature selection method or not, weighted accuracy and 

Cohen’s kappa of 5-fold cross-validation (CV) are used as the evaluation criteria. 

 

Weighted accuracy 

To evaluate the machine learning classification performance, there are many performance 
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metrics commonly used. Most of the metrics have been calculated from a confusion matrix 

that comprises false negatives (FN) true negatives (TN), true positives (TP), and false 

positives (FP). The importance of these four measures may shift depending on the application. 

The fraction of all correctly predicted overall number of test set samples is the accuracy as the 

Eq. (3.1), where the confusion matrix is as Table.3.4. 

                      accuracy = (TP + TN) / (TP+TN+FP+FN) * 100%            (3.1) 

Table 3.4. An example of confusion matrix 

 Predicted class 

Positive Negative 

Correct class Positive TP FP 

Negative FN TN 

 

The weighted accuracy adjusted with the number of data in each class [57] was applied 

as the evaluation metrics, to evaluate the machine learning models built with imbalanced 

dataset. 

 

Cohen’s kappa 

Cohen’s kappa is an interesting alternative measure to the accuracy, since it compensates for 

random hits [46]. It was first introduced as a measure of agreement between observers of 

psychological behavior. The original intent of Cohen’s kappa is to measure the degree of 

agreement, or disagreement, between two people observing the same phenomenon. The range 

of Cohen’s kappa values extends from positive to negative one, with positive one indicating 

strong agreement, negative one indicating strong disagreement, and zero indicating chance 

level agreement. The Cohen’s kappa can be calculated according to the Eq. (3.2). 

                     Cohen′s kappa =  
𝑁 ∑ 𝐶𝑀𝑖𝑖

𝑚
𝑖=1 −∑ 𝐶𝑖𝑐𝑜𝑟𝑟𝐶𝑖𝑝𝑟𝑒𝑑

𝑚
𝑖=1

𝑁2−∑ 𝐶𝑖𝑐𝑜𝑟𝑟𝐶𝑖𝑝𝑟𝑒𝑑
𝑚
𝑖=1

                (3.2) 

    where CMii represents the diagonal elements of the confusion matrix, Cicorr reprents the 

number of data labelled as Ci, and Cipred reprents the number of data predicted by the machine 

learning model as Ci. N is the total number of cases.  
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Table 3.5. An example of confusion matrix for a 3-class problem to calculate Cohen’s kappa 

 Predicted class 

C1 C2 C3 Total 

Correct 

class 

C1 a b c C1corr=a+b+c 

C2 d e f C2corr=d+e+f 

C3 g h i C3corr=g+h+i 

Total C1pred=a+d+g C2pred=b+e+f C3pred=c+f+i N 

     

Note a 3-class problem is taken, for which confusion matrix including marginal values is 

shown in Table 3.5. Being N the total number of patterns, C1, C2 and C3 the label related 

with class 1, 2 or 3, respectively. Their Cohen’s kappa is given by Eq. (3.3). 

        Cohen′s kappa =  
𝑁∗(𝑎+𝑒+𝑖)−(𝐶1𝑐𝑜𝑟𝑟∗𝐶1𝑝𝑟𝑒𝑑+𝐶2𝑐𝑜𝑟𝑟∗𝐶2𝑝𝑟𝑒𝑑+𝐶3𝑐𝑜𝑟𝑟∗𝐶3𝑝𝑟𝑒𝑑)

𝑁2−(𝐶1𝑐𝑜𝑟𝑟∗𝐶1𝑝𝑟𝑒𝑑+𝐶2𝑐𝑜𝑟𝑟∗𝐶2𝑝𝑟𝑒𝑑+𝐶3𝑐𝑜𝑟𝑟∗𝐶3𝑝𝑟𝑒𝑑)
      (3.3) 

 

There is a guideline to interpret the Cohen’s kappa value (Table.3.6). 

 

Table 3.6. The interpretation of the Cohen’s kappa 

Value of Cohen’s kappa Strength of agreement 

<0.2 Poor 

0.21-0.40 Fair 

0.41-0.60 Moderate 

0.61-0.80 Good 

>0.80 Very Good 
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Cross validation 

Cross validation is a statistical method used to estimate the performance of machine learning 

models. The procedure of K-fold cross validation is shown below, and 5-fold cross validation is 

shown as an example in Fig.3.6. 

1) splitting the full dataset into k equal length partitions 

2) selecting k-1 partitions as the training set and 

3) selecting the remaining partition as the test set 

4) training the model on the training set 

5) using the trained model to predict labels on the test set 

6) computing an evaluation metric (e.g. accuracy) and setting aside the value for later, 

repeating all of the above steps k-1 times, until each partition has been used as test 

set for an iteration 

7) calculating the mean of the k evaluation metric values 

 

 

Fig. 3.6. An example of cross validation (5-fold cross validation) 
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3.3.4. Results and Discussion 

The Cohen’s kappa and weighted accuracy of 5-fold CV for the machine learning models 

trained by the proposed training framework whether using hierarchical classification strategy 

or feature selection method or not, were shown in Table. 3.7 and Table. 3.8.  

 

Table 3.7. Classification performance of machine learning models based on quantified 

parameters (Cohen’s kappa of 5-fold CV) 

Number of 

training data 
Ratio of training data 

Cohen’s kappa of 5-fold CV 

FC FC & FS HC HC & FS 

273 100% 0.697 0.786 0.712 0.846 

187 50% 0.496 0.566 0.537 0.614 

 

Table 3.8. Classification performance of machine learning models based on quantified 

parameters (weighted accuracy of 5-fold CV) 

Number of 

training data 
Ratio of training data 

Weighted accuracy of 5-fold CV 

FC FC & FS HC HC & FS 

273 100% 83.8% 89.7% 85.3% 91.2% 

187 50% 65.3% 72.4% 71.5% 75.5% 

 

With the entire 100% of dataset (n=273), all the proposed approaches achieved good 

Cohen’s kappa (Cohen’s kappa>0.6), and the proposed approach-4 in Fig.3.3 (hierarchical 

classification and feature selection (HC & FS)) achieved the highest Cohen’s kappa 0.846, very 

good performance, followed by flat classification (FC) & FS, HC, and FC. The Cohen’s kappa 

for HC&FS is higher than FC&FS, and Cohen’s kappa for HC was higher than FC. This means 

HC was better to achieve higher kappa, compared with FC with or without using feature 

selection. Moreover, FS let both HC and FC achieved higher Cohen’s kappa. The performance 

change of HC via FS (0.846 / 0.712 * 100% = 118%) was bigger than FC via FS (0.786 / 0.697 

* 100% = 112%).  
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With the half 50% of entire dataset (n=187), only the HC&FS achieved good Cohen’s 

kappa (Cohen’s kappa>0.6). The Cohen’s kappa for HC&FS is higher than FC&FS, and 

Cohen’s kappa for HC was higher than FC. This means HC was better to achieve higher kappa, 

compared with FC with or without using feature selection. Moreover, FS let both HC and FC 

achieved higher Cohen’s kappa. The performance change of HC via FS (0.614 / 0.537 * 100% 

= 114%) was bigger than FC via FS (0.566 / 0.496 * 100% = 114%). 

For the other evaluation metrics of weighted accuracy of 5-fold CV, the trends of the 

classification performance were similar with the trends of Cohen’s kappa of 5-fold CV, for the 

built machine learning models with different training frameworks. With both the entire and 

half dataset, HC & FS achieved the highest weighted accuracy, followed by flat classification 

(FC) & FS, HC, and FC. 

 

 

Fig. 3.7. Selected best feature subset for the glaucoma classification using entire dataset 

 

    Using the NN with just a single hidden layer (number of units: 8) as the classifier for this 

problem, the nine most valuable ocular parameters were chosen by hybrid FS (Fig.3.7). Seven 

parameters (horizontal disc angle, cup area, cpRNFLT (six sectors: temporal superior), 

average cup depth, nasal rim/disc ratio, maximum cup depth, and cpRNFLT (four sectors: 

superior)) were extracted from OCT, and two parameters (spherical equivalent and age) 

pertained to patients’ demographic data. The contribution of each selected parameter was also 

calculated by using the weights for each unit in the trained NN [56]. Doctors can classify and 

No. Features Contribution

1 horizontal disc angle 1.00

2 spherical equivalent 0.82

3 cup area 0.50

4 age 0.48

5 cpRNFLT (temporal superior sector in six sectors) 0.42

6 average cup depth 0.40

7 nasal rim/disc area ratio 0.38

8 maximum cup depth 0.33

9 cpRNFLT (superior sector in four sectors) 0.31
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check optic disc types using these features along with their contribution values, and not just 

by reading the color fundus images. The most contributed features for the glaucoma detection 

were cup area, cpRNFLT (six sectors: temporal superior), rim/disc ratio (area), nasal rim/disc 

ratio, and cpRNFLT (total), cpRNFLT(four sectors: superior superior)) are extracted from OCT, 

and parameters (spherical equivalent), similar with the ones for glaucoma classification, but 

some are new for the glaucoma detection model. 
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Fig. 3.8. Predicted result by the high-level model of the hierarchical model for glaucoma 

classification. (a) Successful example of prediction for FI and color fundus photo, (b) successful 

example of prediction for GE and color fundus photo, (c) successful example of prediction for 

MY and color fundus photo, (d) successful example of prediction for SS and color fundus photo, 

and (e) failure example of prediction and color fundus photo. 
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The high-level model of the proposed model can calculate the confidence of the prediction 

of glaucoma classification (Fig.3.8). When validating the prediction with the test data by using 

the highest one as the prediction, the overall accuracy was 87.8%. With regard to failure 

prediction examples, it was found that the developed classification model classified the correct 

answer as the second choice in most cases (Fig. 3.8.e). If the second choice is also considered 

to be correct, the accuracy was 95.9%. In some cases, specialists also narrow down the answer 

to two or more, such as FI and MY optic discs (Fig. 3.8.e), because FI optic discs clinically 

always have myopic characteristics as do the MY type. Thus, the machine-learning 

classification model might well reflect the actual clinical problem, and the prediction 

calculated by this approach can assist doctors in understanding the glaucomatous optic disc 

shape among glaucomatous subjects. 

 

3.4. Conclusions 

In this chapter, I proposed the first approach of building machine learning models, that tries 

to build models for classifying diseases after building models for disease detection based on 

the analysis result of doctors’ diagnostic processes. It is implemented by the hierarchical 

classification method of two steps, and in each step, feature selection that is one field of feature 

engineering is used to find the optimized feature subset for the classification.  

In experimentations, I evaluated this novel method by building an ophthalmologic disease 

(glaucoma) detection and classification machine learning models with a clinical data extracted 

from a hospital database. The dataset consists of extracted quantified parameters from 

medical images and demographic data, together with the labelled annotation data by 

experienced ophthalmologists. The classification performance of the models built with the 

proposed approach were compared to the flat models built in one step to detect and classify 

diseases, trained with different size datasets random sampled from the dataset above. The 

result of the experiments demonstrates that the classification performance of the machine 

learning models trained with hierarchical classification method combining with feature 

selection can be elevated on the disease detection and classification task compared with the 

flat models, and the applicability of the proposed framework in small size datasets is also 

demonstrated in achieving high accuracy for the built machine learning models.  

In this work, two major contributions are made: 1) to build machine learning models for 

disease detection and classification hierarchically can boost the classification performance; 
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first classifying normal and diseased cases, then classifying diseased cases into sub-categories, 

2) a feature selection method to select the most effective quantified parameters help improve 

the performances. 

    In conclusion, the proposed two-step hierarchical framework has a high potential of 

deploying high accurate machine learning models for ophthalmologic disease detection and 

classification based on quantified parameters, and applicability in using small size dataset.  
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Chapter 4.  

 

Hierarchical Deep Learning Models Using Hierarchy 

Transfer Learning Based on Single Input Image 

 

4.1. Overview 

In the foregoing attempt, the approach of building machine learning models for 

ophthalmologic disease detection and classification hierarchically in two steps, building 

disease classification model after building disease detection model, was suggested. To 

implement this approach, a hierarchical classification technique of two steps with feature 

selection method in each step for building the machine learning models separately was also 

proposed. However, there are some limitations existed in that approach. For example, 

selecting specific features manually prior to classification, and image processing technique is 

needed to perform on the medical images to prepare the features (quantified parameters) for 

a good classification performance. Image processing technique is needed to be developed on 

specific disease, separately. Moreover, in some cases it is difficult to extract effective quantified 

parameters from the medical images, because the variation of diseases results in variant 

medical images according to the symptoms. Hence, it needs a better training approach for 

machine learning models those handle medical images directly as the input.  

Deep learning, that a subtype of machine learning, can omit the cumbersome step of the 

extracting specific features manually prior to classification [6], while the difficulty of building 

machine learning models increases just using the raw images of large features with limited 

data. In other words, deep learning requires more supervised data to achieve high accuracy, 

compared to the traditional machine learning. To overcome the obstacle of insufficient labelled 

data in the medical field using deep learning. there are two kinds of approaches. One kind of 

approaches is focusing on using more good data for training by synthetically increasing the 

number of available samples, through data augmentation, via the geometrical transformation 

of medical images. More recently, generative adversarial networks (GANs) are currently 

receiving tremendous attention in the computer vision community for their ability to mimic 
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the distributions from which images are sampled [7], [32]. Another kind of approaches is to 

decrease the difficulty of optimization. Recently, ‘not-so-supervised’ learning case, which 

includes semi-supervised, multi-instance, and transfer learning, among which transfer 

learning has recently become the most popular [11]. Transfer learning, inspired by human 

thought processes, is a method in which model parameter is effectively transferred across 

partially related or unrelated tasks [33]. Humans have an inherent ability to transfer 

knowledge across tasks. Similarly, in recent studies, pretrained models on a large visual 

dataset (ImageNet) with more than 14 million natural images for visual object recognition can 

be reused for disease detection via transfer learning. A study by Kermany, et al. [34] 

demonstrated the competitive performance of deep learning models built with transfer 

learning in classifying normal eyes and eyes with three macular diseases, using 4,000 optical 

coherence tomography images. In my previous work, a deep learning system using transfer 

learning technique in it can accurately differentiate between healthy and glaucomatous 

subjects with retina image datasets [35]. Meanwhile, regarding the deep learning model using 

hierarchical classification, in the previous literature, few efforts have been made to leverage 

in medical field. Nevertheless, hierarchical models have shown better performance compared 

to flat models in image classification across multiple domains [58], [59]. Sali et al. employed a 

hierarchical classification model for the classification of gastrointestinal disorders on 

histopathological images [60]. 

The objective of this research in Chapter 4 is to develop a training method for building 

high accurate deep learning models of ophthalmologic disease detection and classification with 

small size dataset.  

The remaining chapter is organized as follows. Section 4.2 presents a method that is based 

on the characteristics of analyzed diagnostic processes of doctors to build a hierarchical deep 

learning model with using transfer learning between different level model of the hierarchical 

models named hierarchy transfer learning. In this chapter, two image datasets are used to 

demonstrate the proposed approach of hierarchical classification and hierarchy transfer 

learning to build deep learning models. One is a natural image dataset that is easy to evaluate, 

which is used for introducing the concept of the approach to build a deep learning model. The 

other one is a clinical image dataset relevant with an ophthalmologic disease (age-related 

macular degeneration) to evaluate the training method for building deep learning models by 

the applicability to medical field. The detailed experimental setups and evaluation results are 

shown in Section 4.3 and Section 4.4. Finally, concluding remarks are presented in Section 4.5. 
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This work is based on my previous work of a published journal paper: Naohiro Motozawa, 

Guangzhou An, et al. (2019) “Optical Coherence Tomography-Based Deep-Learning Models 

for Classifying Normal and Age-Related Macular Degeneration and Exudative and Non-

Exudative Age-Related Macular Degeneration Changes”. 

 

4.2. Hierarchical Deep Learning Models Using Hierarchy Transfer 

Learning  

In this section, a framework of building deep learning models for disease detection and 

classification is proposed based on single input image, and implemented using hierarchical 

classification method and hierarchy transfer learning method. 

Sketched in upper part of Fig.4.1, first I analyzed doctors’ diagnostic processes as follows.  

1) Doctors perform disease classification after classifying healthy and diseased cases 

(disease detection), because the disease classification is difficult even for 

ophthalmologists, which is based on complex symptoms, and it should be performed 

in the status of normal cases excluded thoroughly. 

2) Doctors classify diseases into subcategories by reusing the knowledge of classifying 

normal and diseased cases. 
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Fig. 4.1. Overview of building deep learning models based on single input image 

 

According to the characteristic of doctors’ diagnostic processes above, I proposed a two-

step framework to build deep learning models for ophthalmologic disease detection and 

classification as bottom part of Fig.4.1. In the first step, the deep learning model for classifying 

healthy and disease (disease detection) is built, and in the second step the model for disease 

classification is built by reusing parameters of the model for disease detection. To implement 

this framework in building deep learning models, two deep learning methods are created and 

applied: one is two-step hierarchical classification method, presented in Chapter 3, and the 

other one is hierarchy transfer learning method. 

1) Hierarchical classification method 

As mentioned in Chapter 3, a hierarchical classification method was applied, which 

is an efficient solution for building classification models with hierarchically structured 

local classification models according to a predefined hierarchy [36], to separate the 

training steps of the model classifying normal versus disease cases and the model for 
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disease classification, as the doctors perform disease classification after excluding 

normal cases. As the deep learning can extract useful features automatically, the 

feature selection can be omitted in this hierarchical machine learning models via deep 

learning. 

2) Hierarchy transfer learning method 

The second method of hierarchy transfer learning is performed to build disease 

classification model, reusing the parameters (knowledge) obtained from the model of 

classifying normal and diseased cases in the previous step of disease detection.  

 

4.3. Conceptual Experiments Using Natural Image Dataset 

In this section, the description of the experimental setup and data features of the first 

experiment that is designed to prove the concept of the proposed approach using natural image 

dataset is shown in detail. Compared with the disease detection, it is difficult to do disease 

classification into subcategories, thus in this conceptual experiments, two public natural 

image datasets were found to create a new image dataset to design an image classification 

task, in which the images have hierarchy relationship to introduce the idea of building deep 

learning models using hierarchical classification and hierarchical transfer learning method. 

Two sub-experiments are designed to evaluate the training method, the first one compares the 

performance of machine learning models trained with different training approaches, whereas 

the other experiment tries to demonstrate the applicability of the proposed approaches in 

building high accurate deep learning models using small size training data. 

 

4.3.1. Datasets 

In this sub-section, the classification task and the details of the natural image dataset are 

presented. 
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(a) 

 

(b) 

Fig. 4.2. Two public image datasets to create a new dataset for evaluation. (a) cats and dogs 

image dataset on Kaggle site, (b) Stanford dog breed image dataset.  

 

Two public datasets were found and used to create a new image dataset to evaluate the 

proposed method of building deep learning models. One is cats and dogs image dataset from 

Kaggle site, that contains 25,000 images of dogs and cats, 12,500 image for each class 

(https://www.kaggle.com/c/dogs-vs-cats/data) (Fig.4.2.a). From this dataset, 1,000 images 

randomly from the images labelled cats were extracted. The other dataset was the Stanford 

dog breed image dataset that contains images of 120 breeds of dogs from around the world 

(http://vision.stanford.edu/aditya86/ImageNetDogs/main.html) (Fig.4.2.b). Contents of this 

dataset is as following: Number of categories: 120, Number of images: 20,580, Annotations: 

Class labels (dog breed names). From the entire number of images, only the most 4 breeds of 

https://www.kaggle.com/c/dogs-vs-cats/data
http://vision.stanford.edu/aditya86/ImageNetDogs/main.html
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dogs in number were extracted for evaluation, and relabeled as Dog1, Dog2, Dog3, Dog4. The 

number of each class for the newly created image dataset as shown in Table.4.1. 

 

Table 4.1. A newly created natural image dataset for conceptual experiments  

Label Cat Dog1 Dog2 Dog3 Dog4 

Number of images 1,000 252 239 232 219 

 

4.3.2. Built Deep Learning Models and Training Details 

In this sub-section, the built deep learning models trained with different proposed approaches 

are presented, and training details are shown. 
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Fig. 4.3. Proposed approaches to build deep learning models of classifying cats and four 

breeds of dogs. (a) Proposed approach 1: flat classification method is used to create Model 1 

directly classifying cats and four breeds of dogs with transfer learning from an ImageNet-

pretrained CNN model. (b) Proposed approach 2: hierarchical classification method is used 

to create a low-level model (Model 2) for classifying cats versus dogs and a high-level model 

(Model 3) for classifying dog breeds; both models apply transfer learning from the ImageNet-

pretrained CNN models. (c) Proposed approach 3: the method of hierarchical classification 

using hierarchy transfer learning between different-level models in the hierarchical 

classification model is used. Compared with proposed approach 2, the high-level model 

(Model 4) for classifying dog breeds, transfer learning from the low-level model (Model 2) is 

used instead of from the ImageNet-pretrained CNN model. 
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The first experiment is performed as described below, using the entire set of training data 

to compare classification performances among models trained using three proposed 

approaches (Fig. 4.3). First, as mentioned in Chapter 2, I applied data augmentation method 

and transfer learning from the ImageNet pretrained model for training all the deep learning 

models. Deep learning models are trained separately for natural images of dogs or cats. A 

convolutional neural network (CNN), which can automatically create efficient image features 

for the classification, is used as the classifier. Flat classification models are trained for 

classifying Cat, Dog1, Dog2, Dog3 and Dog4 images directly with the method of transfer 

learning from a deep learning model (CNN) pretrained on the ImageNet dataset (ImageNet-

pretrained CNN model) to build Model 1 (Fig. 4.3.a). A hierarchical classification model (Fig. 

4.3.b) is built by applying transfer learning method from the ImageNet-pretrained CNN model 

separately for a low-level model (Model 2 in Fig. 4.3.b) of classifying dogs and cats and a high-

level model (Model 3 in Fig. 4.3.b) for dog breeds classification. As described in the Section 4.2, 

a hierarchical classification model applies transfer learning from the ImageNet-pretrained 

CNN model to create a low-level model for classifying dogs versus cats images; then it is 

hierarchically transferred to build a dog breeds classification model from the low-level model 

(Fig. 4.3.c). 

The second experiment is designed and performed to evaluate the proposed training 

framework of applicability to small amounts of training data in building high accurate deep 

learning models by using partial training data. Partial training datasets are created using a 

stratified random sampling strategy using different percentages of the entire training data 

(20.0 %, 40.0 %, 60.0%, 80.0% and 100.0 %). With the different training datasets, deep learning 

models are built with the proposed approaches (Fig. 4.3). 

In this study, the VGG16 architecture is adopted for the CNN classifier, which is widely 

used to solve image classification tasks [61], for all the deep learning models and customized 

it. Regarding the last two fully connected layers, the units of each layer were changed to 256 

with a batch normalization layer and ReLU activation function. The framework of building 

deep learning models is shown in Fig.4.4, the weights of the feature extractor (green rectangle 

in Fig.4.4) in VGG16 CNN model for classifying images of 1,000 classes are reused by transfer 

learning to build deep learning models to classify images of dogs and cats, then the weights of 

the layers except the softmax layer (red rectangle in Fig.4.4.) were transfer learned (hierarchy 

transfer learning method) to build deep learning models for the dog breed classification. 
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Fig. 4.4. Hierarchy transfer learning in hierarchical deep learning models 

 

For all experiments, the same training setups are applied. Data augmentation techniques 

are used to improve the classification performance for limited training data, including 

horizontal flip, random rotation, and random shift. An epoch of 200 was used with a batch size 

of 32, the optimization method of stochastic gradient descent (SGD) with a learning rate of 10-

4, and the weighted categorical cross entropy by the data size of each class as loss function. 

Finally, the model with the minimum validation loss from 200 deep learning models was 

selected with early stopping. The experiments are performed using Python 3.6 on an Intel 

Xeon Gold 6130 @ 2.10 GHz of 32 GB of RAM with a Quadro GV100 (32 GB), using Keras 2.2.4 

with TensorFlow 1.13.1. 

 

4.3.3. Evaluation Metrics 

As an evaluation index of classification, the weighted accuracy was selected to evaluate the 
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classification performance and applicability of the training framework in small size dataset in 

building high accurate deep learning models.  

The fraction of all correctly predicted overall number of test set samples was the overall 

accuracy as Eq. (4.1), where a confusion matrix that comprises false negatives (FN) true 

negatives (TN), true positives (TP), and false positives (FP). 

accuracy = (TP + TN) / (TP+TN+FP+FN) * 100%            (4.1) 

The weighted accuracy adjusted with the number of data in each class [57] was applied 

as the evaluation metrics. 5-fold cross validation is performed in this experiment. 

 

4.3.4. Results and Discussion 

The weighted accuracy of 5-fold CV for the deep learning models trained with different size 

dataset by the proposed training framework whether using hierarchical classification strategy 

or hierarchy transfer learning or not, were shown in Fig. 4.5. 

 

 

Fig. 4.5. Classification performance of deep learning models based on natural images with 

different training methods and different size dataset. FC: flat classification, HC: hierarchical 

classification, HC & HTL: hierarchical classification & hierarchy transfer learning 
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The hierarchical classification strategy with or without hierarchy transfer learning 

between low-level and high-level models showed improved classification performance 

compared to flat classification. Proposed approach-3 (hierarchical classification and hierarchy 

transfer learning) in Fig.4.3 achieved the highest weighted accuracy, 93.9 %. The performance 

change provided by the deep learning classification models were compared. All the models 

trained with flat classification (FC; Fig. 4.5.a), hierarchical classification without hierarchy 

transfer learning (HC; Fig. 4.5.b), and hierarchical classification with hierarchy transfer 

learning (HC & HTL; Fig. 4.5.c) using a larger training dataset achieved an increased 

performance. Although there was no significant difference between FC, HC and HC & HTL in 

the case of a small training dataset. the decrease of classification performance was smaller 

than FC and HC. 

 

4.4. Experiments Using Clinical Image Dataset 

In this section, a clinical dataset is used to demonstrate the proposed approach of 

hierarchical classification and hierarchy transfer learning to build deep learning models. 

Two sub-experiments are designed to verify the proposed training methods. One experiment 

compares the performance of different training approaches, whereas the other evaluates the 

applicability of the proposed approaches in small size training data.  

 

4.4.1. Datasets 

As mentioned in Chapter 3, optical coherence tomography (OCT) is commonly used 

ophthalmologic instrument which can also be used in clearly describe particular pathology of 

age-related macular degeneration (AMD) such as drusen, intra-retinal fluid (IRF) sub-retinal 

fluid (SRF), sub-retinal hyper-reflective material and retinal pigment epithelium detachment 

[62]. Among them, absence of IRF and/or SRF is the very important interpretation point for 

most doctors as the therapeutic initiation of anti-VEGF therapy and evaluation of its effect 

[63]. However, these increased requirements of interpretation on huge amount of OCT data 

are a big burden for doctors [64]. It is required by the doctors to develop automatic analyzing 

methods to screen and provide an indication for applying and evaluating the anti-VEGF 

therapy effect, with classifying normal, AMD with fluid, and AMD without fluid. Recently, 

machine learning technology especially deep learning has seen dramatic progress, and has 
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enabled the development of new algorithms for automate diagnosis of eye disease including 

AMD, glaucoma, diabetic retinopathy with OCT images or fundus photography as input [19], 

[61], [65]–[69].  In previous papers, there was no classification model reported for classifying 

normal, AMD with fluid, and AMD without fluid. It is difficult to judge absence of fluid with 

not obvious differentiation between them. 

In this study, I present a notable method of building deep learning classification models 

with OCT images to classify normal and AMD, and distinguish image of AMD with fluid from 

AMD without any fluid, together. This study enrolled 120 eyes of 120 AMD patients, and 49 

eyes from 49 normal subjects, as training data group, and enrolled another group as test data 

group, including 77 eyes of 77 AMD patients, and 25 eyes from 25 normal subjects. OCT 

images of subjects in both groups were captured with Heidelberg Spectralis OCT device, which 

is spectral domain OCT, in protocol of either radial-scan with 6.0 mm scan length or cross-

scan with 9.0 mm scan length. In cross scan images, the central 6.0 mm area were cropped to 

have the same scan length as radial-scans and resized them into 496*496 pixels. As a result, 

there were185 normal OCT images, 535 OCT images of AMD with fluid, and 514 OCT mages 

of AMD without fluid in training data, while in test data, there were 49 normal images, 188 

AMD OCT images with fluid and 154 AMD images without any fluid. To increase the number 

of training data, 3 images from each OCT image were cropped from left, middle, right side, 

with the size of 224*224pixels, while the vertical position of cropping center is on the RPE line, 

which is detected automatically. All these cropped images were reviewed by three 

ophthalmologists independently, labelled as normal, AMD with fluid, and AMD without fluid 

(Fig. 4.6). Only the images with the same results by the graders were selected for training or 

validating the classification models, as discussed in Chapter 3. Finally, as training data, 476 

normal images, 1,145 images of AMD with fluid and 1,026 mages of AMD without fluid were 

included (Table 4.2), while in test data, 134 normal images, 402 AMD OCT images with fluid 

and 347 AMD without any fluid were included (Table 4.3). 

 

 

 

 

 



 4.4 Experiments Using Clinical Image Dataset    

 

52 

 

 

 

 

Fig. 4.6. Preprocessing medical image dataset for evaluation of deep learning models built 

with proposed approaches. (a) Preprocessing for cross scan OCT images. (b) Preprocessing for 

radial cross scan OCT images. (c) Cropping from preprocessed OCT images, (d) A sample of 

cropped OCT image labelled as normal. (e) A sample of cropped OCT image labelled as AMD 

with fluid. (f) A sample of cropped OCT image labelled as AMD without fluid. 

 

Table 4.2. Training dataset to build deep learning models 

Training dataset Normal AMD 

wet dry 

Original images 185 535 514 

Cropped images 476 1145 1026 
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Table 4.3. Test dataset to evaluate deep learning models 

Test dataset Normal AMD 

wet dry 

Original images 49 188 154 

Cropped images 134 402 347 

 

4.4.2. Built Deep Learning Models and Training Details 

In this sub-section, the built deep learning models trained with different proposed approaches 

are presented, and training details are shown. 
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Fig. 4.7. Proposed approaches to build deep learning models of classifying normal, AMD with 

fluid, (wet), and AMD without fluid (dry). (a) Proposed approach 1: flat classification method 

is used to create Model 1 directly classifying normal and AMD eyes with two subtypes with 

transfer learning from an ImageNet-pretrained CNN model. (b) Proposed approach 2: 

hierarchical classification method is used to create a low-level model (Model 2) for classifying 

normal versus AMD cases and a high-level model (Model 3) for classifying wet and dry of 

AMD; both models in high and low level apply transfer learning from the ImageNet-pretrained 

CNN model. (c) Proposed approach 3: hierarchical classification method using hierarchy 

transfer learning method between different-level models is used in the hierarchical 

classification model. In contrast with proposed approach 2, the high-level model (Model 4) for 

classifying AMD subtypes, transfer learning method is applied from the low-level model 

(Model 2) instead of from the ImageNet-pretrained CNN model. 
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The first experiment is performed as described below, using the entire set of training data 

to compare classification performances among models trained using three proposed 

approaches (Fig. 4.7). Deep learning models for discriminating normal images from AMD 

images are separately trained. A convolutional neural network (CNN), which can 

automatically create efficient image features for the classification, is used as the classifier. 

Flat classification methods are used to classify normal eyes and wet AMD and dry AMD 

directly with transfer learning from a deep learning model (CNN) pretrained on the ImageNet 

dataset (ImageNet-pretrained CNN model) to create Model 1 (Fig. 4.7.a). A hierarchical 

classification model (Fig. 4.7.b) is built by applying transfer learning from the ImageNet-

pretrained CNN model separately for a low-level model (Model 2 in Fig. 4.7.b) of classifying 

normal and AMD and for a high-level model (Model 3 in Fig. 4.7.b) of classifying wet AMD and 

dry AMD. As described in the Section 4.2, a hierarchical classification model applies transfer 

learning from the ImageNet-pretrained CNN model to create a low-level model for classifying 

AMD versus normal images; then it is hierarchically transferred to build an AMD 

classification model from the low-level model (Fig. 4.7.c). 

The second experiment is designed to evaluate the training framework’s applicability in 

using small amounts of training data to build deep learning models with the proposed 

approaches by using partial training data. Partial training datasets are created using a 

stratified random sampling strategy using different percentages of the entire training data 

(25.0 %, 50.0 %, 75.0% and 100.0 %). With the different training datasets, deep learning 

models are built using the proposed approaches (Fig. 4.7) based on OCT image.  

In this study, the VGG16 architecture for the CNN classifier is adopted, for all the deep 

learning models and customized it. Regarding the last two fully connected layers, the units of 

each layer were changed to 256 with a batch normalization layer and ReLU activation function. 

For all experiments, the same training setups are applied. Data augmentation techniques 

are used to improve the classification performance for limited training data, including 

horizontal flip, random rotation, and random shift. An epoch of 200 is used with a batch size 

of 32, the optimization method of stochastic gradient descent (SGD) with a learning rate of 10-

4, and the weighted categorical cross entropy by the data size of each class as loss function. 

Finally, the model with the minimum validation loss from 200 deep learning models is selected 

with early stopping. The experiments are performed using Python 3.6 on an Intel Xeon Gold 

6130 @ 2.10 GHz of 32 GB of RAM with a Quadro GV100 (32 GB), using Keras 2.2.4 with 

TensorFlow 1.13.1. 
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4.4.3. Evaluation Metrics 

For the first experiment, as an evaluation index of classification, the area under receiver 

operating characteristic curve (AUC) for the ability of VGG16 models was used. A ROC curve 

(receiver operating characteristic curve) was used to evaluating the classification performance. 

A Roc curve is graph showing the performance TPR vs. FPR of a classification model at all 

classification thresholds. This curve plots two parameters, calculated by Eq. (4.2, 4.3, 4.4): 

True Positive Rate (TPR) = Sensitivity = TP / (TP + FN)  (4.2) 

Specificity = TN / (TN + FP)   (4.3) 

False Positive Rate (FPR) = 1 – Specificity = FP / (TN + FP)  (4.4) 

AUC ranges in value from 0 to 1. A model whose predictions are 100% wrong has an AUC 

of 0.0; one whose predictions are 100% correct has an AUC of 1.0. AUC is desirable for It 

measures how well predictions are ranked, rather than their absolute values. AUC is 

classification threshold invariant. It measures the quality of the model's predictions 

irrespective of what classification threshold is chosen. 

Besides AUC, accuracy of judgment for the original image was also examined, judgment 

of each cropped image was combined. In the first model, if there was an image of AMD of more 

than one, it was judged as AMD, otherwise it was judged as normal. The judgment of the AMD 

with fluid is done similarly, if there was more than one image of fluid of 3, it was judged as 

fluid image, or it was AMD without fluid. To compare the classification performance of 

classifying AMD and normal, in the third model, considering AMD with fluid and AMD 

without fluid as AMD category, the test data was input into the model, and calculated on the 

AUC and accuracy. Furthermore, to compare the ability of classifying AMD with fluid, and 

AMD without fluid OCT images were input into the third model to calculate the AUC and 

accuracy. 

For the second experiment, weighted accuracy was selected to evaluate the applicability 

of proposed approach of building deep learning models. The fraction of all correctly predicted 

overall number of test set samples is the overall accuracy as Eq. (4.5), where a confusion 

matrix that comprises false negatives (FN) true negatives (TN), true positives (TP), and false 

positives (FP). 

accuracy = (TP + TN) / (TP+TN+FP+FN) * 100%            (4.5) 
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    The weighted accuracy adjusted with the number of data in each class was applied as the 

evaluation metrics [57]. For the second experiments, three randomly sampled datasets, and 

the mean weighted accuracy on the three test datasets were calculated as the final evaluation 

metrics. 

 

4.4.4. Results and Discussion 

In this report, deep learning models were trained with proposed approach (proposed approach-

3 in Fig. 4.7.c) based on OCT images to classify normal and AMD, and to distinguish AMD 

with fluid from AMD without any fluid. For classifying normal versus AMD images, AUC was 

0.999, and accuracy was 99.2%. For the classification task of AMD with fluid and AMD without 

fluid, the classification performances were 0.992 AUC, and 95.1% accuracy. Compared with 

the model created by the comparison approach (proposed approach-1 in Fig. 4.7.a), in both 

cases, the proposed approach achieved higher performance (Table 4.4). 

 

Table 4.4. Classification performance of built deep learning models using entire dataset 

Classification Proposed approach Comparison approach 

AUC Accuracy AUC Accuracy 

Normal versus AMD (with fluid 

and without fluid) 

0.999 99.2% 0.994 98.9% 

AMD with fluid versus AMD 

without fluid   

0.992 95.1% 0.988 94.2% 

 

In this study, it was found that a transfer learning of VGG16 was suitable deep learning 

technique for automate screening of AMD, and judging AMD with fluid or not. In the first 

model, the performance of classification for normal and AMD OCT images were 0.999 AUC, 

and 99.2% accuracy. In recent studies’ report, deep learning method could achieve high 

accuracy in screening AMD from normal with OCT images. With OCT images as input, a CNN 

model pre-trained with ImageNet dataset, was transfer learned with 1,012 B-Scan OCT 

images was able to distinguish normal from AMD images with 96% accuracy. The result was 

consistent with recent reports [70]. Data shuffling was applied twice on sum of training and 
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test data group, to create two different sets of training and test data, to evaluate performance 

stability of the models created by the proposed approach. In the additional experiments, the 

AUCs of the models to classify normal versus AMD (with fluid and without fluid) using the 

proposed approach, were both over 0.999, and were better than the AUCs of the models created 

with the comparison approach. 

In the second model, AMD with fluid from AMD without any fluid could be distinguished, 

with 0.992 AUC, and 95.1% accuracy. Detecting the presence of fluid at macular is the most 

important point for many ophthalmologists in therapeutic indication. Treatment of anti-VEGF 

injection therapy and redosing criteria depend on the whether there is IRF and/or SRF or not.  

Recent reports have shown that the amount of fluid can be quantified accurately and clearly 

recognizing the differentiation using deep learning method, and classify indicators of fluid in 

OCT images, which are key points for initial and anti-VEGF therapy decisions in AMD with 

92% sensitivity, 91% specificity and 93% accuracy.  The result was consistent with this report. 

In the second model, the transfer learning was applied. In transfer learning, high accuracy 

result with fewer dataset could be obtained. It is considered to be effective when image data 

is limited, especially in clinic data. However, in most cases, deep learning requires huge 

amount of data. Recently, effectiveness of building deep learning models with transfer 

learning from pretrained ones has been reported [70]. Similar with the first model, data 

shuffling was applied twice on sum of training and test data group, to create two different sets 

of training and test data, to evaluate performance stability of the models created by the 

proposed approach. In the additional experiments, the AUCs of the models to classify AMD 

with fluid and AMD without fluid using the proposed approach, were both higher than 0.980, 

and were better than the AUCs of the models created with the comparison approach. 

In practice, deep learning models are treated as a black-box method, recently there are 

several method including the one proposed in the paper of Grad-CAM: Visual Explanations 

from Deep Networks via Gradient-based Localization, to help debug deep learning models [71]. 

This method can be used to visually debug where a CNN model is looking in an image. Grad-

CAM works by (1) finding the final convolutional layer in the network and then (2) examining 

the gradient information flowing into that layer. The output of Grad-CAM is a heatmap 

visualization for a given class label. In this dissertation, the Grad-CAM method was applied 

to find the models observe which area is important for VGG16 model to judge to perform 

qualitative evaluation. It was possible for the doctors to confirm the important area of CNN 

classification models on each image. In detail, a heatmap for a classic AMD category indicating 

the effective region for the model to identify AMD was generated, while a heatmap was created 
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with the discriminative region used by the second model to identifying wet AMD. Against a 

same OCT image, compared with heatmap created by the first model, the one created by the 

second model, the important area is just on the fluid, which is a quite important point to 

classify whether there is fluid or not in an OCT image (Fig. 4.8). It is considerable that with 

hierarchy transfer learning the weights of the CNN model tuned to the new classification task 

properly. 

 

 

Fig. 4.8. Important areas for the deep learning models trained with the proposed approach. A 

classic AMD with SRF was selected to confirm the heatmap for the VGG16 models. (a) Cropped 

AMD OCT image (b) Heatmap created by the first model (Model 2) to classify AMD and normal 

OCT images. (c) Cropped AMD OCT image, same as (a). (d) Heatmap created by the second 

model (Model 4) to classify AMD with fluid and AMD without fluid OCT images. Red regions 

correspond to high score for the classification. 
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Furthermore, the heatmaps by Model 4 (proposed approach) and model 3 (comparison 

approach) to identify AMD with fluid or not was compared. The heatmaps by Model 4 is more 

sensitive to find the effective area for the true classification. In the cropped OCT image of 

sample-1, Model 4 was succeed to narrow the important area to the actual fluid area in OCT 

image, while in the cropped OCT image of sample-2, Model 4 expanded the important area to 

the fluid area in OCT image, which might help to get a higher classification performance to 

classify the AMD with fluid and the AMD without fluid (Fig.4.9). It is considerable that with 

hierarchy transfer learning from a model pretrained with a similar domain decreased the 

difficulty of optimization, thus it succeed in finding more powerful features to achieve high 

accuracy. 
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 Sample-1 Sample-2 

   

 

Cropped OCT image 

  

 

 

Heatmap by Model 4 to 

identify OCT image with fluid 

  

 

 

Heatmap by Model 3 to 

identify OCT image with fluid 

  

Fig. 4.9. Differentiation of heatmaps created by built deep learning models to identify AMD 

OCT image with fluid. Two cropped OCT images were randomly selected to show the 

differentiation of heatmaps created by the VGG models to classify AMD with fluid and AMD 

without fluid, compared with the built model by the comparison approach. Red regions 

correspond to high score for the classification. (a) Cropped AMD OCT image with fluid from 

sample-1, (b) Heatmap created by Model 4 (proposed approach) for (a) to identify AMD with 

fluid, (c) Heatmap created by Model 3 (comparison approach) for (a) to identify AMD with fluid, 

(d) Cropped AMD OCT image with fluid from sample-2, (e) Heatmap created by Model 4 

(proposed approach) for (d) to identify AMD with fluid, (f) Heatmap created by Model 3 

(comparison approach) for (d) to identify AMD with fluid. 
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In the second experiments, the hierarchical classification strategy with or without 

hierarchy transfer learning between low-level and high-level models showed improved 

classification performance compared to flat classification. Proposed approach-3 (hierarchical 

classification and hierarchy transfer learning) achieved the highest weighted accuracy, 93.9 %. 

The performance change provided by the deep learning classification models were compared. 

All the models trained with flat classification (FC; Fig. 4.7.a), hierarchical classification 

without hierarchy transfer learning (HC; Fig. 4.7.b), and hierarchical classification with 

hierarchy transfer learning (HC & HTL; Fig. 4.7.c) using a larger training dataset achieved 

an increase. Although there was no significant difference between FC, HC and HC & HTL in 

the case of a small training dataset. the decrease of classification performance was smaller 

than FC and HC (Fig.4.10). 

 

 

Fig. 4.10. Classification performance for deep learning models classifying normal, AMD with 

fluid, and AMD without fluid, with different training methods and different size dataset 
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The training time for FC, HC and HC & HTL, and the average prediction time per image 

was measured, as shown in Table.4.5. The training time for HC & HTL and HC are longer 

than FC, but with an affordable time. In other words, just spending more time at the initial 

training, the proposed approach can achieve higher accuracy, with the prediction time 

difference is not obvious. It is found that, with HTL the training time for hierarchical 

classification decreased, it might due to start training from pre-trained model for disease 

detection, some features useful for disease classification have already been learnt. 

 

Table 4.5. Training and prediction time for each deep learning model 

Training method Training time 

(seconds) 

Prediction time 

(milli-seconds per image) 

FC 1,789 168.6 

HC 2,363 183.6 

HC & HTL 2,072 183.3 

 

4.5. Conclusions 

In this chapter, deep learning techniques are applied for handling medical images directly 

without feature engineering to build machine learning models for ophthalmologic disease 

detection and classification. A two-step framework, first step of which builds the model for 

disease detection, and the second step of which builds the model for disease classification by 

reusing parameters of the model for disease detection, is proposed to build deep learning 

models for ophthalmologic disease detection and classification. In detail, besides the two-step 

hierarchical classification method, hierarchy transfer learning method was created and used 

to build deep learning models.  

In experimentations, firstly, I introduced and evaluated the concept of the proposed 

method of building deep learning models with a labelled natural image dataset that is easy to 

evaluate, in which the labels of the images have hierarchy relationship. The classification 

performance of the models built with the proposed approach were compared to the flat models 

built in one-step to detect and classify diseases, trained with different size datasets random 

sampled from the dataset above. As a result, compared with flat models, the effectiveness of 
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improved classification performance for the model built with the method of combining 

hierarchical classification and hierarchy transfer learning method was demonstrated even for 

the smaller size datasets. This approach also succeeded in building a high accurate deep 

learning model with labelled clinical medical image dataset for an ophthalmologic disease 

(age-related macular degeneration) detection and classification. Similar with the result of 

experiments using the natural image dataset above, the proposed approach enabled machine 

learning models to achieve high accuracies and improved classification performance in 

comparison with flat models, the effect and efficiency have been demonstrated even in smaller 

size datasets. As mentioned in Chapter 2, generally speaking, training a deep learning model 

using image data for high accuracy is more difficult than training a traditional machine 

learning model based on quantified parameters. With hierarchy transfer learning, the 

classification performance was improved from the one only used hierarchical classification 

method. It is believed that the combination method of hierarchical classification and hierarchy 

transfer learning can be applied in solving much easier problem of building the machine 

learning models based on quantified parameters for high accuracy with limited data, and this 

validation should be done in the future work. 

In this work, two major contributions were made: (1) The effectiveness of building 

machine learning models for disease detection and classification hierarchically can improve 

the classification performances when using limited size dataset was demonstrated: first 

classifying normal and diseased cases, then classifying diseased cases into sub-categories was 

demonstrated. (2) The effectiveness of building high level models in hierarchical classification 

models for disease classification by reusing low-level models in the hierarchical classification 

models for disease detection was demonstrated.  

Conclusively, the proposed two-step hierarchical framework has a high potential of 

deploying high accurate machine learning models for ophthalmologic disease detection and 

classification with small size labelled single kind of input image dataset. 
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Chapter 5.  

 

Stacked Hierarchical Deep Learning Models Using 

Hierarchy Transfer Learning Based on Multiple Input 

Images 

 

5.1. Overview 

In the foregoing attempt, usage of hierarchical classification and hierarchy transfer learning 

to build deep learning models for disease detection and classification was suggested. In this 

chapter, I present an extension method for the proposed approach of hierarchical deep learning 

classification and hierarchy transfer learning shown in Chapter 4, to handle multiple input 

images for higher accuracies. In detail, the extension was implemented with a stacking 

ensemble method combining classification models built with each type of input images.  

    The remaining chapter is organized as follows. Section 5.2 briefly gives an overview of 

the proposed approach of building deep learning models for disease detection and 

classification using hierarchical classification, hierarchy transfer learning and stacking 

method. Finally, experimental evaluations and concluding remarks are respectively 

presented in Section 5.3 and Section 5.4. 

This work is based on my previous work of the journal paper: Guangzhou An, et al. (2019) 

“Deep Learning Classification Models Built with Two-step Transfer Learning for Age Related 

Macular Degeneration Diagnosis”, 41st Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society (EMBC).    
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5.2. Stacked Hierarchical Deep Learning Models Using Hierarchy 

Transfer Learning 

In this section, a two-step framework using hierarchical classification and hierarchy transfer 

learning was extended by stacking ensemble method to build deep learning models based on 

multiple input images for disease detection and classification. 

 

 

Fig. 5.1. Overview of building deep learning models based on multiple input images 

 

Sketched in upper part of Fig.5.1, I analyzed doctors’ diagnostic processes as follows. 

Doctors first use limited information (e.g., a single type of medical image) to detect disease. 

The determination of a treatment plan is difficult, as it requires disease classification based 

on complex symptoms, and it must be performed after disease detection (excluding normal 

images). Second, doctors reuse the knowledge of classifying normal and diseased cases to 

classify diseased cases into subcategories. Finally, for accurate diagnosis, doctors use multiple 

information sources (e.g., multiple types of medical images) to make optimal diagnostic 

decisions.  
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According to the characteristic of doctors’ diagnostic processes above that I analyzed, I 

proposed a two-step framework to build machine learning models for ophthalmologic disease 

detection and classification. In the first step, the machine learning model for classifying 

healthy and disease (disease detection) was built, and in the second step the model for disease 

classification was built by reusing parameters of the model for disease detection. Moreover, 

this two-step framework was extended to handle multiple input data. To implement this 

framework in building machine learning models, three machine learning methods were 

created with separate roles as below (Fig.5.1).  

1) Hierarchical classification method, to build machine learning models for disease 

classification, after building the models for classifying healthy and disease (disease detection) 

2) Hierarchy transfer learning method, to build machine learning models for disease 

classification by reusing parameters of the model for disease detection 

3) Stacking ensemble method, to build machine learning models handling multiple 

input data by combining the machine learning models trained separately on single input 

image with the method combining hierarchical classification and hierarchy transfer learning  

For disease detection, transfer learning from a pretrained model on a large visual 

database (ImageNet) with more than 14 million natural images for visual object recognition 

was used. A metamodel was then used to combine the results of the model classifying normal 

versus disease cases and model for disease classification using a single type of input images. 

Finally, a stacking ensemble method was used to combine the separate deep learning models 

to obtain the overall result (Fig. 5.1). 

 

5.3. Experiments Using Clinical Image Dataset 

In this section, a clinical dataset of medical images was used to demonstrate the proposed 

approach to build deep learning models, implemented with hierarchical classification method, 

hierarchy transfer learning method and stacking ensemble method. 

 

5.3.1. Datasets 

As mentioned in Chapter 3, in this chapter I tried to build deep learning models relevant with 
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glaucoma diagnosis. Glaucoma is a leading cause of blindness worldwide, and glaucoma-

related blindness is irreversible if not detected early and treated appropriately [71]. Glaucoma 

is regarded as a multifactorial disease, and some ophthalmologists suggest that treatment 

ought to be categorized by its cause [37]. A published guideline that defines four types of 

retinal optic discs based on their morphology [38] is useful in understanding the pathology of 

glaucoma. Follow-up investigations also showed that this guideline is a useful addition to the 

determination of a proper treatment plan in glaucoma management [39], [40], [72]. 

Classification is difficult as it is based on subjective assessments of medical images [51].  

Images of 156 normal and 798 glaucomatous eyes were obtained. These images were 

reviewed and labelled by two glaucoma specialists with more than 10 years of experience. The 

glaucomatous eyes were further classified into four sub-categories based on the optic disc 

morphology according to the definitions used in Nicolela classification as focally ischemic (FI), 

myopic glaucomatous (MY), generalised enlargement (GE), and senile sclerotic (SS) discs. 

Images with discordant classifications between the two glaucoma specialists were excluded, 

as discussed in Chapter 3. A total of 156 normal, 118 FI, 266 GE, 307 MY, and 107 SS eyes 

were used (Table 5.1).  

 

Table 5.1. Number of collected data for evaluation 

 Normal Glaucoma 

FI GE MY SS 

Total data number 

n= 954 

156 118 266 307 107 

 

 

Fig. 5.2. Image extraction from the volumetric OCT data. 
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These eye images were captured using swept source OCT (DRI OCT Triton), and a three-

dimensional (3D) scan of the disc region (6.0 mm x 6.0 mm) was scanned horizontally 

consisting of 256 B-scans with 512 axial depth scans (A-scans) each. The disc centers were 

detected, and vitreous/inner limiting membrane boundaries were segmented automatically 

with Topcon’s commercial analysis software (FastMap V.10.13). The verification was 

performed by glaucoma specialists. Based on the position of the automatically detected disc 

centers and segmented vitreous/inner limiting membrane boundaries, four types of images 

were extracted from the 3D disc scan OCT data and used in the machine learning system. The 

four images. which the doctors used to analyse the 3D data for glaucoma diagnosis, are as 

follows: 1) projection images, integration performed across the entire image depth of 2.6 mm 

(image ‘a’ in Fig. 5.2); 2) en face images, integration performed across a fixed thickness of 52 

μm (20 voxels) below the vitreous/inner limiting membrane boundary (image ‘b’ in Fig. 5.2); 3) 

horizontal B-scan OCT images crossing the disc center (image ‘c’ in Fig. 5.2; disc H B-scan); 4) 

vertical B-scan OCT images crossing the disc center (image ‘d’ in Fig. 5.2; disc V B-scan).. The 

region of a vertical length of 512 pixels was cropped from the disc H B-scan and disc V B-scan 

based on the average vitreous/inner limiting membrane’s axial position of the entire OCT data. 

The region of a vertical length of 512 pixels was cropped from the disc H B-scan and disc V B-

scan based on the average vitreous/inner limiting membrane’s axial position of the entire OCT 

data. Finally, all the four images types were resized into 256 × 256 pixels and normalized to 

the range of 0 to 1. 

 

5.3.2. Built Deep Learning Models and Training Details 

Two experiments were designed to verify the methods. One experiment compared the 

performance of deep learning models trained with different proposed approaches, whereas 

the other evaluated the applicability of the proposed approaches in small size training data.  
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Fig. 5.3. Proposed approaches for building deep learning models with single input images 

separately before applying stacking for the overall result. (a) Proposed approach 1: flat 

classification method is used to directly classify normal eyes and those with four subtypes of 

disease with transfer learning from an ImageNet-pretrained CNN model to create Model 1. 

(b) Proposed approach 2: hierarchical classification method is used to create a low-level model 

(Model 2) for classifying normal versus disease cases and a high-level model (Model 3) for 

classifying subtypes of disease; both models apply transfer learning from the ImageNet-

pretrained CNN model. The confidence in a “normal” result from Model 2 and the confidence 

in disease subtypes from Model 3 are concatenated to calculate the overall result from training 

Metamodel 1. (c) Proposed approach 3: hierarchical classification method using hierarchy 

transfer learning method between different-level models is used in the hierarchical 

classification model is. In contrast with proposed approach 2, the high-level model (Model 4) 

for classifying disease subtypes, transfer learning is from the low-level model (Model 2) 

instead of from the ImageNet-pretrained CNN model. The normal confidence from Model 2 

and the disease subtype confidence from Model 4 are concatenated to train Metamodel 2 to 

calculate the overall result. 
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The first experiment was performed as described below, using the entire set of training 

data to compare classification performances among models trained using three proposed 

approaches (Fig. 5.3). Deep learning models were trained separately for each type of extracted 

image from the 3D OCT data. A convolutional neural network (CNN), which can automatically 

create efficient image features for the classification, was used as the classifier. Flat 

classification models were used to classify eyes as normal, FI, GE, MY, or SS directly with 

transfer learning from a deep learning model (a CNN) pretrained on the ImageNet dataset 

(ImageNet-pretrained CNN model) to create Model 1 (Fig. 5.3.a). A hierarchical classification 

model (Fig. 5.3.b) was built by applying transfer learning from the ImageNet-pretrained CNN 

model separately with a low-level model (Model 2 in Fig. 5.3.b) for classifying normal versus 

glaucoma and a high-level model (Model 3 in Fig. 5.3.b) for glaucoma classification. 

Furthermore, the normal confidence from Model 2 and the confidence of FI, GE, MY, and SS 

from Model 3 were concatenated into a confidence vector length of 5. Then, a metamodel of 

the linear support vector machine (SVM) was trained using the confidence vector data with 

the supervised labels to combine the models in a cascaded manner [73]. As described in the 

Section 5.2, a hierarchical classification model applies transfer learning from the ImageNet-

pretrained CNN model to create a low-level model for classifying normal versus glaucoma 

cases; then it is hierarchically transferred to build a glaucoma classification model from the 

low-level model. Finally, a metamodel of the linear SVM was used to calculate the overall 

result (Fig. 5.3.c). 

A stacking ensemble method was used to combine the separately trained single-input 

image models. The confidence vector calculated by models trained with different single-input 

images was extracted and concatenated to train the superior metamodel via a linear SVM to 

combine the single-input models. For comparison with the stacking method, a multiple-input 

CNN with a direct four-image input was selected to handle multiple images, and trained 

with the three proposed approaches (Fig. 5.4). A metamodel was also used to combine the 

results of different-level models to calculate the final classification result.  

In this study, the VGG16 CNN architecture was adopted, which is widely used to solve 

image classification tasks [61], for all the deep learning models and customized it. For single-

input CNN models, a CNN architecture VGG16 was customized by adding batch 

normalization after each convolutional layer to accelerate training as the model classifier. 

Regarding the last two fully connected layers, the units of each layer were changed to 256 with 

a batch normalization layer and ReLU activation function.  
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Fig. 5.4. Proposed approaches for building deep learning models with multiple input images 

directly. (a) Proposed approach 1: flat classification method is used to directly classify normal 

eyes and those with four subtypes of disease with transfer learning from an ImageNet-

pretrained CNN model to create Model 5. (b) Proposed approach 2: hierarchical classification 

method is used to create a low-level model (Model 6) for classifying normal versus disease 

cases and a high-level model (Model 7) for classifying subtypes of disease; both models apply 

transfer learning from the ImageNet-pretrained CNN model. The confidence in a “normal” 

result from Model 6 and the confidence in disease subtypes from Model 7 are concatenated to 

calculate the overall result from training Metamodel 3. (c) Proposed approach 3: hierarchical 

classification using hierarchy transfer learning between different-level models is used in the 

hierarchical classification model is. In contrast with proposed approach 2, the high-level model 

(Model 8) for classifying disease subtypes, transfer learning is from the low-level model (Model 

6) instead of from the ImageNet-pretrained CNN model. The normal confidence from Model 6 

and the disease subtype confidence from Model 8 are concatenated to train Metamodel 4 to 

calculate the overall result. 

 



 5.3 Experiments Using Clinical Image Dataset  

 

73 

 

For comparison, a deep learning models handling multiple (n=4) input images directly 

(multiple input CNNs) was applied as the classifier. Flat classification models were used to 

classify eyes as normal, FI, GE, MY, or SS directly with transfer learning from a deep learning 

model (a multiple input CNN) pretrained on the ImageNet dataset (ImageNet-pretrained 

CNN model) to create Model 5 (Fig. 5.4.a). A hierarchical classification model (Fig. 5.4.b) 

applying transfer learning from the ImageNet-pretrained CNN model separately with a low-

level model (Model 6 in Fig. 5.4.b) was built for classifying normal versus glaucoma and a 

high-level model (Model 7 in Fig. 5.4.b) for glaucoma classification. Furthermore, the normal 

confidence from Model 6 and the confidence of FI, GE, MY, and SS from Model 7 were 

concatenated into a confidence vector length of 5. Then, a metamodel of the linear support 

vector machine (SVM) was trained using the confidence vector data with the supervised labels 

to combine the models in a cascaded manner [73]. As described in the Section 5.2, a 

hierarchical classification model applies transfer learning from the ImageNet-pretrained 

CNN model to create a low-level model for classifying normal versus glaucoma cases; then it 

is hierarchically transferred to build a glaucoma classification model from the low-level model. 

Finally, a metamodel of the linear SVM was used to calculate the overall result (Fig. 5.4.c). 

For multiple-input CNN models, each input had the same feature extractor with the single-

input CNN in the proposed approach of the weights pre-trained on ImageNet to extract 

features from the layer before the first fully connected layer (Fig.5.5). These were then 

concatenated and fed to newly created, two fully connected layers (both were 256 units with 

batch normalization layer and ReLU activation function). In all classification models, only the 

unit number of the softmax layer was changed according to the class number of each 

classification task.  

 



 5.3 Experiments Using Clinical Image Dataset  

 

74 

 

 

Fig. 5.5. Multiple input CNN models for glaucoma detection and classification 

 

The second experiment was designed to evaluate the deep learning models’ applicability 

to small amounts of training data built using the proposed approach by using partial 

training data. Partial training datasets were created using a stratified random sampling 

strategy using different percentages of the entire training data (25.0 %, 37.5 %, 50.0 %, 

62.5 %, 75.0 %, 87.5 %, and 100.0 %). With the different training datasets, deep learning 

models were built with the proposed approaches (Fig. 5.3) using one type of input image 

(projection image) and a combination model via a stacking ensemble method for different 

single-input models.  

For all experiments, the same training setups were applied. Data augmentation 

techniques were used to improve the classification performance for limited training data, 

including horizontal flip, random rotation, and random shift. An epoch of 100 was used with 

a batch size of 32, the optimization method of stochastic gradient descent (SGD) with a 

learning rate of 10-3, and the weighted categorical cross entropy by the data size of each class 

as loss function. Finally, the model with the minimum validation loss from 100 deep learning 

models was selected with early stopping. The experiments were performed using Python 3.6 

on an Intel Xeon Gold 6130 @ 2.10 GHz of 32 GB of RAM with a Quadro GV100 (32 GB), using 
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Keras 2.2.4 with TensorFlow 1.13.1. 

 

5.3.3. Evaluation Metrics 

The entire dataset was shuffled to create three different training (80%) and test (20%) datasets 

with a stratified sampling strategy. The training dataset was used to build the classification 

models, and the test dataset was used to evaluate the models. The average of the classification 

indexes for the three test datasets was used to evaluate the proposed approaches. The dataset 

was not balanced in class distribution; thus, weighted accuracy and Cohen’s kappa were used 

to evaluate the deep learning models.  

The fraction of all correctly predicted overall number of test set samples is the overall 

accuracy as Eq. (5.1), where a confusion matrix that comprises false negatives (FN) true 

negatives (TN), true positives (TP), and false positives (FP). 

accuracy = (TP + TN) / (TP+TN+FP+FN) * 100%            (5.1) 

The weighted accuracy corresponds to the correctly detected samples divided by the total 

number of samples [57].  

The Cohen’s kappa [46] can be calculated according to the Eq. (5.2). 

                     Cohen′s kappa =  
𝑁 ∑ 𝐶𝑀𝑖𝑖

𝑚
𝑖=1 −∑ 𝐶𝑖𝑐𝑜𝑟𝑟𝐶𝑖𝑝𝑟𝑒𝑑

𝑚
𝑖=1

𝑁2−∑ 𝐶𝑖𝑐𝑜𝑟𝑟𝐶𝑖𝑝𝑟𝑒𝑑
𝑚
𝑖=1

                (5.2) 

where CMii represents the diagonal elements of the confusion matrix, Cicorr reprents the 

number of data labelled as Ci, and Cipred reprents the number of data predicted by the machine 

learning model as Ci. N is the total number of cases. Details of the calculation method of 

Cohen’s kappa was shown in Section 3.3.3. 

The agreement thresholds used in this study were based on the first guideline: good: 0.61–

0.80 and almost perfect: 0.81–1 [46]. A paired t-test P-value (two-tailed) of 0.05 as the 

significance level was used to determine whether the mean difference between two sets of 

Cohen’s kappa was zero. 
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5.3.4. Results and Discussion 

The deep learning models of single-input images built with the flat classification strategy and 

transfer learning from the ImageNet-pretrained model (proposed approach-1 in Fig. 5.3.a) 

achieved good performance on en face images (Cohen’s kappa: 0.6; weighted accuracy: 66.3 %). 

The deep learning models built with hierarchical classification with and without hierarchy 

transfer learning (proposed approach-2 in Fig. 5.3.b and proposed approach-3 in Fig. 5.3.c) 

achieved good performance using projection (Cohen’s kappa: 0.678; weighted accuracy: 75.5 %), 

en face (Cohen’s kappa: 0.707; weighted accuracy: 74.6 %), and disc H B-scan (Cohen’s kappa: 

0.708; weighted accuracy: 77.5 %) images. The deep learning models using hierarchical 

classification models provided significantly improved classification performance (P-values of 

the paired t-test: 0.027, 0.045, and 0.016, respectively) compared to models using the flat 

classification strategy for the same input images. There was no considerable difference 

between hierarchical classification with and without hierarchy transfer learning for all types 

of input images (left part of Fig. 5.6). 

 

 

Fig. 5.6. Cohen’s kappa of deep learning models built with the proposed approaches. 

 

The stacked method of four models that were built with transfer learning and pretrained 

on ImageNet provided satisfactory performance, with a Cohen’s kappa of 0.727 and weighted 

saccuracy of 71.8 %. The multiple-input CNN models achieved a Cohen’s kappa of 0.642 and 

weighted accuracy of 69.2 % with four input images (right part of Fig. 5.6). The standard 

deviation of Cohen’s kappa for stacking was smaller than that of the multiple-input CNN 

trained with the same proposed approaches. The multiple-input CNN was not significantly 

higher than the single-input CNNs of projection images, en face images, and disc H B-scans. 
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However, classification performance significantly improved with the stacking method for each 

single-input model (P-values of the paired t-test: 0.014, 0.022, 0.006, and 0.012 for projection, 

en face, disc H B-scan, and disc V B-scan images, respectively). 

The hierarchical classification strategy with or without hierarchy transfer learning 

between low-level and high-level models showed significantly improved classification 

performance compared to flat classification (P-values of the paired t-test for the hierarchical 

classification strategy without hierarchy transfer learning were 0.001, 0.049, 0.008, and 0.013, 

and with hierarchy transfer learning were 0.047, 0.048, 0.030, and 0.031, for projection, en 

face, disc H B-scan, and disc V B-scan images, respectively, for both cases). There was no 

significant difference between the results of the hierarchical classification strategy with and 

without hierarchy transfer learning after applying the stacking ensemble method. Proposed 

approach-3 (hierarchical classification and hierarchy transfer learning with the stacking 

method) achieved the highest Cohen’s kappa, 0.809, and weighted accuracy, 83.9 %. 

 

Table 5.2. Performance change of stacking models with different training dataset sizes 

 

Cohen's Kappa Relative Cohen's Kappa 

Percent 

of total 

training 

data 

Number of 

training 

data  

FC HC HC & HTL FC  HC  HC & HTL 

25.0 % 185 0.546 0.556 0.642 0.851 0.866 1.000 

37.5 % 278 0.600 0.606 0.666 0.899 0.910 1.000 

50.0 % 370 0.655 0.679 0.731 0.897 0.929 1.000 

62.5 % 462 0.675 0.710 0.756 0.893 0.939 1.000 

75.0 % 554 0.707 0.744 0.788 0.897 0.945 1.000 

87.5 % 647 0.727 0.784 0.805 0.903 0.975 1.000 

100.0 % 739 0.727 0.796 0.809 0.899 0.984 1.000 
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(a)                                       (b) 

 

(c) 

Fig. 5.7. Performance change with different training dataset sizes. (a) Cohen’s kappa with 

standard deviation error bars for deep learning models trained with different training 

methods based on single-input (projection) images. (b) Cohen’s kappa with standard 

deviation error bars for deep learning models trained with different training methods based 

on all input images. (c) Calculated classification performance reduction for models using 

different training datasets and other training methods with stacking, with respect to 

Cohen’s kappa for the CNN model built using HC & HTL with stacking. 
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The performance change (as measured using Cohen’s kappa) provided by the deep 

learning classification models using projection input images were compared. All the models 

trained with flat classification (FC; Fig. 5.3.a), hierarchical classification without hierarchy 

transfer learning (HC; Fig. 5.3.b), and hierarchical classification with hierarchy transfer 

learning (HC & HTL; Fig. 5.3.c) using a larger training dataset achieved an increase in 

Cohen’s kappa. Only HC and HC & HTL achieved satisfactory performance when using the 

entire training dataset. There was no significant difference between HC and FC in the case of 

a small training dataset. The HC & HTL strategy achieved a good Cohen’s kappa when using 

62.5 % of the entire training dataset (Fig. 5.7.a). 

The performance change provided by the stacked deep learning classification models 

using all the types of input images were compared. All the stacked models trained with FC, 

HC, and HC & HTL using a larger training dataset achieved a higher Cohen’s kappa (Table 

5.2). Compared to the single-input (projection) model using the same number of training 

datasets, all the models achieved a higher Cohen’s kappa. With sufficient training data, all 

the models achieved convergence classification performance. With the same number of 

training datasets, the classification performance of HC & HTL was better than that of FC 

(Table 5.2, Fig. 5.7.b; all P-values of paired t-tests < 0.05). The performance of the models 

built with the HC strategy was better than that of the models built with the FC strategy for 

large training datasets (more than 75.0 % of the training dataset). However, there was no 

significant difference between HC and FC for a small training dataset (less than 75.0 % of 

training dataset). The HC & HTL strategy achieved a fairly good Cohen’s kappa of 0.642 

using only 25.0 % of the entire training dataset (Table 5.2, Fig. 5.7.b). Each model’s 

performance reduction (relative Cohen’s kappa) for each model using each training dataset 

was calculated with reference to the Cohen’s kappa for the CNN model built with the HC & 

HTL strategy (Fig. 5.7.c). The performance reduction of flat classification was greater than 

(1.000-0.903) x 100.0 % = 9.7 %, compared to using the proposed method and the same 

training dataset (Table 5.2, Fig. 5.7.c). The performance reduction of hierarchical 

classification was smaller than flat classification for each different size of training dataset, 

while the rate of performance reduction for hierarchical classification was larger in 

comparison with flat classification (Table 5.2, Fig. 5.7.c). 

In this study, high-accuracy deep learning models were built for disease detection and 

classification. Experiments showed that the deep learning models trained with transfer 

learning from an ImageNet-pretrained CNN model with flat classification and data 

augmentation performed effectively in disease detection and classification on one type of input 
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images (Fig. 5.3). The proposed approach by Kermany, et al. [34] is similar to proposed 

approach-1 (Fig. 5.3) as data augmentation for model training was adopted, which is useful in 

small datasets. 

An approach for hierarchical classification was proposed. The deep learning models built 

with hierarchical classification performed well and producing substantially improved results 

compared to flat classification for three types of input images (Fig. 5.6). Similar to the 

proposed approach-2 (Fig. 5.3), a previous study used hierarchy knowledge in ophthalmologic 

disease classification and transfer learning from a pretrained model with a large natural 

image dataset and achieved a high accuracy [74]. The applicability of this approach in smaller 

datasets was evaluated and compared its performance with flat classification. Moreover, the 

same deep learning architecture for disease detection and classification was applied, which is 

a prerequisite for further use of hierarchy transfer learning. The combination of two methods 

on the features analyzed of doctors’ diagnostic processes (proposed approach-3) produced 

higher classification performance using smaller datasets, in comparison with the flat and 

hierarchical classification. 

Two methods for handling multiple-input images were proposed, as doctors’ requirement 

of having multiple images to make accurate diagnosis. As described in glaucoma guidelines, 

multiple sources of information, such as patient medical history, visual acuity, assessment of 

nerve fiber layer, and visual fields are required in order to accurately assess early-stage 

glaucoma [75]. Multiple useful images were extracted from one volumetric data to develop the 

deep learning models. Classification performance improved and was good for the multiple-

input CNN and stacking methods. In comparison with the multiple-input CNN method, the 

stacking method considerably boosted the performance of four single-input CNNs with a small 

standard deviation error. Doctors’ processes of making a diagnosis after asynchronously 

interpreting multiple images was implemented with the stacking method. 
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     (a)                                         (b) 

     

(c)      (d) 

 

(e)      (f) 

Fig. 5.8. ROC curves for stacked hierarchical classification models built using a small training 

dataset. ROC curves for (a) normal vs others, (b) FI vs others, (c) GE vs others, (d) MY vs 

others, (e) SS vs others, (f) macro average ROC curve of all five classes. 
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The proposed approach of hierarchical classification and hierarchy transfer learning 

(approach-3; HC & HTL) showed good compatibility with the stacking method, and achieved 

higher classification performance than other proposed approaches. The classification 

performance was good even for smaller training datasets. The stacked deep learning models 

trained with three approaches (Fig. 5.8) achieved good classification performance using a 

small dataset (37.5 % of the training dataset). The area under the receiver operating 

characteristic (ROC) curve (AUC) for each class, with the confidence calculated by three 

different proposed methods, was used to confirm classification performance without a fixed 

threshold to predict. It is found that Normal, FI, GE, the proposed approach achieved the best 

AUC, followed by hierarchical classification without transfer learning (Fig.5.8.a, 5.8.b, 5.8.c). 

To judge MY, and SS cases, hierarchical classification without transfer learning achieved the 

lowest AUC, and with the transfer learning effect, hierarchical training strategy let AUC got 

the highest AUC for distinguishing MY, but lower AUC than flat classification (Fig. 5.8.d, 

5.8.e). The number of MY cases is the largest, and the SS is the smallest, it is considerable the 

imbalance problem seems to affect the performance even applying the weighted loss during 

training, and transfer learning from the low level model in the hierarchical ones has the effect 

of not being affected. Owing to the stacking method, eventually the macro AUC for 

hierarchical classification with transfer learning was the best (Fig. 5.8.f). In future studies, 

methods for overcoming the imbalance problem of the smallest class should be investigated.  
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Fig. 5.9. Heatmaps for en face image of FI-type glaucoma (disease subtype) case. (a) heatmap 

created with flat classification model trained with small dataset, (b) heatmap created with low 

level model trained with small dataset in hierarchical classification model of normal and 

glaucoma, (c) low level model trained with small dataset in hierarchical classification model 

without transfer learning, (d) low level model trained with small dataset in hierarchical 

classification model with transfer learning for glaucoma classification, (e) heatmap created 

with flat classification model trained with large dataset, (f) heatmap created with low level 

model trained with large dataset in hierarchical classification model of normal and glaucoma, 

(g) low level model trained with large dataset in hierarchical classification model without 

transfer learning, (h) low level model trained with large dataset in hierarchical classification 

model with transfer learning for glaucoma classification. The red area is the most important 

one for classification. 
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Furthermore, a commonly used method grad-CAM has been applied to observe the 

important areas for judgement by the built CNN models training with different strategies and 

training datasets [76]. In detail, grad-CAM makes the area characteristic as a heatmaps for 

each single input CNN model. A random sampled FI case, which was correctly identified with 

the proposed approach, but falsely judged with the other two classification models, was taken 

to show the heatmaps created with different models built with small (ratio: 37.5%), and 

medium (62.5%) training dataset, and correctly identified by all the models using the whole 

training dataset. One of the clinical characteristics of FI in en face image is retinal nerve fiber 

layer degeneration (NFLD), the black right bottom corner part from the center for this case. 

It was pitiful for the flat classification model could not find this feature in the en face image 

(Fig. 5.9.a, 5.9.e), but it succeeded to find the attractive region for low-level classification 

model of normal and glaucoma (Fig. 5.9.b, 5.9.f). Owing to transfer learning from low-level 

model, the high-level model for glaucoma classification continues to pay high attention on this 

area to achieve a better performance, while the high-level model without transfer learning 

just notes the center region (optic disc) (Fig.5.9.c, 5.9.d, 5.9.g, 5.9.h). The heatmaps created by 

the models built with medium training dataset seems changed gradually from the ones trained 

with the small dataset. It was very similar to find the NFLD area important in the models 

correctly identified the FI case. 

A deep learning model for glaucoma detection and classification was built by hierarchical 

classification, hierarchy transfer learning and stacking ensemble method using different 

images, achieving a high Cohen’s kappa of 0.809. Based on the previous guideline of Cohen’s 

kappa [46], this value means the substantial performance of decision support system for 

glaucoma clinical care. For comparison, the other diagnosis test has also been conduced. 

Images of 50 cases were randomly sampled from the dataset used in this study, which were 

then classified into normal and glaucoma sub-categories by three medical ophthalmology 

interns. The average Cohen’s kappa of these classification results with supervised data was 

0.408, lower than that of the deep learning model. The model can be used in diagnosis support 

of glaucoma by providing the confidence level for normal cases and each disc type, which would 

help doctors to select a proper treatment plans according to the optic disc shape [37], [77]. 

 

5.4. Conclusions 

This chapter presents an extension method proposed two-step framework introduced in 

Chapter 4 to handle multiple images. The machine learning models are trained separately 
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based on each type of input images with the two-step framework, first step of which builds the 

model for disease detection, and the second step of which builds the model for disease 

classification by reusing parameters of the model for disease detection. Then the models were 

combined in the stacked manner to handle multiple images. In detail, the models trained 

separately based on each type of input images with the framework using hierarchical 

classification and hierarchy transfer learning method were combined with a stacking 

ensemble method.  

In experimentations, I evaluated this extended framework by building an ophthalmologic 

disease (glaucoma) detection and classification machine learning model via deep learning 

based on a retinal image dataset consisting of several types of medical images extracted from 

volumetric data. For the models using single input images, the classification performance of 

the models built with the proposed framework shown in Chapter 4 were compared to the flat 

models, while for the models using multiple input images, the classification performance of 

the models built with the extension approach of the proposed framework in Chapter 4, trained 

with random sampled smaller size datasets from the dataset above. As a result, the 

classification performance of the models based on single input image built with the proposed 

two-step framework shown in Chapter 4 was higher than the flat models. Furthermore, the 

stacked classification models built with the extended proposed framework achieved good 

performance, higher than the models using single input image. With a smaller size dataset, 

models with higher classification performance were built by proposed framework compared to 

flat models in both cases of handling single input and multiple input data. A high accuracy 

was achieved via by a combination of the proposed methods, and the effectiveness of the 

proposed approach in its applicability using smaller size dataset was demonstrated. 

In this work, two major contributions were made: (1) The effectiveness of building 

machine learning models for disease detection and classification hierarchically can improve 

the classification performances when using limited size dataset was demonstrated: first 

classifying normal and diseased cases, then classifying diseased cases into sub-categories was 

demonstrated. (2) The effectiveness of building high level models in hierarchical classification 

models for disease classification by reusing low-level models in the hierarchical classification 

models for disease detection was demonstrated. (3) The applicability of the two-step 

framework in building machine learning models handling multiple input images was 

demonstrated. 

Conclusively, the proposed two-step hierarchical framework has a high potential of 
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deploying high accurate machine learning models for ophthalmologic disease detection and 

classification with limited labelled data, in both cases of handling single input images and 

multiple input images.  
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Chapter 6.  

 

Conclusions and Future Work 

 

In this chapter, I summarize the contributions of this dissertation and discuss the necessary 

future work.  

 

6.1. Summary of This Dissertation 

The major theme of this dissertation is focused on building high accurate machine learning 

models for ophthalmologic disease detection and classification with small-size dataset, which 

aims to assist the clinical decision making of selecting proper treatment for ophthalmologic 

disease. 

To achieve this goal, first I analyze the doctors’ diagnostic processes as follows: 

1) Doctors perform disease classification after classifying healthy and diseased cases 

(disease detection), because the disease classification is difficult even for specialists, 

which is based on complex symptoms, and it should be performed in the status of 

normal cases excluded thoroughly. 

2) Doctors classify diseases into subcategories by reusing the knowledge of classifying 

normal and diseased cases. 

3) Doctors use multiple information (e.g., multiple types of medical images) to make 

optimal diagnosis. 

According to the characteristic of doctors’ diagnostic processes above, a two-step 

framework is proposed to build machine learning models for ophthalmologic disease detection 

and classification. In the first step, the machine learning model for classifying healthy and 

disease (disease detection) is built, and in the second step the model for disease classification 

is built by reusing parameters of the model for disease detection. Moreover, this two-step 



  6.1 Summary of This Dissertation  

 

88 

 

framework is extended to handle multiple input data. To implement this framework in 

building machine learning models, three machine learning methods are created with separate 

roles as below.  

1) Hierarchical classification method, to build machine learning models for disease 

classification, after building the models for classifying healthy and disease (disease detection).  

2) Hierarchy transfer learning method, to build machine learning models for disease 

classification by reusing parameters of the model for disease detection 

3) Stacking ensemble method, to build machine learning models handling multiple 

input data by combining the machine learning models trained separately on single input data 

with the training method of hierarchical classification and hierarchy transfer learning method. 

A series of experiments are performed to evaluate the proposed framework for training 

machine learning models of ophthalmologic disease detection and classification. 

In Chapter 3, I present the first approach of building machine learning models in two 

steps, that tries to classify diseases after disease detection. It is implemented by the 

hierarchical classification of two steps. In each step, feature selection that is one field of 

feature engineering is used. In experimentation, this method is evaluated by building an 

ophthalmologic disease (glaucoma) detection and classification machine learning models with 

a clinical data extracted from a hospital database. The dataset consists of extracted quantified 

parameters from medical images and demographic data, together with the labelled data by 

experienced ophthalmologists. The classification performance of the models built with the 

proposed approach are compared to the flat models built in one-step to detect and classify 

diseases, trained with different size datasets random sampled from the dataset above. The 

result of the experiments demonstrates that the classification performance of the machine 

learning models trained with hierarchical classification method combining with feature 

selection can be elevated on a disease detection and classification task compared with the flat 

models, and the applicability of the proposed framework to build high accurate machine 

learning models in limited size datasets is also demonstrated. 

Chapter 4 attempts to apply deep learning technique for handling medical images directly 

without feature engineering to build machine learning models for ophthalmologic disease 

detection and classification. A two-step framework to build deep learning models for 

ophthalmologic disease detection and classification, first step of which builds the model for 
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disease detection, and the second step of which builds the model for disease classification by 

reusing parameters of the model for disease detection, is introduced. In detail, besides the 

hierarchical classification method, hierarchy transfer learning method is created and used to 

build deep learning models. In experimentation, firstly, the concept of the proposed method of 

building deep learning models is evaluated with a natural image dataset and labelled data 

that is easy to evaluate, in which the labels of the images have hierarchy relationship. The 

classification performance of the models built with the proposed approach are compared to the 

flat models built in one-step to detect and classify diseases, trained with different size datasets 

random sampled from the dataset above. As a result, compared with flat models, the 

effectiveness of improved classification performance for the model built with the method of 

combining hierarchical classification and hierarchy transfer learning method is demonstrated 

even for the smaller size datasets. This approach also succeeds in building a high accurate 

deep learning model with labelled clinical medical image dataset for an ophthalmologic 

disease (age-related macular degeneration) detection and classification. Similar with the 

result of experiments using the natural image dataset above, the proposed approach enables 

machine learning models to achieve high accuracies and improved classification performance 

in comparison with flat models, the effect and efficiency have been demonstrated even in 

smaller size datasets. 

Chapter 5 presents an extension approach for the proposed two-step framework shown in 

Chapter 4 to handle multiple images. The machine learning models are trained separately 

based on each type of input images with the two-step framework, first step of which builds the 

model for disease detection, and the second step of which builds the model for disease 

classification by reusing parameters of the model for disease detection. Then the models are 

combined by the stacked manner to handle multiple images. In detail, the models trained 

separately based on each type of input images with the framework using hierarchical 

classification and hierarchy transfer learning method are combined with a stacking ensemble 

method. In experimentation, this extended framework is evaluated by building an 

ophthalmologic disease (glaucoma) detection and classification machine learning model via 

deep learning based on a retinal image dataset consisting of several types of medical images 

extracted from volumetric data. For the models using single input images, the classification 

performance of the models built with the proposed framework shown in Chapter 4 are 

compared to the flat models, while for the models using multiple input images, the 

classification performance of the models built with the extension approach of the proposed 

framework in Chapter 4, trained with smaller size datasets random sampled from the dataset 

above are compared with flat models. As a result, the classification performance of the models 
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based on single input image built with the proposed two-step framework shown in Chapter 4 

was higher than the flat models. The stacked classification models built with the proposed 

framework achieve good performance, higher than the models using single type of input image. 

With a smaller size dataset, models with higher classification performance are built by 

proposed framework compared to flat models in both cases of handling single input and 

multiple input data. A high accuracy is achieved via by a combination of the proposed methods, 

and the effectiveness of the proposed approach in its applicability in using smaller size dataset 

is demonstrated. 

In conclusion, the proposed two-step hierarchical framework has a high potential of 

deploying high accurate machine learning models for ophthalmologic disease detection and 

classification with limited labelled data, to assist the clinical decision making for selecting the 

proper treatments for the patients.  

 

6.2. Discussion of the Future Work 

In this section, the limitations of the approaches are described based on the summary in the 

previous sections, and the necessary future work is discussed.  

The effect of my proposed framework to build high accurate machine learning models for 

ophthalmologic disease detection and classification is shown based on multiple images from 

just one single modality, thus using multiple images from different multi-modalities are 

promising to be utilized in future work. Moreover, a way of handling multiple images and 

metadata from patients together should be researched in the extension of proposed method.  

The input image data is only two-dimensional (2D), thus the efficacy of training machine 

learning model by my proposed approach will be validated in handling three-dimensional (3D) 

image data, which is more difficult to build high accurate classification models. As shown in 

Chapter 5, handling multiple images at the same time by using a multiple input CNN does 

not achieve a higher accuracy than the stacking ensemble method using the proposed two-

step training framework, thus the two-step framework might be further extended in future 

work in asynchronous processing manner for building a machine learning model handling 3D 

image data. For instance, with extracted information from adjacent frames should be firstly 

tried as the input to build the machine learning models, while recently long short-term 

memory (LSTM) [78] is shown powerful to process 3D medical image data combined with CNN, 
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when handling the images as a time-sequence data.  

There are many new machine learning techniques being reported recently, such as deep 

learning architectures and data augmentation techniques, which can boost the performance 

of deep learning models. Hopefully, machine learning models built with these new techniques 

or new architectures and my approaches would achieve more excellent performance for 

ophthalmologic disease detection and classification, and this will be demonstrated in future 

work.  

In this dissertation, simple data augmentation is used to build high accurate machine 

learning models. For many diseases, the distribution of disease sub-classes in collected 

datasets is heavily skewed by each class’s prevalence among patients, and so detecting rare 

diseases in medical images with deep learning can be challenging. Furthermore, for some 

kinds of medical images, the image quality is not stable. With these problems, instead of 

simple data augmentation, GAN [79] that is capable of learning the distribution of the image 

data, will be considered to be applied for increasing the training samples for earning better 

classification performance in the future work.  

As the disease classification into subcategories is difficult even for experienced doctors, 

the machine learning models in this dissertation were built with only the consistent labels by 

the several ophthalmologists to demonstrate the effectiveness and efficacy of the proposed 

framework for training machine learning models. Thus, in the future work, the images whose 

grading are difficult might be used in a semi-supervised classification manner to improve 

performances of the machine learning models built with the proposed framework.  

In this dissertation, the medical data relevant with the ophthalmologic diseases, patient 

number of which are huge are used to demonstrate my approach, and in future work the effect 

of the proposed approach in real clinical medical data relevant with rare ophthalmologic 

diseases should be researched. Finally, since the proposed framework for building machine 

learning models is not limited to ophthalmologic data, the effectiveness of building high 

accurate machine learning models based on medical data from other medical departments will 

be demonstrated in future work. 
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