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Chapter 1

General Introduction

Approximately two-thirds of global greenhouse gas emissions can be attributed to the

use of energy from fossil fuels (IRENA, 2017), which results in a rise in the global temper-

ature. Increasing concerns about global climate change require the shift from fossil fuels

to renewable energy in the electricity sector for both developed and developing countries.

The costs of renewable energy sources are high at the initial stage when the scale of the

renewable energy industry is small and related technologies are immature. To promote

the deployment of renewable energy, supporting policies are needed desperately at both

the international and domestic levels. Most countries use either feed-in tariff (FIT) or

renewable portfolio standard (RPS) systems to support renewables. For Japan, the policy

was shifted from the RPS to a national FIT in 2012. After the introduction of the FIT

scheme, renewable energy, especially solar power, has expanded rapidly. Renewable en-

ergy has become the third largest energy source after liquefied natural gas (LNG) and coal

(REI, 2017). In addition to domestic policies, global climate change policies also promote

the development of renewable energy. For example, the Clean Development Mechanism

(CDM) under the framework of the Kyoto Protocol encourages developed countries to

fulfill their carbon emission reduction commitments by implementing renewable energy

projects in developing countries. China’s wind power sector has benefited greatly from

the implementation of the CDM. The installed capacity of wind power increased to the

world’s largest in 2011. The technology of wind turbines has also improved substantially

in China since then.

As the renewable energy sector matures and the levelized cost of electricity (LCOE)

declines, the fulfillment of the deployment target of renewable sources at the lowest possi-

ble overall costs becomes the main interest of policymakers. FIT has proven to be effective

in promoting renewable energy, but often at the expense of overly generous subsidization

(Winkler et al., 2018). Auctions are introduced as a remedy for FIT to reduce the sup-
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porting costs of renewable energy. By the end of 2018, 106 countries have held at least one

auction for renewables (IRENA, 2019). Essentially, auctions refer to competitive bidding

processes for electricity from renewable energy. Project developers bid the lowest prices

they would be willing to accept to develop renewable energy projects. Auctions can lead

to more competitive prices as they let the competitive market determine the prices paid

for renewables. Therefore, ensuring sufficient competition is the key factor when designing

auctions for renewable sources.

This research is intended to evaluate the impacts of policies for renewable energy from

three aspects: technology development of the wind sector in China, operation of solar

projects, and reverse auctions for solar photovoltaic (PV) in Japan. We have three main

objectives. The first is to investigate the role of CDM in inducing the subsequent devel-

opment of domestic technology for wind power generation. Wind power capacity has un-

dergone rapid expansion in China, which is a key player in the CDM. The implementation

of CDM wind projects expands the wind market and makes foreign advanced technology

available, which could also promote domestic technological development in China’s wind

power sector.

The second objective is to investigate the impact of the amended FIT policy on the

operation of solar power in Japan. FIT has helped to increase renewable power generation,

particularly solar power, but has also encountered a number of challenges. The major one

is the large discrepancy between the approved capacity and operating capacity of solar

power projects. Project developers of proposed solar power facilities obtain FIT approval

as soon as possible, but intentionally delay their start of installation to maximize profits. It

is undesirable for FIT to perform as a supporting policy in promoting renewable electricity

generation. It also adds an excess financial burden to future consumers of electricity. The

amendments to the FIT policy in 2017 address this unexpected non-operating problem by

imposing stricter requirements on approval of FIT eligibility.

The third objective is to determine whether reverse auctions under FIT slow the expan-

sion of mega-solar in Japan. To reduce the supporting costs of solar power, the Japanese

government launched a reverse auction system for mega-solar PV in 2017. The eligibility,

capacity allocation, and electricity procurement prices of solar PVs above 2 MW are de-

termined by a bidding process. In parallel to the FIT prices determined by the bidding

process for mega-solar, the administratively set FIT prices are adopted for solar projects

less than 2 MW. The later prices are higher than the former ones, which may generate an

2



incentive for project developers to manipulate project size in order to attain higher FIT

prices. Such incentives, coupled with strict compliance rules of reverse auctions, could

lead to a reduction in solar projects above 2 MW and an increase in those slightly below

2MW. This is considered to be the spillover effect of reverse auctions.

The remainder of this dissertation is organized as follows. In Chapter 2, we estimate

the effects of wind CDM projects on the development of China’s domestic wind power

technology. We use province-level patent counts to measure wind technology development.

The annual number, annual installed capacity, and average capacity size of successfully

registered CDM wind projects are used as indicators of the implementation of the CDM.

In Chapter 3, we focus on the impact of the amended FIT policy on the operation of

approved solar power in Japan. We estimate the relationship between operating capacity

and approved capacity before and after the amendment by using municipality-level data

of solar power capacity. In addition, we examine the characteristics of municipalities that

tend to locate non-operating solar projects. In Chapter 4, we investigate the impact of

reverse auctions on the number of FIT-approved solar PV projects on mega-solar PV. We

use data on solar projects above 50 kW that were newly approved by the FIT scheme and

break down these projects into different size categories. We also estimate the spillover

effect of reverse auctions on solar projects that are not the target of the recent reverse

auction system. In Chapter 5, we conclude the study’s findings and policy implications.
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Chapter 2

Development of Wind Power-related Technology in

China: the Role of the Clean Development Mecha-

nism

2.1 Introduction

Climate change is a global thread that requires cooperation among all countries. Being

the world’s largest energy consumer and pollution emitter, China is responsible for adopt-

ing countermeasures to mitigate the negative impact of this issue. China is witnessing a

massive expansion of renewable energy capacity, particularly in the wind power sector.

China’s wind power sector has experienced unprecedented growth in the past decade,

and its capacity increased to the world’s largest in 2011. The domestic wind power industry

is also witnessing a continuous growth. According to the 2015 market data, a Chinese

wind turbine manufacturer, Xinjiang Goldwind, took over GE (General Electric) as the

top onshore wind turbine manufacturers1.

Steady expansion of China’s wind power capacity can be traced back to the Clean De-

velopment Mechanism (CDM) projects implemented under the Kyoto Protocol. The CDM

is an innovative market-based carbon credit mechanism. It allows industrialized countries

to fulfill their carbon emission reduction commitments (also called Annex I Parties) by im-

plementing emission-reduction projects in developing countries. This earns them certified

emission reductions (CERs), each equivalent to one one tone of CO2, which can be counted

toward meeting Kyoto targets. By the end of 2015, more than 7,500 CDM projects have

issued CERs totaling more than 1.5 gigaton carbon dioxide equivalent2. Apart from green-

house gas (GHG) mitigation, the secretariat of the United Nations Framework Convention

1 https://www.scientificamerican.com/article/chinese-wind-turbine-maker-is-now-world-s-largest/
2 UNFCCC 〈http://cdm.unfccc.int/Statistics/Public/archives/201512/index.html〉
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on Climate Change (UNFCCC) (2013) reported that CDM projects have contributed sub-

stantially to sustainable development in many local communities, such as by stimulating

the local economy, and technology development and diffusion.

By November 2016, China had 3,866 CDM projects, accounting for about 50% of

the world’s total3, making China the largest host of CDM projects worldwide. China

has been engaged in CDM for over a decade since it registered its first CDM project

(Huitengxile Windfarm project) successfully in 2005. The CDM projects have been widely

implemented in all provinces of China except Tibet. Nearly 43% of China’s CDM projects

are in the wind power sector, with up to 1,518 projects and 84,034 MW installed capacity

by November 2016. China’s CDM wind power projects were developed mainly in the

northeastern, northern, and northwestern regions due to wind resource distribution.

The development of wind turbine manufacturing in China started with three 55 kW

Danish wind turbines that were introduced in the 1980s. The main sources of wind tur-

bine technology are license, joint development with foreign firms and independent R&D.

Manufacturers strengthened their technological capability through technology import, as-

similation, and re-innovation (Yuan et al., 2015). Before 2005, most turbines and key

components were imported from other countries, and only a few domestic turbine man-

ufacturers existed in China4. Nevertheless, Chinese manufacturers have made efforts to

promote their wind technological capabilities to develop larger wind turbines5. The size

of domestic wind turbines has increased significantly since 2009 (see Figure 2.1). In 2012,

China exported 225 sets of complete wind turbines to 11 countries totaling 430.45 MW.

The major exporters were Sinovel, Goldwind, HEAG, SANY, Mingyang, XEMC, and

WINDEY. (Gosens and Lu, 2013).

[Figure 2.1]

Mitigation of climate change requires continuous technological development to promote

a substantial increase in renewable energy. There are no “one size fits all” renewable

energy technologies, and thus attracting technology transfer from foreign countries is not

the ultimate goal. To promote the wide usage of wind power, especially for developing

countries such as China, developing domestic technological capacities is more important

than just importing advanced technologies. Therefore, this chapter focuses on the role

3 CDM Pipeline Overview 〈http://www.cdmpipeline.org/〉
4 http://www.worldwatch.org/node/5758
5 Large wind turbines with longer blades sweep wind from a larger area and produce greater output energy (Kumar

et al., 2016).
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of CDM in inducing the subsequent development of domestic technology for wind power

generation.

The remainder of this chapter is organized as follows. Section 2.2 provides an overview

of previous studies. Section 2.3 describes the data. Section 2.4 presents the empirical

strategy for the analysis. Section 2.5 presents the regression results. Section 2.6 presents

the related discussion, and section 2.7 draws conclusions.

2.2 Previous Studies

Many studies have focused on technology transfer within CDM projects. Dechezlepre-

tre et al. (2008) investigated the project design documents (PDDs) of registered CDM

projects. They found that Mexican and Chinese projects more frequently attract tech-

nology transfer, while European countries are the main technology suppliers. Technology

transfer increases with the size of the projects and the presence of subsidiaries of Annex

I companies. Weitzel et al. (2015) explored the determinants of technology transfer in

CDM projects. They concentrated on technology transfer within CDM projects initiated

in China and confirmed that more advanced technologies, such as wind energy, are more

likely to involve technology transfer. Moreover, previous projects applying the same tech-

nology have a negative effect, while FDI and R&D have positive effects on technology

transfer.

Some studies have also investigated the impact of CDM projects from the perspective

of learning processes and cost reduction. Tang and Popp (2016) identified four channels of

learning: learning by doing, spillover, learning by searching, and learning by interacting.

They examined how CDM wind projects in China led to technology change measured

by cost reduction in unit electricity generated from wind power. They suggested that

interacting experience between CDM wind project developers and turbine manufactures

contributes greatly to project cost reduction and improvement of wind farm productivity.

This chapter is also related to the broader literature on Chinese innovation activi-

ties. Cheung and Lin (2004) examined the spillover effect of FDI on patent applications

in China. They found that FDI has positive effects on the number of domestic patent

applications, and the spillover effect is the strongest for minor innovations such as ex-

ternal design patents. Because CDM can be interpreted as FDI in the renewable energy

generation, it is expected to have a spillover effect on domestic technology development.
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This chapter departs from these studies by addressing the effect of CDM wind projects

on the subsequent development of domestic wind power technology measured by patent

counts in Chinese provinces. We consider CDM as a promoter of technology development

in the Chinese wind power sector. Thus, this chapter sheds light on whether CDM could

induce technological development in China’s wind power sector.

2.3 Data

2.3.1 Patent Counts

This chapter uses patent counts to measure technological development. Patents are

important carriers of technical literature. They contain more than 90% of industrial

technical information and play a crucial role in promoting technology progress (He, 2014).

Patent data have several advantages. They provide rich information on the nature of

the invention and applicant, and they are further disaggregated to specific technological

areas using classification codes (Dechezlepretre et al., 2013). Meanwhile, using patent

data has some shortcomings. For example, inventors may prefer secrecy to prevent public

disclosure of the invention, and the quality of individual patents varies widely (Popp,

2006). The approach of using patent data to indicate or reflect innovation, technology

diffusion, technology transfer, and technology change has been widely adopted, especially

in the environmental field (Popp, 2006; Dechezlepretre et al., 2008; Verdolini and Galeotti,

2011). Therefore, this chapter follows previous well-established literature by utilizing

patents as indicators of technology development.

The dependent variable in this chapter is province-level patent applications that have

been granted in the field of wind power generation in China. The examination process for

an invention patent application to be granted takes 22 months6. Hence, the patent grants

are organized by their application year to avoid the time lag in the patent examination

process. The data source for patent applications is the Patent Searching Platform of SIPO

(State Intellectual Property Office of China). The International Patent Classification

(IPC) code F03D, which covers wind motors and turbines, can be used to identify patents

in the field of wind power generation (Johnstone et al., 2010; Dechezlepretre et al., 2011).

While the IPC code F03D covers mechanisms for converting natural wind energy into

6 https://www.ccpit-patent.com.cn/node/3659
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useful mechanical energy and then to its point of use, it excludes arrangements or systems

for supplying or distributing electric power7. In addition to IPC code identification, a

simple nested query strategy was applied to extract patent applicant’s location or address

information. For bias reduction, simultaneous keyword searches were conducted in the

patent applicant’s location by typing the name of province and provincial capital.

We also attempted to collect patent application data from a global patent database, the

PATSTAT. However, the coverage of information on applicants and inventors’ addresses

is very poor for most non-European countries. Without address information, patent data

cannot be classified based on the provinces. Moreover, Chinese wind turbine manufacturers

have secured only 16 patents in the European Patent Office (EPO) from 1980 to 2014

(Lam, Branstetter and Azevedo, 2017). Therefore, SIPO is chosen as the data source for

patents. Even SIPO has missing information regarding applicants’ addresses in the patent

applications, but the coverage of residential information is higher than that in PATSTAT.

The extracted patent data from SIPO only contain wind patent applications with explicit

address information.

Figure 2.2 shows wind patent grants in different provinces in China’s mainland. East-

ern provinces have relatively higher number of patent grants because of the economic

openness and technological capacity. Shanghai owns the largest number of wind patents.

[Figure 2.2]

2.3.2 CDM Projects

Information on China’s wind power CDM projects is collected from the statements

contained in the PDDs. To request registration, project developers must submit PDDs8

of CDM projects to the Executive Board. The registration and management process

of each CDM project is transparent and highly standardized, and therefore, extracting

data from PDDs is reasonable. Although PDD is an ex-ante description that reflects the

expectation of project proponents when the project is being planned, it does not matter

for the location information collection since a CDM project’s location hardly changes. We

collected the location information of wind CDM projects from the individual PDD and

classified these projects according to the name of the province or administrative city.

7 USPTO 〈https://www.uspto.gov/web/patents/classification/cpc/html/defF03D.html〉
8 The review of project design documents on UNFCCC website 〈https://cdm.unfccc.int/Projects/projsearch.

html〉
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An alternative data source for CDM projects used in existing CDM-related literature

(e.g., Dechezleprêtre et al., 2008) is the United Nations Environmental Program (UNEP)

DTU9 CDM Pipeline Database. This is an aggregated dataset in Excel format that con-

tains information about CDM projects such as name, host country, registration status,

project size (estimated as amount of annual and total emission reduction), and capacity

10.

To check the data accuracy, we compared location data based on PDD with that

offered by the UNEP DTU Partnership11. Data from PDDs are consistent with that from

UNEP DTU in most CDM projects’ location information. Deviations in location data

exist only in a few provinces. For instance, according to the data from PDD, the Shanxi

province owns 45 and the Shaanxi province owns 20 wind CDM projects registered in

2012, while UNEP DTU’s data show the number as 30 in Shanxi and 37 in Shaanxi. By

re-examining PDD to eliminate any possible errors in the data collection process, we prefer

data gathered from PDD. The final dataset consists of 1,489 wind CDM projects located

in 30 provinces12 from 2005 to 2012.

Figure 2.3 depicts the distribution of wind CDM projects in the mainland of China.

Wind CDM projects are dispersed unevenly in China, with more than half of the projects

located in Northern regions. Inner Mongolia has the largest number of wind CDM projects.

More than 100 projects also implemented in Shandong, Hebei, Liaoning, Ningxia, bene-

fiting from richer wind resource.

[Figure 2.3]

2.3.3 Control Variables

To explain the variations in wind patent applications, we also included several control

variables, such as total research and development (R&D) expenditure and inward foreign

direct investment (FDI) in the empirical models. R&D expenditure is widely used as an

indicator of innovation input13 in previous studies. R&D expenditure is highly correlated

over time, and the association between R&D expenditure and patents exists only at the

9 Formerly called UNEP Risø Centre (URC)
10 See more on http://www.cdmpipeline.org/
11 CDM project distribution within host countries by region and type (available online at http://www.cdmpipeline.

org/)
12 Note that due to the lack of provincial characteristic data and no involvement of CDM activities, Tibet is excluded

from the dataset.
13 For example, Pakes and Griliches (1984), Klaassen, Miketa, Larsen and Sundqvist (2005)
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contemporaneous level (Hu and Jefferson, 2009). However, inward FDI could trigger

technology transfer in CDM projects (Weizel, Liu and Vaona, 2015) and has a spillover

effect on innovation in China (Cheung and Lin, 2004; Hu and Jefferson, 2009). Following

these studies, we included contemporaneous total R&D expenditure and inward FDI in

the empirical analysis. These data were collected from the China Statistical Yearbook and

Chinese Yearbook of Science and Technology.

Because the study period in this chapter started in 2005, this chapter cannot explore

the effect of the Renewable Energy Law14. As for the policy variable, we used a set of

wind energy feed-in tariff (FIT) rate issued by the National Development and Reform

Commission of China (NDRC)15). The NDRC released the Notice on Policy to Improve

Grid-Connected Power Pricing for Wind Power Generation in 2009. The notice divided

China’s mainland into four different categories based on wind-energy resource distribu-

tion and windfarm construction conditions, and set four different benchmark price floors

accordingly from RMB 0.51/kWh to 0.61/kWh (Wang et al.,2012; Hu et al.,2013; Zhao

et al.,2014). Lower rates are applied to regions with richer wind resources. The first and

second revisions were announced in 2014 and 2015, respectively.16

[Table 2.1]

2.4 Empirical Analysis

We used patent application data related to wind power technology as a proxy of tech-

nology development and investigated the impact of CDM on domestic technology devel-

opment. The number of patent applications has non-negative integer values. Poisson re-

gression and negative binomial regression were applied regarding the nature of the count

data. However, Poisson regression models are quite vulnerable to the effects of over-

dispersion17. Because of over-dispersion, standard errors are under-estimated, resulting

in biased statistical significance. Due to the count data nature of the explained variables

14 The first Renewable Energy Law of China, enacted in 2005, plays an important role in the development of China’s

wind power industry (Wang et al., 2012; IRENA, 2013). In the year 2005, China’s first wind CDM project was

successfully registered just after Renewable Energy Law.
15 The State Council and the National Development and Reform Commission are China’s most powerful and influential

regulators of clean energy. Other government agencies play supporting roles and regulate narrower parts of clean

energy planning, program management, and implementation (IRENA, 2013).
16 See Table 2.1 A1 in appendix for regional breakdown and revisions.
17 Over-dispersion in Poisson models occurs when the conditional variance is greater than the conditional mean. Highly

unbalanced data as well as clustered or longitudinal (panel) format data give rise to over-dispersion (Hilbe, J. M.,

2011).
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and the over-dispersion of the data, we adopted a negative binomial regression approach

in this study. The distribution function for the negative binomial model can be derived

by including gamma heterogeneity, where the gamma noise variable has a mean of 1 in

the Poisson distribution18. The negative binomial probability mass function is expressed

as

Pr (Y = yi | µi, θ) =
Γ (yi + θ)

Γ (yi + 1) Γ(θ)

(
µi

µi + θ

)yi
(

θ

µi + θ

)θ

where µi = exp(x
′
iβ), which is the expected value of yi, and is estimated by a set

of regressor variables. θ is a scale parameter. If we let δ = 1/θ, δ is also interpreted

as a negative binomial heterogeneity or over-dispersion parameter.19. Γ(·) is a gamma

function.

In this paper, µit is thereby written as

µit = exp(β0 + β1CDMit + β2LOG R&Dit + β3LOG FDIit + β4FITit + λt + θi + εit),

where µit refers to the patent counts in the field of wind power generation from Chinese

entities in province i in year t. The key independent variable CDMit represents the

indicators of CDM wind projects. We used three indicators in different models: the annual

number, annual installed capacity, and average capacity size of successfully registered

CDM wind projects. Other independent variables include the logged total amount of

R&D expenditure, the logged inward FDI, and the wind power feed-in tariff rate. λt

denotes year fixed effects that control for unobserved variables that change over time and

are constant across provinces. Provinces’ fixed effects are captured by θi, which accounts

for unobserved time-invariant heterogeneity. εit is an error term. Table 2.2 provides a

summary of variable definitions and descriptive statistics for the panel dataset (see Table

2.3 for a correlation matrix in the appendix).

[Table 2.2]

18 The Poisson distribution is P(y = j) = e−λλj

j! where λ > 0, ∀j ∈ Z.
19 As δ→ ∞, the negative binomial distribution converges to the Poisson distribution.
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[Table 2.3]

In addition to the basic regression model covering the entire research period (2005-

2012), we also applied the two-period subdivision model. The entire research period is

divided into two periods: the early period and the later period. The early period is from

2005 to 2008, and the later period is from 2008 to 2012. The early and later periods are

quite different in terms of the development of wind CDM projects. The number of CDM

wind projects in the early and later period is 97 and 1392, respectively. Meanwhile, the

later period has a lower rate of technology transfer, and most of the wind CDM projects

in the later period tend to use domestic wind technology instead of importing foreign

equipment or technology. Moreover, in 2009, the Chinese government first introduced a

national FIT scheme for wind power generation, which applies for the entire operational

period (usually 20 years) of a wind farm. Considering these aspects, we assume that the

impact of wind CDM projects on wind patents is different between time periods.

2.5 Results

We use negative binomial regressions to estimate the impact of CDM wind projects on

wind patent counts in China. CDM wind projects are measured by annual number, annual

installed capacity or average capacity size. Estimation results are displayed in Table 2,

Table 3 and Table 4. The results suggest that the implementation of CDM wind projects

has promoted wind power-related technological development in the early period which is

from 2005 to 2008.

2.5.1 Summary of Findings

Table 2.4 presents regression results with annual number of CDM wind projects. In

the whole period model, the estimated coefficient of CDM is positive but not statistically

significant. The annual number of CDM wind projects has a statistically significant and

positive effect on wind patent grants in the early period. According to column 2 in Table

2.4, an additional CDM wind project is related to 9.4% increase in wind patents from

2005 to 2008. In contrast, the effect of annual number of CDM wind projects is positive

but not statistically significant in the later period. R&D expenditure shows a statistically

significant and positive effect on the number of wind patents. In column 1, the coefficient

13



of R&D indicates that 1% increase in R&D expenditure leads to 1.7% additional wind

patent counts from 2005 to 2012. In the later period, total R&D expenditure is highly and

positively correlated with wind patent applications at 1% significance level, implying that

1% increase in R&D expenditure leads to 2.1% increase in wind patents. The estimated

coefficients for FDI are not statistically significant in all models. In column 3, the estimated

coefficient of FIT price is negative at 10% significant level.

[Table 2.4]

Table 2.5 reports regression results with annual installed capacity of CDM wind projects.

The results are similar to Table 2.4 because areas with more wind CDM projects tend to

install larger amount of wind-power capacity. In the early period, annual installed capacity

has a statistically significant and positive effect on wind technology. According to column

2 in Table 2.5, 1 MW increase in total installed capacity of CDM wind projects is related

to 0.2%more wind patents.

[Table 2.5]

Table 2.6 shows regression results with average capacity of CDM wind projects. The

coefficients of average installed capacity of wind CDM projects are statistically significant

and positive in column. From column 2 in Table 2.6, the estimated coefficient of average

capacity indicates that 1 MW increase is related to 0.6% increase in wind patents. The

large average installed capacity of wind CDM projects can be attributed to the adoption

of large-size wind turbines. An approximate measure of technological progress in the wind

power sector is the average size of wind turbines being installed (Lewis, 2016). The average

installed size reflects the improvement of wind-turbine technological capabilities to some

degree, and thus is related to wind patent counts. The estimated coefficients of other

explanatory variables are consistent with those in Table 2.4 and Table 2.5.

[Table 2.6]

2.5.2 Discussion

The estimated results suggest that the impact of CDM wind projects is different be-

tween the early and later period models. CDM wind projects have a statistically significant

14



and positive effect on wind patent grants only in the early period. There are several rea-

sons for this. In the early period, the technological capacity of domestic wind turbine

manufacturers is relatively low, so most CDM wind projects tend to use wind turbines

of foreign brands and international expertise. About 28% of CDM wind projects in the

early period, while only 0.06% in the later period, explicitly claim that technology trans-

fer will be involved according to their PDDs. Moreover, to accelerate the localization of

wind power construction, the Chinese government issued a regulation 20 in 2005, which

required 70% of the equipment used during wind farm construction to be domestically

manufactured (Dai and Xue, 2014). Meeting this requirement facilitated the construction

of wind farm. Foreign wind turbine manufacturers have to build assembly lines for com-

plete turbines and component production facilities in China (Jin, Rong and Zhong, 2014).

Therefore, CDM wind projects in the early period may promote more technology transfer

from developed countries that affect wind technology development in China.

In the later period, total R&D expenditure contributes to wind patent applications.

Domestic wind power manufacturers have grown, and their share in the Chinese wind

market has gradually increased. Leading wind manufacturers conduct indigenous R&D

throughout the entire innovation process (Ru et al., 2012) and have sufficient innovation

capacity for new technologies, such as large wind turbines and low-speed turbines (Dai

and Xue, 2014). Accordingly, R&D expenditure has a positive effect on the increase in

wind patents. Although FDI is considered an important channel for technology transfer

from developed countries to China (Cheung and Lin, 2004; Hu and Jefferson, 2009), the

estimated coefficients of FDI are not statistically significant in our models.

FIT shows a statistically significant and negative effect on wind patents, which is

contradictory to the findings of other studies about the promotion effect of FIT schemes on

innovation in renewable energy technologies (Böhringer, Cuntz, Harhoff and Asane-Otoo,

2017; Lin and Chen, 2019). This may be caused by the endogeneity of FIT policy since the

ambition of the Chinese government to foster the wind manufacturing industry could both

affect the introduction of national FIT policy and innovation in wind technology. Another

possible reason is that the FIT rate for a certain province is time-invariant during our

research period, so the effect of FIT could be absorbed by province fixed effects. We

also used model selection criteria such as AIC (Akaike Information Criterion) and BIC

(Bayesian Information Criterion) to test the model with and without FIT variable and

20 The regulation terminated in 2009.
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the results are presented in Table 2.7. The AIC and BIC statistics suggest that there is

no obvious difference between the models with and without FIT.

[Table 2.7]

2.6 Conclusion

In this chapter, we applied the negative binomial regression approach to estimate the

effects of wind CDM projects on the development of China’s domestic wind power technol-

ogy. The estimation results suggest that the implementation of CDM could promote the

technological innovation activities of wind energy in China. Because CDM makes more

sophisticated foreign wind technology available in the domestic market, imitative inno-

vations become easier and more efficient. Simultaneously, CDM works as a demand-pull

policy providing financial support through international carbon trade and creating huge

demand for wind technology in China (Tang and Popp, 2016).

The promotion effect of CDM wind projects measured by annual number, installed

capacity, and average capacity size was found to be statistically significant in the early

period from 2005 to 2008. In contrast, R&D expenditure promotes technological devel-

opment in the later period from 2009 to 2012. One possible reason is that technology

transfer had occurred before the implementation of the proposed CDM projects, and the

CDM project only extended the scale of technology transfer (Teng and Zhang, 2010), thus

positively affecting technology imitation and innovation in wind technology. Eventually,

the solid development of wind technology in China depends on its involvement in R&D

and indigenous innovation activities.

This chapter has several limitations. First, wind turbine manufacturers may set up

their R&D and technical departments and manufacturing plants in different provinces or

conduct joint research with universities from neighboring provinces, while the locations of

manufacturing plants are registered as applicants’ addresses of these patent applications.

However, this chapter has not distinguished these types of patents. Second, this chapter is

limited to the number of patent applications and does not emphasize on the quality of these

patent applications. Moreover, the development of technology is a rather comprehensive

concept that includes not only the improvement in the efficiency of equipment, but also

the acquisition of undocumented knowledge. Therefore, the results of this patent-based

analysis should be interpreted with caution.
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Table 2.1. Regional breakdown of wind power FIT

Region Areas Included in Region
Benchmark tariff (yuan/kWh)

2009-2014 2015 2016 2017 2018

1st Inner Mongolia Autonomous Re-

gion excludes Cifeng, Tongliao,

Xing’anmeng, Hulunbei’er; Urumqi,

Yili Autonomous Region, Changji

Autonomous Region, Karamay, Shihezi

in Xinjiang Province

0.51 0.49 0.47 0.47 0.44

2nd Zhangjiakou, Chengde in Heibei

Province; Cifeng, Tongliao,

Xing’anmeng, Hulunbei’er in In-

ner Monglolia Autonomous Region;

Zhangye, Jiayuguan, Jiuquan in Gansu

Province

0.54 0.52 0.5 0.5 0.47

3rd Baicheng, Songyuan in Jilin Province;

Jixi, Shuangyashan, Qitaihe, Sui-

hua, Yichun, Daxing’anling in Hei-

longjiang Province; Gansu Province ex-

cludes Zhangye, Jiayuguang, Jiuquan;

Xinjiang Province Excludes Urumqi,

Yili Autonomous Region, Changji Au-

tonomous Region, Karamay, Shihezi;

Ningxia Autonomous Region

0.58 0.56 0.54 0.54 0.51

4th All remaining regions 0.61 0.61 0.6 0.6 0.58
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Table 2.3. Correlation analysis of variables

Wind Patent CDM CDMMW Avg.CDMMW LOG R&D LOG FDI

Wind Patent 1

CDM 0.1 1

CDMMW 0.1 0.98 1

Avg.CDMMW 0.27 0.39 0.44 1

LOG R&D 0.58 0.1 0.08 0.20 1

LOG FDI 0.47 0.07 0.04 0.16* 0.81 1

Table 2.4. Regression results with annual number of CDM wind projects

Whole period (2005-2012) Early period (2005-2008) Later period (2009-2012)

WindPatent (1) (2) (3)

CDM 0.003 0.094* 0.001

(0.003) (0.056) (0.002)

LOG R&D 1.740*** -0.286 2.118***

(0.604) (1.242) (0.722)

LOG FDI 0.312 -0.310 -0.256

(0.355) (0.754) (0.595)

FIT 7.642 -66.509*

(5.068) (36.679)

Constant -12.781** 5.245 31.723*

(6.033) (7.165) (17.291)

Year fixed effects Yes Yes Yes

Province fixed effects Yes Yes Yes

Observations 240 120 120

Log-likelihood -620.498 -200.679 -377.454

Robust standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.5. Regression results with installed capacity of CDM wind projects

Whole period (2005-2012) Early period (2005-2008) Later period (2009-2012)

WindPatent (1) (2) (3)

CDM MW 0.000 0.002** 0.000

(0.000) (0.001) (0.000)

LOG R&D 1.732*** -0.055 2.108***

(0.604) (1.197) (0.710)

LOG FDI 0.312 -0.377 -0.245

(0.355) (0.747) (0.591)

FIT 8.039 -66.266*

(5.311) (36.111)

Constant -12.965** 4.131 31.619*

(6.132) (6.985) (17.035)

Year fixed effects Yes Yes Yes

Province fixed effects Yes Yes Yes

Observations 240 120 120

Log-likelihood -620.533 -200.490 -377.474

Robust standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.6. Regression results with average capacity of CDM wind projects

Whole period (2005-2012) Early period (2005-2008) Later period (2009-2012)

WindPatent (1) (2) (3)

Avg.CDMMW 0.002 0.006** 0.003

(0.001) (0.002) (0.002)

LOG R&D 1.735*** 0.629 1.992***

(0.627) (1.121) (0.647)

LOG FDI 0.312 -0.322 -0.342

(0.353) (0.751) (0.608)

FIT 5.891 -57.709*

(4.553) (33.514)

Constant -11.682** -0.062 27.369*

(5.884) (6.613) (15.900)

Year fixed effects Yes Yes Yes

Province fixed effects Yes Yes Yes

Observations 240 120 120

Log-likelihood -620.505 -200.312 -376.342

Robust standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.7. Regression results with or without FIT

Later period (2009-2012)

WindPatent (1) (2) (3) (4) (5) (6)

CDM 0.001 0.001

(0.002) (0.002)

CDM MW 0.000 0.000

(0.000) (0.000)

Avg.CDMMW 0.003 0.003

(0.002) (0.002)

LOG R&D 2.118*** 2.118*** 2.108*** 2.108*** 1.992*** 1.992***

(0.722) (0.722) (0.710) (0.710) (0.647) (0.647)

LOG FDI -0.256 -0.256 -0.245 -0.245 -0.342 -0.342

(0.595) (0.595) (0.591) (0.591) (0.608) (0.608)

FIT -66.509* -66.266* -57.709*

(36.679) (36.111) (33.514)

Constant -8.848* 31.723* -8.803* 31.619* -7.834* 27.369*

(5.196) (17.291) (5.115) (17.035) (4.667) (15.900)

Year fixed effects Yes Yes Yes Yes Yes Yes

Province fixed effects Yes Yes Yes Yes Yes Yes

Observations 120 120 120 120 120 120

Log-likelihood -377.454 -377.454 -377.474 -377.474 -376.342 -376.342

AIC 828.909 828.909 828.949 828.949 826.684 826.684

BIC 932.046 932.046 932.086 932.086 929.821 929.821

Robust standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Fig. 2.1. Size of wind turbines developed by Chinese manufacturers

Source: Lewis (2016) and IGES CDM Project Database
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Source: Edited by author based on PDDs of CDM wind projects

28



Chapter 3

Examining the Impact of the Feed-in Tariff Amend-

ment in Japan on the Relationship between Ap-

proved and Operating Capacity

3.1 Introduction

With the growing interest in sustainable development and climate change mitigation,

renewable energy has been expanding dramatically in the past three decades globally.

Renewable energy is highly required in Japan for its importance in reducing GHG emissions

and attaining energy self-sufficiency after the Fukushima Daiichi accident in 2011. The

Japanese government unveiled the Basic Energy Plan in July 2018, which emphasizes the

need for renewable energy as a main power source (METI, 2018b). However, as of 2016,

the share of renewable energy in electric power generation in Japan was 14.6% (7.1% if

hydroelectric power is excluded) (?), which seems low compared to that in major developed

countries. Japan launched the feed-in tariff (FIT) scheme as a main policy measure to

promote the deployment of renewable energy. FIT has helped increase renewable power

generation particularly in solar cells, but it encountered several challenges, the biggest

of which is the large discrepancy between the approved capacity and operating capacity

of solar power projects. The amendments on FIT were made in 2017 to address these

challenges.

The objective of this chapter is to empirically investigate the impact of amended FIT

policies on the operation of solar power. We estimate the relationship between operating

capacity and approved capacity before and after the amendment by using municipality-

level data of solar power capacity from 2014 to 2019. To investigate the heterogeneous

effect on solar projects among different scales, we distinguish the projects according to
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their capacity to explore if the policy impact differs according to project size. In addition,

the chapter examines the characteristics of municipalities, which help locate non-operating

solar projects.

This chapter contributes to the literature concerning the evaluation of policy instru-

ments that support renewable energy. Jenner et al. (2013) assess the effectiveness of FIT

policies in promoting renewable energy in 26 European Union countries from 1992 to 2008.

They create an indicator for policy strength that represents return on investment provided

by FIT and find that for a 10% increase in return on investment, countries will install 3.8%

more solar capacity and 2.8% more onshore wind capacity. Polzin et al. (2015) investi-

gate the influence of different measures on subsequent investments into renewable energy

capacity by institutional investors in OECD countries from 2003 to 2011. They find that

FIT is more effective than subsidies for less mature technologies such as solar. Renewable

portfolio standards and emission trading systems seem more effective for mature tech-

nologies such as wind. Böhringer et al. (2017) examines the impact of the German FIT

on innovation of renewable energy technologies from 1990 to 2014. The results imply a

positive effect of FIT on inducing innovation. However, the inducement effect of prior

FIT with moderate subsidy rates is not significantly different from that of later FITs with

much higher prices. Muhammad-Sukki et al. (2014) investigate the impact of Japanese

FIT schemes on residential and non-residential solar power using financial analysis. They

indicate that FIT rates generate a good profit, a moderate annual return on investment,

and an acceptable payback period, suggesting that this would potentially attract more

interest in installing solar photovoltaic (PV) systems.

This chapter is also related to previous studies that examine the factors affecting the

growth of solar PV capacity. Zhang et al. (2011) use prefecture-level data from 1996 to 2006

to analyze the factors affecting diffusion of residential solar PV systems in Japan. They find

that the regional government’s policies help promote PV system adoption. Installation

costs have a significant negative effect, whereas housing investment and environmental

awareness have positive impacts. Tanaka et al. (2017) examine the factors determining

purchasing decision time for residential solar PV using survey data in 2012 in Japan.

The results show that FIT accelerates the decision-making process while subsidy schemes

do not contribute to reducing the decision-making time, leading up to the purchase of a

PV system. FIT offers long-term benefits to PV system users by allowing them to sell

surplus electricity back to the grid, contrary to subsidies that provide financial assistance
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only initially at the time of investment. Conversely, information obtained from other

users lengthens the decision-making process regarding the purchase of a PV system, since

consumers who sought information or who communicated with existing users were more

cautious in their purchasing decisions. Using county-level data from 2005 to 2013 in the

Northeastern United States, Crago and Chernyakhovskiy (2017) investigated the impact

of policy incentives on commercial solar power capacity. They find that rebates, sales

exemptions, and renewable portfolio standards have statistically significant and positive

effects. The factors that directly affect financial viability and returns on investment, such

as solar insolation and installation cost, have the most impact on capacity growth in the

commercial solar PV market.

The chapter differs from the existing literature in two aspects. First, we focus on the

non-operating capacity of solar power projects that obtained approval of FIT eligibility but

have not yet started operation. This chapter empirically examines whether the amended

FIT policy alleviates the problem of non-operating solar projects. Few studies have men-

tioned the discrepancy between the actual operating capacity and FIT approved capacity.

For instance, Kuramochi (2015) reviews policy measures on energy and climate change im-

plemented in Japan and points out a large discrepancy between actual installed capacity

and the approved installation capacity, particularly for non-household facilities. However,

no quantitative analysis was conducted in this policy review. To the best of our knowl-

edge, this chapter is the first to investigate the problem of non-operating solar projects by

examining the effect of FIT amendments on improving the relationship between operating

capacity and approved capacity. Second, instead of only focusing on drivers of growth

in solar PV installed capacity Zhang et al. (2011); Crago and Chernyakhovskiy (2017);

Crago and Koegler (2018), we examine municipal characteristics affecting the location of

non-operating facilities and explore the differences in the characteristics of non-operating

capacity before and after the amended FIT.

The results of our panel data analysis show that the amended FIT policy has improved

the relationship between operation and approved capacity of solar power. The impacts are

heterogeneous across the size of solar power projects: the effects are more substantial in

large- and mega-scale solar power than in small ones. In addition, the findings from cross-

sectional analysis indicate that, in general, municipalities with steeper slopes have more

non-operating solar capacity. The results of the Chow test suggest that characteristics of

municipalities that locate operating and non-operating solar projects become similar after
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the amendments on FIT.

The remainder of this chapter is organized as follows. Section 3.2 provides an overview

of Japan’s FIT policy and the problem of non-operating solar projects. Section 3.3 intro-

duces the main revisions on existing FIT rules under the amended FIT scheme. Section

3.4 presents the regression model and describes the dataset used in the analysis while

Section 3.5 discusses the empirical results. Finally, Section 3.6 draws conclusions.

3.2 Feed-in Tariff Policy in Japan

To promote the penetration of renewable energy in the energy mix21, Japan launched

a national FIT scheme based on the Act on Special Measure Concerning Procurement of

Electricity from Renewable Energy Sources by Electricity Utilities in July 2012. Under

FIT, renewable energy producers—solar PV, wind power, small hydro, geothermal, and

biomass—are required to submit documents to obtain FIT approval22 from the Japanese

government. Electric utilities23 are obliged to purchase electricity generated from renew-

able energy sources at a fixed price (tariff) for a specific period. Electricity generated from

renewable energy sources shall be transmitted to the power transmission grid of the elec-

tric utility and distributed to end-users. All electricity customers then pay a surcharge for

renewable energy proportional to their usage to cover the expense of purchasing renewable

power (METI, 2012).

Table 3.1 presents the purchase price under FIT from 2012 to 2016. A source-specific

and size-specific but nationwide uniform purchased price scheme is adopted by the Japanese

government. A unified FIT scheme would reduce unfavorable renewable capacity alloca-

tions, foster market competition, and reduce electricity costs, but would not be beneficial

for some high-cost renewables. In contrast, setting differentiable purchase prices would

encourage investment by ensuring profit margins, but it also could risk increasing the

economic burden on electricity consumers (Li et al., 2019). Therefore, the Ministry of

Economy, Trade and Industry (METI) sets the purchase price differentiated by the cate-

gory of renewable energy sources and the size of the power generation facilities. The FIT

21 Japan implemented a renewable portfolio standard program from 2003 to 2011, but its impact on renewable power

development was small.
22 It is the FIT application of an existing (or proposed) renewable energy power facility confirmed and recognized by

the Ministry of Economy, Trade and Industry.
23 Ten regional electric utility companies are Hokkaido, Tohoko, Tokyo, Hokuriku, Chubu, Kansai, Chugoku, Shikoku,

Kyushu, and Okinawa.
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payments are also adjusted for new projects to address changes in electricity supply and

generation cost over time. The purchase prices for electricity generated by solar power

have continued to fall year by year while those for other technology types were relatively

stable.

[Table 3.1]

Since the FIT scheme guarantees a fixed price (tariff) for a designated period, which

enhances certainty and stability for FIT-eligible renewable electricity producers, the ap-

proved capacity of renewable energy has been growing rapidly (Ito, 2015). By the end

of December 2016, the approved capacity of new facilities was 88,773 MW. However,

only 33,659 MW was the operating capacity, which indicates that more than 62% of

solar projects were not in operation regardless of the FIT approval. This problem of

“non-operation” was even more serious in non-residential solar power (≥10 kW) projects

because most of the non-operating capacity fall under this category.

The purchase price applied to a renewable power facility is the FIT’s tariff at the time

when the METI approved the facility, and so earlier approval means higher tariff and

thus more revenue from selling electricity. For instance, by receiving the FIT approval

in 2012, the electricity producer of non-residential solar power can sell the electricity at

43.2 Japanese yen per kWh, which is 35% higher than the purchase price for solar power

approved in 2014. Meanwhile, the price of a typical 10-kW solar PV system decreased

from 430,000 in 2012 to 346,000 JPY/kW in 2014 (METI, 2018a), which indicates that

the later installation of solar PV can enjoy a lower equipment cost. Moreover, there was

no explicit regulation on the deadline for approved projects to connect to the electricity

grid and start their operation. Thus, solar power developers got an incentive to obtain

FIT approval as early as possible and delay the operation to maximize profits. In 2014,

METI investigated the status of installations of non-residential facilities approved during

2012. It was found that a total 3 GW capacity of the approved facilities had either not

secured land or ordered the purchase of a solar PV system or did not respond to the

inquiry (Kuramochi, 2015).

Many FIT approved projects should have finished their installation and started gen-

erating electricity but have not yet started operation. The existence of non-operating

projects means that a substantial amount of potential electricity from renewable resources

is not available despite the rapid expansion of approved capacity, thus suggesting that the
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original FIT scheme is not effective in promoting the penetration of renewable electricity.

Furthermore, even if these non-operating projects might start to operate and generate

electricity long after they obtain FIT approval, they have the privilege24 to sell their elec-

tricity with higher FIT prices. The higher purchase price would then be transferred to

future consumers on their electricity bill.

3.3 Amended FIT Policy in Japan

To address the problem of non-operations, the Japanese government has promulgated

the amendment to the FIT Act on June 2, 2016. These amendments came into force on

April 1, 2017 and made three main revisions to the existing rules. First, grid connection

contracts with relevant utility companies are required for project developers of renewable

energy. Renewable power producers must conclude grid connection agreements before the

approval of FIT. With regard to existing FIT-approved projects, a deadline for connection

agreements is set to ensure the continued validity of the applicable purchase price and

purchase period after April 2017. Projects approved on or prior to June 30, 2016 are

required to make a grid connection agreement by March 31, 2017, while projects approved

between July 1, 2016 and March 31, 2017 are required to do so within 9 months of the

approval (?) The projects lose eligibility of FIT if they fail to complete the grid connection

agreements by the due date.

Second, METI has replaced a facility certification system with a business-plan-based

certification system for FIT applications. Renewable energy developers must submit a

detailed business plan, including the commencement date for operation and the description

of the interconnection arrangement to maintain a valid FIT approval. Third, a bidding

system for FIT approval is introduced to reduce the applicable purchase price to promote

competition among developers. A reverse auction system is introduced for the FIT price

of large-scale solar projects. The bidding process is managed by a nonprofit organization

designated by the METI. In summary, the amended FIT policy tightens the requirements

for the process of FIT approval and introduces competition to determine FIT prices.

Figure 3.1 shows the total approved capacity and operating capacity of solar power

during 2012-2019. According to METI (2017), 456,000 approved projects with total capac-

24 Once the proposed renewable energy projects obtain FIT approval, they can fix the purchase price, no matter how

low the current FIT prices are in the year when they start to operate.
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ity of 27.66 GW were expected to lose their validity of FIT approval after the amendment.

There is a sharp decline in the cumulative capacity of approved projects from 2016 to

2017. The original FIT policy requires only information on facility location and the PV

system specifications for approval. Conversely, the amended FIT introduced stricter re-

quirement on the start of operation, such as grid connection agreements and information

on the commencement date in 2017, thus increasing the operating capacity. The gap be-

tween operating capacity and approved capacity decreased after 2017, indicating that the

amended FIT policy enhanced the relationship between the capacities and mitigated the

problem of non-operating projects.

[Figure 3.1]

3.4 Empirical Strategy and Data

3.4.1 Model Specification

Our empirical analysis investigates the impact of amended FIT policies on the opera-

tion of new solar power facilities25 approved by FIT. We estimate the impact by examining

the relationship between operating capacity and approved capacity before and after the

amendment. We hypothesize that the linear relationship between operating and FIT ap-

proved capacity becomes different after the amendment of FIT. Figure 3.2 illustrates this

hypothesis. FIT policies promote the deployment of renewable energy sources such as

solar energy.

[Figure 3.2]

The abovementioned relationship reflected by the 45 degree dashed-line implies that

the operating capacity equals the approved capacity. However, in reality, because neither

deadline for starting operation nor grid connection agreements were required when ap-

proving new facilities under the initial FIT policy, the operating capacity is much lower

than the approved capacity. This is shown by the flatter line in the figure. The amended

FIT affects this relationship by imposing stricter requirements. Thus, the slope is steeper

than before. The change in slope reflects the impact of the FIT amendment.

25 In this context, new solar power facilities refer to facilities deployed after the implementation of the FIT policy.
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A linear fixed effects regression is adopted to estimate the effect of the amended FIT.

The general specification can be written as follows:

Yit = β1 Ait + β2 Ait × Post + β3Eit + λt + θi + εit

where Yit indicates the installed capacity of operating solar facilities with FIT approval in

municipality i by the end of year t. Ait is the FIT approved capacity of new solar power

facilities in municipality i by the end of year t, which has not necessarily started operation.

Ait× Post is an interaction term that denotes the approved capacity after the enforcement

of the amended FIT. Time-varying and municipality-varying economic conditions are cap-

tured by E. λt is the vector of the year dummy capturing year fixed effects. It controls for

unobserved factors that change over time and that are constant across municipalities. θi

denotes the municipality fixed effects estimator, which accounts for time-invariant munic-

ipality characteristics. εit is the error term. The operating capacity in this chapter only

refers to the capacity of active solar power facilities approved by FIT. In other words, it

should not be larger than the approved PV capacity. Thus, constant term is removed in

the ordinary least squares (OLS) model.

In addition, the cross-sectional model is used to explore the determinants of the non-

operating capacity of solar power across municipalities. This model focuses on municipality

heterogeneity by including municipality-specific variables in regressions. We run cross-

sectional regression in 2014 and 2019, respectively, to investigate the change over time.

Regression using operating capacity as the dependent variable is also performed as a

benchmark. The specifications of our estimation model are as follows:

Yi = α + β1Mi + β2Ei + β3Pi + β4Di + β5Li + εi,

where Yi denotes the operating or non-operating capacity of solar power facilities that have

received FIT approval in a municipality i by year 2014 or 2019. Mi is a meteorological

factor. Solar radiation is used to indicate the abundance of solar resources in a municipality

i. Ei is an economic condition. Pi is a geographic factor. The slope of the land is the

gradient or incline of the land surface. Hilly areas with steep slopes tend to suffer from

more natural disasters, such as landslides, than flat areas. It is also connected to the

higher construction costs and risks of a project. Electricity grid access is denoted by Di.

Li is an area indicator of land availability for developing solar power projects. εi is the
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disturbance term.

Because the amendment might have heterogeneous solar power with different sizes, we

decompose solar facilities according to capacity. An upper bound of 10 kW capacity is

used for residential solar PV facilities. For large-scale commercial solar power, we use a

lower bound of 10 kW capacity and an upper bound of 2 MW capacity. Projects larger

than or equal to 2 MW capacity are sorted into the category of mega commercial solar.

3.4.2 Data

We construct a panel dataset of 1,741 municipalities from 2014 to 2019. A sub-dataset

for 2014 and 2019 is also used in our cross-sectional analysis. Table 3.2 and Table 3.3

present the descriptions and summary statistics of the variables used in the empirical

analysis.

[Table 3.2]

[Table 3.3]

Data on solar power capacity have been aggregated at the municipality level. The data

were obtained from the website of the Agency for Natural Resources and Energy (ANRE)

of Japan26. It collects capacity information from the application documents submitted by

renewable energy project developers for FIT approval. As shown in Table 3.3, the average

FIT approved capacity is 42.8 MW, while the average operating capacity is approximately

19.3 MW. This indicates that, on average, at the municipality-level, only 45% of the solar

power capacity approved by FIT is in operation. Figure 3.3 depict scatter plots between

the operating and approved capacity of large-scale solar power. This graphically suggests

that the correlation between operating and approved capacity improved after 2017 in

support of our hypothesis on the effect of the amended FIT.

[Figure 3.3]

Data on new housing construction are used as a proxy of economic conditions. They

are collected from the Survey on Construction Statistics of the Ministry of Land, Infras-

tructure, Transport and Tourism (MLIT). Data on the area of arable land and abandoned

26 The website for information disclosure of FIT in Japanese. Available at https://www.fit-portal.go.jp/

PublicInfoSummary.
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farmland are from the Statistical Survey on Crops of the Ministry of Agriculture, Forestry

and Fisheries (MAFF).

Data on solar insolation are from the New Energy and Industrial Technology Develop-

ment Organization (NEDO). Insolation is a measure of solar radiation energy received on

a given surface area at a given time. It is expressed as average irradiance in kilowatt-hours

per square meter per day (kWh/m2/day).

Electricity grid access is related to the construction cost of the grid connection. Thus,

it may affect the operation of solar power plants. The distance from the municipal office

to the nearest electricity grid is used as an index of access to the electricity grid. It was

measured using Geographic Information System (GIS) software.

3.5 Results and Discussion

3.5.1 Regression Results of Panel Data

We estimate the effects of amended FIT on the relationship between operation and

approved capacity of solar power using a fixed-effect linear model. We put solar power

into three categories : residential solar (< 10kW), large commercial solar (≥ 10kWand <

2MW), mega solar(≥ 2MW) to run the regressions accordingly. The OLS model with

time fixed effects was used as a baseline regression.

Table 3.4 presents regression results on solar power regarding the effect of amended

FIT. The OLS model with year fixed effects and fixed effects estimator approach are

adopted. The interaction term between approved capacity and post captures the effect

of the amended FIT on the relationship between operating and approved capacity. In

all the model specifications, coefficients for interaction term are statistically significant

and positive. The results suggest that the amendment of FIT increased the operation

of solar power projects. The estimated coefficient in column 1 indicates that, after the

amended FIT, 1 kW added approved capacity related to an additional 0.265 kW increase

of operating solar PV capacity. When controlling for the municipality fixed effects in

column 2, the estimated coefficient of interaction term decreases by 0.053.

[Table 3.4]

The results from columns 3 to 8 show the heterogeneous effects across different scales of
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solar power. The most substantial impact is found in large-scale solar radiation. In column

3, before the amendment, 1 kW of approved capacity was related to a 0.320 kW operating

capacity. After the amendment, it is associated with a 0.68 kW operating capacity. The

estimated coefficients decrease slightly when including the municipality fixed effects shown

in column 4. In contrast, the change after the amendment is marginal for small-scale

solar. As shown in column 4, the correlation between approved and operation capacity

is 0.85, even before the amendment. The amendment added 0.104, a 10% increase in the

relationship. The results in column 7 show that the amended FIT has a positive impact on

mega solar power. The amendment of FIT affects the relationship between operation and

approved capacity by an additional 0.129 kW with regard to 1 kW approval. These results

suggest that the amendment was effective for commercial facilities rather than residential

facilities.

3.5.2 Regression Results of Cross Section Data

We apply cross-sectional regressions to investigate municipality characteristics that

locate non-operating projects. All variables are transformed into natural logarithms in

cross-sectional regressions.

The estimation results using cross-sectional data in 2014 are shown in Table 3.5. We

focus on large- and mega-scale solar projects since about 56% of the non-operating capacity

comes from large-scale solar projects. Solar insolation has statistically significant and

positive effects on operating and non-operating capacity, but the coefficient is higher in the

former regression model. According to column 6, for every 1% increase in solar insolation,

the non-operating capacity of large-scale projects is increased by 11%. This indicates that

solar power project developers tend to choose municipalities with rich solar resources as

their plants’ locations to obtain FIT approval. The estimated coefficients of electricity grid

access on non-operating capacity are negative and statistically significant. The response

of the non-operating capacity to a 1% increase in distance to the grid is less sensitive than

operating capacity. The coefficient for slope is negative in the operating capacity model

and positive in the non-operating capacity model. Because a steep land surface may

lead to higher construction and maintenance costs, the results indicate that non-operating

projects are in municipalities with higher construction costs.

[Table 3.5]

39



Table 3.6 presents regression results of cross section data in 2019. We found similar

impacts of solar insolation, electricity grid access and slope, but the differences between

operating and non-operating capacity become smaller compared to Table 3.5. Because the

amended FIT reduced unreasonable non-operating projects, we can expect operating and

non-operating projects to be located in similar municipalities after 2017.

[Table 3.6]

To test the statistical difference of coefficients between operating and non-operating

capacity, we apply the Chow test to the regression results of analysis in 2014 and 2019,

respectively. The Chow test was used to examine the equality of regression coefficients

between different samples. The null hypothesis is that the coefficients of the variables in

one model are equal to those in another model (Chow, 1960). Tables 3.7 and 3.8 present

the results of the Chow test. Generally, in 2019, the difference in coefficients between the

operating and non-operating capacity models are less statistically significant than those in

2014. This implies that non-operating and operating projects are both located in similar

municipalities in 2019. Specifically, the effects of solar insolation on the non-operating and

operating capacity of large-scale solar were not statistically different in 2019. The richness

of solar resources is associated with electricity generation, so richer solar insolation would

not lead to a difference in the status of large solar power, which is either in operation or

non-operating. One possible explanation is that large solar power projects that delayed

operation were not because of poor solar resources. The locations of the non-operating

solar were suitable for developing solar energy projects if only considering the conditions

of solar resources.

[Table 3.7]

[Table 3.8]

3.6 Conclusion

This chapter has examined the impact of amended FIT policies on the relationship

between operating capacity and approved capacity of solar power by using municipality-

level panel data from 2014 to 2019. Our empirical results suggest that amendments to

the FIT scheme improved the relationship and thus mitigated the discrepancy between
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approved capacity and operating capacity. The impacts are heterogeneous across different

sizes of solar power projects. The effects of the amended FIT are more substantial in solar

power with large and mega scales than small ones. Moreover, we apply cross-sectional

analyses to identify municipal characteristics related to non-operating capacity in 2014

and 2019. Regression results indicate that, in general, municipalities with steeper land

have more non-operating solar capacity. Using a chow test, we confirmed the statistically

significant differences in rationality between operating and non-operating capacities. The

results imply that in general, non-operating solar projects have similar rationality to op-

erating capacities of solar power in 2019 concerning municipality-specific factors such as

solar insolation.

Our findings have several policy implications. First, the rules of renewable energy

policy, such as the Japanese FIT scheme, may offer a policy loophole for solar power

generation companies to undermine the effectiveness of the program. Second, this chapter

sheds light on how the revisions of existing policies based on actual market situations could

support renewable energy more effectively. The obtained results suggest the importance

of a well-designed FIT scheme in supporting the sustainable development of renewable

energy. In this regard, our finding is consistent with Xia et al. (2020), which explores

wind-power curtailment issues under the Chinese FIT policy.

This chapter also has some limitations. The capacity data of solar power used in this

chapter could only identify facilities in the status of non-operation. However, it could

not distinguish how much non-operating capacity was due to intentional delay of solar

PV installation, and how many facilities have not yet started operation, albeit within a

reasonable period. In practice, for instance, it takes an average of 1∼1.5 years for solar

power from FIT approval to start with the operation (Li et al., 2019). Therefore, this

chapter does not capture exactly how much the amended FIT contributed to reducing the

intentional delay of solar PV installation. In addition, in the cross-sectional analysis, poor

electricity grid access is measured by the distance from the municipal office to the nearest

electricity grid. If detailed data such as voltage information27 on grid are available, the

distance can represent the electricity grid access more accurately.

27 The voltage information on the grid can distinguish whether the grid line is, for instance, low voltage (≤ AC600V
or ≤ DC750V) or high voltage (> AC600V and ≤ DC70, 000V or > DC750V and ≤ DC70, 000V) and help identify

the availability of grid connections for solar size.
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Table 3.1. Purchase price under Japan’s FIT scheme (JPY/kWh), 2012 - 2016

Energy source Category 2012 2013 2014 2015 2016 Duration (year)

Solar PV <10 kW 42 38 37 35 33 10

≥ 10 kW 43.2 37.8 32 27 24 20

Wind <20 kW 59.4 57.75 55 55 55 20

≥ 20 kW 23.76 23.1 22 22 22 20

Geothermal <15,000 kW 43.2 42 40 40 40 15

≥ 15,000 kW 28.08 27.3 26 26 26 15

Hydro <200 kW 36.72 35.7 34 34 34 20

200 kW∼1000 kw 31.32 30.45 29 29 29 20

1000 kW∼3000 kW 25.92 25.2 24 24 24 20

Biomass Manure biogas 42.12 40.95 39 39 39 20

Forest residues 34.56 33.6 32 32 32 20

Primary mill residues 25.92 25.2 24 24 24 20

General waste 18.36 17.85 17 17 17 20

Recycled wood 14.04 13.65 13 13 13 20

Source: METI (2012-2016), Dong and Shimada (2017)

Note: Duration means the period for purchasing electricity generated by each power source
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Table 3.2. Description of variables

Variable Unit Description

Operating Capacity kW Total installed capacity of new solar power facilities

approved by FIT that have been in operation

Non-operating Capacity kW Capacity of solar power facilities approved by FIT

but have not started operation

Approved Capacity kW FIT Approved capacity of new solar power facilities

House house Number of new construction starts of dwellings

Solar Insolation kWh/m2/day Solar radiation energy received

Arable Land hectare Area of arable land

Electricity Grid Access km Distance from the municipal office to the nearest

electricity grid

Slope degree Steepness of the land surface
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Table 3.3. Summary statistics

Variable Obs Mean Std. Dev. Min Max

Operating Capacity

Solar 10,446 19,313 31,879 0 497,904

Small Solar 10,446 2,768 5,441 0 86,436

Large Solar 10,446 13,955 22,701 0 372,875

Mega Solar 10,446 2,591 10,656 0 185,980

Non-operating Capacity

Solar 1,741 13,961 32,326 0 440,561

Small Solar 1,741 156 323 0 4,272

Large Solar 1,741 5,917 10,705 0 90,864

Mega Solar 1,741 32,981 53,763 0 504,376

Approved Capacity

Solar 10,446 42,810 72,912 0 905,690

Small Solar 10,446 3,044 5,895 0 90,207

Large Solar 10,446 25,409 40,707 0 457,453

Mega Solar 10,446 14,358 43,784 0 676,420

House 10,446 430 1,590 0 38,199

Solar Insolation 1,741 3.5 0.2 3 4.5

Arable Land 1,741 2,526 3,679 0 63,300

Electricity Grid Access 1,741 1.406 2.904 0 49.393

Slope 1,741 0.359 0.2 0 0.773

Note: Solar represents all solar PV facilities.

Small solar means < 10kW solar power. Large solar means 10kW ∼ 2MW. Mega solar means ≥ 2MW.
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Table 3.4. Main results of panel data regression

Solar Small Solar Large Solar Mega Solar

(1) (2) (3) (4) (5) (6) (7) (8)

OLS FE OLS FE OLS FE OLS FE

Approved Capacity 0.186∗∗∗ 0.035 0.850∗∗∗ 0.887∗∗∗ 0.320∗∗∗ 0.148∗∗∗ 0.039∗∗∗ -0.038∗∗∗

(0.019) (0.028) (0.004) (0.006) (0.018) (0.032) (0.010) (0.012)

Approved Capacity × Post 0.265∗∗∗ 0.212∗∗∗ 0.104∗∗∗ 0.092∗∗∗ 0.360∗∗∗ 0.298∗∗∗ 0.129∗∗∗ 0.111∗∗∗

(0.018) (0.017) (0.003) (0.003) (0.011) (0.013) (0.023) (0.022)

House 3.300∗∗∗ -1.239∗∗∗ -0.001 -0.022∗∗∗ 0.972∗∗∗ -0.329∗∗ 0.313∗∗ -0.225∗

(0.584) (0.345) (0.006) (0.006) (0.220) (0.162) (0.145) (0.134)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 10446 10446 10446 10446 10446 10446 10446 10446

Adjusted R2 0.770 0.614 0.999 0.998 0.920 0.769 0.286 0.216

Note: Constant terms are excluded in OLS regressions.

Robust standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.5. Regression results of cross section data in 2014

Solar Small Solar Large Solar Mega Solar

(1) (2) (3) (4) (5) (6) (7) (8)

Operating Non-Operating Operating Non-Operating Operating Non-Operating Operating Non-Operating

Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity

Solar Insolation 11.546∗∗∗ 10.278∗∗∗ 7.919∗∗∗ 8.597∗∗∗ 14.192∗∗∗ 11.673∗∗∗ 2.310∗∗∗ 10.885∗∗∗

(0.952) (1.047) (0.751) (0.646) (1.058) (1.023) (0.574) (1.046)

House 0.367∗∗∗ 0.315∗∗∗ 0.399∗∗∗ 0.384∗∗∗ 0.361∗∗∗ 0.311∗∗∗ 0.115∗∗∗ 0.314∗∗∗

(0.012) (0.016) (0.010) (0.010) (0.014) (0.015) (0.018) (0.016)

Arable Land -0.017 0.033 -0.038∗∗ -0.014 -0.010 0.022 0.032 0.036

(0.023) (0.032) (0.016) (0.017) (0.029) (0.032) (0.024) (0.033)

Electricity Grid Access -0.271∗∗∗ -0.164∗∗∗ -0.221∗∗∗ -0.170∗∗∗ -0.275∗∗∗ -0.163∗∗∗ -0.020 -0.198∗∗∗

(0.047) (0.064) (0.037) (0.034) (0.052) (0.061) (0.043) (0.061)

Slope -0.151∗∗∗ 0.201∗∗∗ -0.213∗∗∗ -0.190∗∗∗ -0.142∗∗∗ 0.136∗∗∗ 0.083∗∗ 0.114∗∗∗

(0.032) (0.042) (0.026) (0.026) (0.037) (0.041) (0.035) (0.039)

Constant -7.900∗∗∗ -5.184∗∗∗ -4.986∗∗∗ -7.539∗∗∗ -11.676∗∗∗ -7.306∗∗∗ -2.905∗∗∗ -5.725∗∗∗

(1.212) (1.349) (0.945) (0.814) (1.368) (1.331) (0.706) (1.366)

Observations 1741 1741 1741 1741 1741 1741 1741 1741

Adjusted R2 0.447 0.226 0.564 0.577 0.402 0.256 0.041 0.251

Note: Variables are in log form.

Robust standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.6. Regression results of cross section data in 2019

Solar Small Solar Large Solar Mega Solar

(1) (2) (3) (4) (5) (6) (7) (8)

Operating Non-Operating Operating Non-Operating Operating Non-Operating Operating Non-Operating

Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity

Solar Insolation 8.852∗∗∗ 9.771∗∗∗ 6.762∗∗∗ 9.995∗∗∗ 10.963∗∗∗ 10.425∗∗∗ 1.821 9.678∗∗∗

(0.934) (1.176) (0.763) (0.631) (1.028) (1.117) (1.283) (1.057)

House 0.420∗∗∗ 0.425∗∗∗ 0.512∗∗∗ 0.516∗∗∗ 0.401∗∗∗ 0.400∗∗∗ 0.379∗∗∗ 0.383∗∗∗

(0.016) (0.023) (0.013) (0.013) (0.018) (0.022) (0.041) (0.018)

Arable Land 0.032 0.081∗∗ -0.019 -0.024 0.039 0.096∗∗∗ 0.096∗∗ 0.047

(0.023) (0.034) (0.016) (0.017) (0.028) (0.033) (0.049) (0.030)

Electricity Grid Access -0.242∗∗∗ -0.208∗∗∗ -0.243∗∗∗ -0.135∗∗∗ -0.245∗∗∗ -0.194∗∗∗ -0.023 -0.246∗∗∗

(0.049) (0.066) (0.036) (0.032) (0.053) (0.064) (0.083) (0.057)

Slope -0.045 0.227∗∗∗ -0.182∗∗∗ -0.137∗∗∗ -0.045 0.147∗∗∗ 0.558∗∗∗ 0.046

(0.033) (0.049) (0.026) (0.030) (0.036) (0.049) (0.063) (0.038)

Constant -3.316∗∗∗ -6.080∗∗∗ -2.704∗∗∗ -10.011∗∗∗ -6.413∗∗∗ -7.512∗∗∗ -1.081 -4.244∗∗∗

(1.197) (1.518) (0.962) (0.789) (1.335) (1.438) (1.624) (1.379)

Observations 1741 1741 1741 1741 1741 1741 1741 1741

Adjusted R2 0.354 0.222 0.561 0.606 0.304 0.326 0.088 0.065

Note: Variables are in log form.

Robust standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.7. Chow test of cross sectional regression results in 2014

Solar Small Solar Large Solar Mega Solar

Solar Insolation ∗ ∗∗ ∗∗∗ ∗∗∗

House ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Arable Land ∗∗ ∗∗ ∗

Electricity Grid Access ∗∗∗ ∗∗ ∗∗∗ ∗∗

Slope ∗∗∗ ∗ ∗∗∗

Note: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3.8. Chow test of cross sectional regression results in 2019

Solar Small Solar Large Solar Mega Solar

Solar Insolation ∗∗∗ ∗∗∗

House

Arable land ∗∗ ∗∗∗

Electricity grid access ∗∗∗ ∗∗∗

Slope ∗∗∗ ∗∗ ∗∗∗ ∗∗∗

Note: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Chapter 4

Are Reverse Auctions under the Feed-in Tariff Sys-

tem Slowing the Expansion of Mega-solar Power in

Japan?

4.1 Introduction

Since the introduction of a national feed-in tariff (FIT) scheme in 2012, Japan has

approved 93 GW renewable energy projects, as of June 2020. Nearly 80% of these FIT-

approved projects are solar photovoltaic (PV) projects. Approximately 296.9 billion kWh

of electricity generated by solar PV power has been purchased under the FIT scheme,

at a cost of 11.59 trillion Japanese yen 28. This has created a tremendous burden on

Japanese consumers since the cost of this support is transferred to consumers through

their electricity bills 29, after subtracting the portion supported by the power utilities.

To reduce the support costs of solar power, the Japanese government launched a reverse

auction system for mega-solar PV projects in 2017. In the mega-solar reverse auction,

the bidding process determines eligibility, capacity allocation, and electricity procurement

prices for solar PV projects above 2 MW. However, in Japan, reverse auctions have suffered

from the issue of underperformance. As of 2019, the awards met only 34.5% of the capacity

target of the reverse auctions, an unexpected outcome for policymakers.

The research question examined here is whether reverse auctions under FIT have slowed

the expansion of mega-solar projects in Japan. To answer this, we investigate the impact

of reverse auctions on the number of FIT-approved solar PV projects of different sizes.

Additionally, we estimate the spillover effect of reverse auctions on solar projects that

28 More information is available at https://www.fit-portal.go.jp/PublicInfoSummary
29 Consumers pay the “Renewable Energy Power Promotion surcharge” in their monthly bills proportional to their

electricity usage.
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were not the target of the recent reverse auction system; whether a solar PV project is

subjected to the reverse auction system is based on the project’s size. In 2017 and 2018, the

minimum size requirement for reverse auctions was 2MW, which meant that participation

in the auctions was mandatory for solar PV project developers with an installed capacity

of more than 2 MW. In parallel with the FIT prices determined by the mega-solar bidding

process, administratively set FIT prices were adopted for solar projects less than 2 MW.

The latter prices were higher than the former ones, which may have generated an incentive

to manipulate project size to attain higher FIT prices. Such incentives, coupled with strict

compliance rules for the reverse auctions, may have led to fewer solar projects above 2

MW and a slight increase in those below 2MW. We consider this as the spillover effect of

the reverse auction.

The approach of using auctions to support renewable energy has attracted considerable

attention in the literature. Winkler et al. (2018)conducted case studies on support scheme

effectiveness and efficiency for renewable energy by comparing countries using reverse

auctions with those not using them. They conclude that auctions are more effective if

auction volumes are in line with renewable energy extension targets and include sufficient

guarantees and penalties. However, auctions do not generally lead to higher efficiency than

schemes with administratively set support levels. Buckman et al. (2019) compared the

processes and outcomes of FIT reverse auctions for large-scale solar and wind in Australia

between 2012 and 2016. They suggest that auctions can deliver significant local economic

benefits successfully as well as decreasing FIT prices. They also point out the general

potential auction weaknesses as uncertainty about bidding delivery and the FIT prices of

successful bids, high transaction and administrative costs, and locational concentration

of successful proposals. Botta (2019) used a conjoint analysis based on a survey dataset

to investigate the impact of renewable energy auctions on the capital costs for renewable

energy projects in Europe. He shows that the adoption of moderate financial bid bonds, a

long-term auction schedule, and a technology-specific auction can reduce the cost of equity

between 0.5% and 1.5%.

Our study contributes to the literature on renewable energy auctions in three aspects.

First, we investigate the reverse auctions for solar PV conducted under the FIT policy in

Japan. Many studies have examined renewable energy auctions in other countries, such

as Germany (Leiren and Reimer, 2018; Lundberg, 2019), Australia (Buckman et al., 2014,

2019), and India (Bose and Sarkar, 2019), but there is a lack of research on Japanese reverse
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auction systems. This chapter fills this gap. Second, we adopt an empirical approach to

estimate the causal effect of reverse auctions on the number of FIT-approved solar projects.

Specially, we examine the spillover effect of reverse auctions when generous FIT prices are

administratively set at the same time for non-auctioned solar projects. Third, we explore

the impact of a change in the minimum size threshold on the number of FIT projects in

the reverse auctions.

The results suggest that the introduction of a reverse auction system in Japan has

slowed the expansion of mega-solar projects in the country. The approved number of

solar projects above 2 MW decreased by 83 between 2017 and 2018. In parallel, reverse

auctions had a spillover effect on solar power projects of less than 2 MW: the number of

FIT-approved solar projects between 1 MW and 2MW increased. However, the impact

of the change in the minimum size threshold, which happened in 2019, on the number of

FIT projects in 2019, were not statistically significant.

The rest of the paper is organized as follows. Section 4.2 presents an overview of Japan’s

reverse auction under the feed-in tariff scheme. Section 4.3 provides our hypotheses, the

empirical strategy for the analysis, and describes the data used in the estimation. Section

4.4 presents our regression results and Section 4.5 concludes.

4.2 Japan’s Reverse Auction under the Feed-in Tariff Scheme

Japan first launched a national FIT scheme in July 2017, which was then amended in

April 2017. The amended FIT scheme introduced a reverse auction system for solar PV

projects above 2 MW. In the reverse auction system, project developers bid for electricity

procurement prices on a per kW/h basis. The aim of the auction is to reduce the cost of

supporting solar PV projects by including a bidding 30 process and competition among

project developers.

4.2.1 Reverse Auction Mechanism

Figure 4.1 shows the procedure for bidders. The qualification process is based on an

examination of the business plans submitted by the solar PV project developers. Only

qualified bidders are allowed to participate in the bidding process, and only winning bid-

30 Bidding refers to the price-discovery procedure in auctions.
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ders are entitled to FIT approval. In addition to the registration fee for bidding, two

deposits are required: the bid deposit, as a condition for participating in the auction,

which is returned to losing bidders; and the completion deposit, which serves as a guaran-

tee against issues that may be encountered before commencement of the operation. The

completion deposit is 5,000 Japanese yen per kW, which is 10 times the bid deposit. The

bid deposit is forfeit if a winning bidder fails to pay the completion deposit or sign a grid

connection contract before the deadline. Moreover, if a winning bidder delays operation

commencement or fails to meet other contractual commitments, the completion deposit

will be forfeit. These strict rules of compliance increase the auctions’ perceived risk, acting

as entry barriers to reverse auctions (IRENA, 2019).

[Figure 4.1]

Figure 4.2 illustrates the award process in the reverse auction system. The format is a

pay-as-bid auction in which the winning bidders receive exactly the price of their bid. The

main advantage of pay-as-bid auctions is that bidders face no uncertainties about their

award price if they win (Haufe and Ehrhart, 2018). The Japanese government sets the

ceiling price and target capacity for the reverse auction. The winning bidders are selected

among participants whose bid prices are below the ceiling price and ranked based on their

bid prices. The bidder with the lowest bid price is awarded capacity first, followed by the

second lowest price, and so forth, until the target of the auction’s capacity is attained.

The bid prices of the winning projects are adopted as their FIT rates, which are the

electricity procurement prices.31 Thus, FIT eligibility, approved capacity, and FIT rates

are determined through the process of these competitive auctions.

[Figure 4.2]

4.2.2 Auction Results

As of 2019, The Japanese government had implemented five auction rounds. The

reverse auctions initially applied only to solar projects above 2 MW; however, in 2019, the

minimum project size requirement was revised to include solar projects above 500 kW.

Figures 4.3 and 4.4 show the auction results in terms of capacity and number of bids,

31 In parallel to the FIT rate determined by the bidding process for winning projects, administratively set FIT rates

are determined for solar projects below the minimum size thresholds of the reverse auctions.
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respectively. In total, the reverse auctions selected 104 winning projects with a combined

capacity of 574 MW. However, except for the third auction in 2018, all the other auctions

were under-subscribed, which means participating capacity was below the auction target

capacity. As a result, the awards met only 34.5% of the target capacity. Thus, the auctions

proved ineffective in achieving the auctions’ target capacity.

[Figure 4.3]

[Figure 4.4]

The bid prices in the reverse auctions reflect the competitive procurement prices of

electricity generated by solar PV projects. Since the introduction of the reverse auction

system, the bid prices have decreased substantially. Table 4.1 shows the bid prices and

administratively set FIT prices. The lowest bid prices decreased from 17.2 in 2017 to 10.5

Japanese yen per kWh in 2019, which equates to a 39% reduction in three years. The

administratively set FIT prices were higher than the bid prices. The differences between

the administratively set FIT prices and the bid prices may have proved to be an incentive

for project developers to change their business plans regarding project size to maximize

their profits. For example, as shown in Table 4.2, when FIT approval was successfully

obtained and the highest bid price adopted as the electricity procurement price, a 2 MW

solar PV project in 2018 generated 31,000 JPY/h. In contrast, for projects from 2 MW to

1.99 MW in size, project developers avoided the risks of participating in reverse auctions

and generated 6,810 JPY/h more in revenue. Developing two solar projects with 1 MW

scale was also more profitable than one 2 MW project, not considering economies of scale.

When the minimum project size dropped from 2MW to 500kW in 2019, the difference in

revenue across the different sizes of solar projects decreased (see Table 4.3).

[Table 4.1]

[Table 4.2]

[Table 4.3]
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4.3 Empirical Analysis

4.3.1 Hypotheses

We established three hypotheses regarding the introduction of the reverse auction

system for solar power in 2017, the change in the minimum size threshold of reverse

auctions in 2019, and the spillover effect of the reverse auctions.

Hypothesis 1: Reverse auctions reduced the number of FIT-approved solar power

projects ≥ 2MW in 2017 and 2018.

Solar projects ≥ 2MW are directly affected by the reverse auction system as develop-

ers bid for electricity purchase prices and obtain FIT eligibility through these auctions.

The bid ceiling’s low price and the auction’s strict rules of compliance lead to the under-

performance of successful bids.

Hypothesis 2: The change in the minimum project size requirement from 2MW to

500kW in 2019, reduced the number of FIT-approved 500 kW ∼ 2MW solar projects in

the reverse auction that year.

Hypothesis 3: Reverse auctions had a spillover effect on solar projects above 500 kW

and less than 2 MW in 2017 and 2018.

The administratively set (non-auctioned) FIT rates were higher than those decided

by reverse auctions in the timeframe evaluated. In 2018, the government announced that

reverse auctions in 2019 would include 500 kW ∼ 2MW solar PV. To maximize profits,

project developers may have decided to invest in 500 kW ∼2 MW solar PV projects in

2017 and 2018 to avoid this change. Therefore, the number of FIT-approved solar projects

above 500 kW and less than 2 MW in that year could have been indirectly affected by the

spillover effect of reverse auctions:

4.3.2 Model Specification

To estimate the impact of the reverse auction system on the number of FIT-approved

solar projects, we used the difference-in-differences (DID) approach with multiple treat-

ment groups and time periods. A DID estimator 32 identifies the differences between the

number of FIT-approved solar projects that are subject to the reverse auction and those

32 Since different potential outcomes cannot be observed for the same unit at the same time, the DID estimator of

interest is the average treatment effect on the treated.
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that are not. All solar PV projects above 2 MW were part of the bidding for electricity

purchase prices for FIT eligibility in the auctions of 2017. Meanwhile, the existence of the

reverse auction may have indirectly affected solar projects slightly below 2 MW. Therefore,

the treatment groups are by size category of solar power project: over 2 MW and slightly

smaller than 2 MW; while the control groups are those barely affected by the spillover

from the reverse auction. The general estimation equation is expressed as follows:

Number projectsit = α + β1Bin above2MWi × A f tert + β2Bin[1MW 2MW)i × A f tert

+ β3Bin[500kW 1MW)i × A f tert + λt + θi + εit

where Number projectsit denotes the newly approved number of solar PV projects by size

category (bin) i in year t. Bin above2MWi × A f tert is a treatment indicator of reverse

auctions on solar projects above 2 MW. It takes the value of one if the size category i is

greater than or equal to 2 MW after 2017 and zero otherwise. Bin[1MW 2MW)i × A f tert

indicates the indirect impact of auctions on solar PV projects between 1 MW and 2 MW

(not containing 2MW). It equals one if size category i is ≥ 1MW and < 2MW after 2017

and zero otherwise. Bin[500kW 1MW)i × A f tert captures the impact of an auction on

solar projects between 500 kW and 1 MW (not containing 1 MW). It equals one if the

size category i is ≥ 500kW and < 1MW after 2017 and zero otherwise. λt denotes year

fixed effects, accounting for any time-specific factors common to all solar power projects,

such as the technological development of solar PV. The fixed effects of the size category

are captured by θicontrolling for unobserved time-invariant variables affecting a certain

size category. εit is the error term.

To explore the change in the minimum size threshold of reverse auctions from 2 MW

to 500 kW in 2019, we also use another regression model for the period from 2017 to

2019. The treatment groups in this model are size bins above 500 kW and less than 2

MW because ≥ 2MW solar projects only bid for FIT prices in 2017 and 2018 and were

not affected by the change in the minimum size threshold. The remaining bins are in the

control group. The model specification is written as

Number projectsiτ = α + β1Bin[1MW 2MW)i × 2019τ + β3Bin[500kW 1MW)i × 2019τ

+ λτ + θi + εiτ
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where Number projectsit is the newly approved number of solar PV projects in size bin i

in year τ. Bin[1MW 2MW)i × 2019τ equals one if size bin i is ≥ 1MW and < 2MW in

2019, and zero otherwise. Bin[500kW 1MW)i × 2019τ equals one if size bin i is ≥ 500kW

and < 1MW in 2019, and zero otherwise. λτ and θi are year fixed and size bin fixed

effects, respectively. εiτ is the error term.

4.3.3 Data

We used a panel dataset consisting of 198 size bins of solar PV projects from 2012

to 2019 in our empirical analysis. The auction rounds were held in the third or fourth

quarter of each year, with the winning projects becoming FIT eligible in the first quarter

of the year following the administrative procedure. To account for the time lag between

the auction date and the FIT approval date, we organized the data by fiscal year instead

of calendar year. Table 4.4 presents the summary statistics of the variables.

[Table 4.4]

Data on the number of solar projects newly approved by the FIT scheme were collected

from the Ministry of Economy, Trade and Industry (METI) of Japan 33. The raw data

contain basic information on FIT-approved commercial solar projects above 20 kW, such

as the installed capacity and approval date. We limited the data to ≥ 50 kW solar

PV projects as 50 kW is a turning point for the electricity grid connection and safety

regulations according to the Electricity Business Act. For example, ≥ 50 kW solar PV

projects must connect to a high-voltage grid through a cubicle, and are required to appoint

a chief electrical engineer and confirm this with METI. These additional costs equate to

between 1 and 1.5 million Japanese yen compared with solar projects below 50 kW 34.

Subsequently, we grouped these solar projects into size bins. For project sizes less than 2

MW, the bin width is 10 kW; projects ≥ 2MW were gathered in one bin as the frequency

of such projects was sparse after 2017 for a 10 kW bin width. In the final dataset, there

were 196 bins containing 36,650 solar projects. We also obtained information on auctioned

solar projects from the Green Investment Promotion Organization (GIO) 35 to crosscheck

our dataset. As shown in Table 4.4, the average number of solar PV projects in one size

33 The website for information disclosure of FIT in Japanese. Available at https://www.fit-portal.go.jp/

PublicInfo.
34 See https://www.tainavi-next.com/library/194/
35 Available at https://nyusatsu.teitanso.or.jp/.
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bin was 24 from 2012 to 2018, and 11 from 2017 to 2019. Figure4.5 depicts the time trend

of solar projects in the different size groups. From 2014 to 2016, parallel trends hold for all

groups. In 2017, the number of projects ≥ 2MW decreased significantly compared with

the other groups.

[Figure 4.5]

4.4 Results

4.4.1 Estimation Results

Table 4.5 reports our results regarding the impacts of reverse auctions on the number

of FIT-approved solar projects. Columns 1 and 2 show the results of the bins above 500

kW and those above 50 kW from 2012 to 2018, respectively. We use the time period 2014

to 2018 to calculate the results shown in columns 3 and 4 since the time trends for the

groups [1MW, 2MW) and [500kW, 1MW) were not consistent with the other groups from

2012 to 2014 in figure4.5. The interaction terms capture the impacts of reverse auctions

on the number of solar projects. The estimated coefficients of Bin above2MW × A f ter

are statistically significant and negative in all models. This indicates that the reverse

auction system reduced the number of mega solar projects approved by FIT during this

timeframe. As shown in column 4, the number of approved projects ≥ 2MW decreased

by 83 after the introduction of reverse auction system compared with the projects not

affected by reverse auctions. The coefficients on Bin[1MW 2MW) × A f ter are positive

and statistically significant, as shown in columns 2 and 4, but only at 10% significance

in the latter one. This suggests that reverse auctions might have increased the number

of solar projects above 1 MW and less than 2MW slightly. As shown in column 4, the

coefficients of Bin[500kw 1MW)× A f ter are positive, however, not statistically significant.

Thus, reverse auctions might not have affected solar projects less than 1 MW and above

500 kW.

[Table 4.5]

Table 4.6 shows the regression results related to the impacts of reverse auctions in

2019 when the minimum size threshold changed from 2 MW to 500 kW. The interaction

terms capture the impacts of reverse auctions in 2019 on the number of solar projects from
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500 kW to 2 MW. Column 1 shows the bins between 500 kW and 2 MW in one group.

The coefficient of Bin[500kw 2MW) × 2019 is negative but not statistically significant.

Column 2 shows the bins of 500 kW and 2 MW divided into two groups: 1MW ∼ 2MW

and 500kW ∼ 1MW. Similarly, the coefficients associated with the interaction terms are

negative but not statistically significant. These results indicate that the reverse auctions

in 2019 did not reduce the number of solar projects between 500 kW and 2 MW. One

possible explanation is that 2018 affected any decrease in the approved number of solar

projects from 500 kW to 2 MW in 2019; this also relates to the ”time spillover” effect

induced by the announcement of the minimum size threshold change in 2018. Project

developers tended to pursue FIT approval of 500kW ∼ 2MW solar projects in 2018 when

they were informed in advance that the government would be including solar projects from

500 kW to 2 MW in reverse auctions in 2019.

[Table 4.6]

4.4.2 Impact on FIT Purchase Expenditure between 2017 and 2018

The estimated results in Table 4.5 suggest that the number of approved projects ≥

2MW decreased by 83 after the introduction of reverse auction system. If the reverse

auction system were not introduced, an additional 83 mega-solar with 1572.2 MW 36

capacity would be approved and we would expend 34,587,655 JPY/h to purchase the

electricity, based on the average FIT prices 37 for projects < 2MW between 2017 and

2018.

In reality, the bid prices were cheaper than fixed FIT prices and less mega solar projects

were approved. As a result, reverse auctions reduced the expenditure of FIT scheme on

purchasing electricity generated by mega solar PV. The total approved capacity of mega

solar determined by reverse auctions is 236.6 MW in 2017 and 2018. It will cost 3,752,354

JPY/h to purchase electricity generated by these winning projects 38. It is almost one-

tenth of the above hypothetical expenditure.

Reverse auctions reduced the price as well as the total approved capacity, thus lead to

a dramatic reduction in expected expenditure for the electricity generated by renewable

36 The average size of FIT-approved mega solar projects is 18.9 MW from 2014 to 2016.
37 The administratively-set FIT price is 23 and 21 JPY/kWh in 2017 and 2018 respectively.
38 These winning projects haven’t finished construction yet. The generated electricity will be purchased by FIT at

their bid prices when they start operation.
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sources. What if there were enough participation to the reverse auction and the target

capacity were fulfilled? If we assume the target capacity (946.96 MW) were awarded at

the the ceiling prices of reverse auctions, the expenditure for purchasing solar power would

be 17,427,880 JPY/h, which is less than the case without reverse auction but higher than

the case with it.

4.5 Conclusions

In this chapter, we investigated the impact of reverse auctions in Japan on the number

of FIT-approved solar projects in different size categories. We grouped FIT-approved

solar projects into size bins and constructed a panel dataset from 2012 to 2019. The DID

approach was adopted to estimate the causal effect of reverse auctions on solar projects

above 2 MW, where FIT eligibility and electricity procurement prices were determined

in the bidding process. We also defined the spillover effect of reverse auctions on solar

projects slightly below 2 MW. In addition, we examined the impact associated with the

change in the minimum size threshold of reverse auctions in 2019.

The results indicate that the introduction of the reverse auction system for solar PV

reduced the number of approved solar projects above 2 MW. Thus, it has slowed the ex-

pansion of mega-solar energy in Japan. In contrast, the number of FIT-approved solar

projects above 1 MW and below 2 MW increased due to the spillover effect of the reverse

auctions. However, the results on the impact of the change in the minimum size thresh-

old in 2019 were not statistically significant. Thus, we cannot conclude that different

minimum size thresholds in the reverse auctions had different impacts on the number of

FIT-approved solar projects.

Renewable energy auctions have been widely adopted as policy instruments for deter-

mining subsidy levels for renewable energy sources (IRENA, 2017, 2019). Policymakers

are looking to promote renewable energy at the lowest possible cost, while simultaneously

attaining other social benefits, such as alleviating the financial burden on consumers’

electricity bills. Well-designed auctions can improve the effectiveness and efficiency of

supporting renewable energy. For example, Germany conducted renewable energy auc-

tions with high frequency to increase planning security for the bidders and to ensure the

continuous development of renewable energy. Solar PV auctions in Germany have proven

to be an effective tool to award support because the volume of bids have exceeded the auc-
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tioned volume in all solar PV auction rounds. Sufficient competition among bidders drives

down support costs and at the same time ensures steady renewable power deployment with

high realization rates (AURES, 2019).

However, the reverse auctions in Japan as of 2019 have underperformed. From 2017 to

2019, there have been 256 bidders qualified by the government in five auctions, but 34%

of these bidders dropped out and did not participate. Among the 106 winning bidders,

15 bids were cancelled because the organizations did not pay the completion deposit by

the deadline. Therefore, the biggest challenge encountered by Japanese solar PV auctions

is how to attract sufficient participation to ensure competition and meet the capacity

target. Further investigation on other factors that may affect the participation of project

developers in reverse auctions is necessary to extend our understanding of the relationship

between reverse auction design and the expected policy outcome.
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Table 4.1. Bid price and administratively-set FIT price (JPY/kWh, 2017-2019)

Bid price Administratively-set

Year Max Min FIT price

2017 21 17.2 23

2018 15.5 14.25 19

2019 13 10.5 15

Note: Bid price for projects above 2MW (2017-2018) and above 0.5MW (2019).

FIT price for projects between 10kW to 2MW (2017-2018) and 10kW to 0.5MW (2019).

Table 4.2. Example: Revenue of solar projects in 2018

Size (MW) Number of Projects (#) Revenue 39(JPY/h)

2 1 31,000

1.99 1 37,810

1 2 38,000

Table 4.3. Example: Revenue of solar projects in 2019

Size (kW) Number of Projects (#) Revenue 40(JPY/h)

500 1 6,500

490 1 7,350

250 2 7,500

39 The revenues are calculated assuming solar power facilities are in full operation of installed capacity and the highest

bid price is the electricity procurement price for 2MW solar projects where 1 MW = 1000 kW.
40 The revenues are calculated assuming solar power facilities are in full operation of installed capacity and the highest
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Table 4.4. Summary statistics

Variable Unit Obs Mean Std. Dev. Min Max

2012-2018

Dependent

Number projects project 1,372 24 74 0 957

Independent

bin above2MW × After dummy 1,372 0.002 0.04 0 1

bin [1MW 2MW) × After dummy 1,372 0.15 0.35 0 1

bin [500kW 1MW) × After dummy 1,372 0.07 0.26 0 1

2017-2019

Dependent

Number projects project 588 11 33 0 539

Independent

bin [500kW 2MW) × 2019 dummy 588 0.26 0.44 0 1

bin [1MW 2MW) × 2019 dummy 588 0.17 0.38 0 1

bin [500kW 1MW) × 2019 dummy 588 0.09 0.28 0 1

bid price is the electricity procurement price for 500 kW solar projects.
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Table 4.5. Results on the impact of the reverse auction for ≥ 2 MW solar projects

Dependent variable: 2012-2018 2014-2018

≥ 500kW ≥ 50kW ≥ 500kW ≥ 50kW

(1) (2) (3) (4)

Bin above2MW × After -208.222*** -186.924*** -90.943*** -83.156***

(8.235) (9.420) (3.548) (4.843)

Bin[1MW 2MW) × After 5.977 27.275*** 1.815 9.603*

(9.135) (10.214) (3.658) (4.925)

Bin[500kw 1MW)× After 21.298* 7.788

(12.505) (6.001)

Year fixed effect YES YES YES YES

Bin fixed effect YES YES YES YES

Constant 6.272** 12.536*** 6.272*** 12.536***

(2.629) (2.493) (0.516) (0.634)

Observations 1057 1372 755 980

Adjusted R2 0.099 0.143 0.109 0.148

Robust standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.6. Results on the impact of reverse auctions for ≥ 500 kW solar projects

Dependent variable: 2017-2019

≥ 50kW

(1) (2)

Bin[500kw 2MW)× 2019 -3.691

(8.511)

Bin[1MW 2MW)× 2019 -1.906

(8.556)

Bin[500kw 1MW)× 2019 -7.261

(8.618)

Year fixed effect YES YES

Bin fixed effect YES YES

Constant 18.026*** 18.026***

(1.036) (1.032)

Observations 585 585

Adjusted R2 0.077 0.079

Robust standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Chapter 5

Concluding Remarks

This research empirically analyzed the impact policies for renewable energy have from

different perspectives. We focused on both international climate change policy and do-

mestic policy instruments on the development of renewable energy. We explored the role

of CDM in wind power-related technological development in China. Then, we investigated

the impact of amended FIT policies on the operation of solar power by examining the re-

lationship between operating capacity and approved capacity before and after the amend-

ment. We also examine the impact of reverse auctions on the number of FIT-approved

solar PV projects of different sizes.

To summarize, the following conclusions can be drawn: First, developing countries can

benefit from international climate change policy by its positive externalities. In Chapter

2, we saw how the implementation of CDM wind projects encouraged more technology

transfer from developed countries to China, where the technological capacity of domestic

wind turbine manufacturers is relatively low. CDM makes sophisticated foreign technology

available in the wind market and makes it easier for Chinese wind turbine manufacturers

to assimilate and re-innovate. Nevertheless, sufficient improvement of wind power-related

technology relies on indigenous R&D throughout the entire innovation process.

Second, domestic supporting policies promote the deployment of renewable energy, but

they must be adapted to reflect changes in market conditions. In Chapter 3, the purchase

price applied to a renewable power facility is the FIT’s tariff at the time when the METI

approved the facility, and earlier approval means higher tariff and thus more revenue from

selling electricity. Meanwhile, the price of the solar panel is decreasing, which indicates

that the later installation of solar PV can enjoy a lower equipment cost. Moreover, there

was no explicit regulation on the deadline for approved projects to connect to the electricity

grid and start their operation. As a result, many solar projects have obtained FIT approval

but have not yet started operation, which is called the “non-operating” issue. Considering
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actual market situations, the amendments on FIT policy impose stricter requirements on

approval of FIT eligibility, which mitigates the discrepancy between approved capacity

and operating capacity.

Third, domestic supporting policies have different focus at different stages of renewable

energy. The incentives generated by policies should be in line with the exact policy target.

In Chapter 4, as the renewable energy sector matures and the LCOE declines, the main

focus of policy design shifts from fulfilling the deployment target of renewable sources to

reduce the financial burden of FIT subsidization. Reverse auctions are introduced to allow

the competitive market to determine the prices paid for renewables. The ability to provide

appropriate incentives to ensure sufficient competition is the key factor when designing

auctions for renewable sources.
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