
Kobe University Repository : Kernel

PDF issue: 2024-11-05

Quantitative analysis of the oocyte quality
changes and the fertilization Ca²⁺ wave in C.
elegans

(Degree)
博士（工学）

(Date of Degree)
2021-03-25

(Date of Publication)
2023-03-25

(Resource Type)
doctoral thesis

(Report Number)
甲第8076号

(URL)
https://hdl.handle.net/20.500.14094/D1008076

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

Imakubo, Momoko



 

Doctoral Dissertation 

 

Quantitative analysis of the oocyte quality changes and  

the fertilization Ca2+ wave in C. elegans 

線虫 C. elegansの卵母細胞の質的変化および 

受精カルシウム波についての数理解析 

 

 

 

 

Momoko Imakubo 

今久保 桃子 

 

January 2021 

Graduate School of System Informatics, Kobe University 

 



 i 

Abstract 

Oocytes acquire the ability to support fertilization and development during meiotic maturation through processes, such 

as the breakdown of the germinal vesicle, chromosome condensation, spindle formation, and accumulation of mRNA 

and protein required for development. The fertilization and developmental ability of oocytes affects not only 

fertilization and early embryonic development but also the establishment and maintenance of pregnancy and fetal 

development. However, the mechanisms of phenomena in oocytes related to fertilization and developmental ability 

remain poorly understood. 

Oocyte quality is an important factor for success of embryonic development. The fertilization and developmental 

ability of oocytes, referred to as oocyte quality, decreases with increasing maternal age. A decline in female 

reproduction is one of the earliest hallmarks of aging, which increases the risk of infertility, birth defects, and 

miscarriage. Age-related decreases in oocyte quality are thought to cause infertility in many animals, including 

invertebrates and mammals. However, the mechanisms of the age-related decreases in oocyte quality have not yet been 

fully understood. 

The Ca2+ waves occur during fertilization in almost all animal species and trigger the oocyte activation. Oocytes 

arrested in meiosis are activated by propagation of intracellular Ca2+ waves at fertilization. The Ca2+ waves trigger 

multi-faceted cellular processes, including resumption of meiosis, cortical granule exocytosis, and formation of the 

pronucleus, which are required for embryo development. Although the fertilization Ca2+ waves are key process for 

fertilization and embryo development, mechanisms underlying the generation of Ca2+ waves have not been fully 

elucidated. 

This dissertation focuses on the age-related changes in oocyte quality and the fertilization Ca2+ waves as universal 

and important phenomena for fertilization and development. While there are many studies that analyzed the phenomena 

based on biological experimental approaches, few studies quantitatively and mathematically analyzed them based on 

informatics approaches. Quantitative and mathematical analyses are expected to provide new biological findings that 

are different from those derived from biological experimental approaches. The purpose of this study is to provide new 

findings and insights regarding the age-related changes in oocyte quality and the fertilization Ca2+ waves. I performed 

image processing and mathematical modeling of in vivo imaging data of oocytes in the nematode Caenorhabditis 

elegans (C. elegans) as a model organism. 

Firstly, to quantify the age-related changes in oocyte quality, I proposed statistical image features to characterize the 

changes in the appearance of C. elegans oocytes with aging using images captured by Nomarski differential interference 

contrast (DIC) microscopy. I showed that the cytoplasmic texture significantly changes with aging through the 

statistical image features of Max-min Value (Mm Value) and Correlation (COR); the Mm Value is defined as the mean 
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difference between the maximum and minimum intensities within each moving window and COR is the Grey Level 

Co-occurrence Matrix based feature. The analyses using synthetic images with changing the granule size suggest that 

the texture changes characterized by COR reflect an increasing of the granule size in the cytoplasm. Furthermore, 

manual measurements of the granule size in DIC images validated that the granule size increases with aging. The 

relationship between granule size and fertility is expected to be elucidated by future biological experiments in this and 

other species. 

Secondly, I predicted the genes involved in reproductive aging by applying the proposed statistical texture analysis 

methods to DIC microscopy images of early C. elegans embryos from large-scale gene silencing experiments. Genes 

that cause the similar texture changes as seen in aged oocytes are candidate genes involved in the reproductive aging. 

These candidate genes were identified by their images that had a decreased Mm Value or increased COR – properties 

that were found to occur in aged oocytes. Of the 316 genes tested, five genes (smc-4, F10C2.4, tin-44, let-754, hmp-2) 

were identified to decrease Mm Values and one gene (csr-1) was identified to increase COR. The candidate genes 

included genes related to age-related function, such as chromosome segregation (smc-4, F10C2.4) and mitochondrial 

function (tin-44) and some genes that are not known to be related to aging (let-754, hmp-2). Of the identified genes, 

smc-4, which has functions related to chromosome segregation, is known to be involved in the reproductive aging of 

C. elegans. These results suggest that the screening using the image features enable to predict genes involved in 

reproductive aging. Through these analyses, the candidate genes were identified to potentially be involved in 

reproductive aging. The involvement of the candidate genes in reproductive aging is expected to be confirmed by future 

biological experiments. 

Finally, to understand the mechanisms of generating fertilization Ca2 + waves, I proposed a mathematical model of 

the fertilization Ca2+ wave in C. elegans. The reaction-diffusion Nagumo model, which was previously proposed to 

model the Ca2+-induced Ca2+-release mechanism, reproduces the biphasic nature of the Ca2+ wave observed in the 

experiment. However, the previous model could not represent the gradient of the convergence concentration depending 

on the distance from the fertilization point. To propose the model that satisfies both conditions of formation of a 

biphasic wave and the gradual decrease of the convergence concentration depending on the position, I modified the 

Nagumo model by introducing a linear monotonically decreasing function into the reaction part. I demonstrated that 

my new model can produce the Ca2+ wave form that satisfied both conditions simultaneously. The proposed model 

suggests spatial non-uniformity in the amounts of Ca2+ released from cytoplasm during fertilization. I hope that the 

existence of spatial non-uniformity will be confirmed by future experimental studies. Gradual decrease of Ca2+ 

concentration after convergence, which was observed in vivo, cannot be represented by the proposed model. Our model 

needs improvement in the future. Extension to three-dimensional simulations is also expected in the future. 

I quantitatively and mathematically analyzed the age-related changes in oocyte quality and the fertilization Ca2+ 

wave, which are important phenomena related to fertilization and developmental ability of oocytes. I have derived new 
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findings and insights that are potentially useful for understanding phenomena related to the fertilization and 

developmental ability of oocytes. 
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Chapter 1  

Introduction 

 

1.1 Research Background 

Animal development begins with a single fertilized egg. The fertilized egg undergoes cell divisions and cells 

differentiate into the organs and the fully formed multicellular organism. In sexual reproduction, fertilization is the 

process in which gametes fuse to form a zygote. Gametes, i.e., sperm and oocytes are generated through a specialized 

cell division process, called meiosis, which consists a single round of DNA replication and two cell divisions. The 

process of meiosis greatly differs between sperm and oocytes. Sperm are formed without interruption of meiosis, 

whereas oocytes arrest at prophase of meiosis I in most animal species [1][2]. In response to a hormonal stimulus, 

oocytes undergo meiotic maturation, including breakdown of the germinal vesicle, chromosome condensation, and 

spindle formation [2][3]. 

The ability of the oocytes to support fertilization, embryonic development, and full-term development is called 

developmental competence or oocyte quality [4]. Oocyte quality affects not only fertilization and early embryonic 

development but also the establishment and maintenance of pregnancy and fetal development [5]. It is widely known 

that advanced maternal age decreases oocyte quality. As woman aging, quantity and quality of oocytes decrease 

gradually, which increase risk of infertility and birth defects. The risk of developmental failures in woman, such as 

chromosome abnormalities and early pregnancy loss increases about 5-10 years earlier than the menopause, which may 

be due to age-related decreases in oocyte quality [6]. In most developed countries, the typical age at first birth has 

delayed and the demand for assisted reproductive technology has increased [7]. The importance of evaluating oocyte 

quality has increased due to the general trend of promoting single embryo transfer to avoid multiple pregnancies and 

the development of technologies for oocyte cryopreservation. Although the age-related decreases in oocyte quality is a 

social and medical concern, the mechanisms have not yet been elucidated. 

Ca2+ waves (increase in calcium ion concentration) propagate through the oocyte during fertilization, which activate 

the oocyte and induce embryonic development [8]. They trigger several processes such as resumption of meiosis, 

release of surface granules, and formation of the pronucleus, which are collectively called oocyte activation, and initiate 

embryonic development [9]. Ca2+ waves are found in almost all animal species and are caused by Ca2+ channels called 

inositol 1, 4, 5-trisphosphate (IP3) receptors on the endoplasmic reticulum, which functions as an intracellular Ca2+ 

store [9][10]. The pattern of Ca2+ response is associated with development of embryo. Although the spatiotemporal 

patterns of Ca2+ response vary from species to species, ranging from single transient (e.g. amphibians, nematode) to 
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oscillations (e.g. mammals), Ca2 + responses are key process for oocyte activation [9][11]. The ability to generate Ca2+ 

waves is acquired in mammalian oocytes during meiotic maturation [12]. The excessive or too low Ca2+ transits 

influence post-implantation development of the embryo or the embryo implantation [13]. The peak of Ca2+ response in 

mature mouse oocytes has higher amplitude and lasts longer than in immature oocytes [14][15][16]. The meiotic 

maturation in oocyte cytoplasm, such as reorganization of endoplasmic reticulum, the main Ca2+ storage, and increase 

in the number of IP3 receptors, may cause the differences in the patterns of Ca2+ response [12]. The normal pattern 

Ca2+ response can be seen as an indicator of sufficient maturation of oocytes. The impact of maternal aging on 

mechanisms of generating Ca2+ responses in fertilized oocytes has not been thoroughly examined. The recent study 

has reported that maternal aging differently affects the amounts of Ca2+ stored in the oocytes and expression of genes 

involved in the regulation of the Ca2+ oscillations in those mouse types [17]. Although the fertilization Ca2+ waves are 

key process for embryonic development, mechanisms underlying generation of Ca2+ waves have not been fully 

elucidated. 

The quantitative and mathematical analyses of phenomena in oocytes related to fertilization and developmental 

ability can be helpful to understand the mechanisms. The mechanisms of the phenomena in oocytes related to 

fertilization and developmental ability remain poorly understood. While there are many studies analyzed the 

phenomena based on biological experimental approaches, few studies quantitatively and mathematically analyzed them 

based on informatics approaches. The quantitative and mathematical analyses are expected to provide new biological 

findings that differ from those derived from biological experimental approaches. 

The age-related changes in oocyte quality and the Ca2+ wave in Caenorhabditis elegans (C. elegans) can be analyzed 

by using imaging data of oocytes. The oocyte quality is thought to be reflected in oocyte appearance in C. elegans 

[18][19]. C. elegans cells can be noninvasively observed with high contrast by using Nomarski differential interference 

contrast (DIC) microscopy, which produce contrast by visually displaying the optical phase gradient [20][21]. The 

changes in oocyte appearance in C. elegans with aging can be captured by DIC microscopy, which would reflect the 

changes in oocyte quality with aging. The spatiotemporal dynamics of Ca2+ wave can be visualized using a fluorescent 

Ca2+ indicator. Takayama and Onami visualized the Ca2+ wave in C. elegans by high-speed confocal microscopy and 

image analysis [22]. Quantitative analyses of these phenomena, the age-associated changes in oocyte appearance and 

the spatiotemporal dynamics of fertilization Ca2+ wave, using in vivo imaging data may lead to new findings regarding 

phenomena in oocytes related to fertilization and developmental ability. 

 

1.2 Objectives of the Study 

This dissertation focuses on the age-related changes in oocyte quality and the fertilization Ca2+ wave as important 

phenomena for fertilization and development ability of oocytes. The purpose of this study is to provide new findings 
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and insights regarding the phenomena related to the fertilization and developmental ability of oocytes. To this purpose, 

I perform quantitative and mathematical analyses of in vivo imaging data of oocytes in C. elegans as a model organism. 

Firstly, I focus on the oocyte appearance that are thought to reflect oocyte quality. To examine whether the age-

associated changes in appearance of C. elegans oocytes can be quantitatively characterized, I apply statistical image 

processing to the DIC images in oocytes (Chapter 3). 

Secondly, to examine whether the genes involved in reproductive aging can be predicted, I screen for genes whose 

knockdown significantly changes the image features that characterize the age-associated changes in appearance 

(Chapter 4). 

Finally, I focus on Ca2+ wave during fertilization. To propose a model of the Ca2+ wave that can represent more 

similar wave form to the observed one compared to the previous model, I modify the previous Ca2+ wave model 

(Chapter 5). 

 

1.3 Outline of Dissertation 

The dissertation is organized into the following chapters: 

Chapter 1: The current chapter provides a research background and objectives of the research. 

Chapter 2: This chapter presents an introduction of nematode C. elegans. It also introduces the related studies. 

Chapter 3: This chapter describes the quantification of age-associated changes in cytoplasmic texture in C. elegans 

oocytes by using statistical image processing. 

Chapter 4: This chapter describes the prediction of genes involved in reproductive aging by applying the image 

features proposed in chapter 3 to the image data obtained from large-scale gene silencing experiments. 

Chapter 5: This chapter describes the improvement and evaluation of mathematical model for the fertilization Ca2+ 

wave in C. elegans. 

Chapter 6: The final chapter gives conclusive discussion of the findings and suggestions for future work. 
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Chapter 2  

Preparing for the Study 

 

2.1 Model Organism Caenorhabditis elegans 

Caenorhabditis elegans (C. elegans) has been developed as a model organism since Sydney Brenner began using it to 

study the genetics of development and neurobiology [23]. Since then, the cell lineage and the neuronal wiring have 

been determined [21][24]. C. elegans became the first multicellular organism to have its genomic DNA completely 

sequenced [25]. RNA interference, which is a mechanism to specifically silence genes triggered by double-stranded 

RNA, was first discovered in C. elegans in 1998 [26]. Today, C. elegans is a powerful model organism for the study 

of universal mechanisms of life in many fields including genomics, cell biology, neuroscience and aging. 

C. elegans is a free-living transparent nematode about 1 mm in length that lives in the soil environments. C. elegans 

has two sexes, males and self-fertilizing hermaphrodites. Hermaphrodites lay mostly hermaphroditic progeny and 

produce males at a very low frequency (about 0.1%) by non-disjunction [27]. Hermaphrodites are composed of 959 

somatic cells and have basic anatomy including pharynx, intestine, gonad, nerve, and muscle. C. elegans cells can be 

observed by using Nomarski differential interference contrast microscope because of the transparency of C. elegans’ 

body [20][21]. 

The gonads are composed of U-shaped tubes joined to central uterus. In hermaphrodites, approximately 300 sperm 

are produced before switching to oogenesis after the adult molt. Germ cells leave the proliferative zone, undergo 

meiotic development and progress gametogenesis in an assembly-line fashion. Germ cells proceed through the 

pachytene stage of meiotic prophase in the distal arm and progress to diakinesis, where they arrest until meiotic 

maturation in the proximal arm. Mature oocytes are transported to the spermatheca for fertilization, and the resulting 

embryos are pushed into the uterus and then laid through the vulva. 

The C. elegans is a leading model for studying aging because of its short lifespan (~ 3 weeks) and the conservation 

of longevity pathways from C. elegans to humans [28]. C. elegans also undergoes reproductive senescence and ceases 

reproducing progeny after one third of their lifespan [29]. Like the increase in chromosome nondisjunction as human 

females age, aging C. elegans exhibits increased chromosome nondisjunction during aging, suggesting conserved 

consequences of germline aging [30]. 
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2.2 Age-related Decreases in Oocyte Quality 

Advanced maternal age causes decrease in oocyte quality and poor assisted reproductive technology (ART) outcomes 

[31]. Oocytes from advanced maternal age exhibit increased errors in fertilization, chromosome segregation, and 

embryonic cleavage [6][32][33]. Embryonic aneuploidy is a most frequent cause of developmental errors in mammals 

[6][34]. It has been well established that increasing maternal age leads to a higher risk of chromosomal aneuploidy, 

which is largely explained by the meiotic non-disjunction [35][36]. Several processes have been suggested as direct or 

indirect causative for chromosome segregation errors : dysfunctional cohesins, reduced stringency of spindle-assembly 

checkpoint, shortening of telomeres, and impaired mitochondrial metabolic activity [31]. 

Oocyte morphology is a parameter to evaluate oocyte quality for in vitro fertilization and intracytoplasmic sperm 

injection (ICSI) [37][38]. The morphological features related to the cumulus cells, polar body, and cytoplasm appear 

to be associated with oocyte quality [39]. However, morphological evaluations for grading oocyte quality are still 

controversial due to lack of objectivity and biological evidence. Although most studies examined relationship between 

morphological features and developmental success rates, the morphological features are not clearly associated with 

biological intrinsic factors. One reason is that no methods are established to objectively evaluate the morphological 

features related to oocyte quality with consistency. 

To overcome subjectivity of morphological observations in ART, the automatic systems and prediction models based 

image processing or machine learning have been proposed [40][41]. Although they enable to evaluate the 

morphological features more objectively, they do not clearly link the morphological features to biological intrinsic 

factors. 

2.3 Fertilization Ca2+ Waves 

Ca2+ waves are essential for activation of the embryo development. They trigger several processes such as resumption 

of meiosis, establishment of the block to polyspermy, and formation of the pronucleus [9]. The increase in calcium ion 

concentration is mainly due to Ca2+ release from the endoplasmic reticulum and forms a wave that starts from the point 

of sperm entry and propagates the Ca2+ signal through the whole egg. 

The artificial stimulus instead of the natural stimulus provided by sperm can also trigger oocyte activation and initiate 

development [42]. Artificial oocyte activation by applying chemical agents, such as the Ca2+ ionophore can be used to 

overcome fertilization failure after ICSI. 

The mechanisms that the sperm induces Ca2+ rise in oocyte have not been fully understood. Three major hypotheses 

were proposed to understand the mechanisms: (1) the sperm factor model [43][44], (2) the ligand-receptor interaction 

model [45], and (3) the sperm Ca2+ model [46][47]. The sperm factor model assumes that sperm soluble factor induces 

Ca2+ release after sperm-oocyte fusion [9][48]. The ligand-receptor model assumes that egg activation is triggered by 
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an interaction between a ligand upon the sperm and a receptor on the egg [49][50][51]. The sperm Ca2+ model assumes 

that the initial Ca2+ rise induced by a bolus of Ca2+ stored in sperm (bomb model [46]) or by Ca2+ entry via channels in 

the surface membrane of sperm (conduit model [47]). The initial Ca2+ rise induces a release of Ca2+ from the 

endoplasmic reticulum via Ca2+-induced Ca2+-release mechanism. Although these three mechanisms have been 

proposed and evaluated, the supported mechanisms vary from species to species and the underlying mechanisms have 

been unclear.  

To understand the mechanisms underlying generating of Ca2+ waves, the mathematical models of Xenopus Ca2+ 

wave have been suggested [52][53]. Takayama and Onami previously quantified and proposed a reaction-diffusion 

model of Ca2+ wave in C. elegans [22]. Mathematical models of Ca2+ waves would help to understand the mechanisms 

of generating Ca2 + waves. 
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Chapter 3  

Quantification of the Changes in Cytoplasmic 

Texture Associated with Aging by Statistical 

Image Processing 

 

3.1 Introduction 

Oocyte quality is an important factor in the success of animal development. Oocyte quality decreases with aging, 

thereby increasing errors in fertilization, chromosome segregation, and embryonic cleavage [6][32][33]. However, the 

mechanisms underlying the age-related decrease in oocyte quality remain incompletely understood. 

The nematode Caenorhabditis elegans (C. elegans) is a leading model for studying aging because of its short lifespan 

(~ 3 weeks) and the conservation of longevity pathways from C. elegans to humans [28]. In particular, C. elegans has 

been developed as a model for studying age-related decline in fertility [18]. Mutant analyses using C. elegans have 

revealed various genes and signaling pathways that affect aging [54][55][56]. The molecular processes involved in the 

age-related regulation of oocyte quality are shared between C. elegans and mammals [19]. 

In C. elegans hermaphrodites, sperms are produced during the larval stage and stored in the spermatheca; oocytes 

are produced continually during the adult stage. Mature oocytes are transported to the spermatheca for fertilization, and 

the resulting embryos are pushed into the uterus and then laid through the vulva (Figure 3.1a). The number of progeny 

produced on each day decreases with aging and self-reproduction ceases after about 5 days of adult life [57][58]. In 

young animals, almost all transported oocytes are fertilized and almost all fertilized eggs are viable; in contrast, older 

animals produce a substantial number of unfertilized oocytes and inviable eggs, suggesting that oocyte quality declines 

with aging [19]. 

Age-related changes in oocytes are found not only in function but also in appearance [18][19][33]. In C. elegans, 

aged oocytes shrink, the contacts between oocytes become loose, and oocytes fuse into large clusters [18][19]. Although 

there is no method that can objectively quantify age-related changes in oocyte appearance, information provided by 

such a method could be used to clarify the relationship between changes in the quality of oocytes and their appearance 

with aging. 
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Image processing of cell appearance has been applied to various branches of biomedical research, including the 

identification of malignant cells and detection of cancer [59][60], analysis of morphological changes [61], and the 

classification of cell populations with different functions [62][63]. Texture analysis is one method of classifying 

biomedical images [64]. In addition, modern machine learning methods, such as deep learning, have recently been 

applied to various biological applications [65]. The analysis of cell appearance by using image processing is an effective 

way to characterize and classify the status of cells. 

The Gray Level Co-occurrence Matrix (GLCM) is a well-known statistical method for examining textures and is 

widely used to describe spatial properties [66]. The GLCM approach has been used in various biomedical applications, 

including cell recognition, evaluation of ultrastructural changes, and textural classification of medical images 

[61][67][68][69]. For an image with G gray levels, the GLCM is an estimate of the second-order joint probability P(i, 

j | d, θ) of two pixels with gray levels i and j (0 ≤ i < G, 0 ≤ j < G) that are d pixels apart from each other along direction 

θ. 

To objectively describe changes in the appearance in oocytes with aging, I used Nomarski differential interference 

contrast (DIC) microscopy to view and characterize C. elegans oocytes. Nomarski DIC microscopes produce contrast 

by visually displaying the optical phase gradient. DIC microscopy can capture images of transparent objects without 

chemical staining and is widely used to observe nuclei, nucleoli, and granular structures within C. elegans cells [20][21]. 

I focused on the cytoplasmic texture because I consider that it reflects the internal status of oocytes more directly than 

does morphologic appearance, such as the size or shape of oocytes. To quantify the age-associated changes in the 

cytoplasmic texture of C. elegans oocytes, I propose the image feature “Max-min Value” (Mm Value) for measuring 

textural roughness. I used Mm Value and the GLCM approach to reveal quantitative differences between young and 

aged oocytes. 
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Figure 3.1  Observation of Caenorhabditis elegans oocytes by using Nomarski differential interference contrast 

microscopy. 

(a) Schematic representation of an adult hermaphroditic gonad. Oocytes mature and enter the spermatheca, where they 

are fertilized by the accumulated sperm. Embryos are pushed into the uterus and then laid through the vulva. (b) 

Representative differential interference contrast image of oocytes in a gonad. The dotted yellow line surrounds the 

oocytes. Scale bar, 20 μm. (c) Examples of extracted images of the cytoplasmic texture in oocytes from Day 1, Day 2, 

and Day 3 adults. Scale bar, 5 μm. (d) Cytoplasmic texture images and profile plots of Day 1 and Day 3 oocytes. The 

dotted black line indicates the position of the horizontal profile plot. Scale bar, 5 μm. 
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3.2 Results 

3.2.1 Mm Value Reflects Age-associated Changes in the Cytoplasmic Texture 

of C. elegans Oocytes 

To quantify age-associated changes in oocyte appearance, I used Nomarski DIC microscopy to observe the oocytes of 

1-, 2-, and 3-day-old C. elegans adults (hereafter called Day 1, Day 2, and Day 3 adults, respectively). I observed that 

the fertilized embryos developed successfully in the Day 1 and Day 2 adults, whereas those in the Day 3 adults exhibited 

developmental failure, such as errors in egg shell formation or embryonic cleavage, suggesting that fertility declines in 

the first 3 days of the reproductive span. I therefore focused on quantifying age-associated changes in oocyte appearance 

in the DIC images over this 3-day period. In DIC microscopic images, the nucleus appears as a smooth, round region 

in the center of the oocyte, and the cytoplasm is rough (Figure 3.1b). As previously reported [18] [19], I noted various 

morphologic differences (accumulation of oocytes, oocyte size, cavities, and cluster formation) between Day 1 and 

Day 3 adults. In addition, visual comparison of the images showed that the oocyte cytoplasmic texture was rougher in 

appearance in Day 1 than Day 3 worms (Figure 3.1c). In a simple comparison of pixel intensities along a line across 

the oocytes, Day 1 worms showed larger changes in pixel intensity than Day 3 worms (Figure 3.1d).  

To examine whether the texture changes can be characterized quantitatively, I performed a computational texture 

analysis of the oocyte cytoplasm. To this end, I defined an image feature, the “Max-min Value (Mm Value),” as follows. 

Mm Value is calculated by a moving window operation. The maximum and minimum intensities within a moving 

window of W×W pixels are obtained. Then the difference between maximum and minimum intensities is calculated. 

Mm Value is defined as the mean of the differences calculated by applying the moving window to the entire image 

(Figure 3.2a). In a rough-texture image, the Mm Value is expected to be high, whereas in a smooth-texture image, the 

Mm Value is expected to be low. 

I observed that the Day 3 Mm Value was significantly smaller than that for Days 1 and 2 when a moving window of 

3×3 pixels was used (n = 12 animals in each age group; Figure 3.2b; and Figure 3.3). Mm Value did not differ 

significantly between Days 1 and 2. These results suggest that the Mm Value decreases with aging and can be used to 

quantitatively characterize the age-associated changes in the cytoplasmic texture of C. elegans oocytes. 

To examine whether general first-order statistics quantitatively characterize the age-associated changes in 

cytoplasmic texture, I calculated “SD” and “entropy”, which are the mean standard deviation and entropy of local pixel 

intensities in a moving window. I set the size of the moving window to 3×3 pixels. Similar to the Mm Value, the SD 

was significantly smaller on Day 3 than Days 1 and 2 and did not differ significantly between Days 1 and 2 (n = 12 

animals in each age group; Figure 3.2c). In contrast, entropy was similar among all 3 age groups (n = 12 animals in 

each age group; Figure 3.2d). Therefore, the change in cytoplasmic texture in aging C. elegans oocytes could be 

characterized quantitatively by using the Mm Value or SD.  
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To compare the performance of Mm Value, SD, and entropy, I used various sizes of moving window ranging from 

3×3 to 29×29 pixels (Figure 3.2e–g). The Mm Value and SD were significantly smaller on Day 3 than Day 1 for smaller 

window sizes (3×3 to 17×17 pixels for Mm value and 3×3 to 7×7 pixels for SD; Figure 3.2e and f); the difference 

between Day 3 and Day 1 was significant for a broader range of window sizes in the case of Mm value. Entropy showed 

no significant difference between the three age groups at any window size (Figure 3.2g). 

To examine whether the properties of the first-order statistics are consistent in other datasets, I calculated the Mm 

Value, SD, and entropy in another dataset (n = 10 animals each at Day 1 and Day 3). As with the first dataset, the Mm 

Value and SD were significantly smaller on Day 3 than Day 1 for smaller window sizes (3×3 to 25×25 pixels for Mm 

value and 3×3 to 11×11 pixels for SD; Figure 3.4a and b), and the difference between Day 3 and Day 1 was significant 

for a broader range of window sizes in the case of Mm value. However, unlike with the first dataset, the entropy was 

significantly smaller on Day 3 than Day 1 when using smaller window sizes (3×3 to 11×11 pixels; Figure 3.4c). 

My finding that, in both datasets, the Mm Value was significantly smaller on Day 3 than Day 1 for a broader range 

of window sizes than that observed for SD and entropy (Figure 3.2e–g; Figure 3.4) suggests that, compared the other 

two first-order statistics, Mm Value more robustly characterizes the age-associated changes in cytoplasmic texture. 
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Figure 3.2  First-order statistical analysis of the age-associated changes in the cytoplasmic texture of Caenorhabditis 

elegans oocytes. 
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(a) Algorithm for calculating the Max-min Value (Mm Value), which is the mean of the difference between the 

maximum and minimum intensities within each moving window. (b–d) Comparison of the first-order statistical features 

of (b) Mm Value, (c) SD, and (d) entropy (3×3-pixel window) between Day 1, Day 2, and Day 3 oocytes. Circles 

indicate individual animals (n = 12 animals in each age group, pooled from two experiments); red bars indicate the 

mean values. Error bars indicate SEM. Asterisks indicate statistical significance (*P < 0.05, **P < 0.01; Tukey–Kramer 

test). (e–g) Comparison of (e) Mm Value, (f) SD, and (g) entropy between Day 1, Day 2, and Day 3 oocytes by using 

window sizes of 3×3 to 29×29 (n = 12 animals in each age group, pooled from two experiments). Symbols indicate 

statistical significance (Tukey–Kramer test) between Day 1 and Day 3 oocytes (*P < 0.05, **P < 0.01) or Day 2 and 

Day 3 oocytes (†P < 0.05). Error bars indicate SEM. 

 

Figure 3.3  Comparison of the Max-min Value between Day 1, Day 2, and Day 3 oocytes in each of two experiments. 

Max-min Value (Mm Value) was calculated by using a 3×3-pixel window in Day 1, Day 2, and Day 3 oocytes. Circles 

indicate individual animals (n = 4 or 8 animals each age group); red bars indicate the mean values. Error bars indicate 

SEM. Asterisks indicate statistical significance (*P < 0.05; Tukey–Kramer test). 
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Figure 3.4  Comparison of Max-min Value, SD, and entropy between Day 1 and Day 3 oocytes. 

Various window sizes from 3×3 to 29×29 pixels were used. Data are means ± SEM (n = 10 animals in each age group). 

Asterisks indicate statistical significance between Day 1 and Day 3 oocytes (*P < 0.05, **P < 0.01; Welch’s two-tailed 

t test). 
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3.2.2 The second-order statistic GLCM varies with the age-associated 

changes in cytoplasmic texture in C. elegans oocytes 

GLCM is an estimate of the second-order joint probability P(i, j | d, θ) that two pixels with gray levels i and j are d 

pixels apart from each other in the direction θ (Figure 3.5a) [66]. To examine whether a second-order statistic more 

significantly characterizes age-associated texture changes than Mm Value, I used the GLCM-based texture feature 

Correlation (COR), which is a measurement of the gray-level linear dependencies of pixels at specified positions 

relative to each other. I calculated the COR of the cytoplasmic texture of Day 1, Day 2, and Day 3 oocytes.  

As the d value increased, COR decreased and converged to around zero (Figure 3.5b–e). For various θ values, the d 

value at which COR converged to zero was larger in Day 3 oocytes than in Day 1 or 2 oocytes; for example, for θ = 

135, COR in Day 3 oocytes converged to zero when d = 5, whereas COR in Day 1 or Day 2 oocytes converged to zero 

when d = 2 (Figure 3.5e). I found that, at several levels of the parameters d and θ, COR was significantly larger in Day 

3 oocytes than in Day 1 and Day 2 oocytes. In particular, the smallest P value was obtained for the comparison of COR 

in Day 3 oocytes versus Day 1 oocytes when d = 1 and θ = 135 (P = 1.0×10-8; n = 12 animals in each age group; Tukey–

Kramer test). The P value for this parameter set was four orders of magnitude lower than the lowest P value obtained 

by using Mm Value (window size, 3×3 pixels; P = 6.0×10-4; n = 12 animals in each age group; Tukey–Kramer test). 

These results suggest that COR effectively characterized the age-associated changes in cytoplasmic texture. COR was 

able to more significantly characterize the differences between Day 1 and Day 3 oocytes than the Mm Value did when 

using an appropriate parameter set. In addition to COR, I tested several texture-associated features based on GLCM, 

including Angular Second Moment (ASM), Contrast (CON), Inverse Difference Moment (IDM), and Entropy (ENT), 

but COR continued to yield the best characterization (Figure 3.6). 

In general, for all oocytes regardless of age, COR obtained when θ = 135 was smaller than that obtained with the 

other angles tested at equivalent d (Figure 3.5f–h). 
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Figure 3.5  Second-order statistical analysis of the age-associated changes in the cytoplasmic texture of 

Caenorhabditis elegans oocytes. 

(a) Algorithm for calculating the Gray Level Co-occurrence Matrix (GLCM). First, I define a spatial relationship by 

using the parameters distance (d) and angle (θ). I then calculate the second-order joint probability P(i, j | d, θ) of two 

pixels with gray levels i and j (0 ≤ i < G, 0 ≤ j < G). To calculate P(i, j | d, θ), I sum the number of pixels with paired 

intensities (i and j) in the defined spatial relationship. For example, when d is 1 pixel and the θ is 90 degrees, the 

calculated number of pixels with i = 1 and j = 2 or i = 2 and j = 1 is 2. The co-occurrence matrix defined is symmetric. 

(b–e) Effect of oocyte age on Correlation (COR). Curves of mean COR as a function of distance d for Day 1, Day 2, 

and Day 3 oocytes are shown for θ set at (b) 0, (c) 45, (d) 90, and (e) 135 degrees. Data are means ± SEM (n = 12 



 17 

animals in each age group, pooled from two experiments). Symbols indicate significant difference (Tukey–Kramer 

test) in COR between Day 1 and Day 3 oocytes (*P < 0.05, **P < 0.01) or Day 2 and Day 3 oocytes (†P < 0.05, 

††P < 0.01). (f–h) Effect of θ on COR. Curves of mean COR as a function of distance d when θ is set at 0, 45, 90, or 

135 degrees are shown for (f) Day 1, (g) Day 2, and (h) Day 3 oocytes. Data are means ± SEM (n = 12 animals in each 

age group, pooled from two experiments). Symbols indicate significant difference (Tukey–Kramer test) in COR 

between 0 and 135 degrees (*P < 0.05, **P < 0.01), 45 and 135 degrees (†P < 0.05, ††P < 0.01), or 90 and 135 degrees 

(§P < 0.05, §§P < 0.01).  

 

Figure 3.6  Comparison of key texture features based on a Gray Level Co-occurrence Matrix between Day 1, Day 2, 

and Day 3 oocytes. 

Curves of the indicated texture features as a function of distance d when θ = 135 are shown. Data are means ± SEM (n 

= 12 animals each age group, pooled from two experiments). ASM, Angular Second Moment; CON, Contrast; IDM, 

Inverse Difference Moment; ENT, Entropy; COR, Correlation. Symbols indicate statistical significance (Tukey–
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Kramer test) between Day 1 and Day 3 oocytes (*P < 0.05, **P < 0.01) or Day 2 and Day 3 oocytes (†P < 0.05, ††P < 

0.01). Second-order statistical analysis of the age-associated changes in the cytoplasmic texture of Caenorhabditis 

elegans oocytes. 

3.2.3 Sample Orientation does not Influence the Dependency of COR on the 

Angle θ 

Images from DIC microscopy have a shadow-cast appearance oriented in the shear direction of the prism [70]. The 

texture characterized by using COR was dependent on θ, i.e., COR was smaller at θ = 135 than at any other angle 

(Figure 3.5f–h). To examine whether this angle dependency is due to either the orientation of the worm or the imaging 

system itself, I calculated COR after rotating worm samples to 0, 45, 90, or 135 degrees relative to horizontal (i.e., 0 

degrees) (Figure 3.7a–d). If sample orientation causes the angle dependency, then the angle-dependent property of 

COR should change depending on sample orientation. Conversely, if the angle dependency is due to the imaging system 

itself, then orientation should have no effect on this property. I found that, regardless of sample orientation, COR was 

smaller at θ = 135 than at other angles (n = 10 animals in each angle group; Figure 3.7e–h). This result indicates that 

the angle-dependent property of COR measurements of oocyte cytoplasmic texture is due to the imaging system itself, 

rather than to the orientation of the worm imaged. 

 

Figure 3.7  Comparison of Correlation between angle parameters by using rotated worms. 
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(a–d) Representative images of worms rotated (a) 0, (b) 45, (c) 90, or (d) 135 degrees from horizontal (0 degrees). Scale 

bar, 20 μm. (e–h) Effect of worm rotation on Correlation (COR). Curves of mean COR as a function of distance d are 

shown for worms rotated (e) 0, (f) 45, (g) 90, and (h) 135 degrees from horizontal. Data are means ± SEM (n = 10 

animals in each angle group). Symbols indicate significant difference (Tukey–Kramer test) in COR between 0 and 135 

degrees (*P < 0.05, **P < 0.01), 45 and 135 degrees (†P < 0.05, ††P < 0.01), or 90 and 135 degrees (§P < 0.05, 

§§P < 0.01). 

3.2.4 The Optimal Choice of Distance Parameter d Depends on the Resolution 

of the Image 

To examine whether the optimal choice of the GLCM parameter d to characterize the age-associated changes depends 

on the resolution of the image, I calculated the COR in upscaled and downscaled images created by artificially changing 

the resolution of the original images (Figure 3.8a–c). The COR in Day 1 and 3 oocytes converged to zero at smaller d 

in the downscaled images than in the original images (Figure 3.8d and e). In contrast, COR converged at larger d in the 

upscaled images than in the original images (Figure 3.8e and f). In both the original and rescaled images, the d value 

at which COR converged was larger in Day 3 oocytes than in Day 1 oocytes (Figure 3.8d–f). The smallest P value was 

obtained for the comparison of COR in Day 3 oocytes versus Day 1 oocytes in the downscaled, original, and upscaled 

images when d = 1, 3, and 5, respectively (P = 8.5×10-5, 5.7×10-5, and 5.5×10-5; n = 10 animals in each age group; 

Welch’s two-tailed t test; Figure 3.8d–f). These results suggest that the d value at which COR converges to zero and 

the optimal d value to characterize the age-associated changes in cytoplasmic texture increase as the image resolution 

increases, but the marked difference in the convergence properties of COR between Day 1 and Day3 oocytes is not 

changed by image resolution. 
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Figure 3.8  Comparison of Correlation between pseudo-low and pseudo-high resolution images. 

(a–c) Representative original and rescaled images. The (b) original images (30×30 pixels) were (a) downscaled (final 

size, 15×15 pixels) to produce pseudo-low resolution images, and (c) upscaled (final size, 60×60 pixels) to produce 

pseudo-high resolution images. (d–f) Curves of mean Correlation (COR) as a function of distance d when θ = 135 are 

shown for the (e) original, (d) pseudo-low resolution, and (f) pseudo-high resolution images. Data are means ± SEM 

(n = 10 animals in each age group; orientation of the worms is 0 degrees). 

3.2.5 Changing Smoothness or Simulating Large Structures did not 

Reproduce the Age-associated Changes in Cytoplasmic Texture 

To elucidate the factor that causes the age-associated texture change that is characterized by Mm Value or COR, I 

visually compared Day 1 and Day 3 oocytes. I considered two factors that might underlie the age-associated texture 

change characterized by Mm Value and COR: (1) cytoplasmic smoothness in oocytes (i.e., the cytoplasm of Day 3 

oocytes appeared smoother than that of Day 1 oocytes) and (2) the distribution of large structures (i.e., large structures 

were distributed irregularly in the cytoplasm of Day 3 oocytes but the structure was homogenous throughout that of 

Day 1 oocytes) (Figure 3.9a). 

To examine whether these factors caused the texture changes, I created ‘Day 3-fied images’ by applying image 

processing to Day 1 images. I created three patterns of Day 3-fied images by manipulating the factors. The first pattern, 

‘Smoothed Pattern,’ was created by smoothing the images of Day 1 oocytes. That is, the maximum and minimum 
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intensities of Smoothed pattern images were normalized to minimum + offset and maximum – offset, respectively by 

using the minimum and maximum intensities from Day 1 oocytes. The second pattern, ‘Large Structure Pattern’, was 

generated by applying a Gaussian filter multiple times to the center part of the Day 1 images; the parameter iteration 

dictates the number of times the filter is applied. I created the third pattern, ‘Combination Pattern’, by first smoothing 

the Day 1 images and then generating large structures on them (Figure 3.9b). 

I then compared Mm Value and COR between Day 3-fied, actual Day 1, and actual Day 3 oocyte images (n = 10 

animals in each age group; Figure 3.9c). I set the parameter offset in the Smoothed pattern to 50, 100, or 200 and the 

parameter iteration in the Large Structure pattern to 1, 3, or 5. If the properties of the Day 3-fied images are similar to 

the actual images, the features of the Day 3-fied images would be expected to be similar to those of actual Day 3 images 

and differ from those of actual Day 1 images. For Smoothed pattern images, Mm Value at a window size of 3×3 pixels 

for the Day 3-fied images did not differ significantly from actual Day 3 images but was significantly smaller than that 

of actual Day 1 images (Figure 3.9c; offset = 100, 200). When the Day 3-fied images were compared with Day 1 images, 

all of the three patterns of Day 3-fied images reproduced the difference in Mm Value between Day 1 and Day 3 oocytes 

(Figure 3.9c). In addition, for all patterns, the Day 3-fied images reproduced the differences in general first-order 

statistical features, SD and entropy, between Day 1 and Day 3 oocytes (Figure 3.10). Therefore, in terms of these 

features, all three patterns of Day 3-fied images were similar to actual Day 3 images. 

Next, I calculated COR for the three patterns of Day 3-fied images and the actual Day 1 and Day 3 images (n = 10 

animals in each age group). As mentioned above, for the actual images, COR converged to zero at larger d values for 

Day 3 than for Day 1 (Figure 3.5b–e). However, COR of Day 3-fied images converged to zero at almost the same d as 

the Day 1 images for the Smoothed and Large Structure patterns (Figure 3.9d and e), and the Combination Pattern 

(Figure 3.11). Therefore, none of the three patterns of Day 3-fied images accurately represented the differences in COR 

between actual Day 1 and Day 3 images. This finding suggests that the age-associated changes in cytoplasmic texture 

cannot be artificially reproduced by manipulating the smoothness of the image or adding irregular large structures. 
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Figure 3.9  Day 3-fied images created from Day 1 images. 

(a) Comparison of cytoplasmic texture between Day 1 and Day 3 oocytes. Top, oocyte images; yellow areas indicate 

representative extracted areas. Scale bar, 20 μm. Bottom, images of the extracted areas. The extracted area of the Day 

3 oocyte (middle) appears to have a smoother texture than that of the Day 1 oocyte (left). The extracted area of the Day 

3 oocyte (right) contains large structures (marked by a dotted white line), whereas that of the Day 1 oocyte is 

homogeneous. (b) Extracted areas of a Day 1 image and three Day 3-fied images (left, Smoothed pattern; middle, Large 

Structure pattern; right, Combination pattern) created from the Day 1 image. The dotted white line indicates the filtered 

area. (c) Max-min (Mm) Values (3×3-pixel window) of actual Day 1 and actual Day 3 images, and the three patterns 

of Day 3-fied images. The Smoothed pattern parameter offset was set to 50, 100, and 200. The Large Structure pattern 
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parameter iteration was set to 1, 3, and 5. The Combination pattern parameters (offset, iteration) were set to (50, 1), 

(50, 3), and (50, 5). Circles indicate the Mm Values of individual animals (n = 10 animals in each age group; orientation 

of the worms is 0 degrees); red bars indicate the mean values. Error bars indicate SEM. Asterisks indicate statistical 

significance (Tukey–Kramer test) between actual Day 1 and actual Day 3 images or actual Day 1 and Day 3-fied images 

(**P < 0.01); N.S., no significant difference between actual Day 3 and Day 3-fied images. (d and e) Curves of mean 

Correlation (COR) as a function of distance d when θ = 135 are shown for actual Day 1, actual Day 3, and Day 3-fied 

oocyte images created with (d) Smoothed pattern (offset = 50 or 200) or (e) Large Structure pattern (iteration = 1 or 5). 

Data are means ± SEM (n = 10 animals in each age group; orientation of the worms is 0 degrees). 

 

Figure 3.10  Comparison of SD and entropy between actual images and Day 3-fied images. 

(a) SD and (b) entropy of actual Day 1, actual Day 3, and the three patterns of Day 3-fied images were calculated using 

a window size of 3×3-pixels. The Smoothed pattern parameter offset was set to 50, 100, and 200. The Large Structure 
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pattern parameter iteration was set to 1, 3, and 5. The Combination pattern parameters (offset, iteration) were set to 

(50, 1), (50, 3), and (50, 5). Circles indicate the image features of individual animals (n = 10 animals in each age group; 

orientation of the worms is 0 degrees); red bars indicate the mean values. Error bars indicate SEM. Symbols indicate 

statistical significance (Tukey–Kramer test) between actual Day1 and actual Day 3 or Day 3-fied images (**P < 0.01) 

or between actual Day 3 and Day 3-fied images (†P < 0.05, ††P < 0.01); N.S., no significant difference between actual 

Day 3 and Day 3-fied images. 

 

Figure 3.11  Correlation calculated for Day 1 and Day 3 oocyte images and Day 3-fied oocyte images with two 

different Combination patterns. 

Curves of mean Correlation (COR) as a function of distance d when θ = 135 are shown. Data are means ± SEM (n = 

10 animals each age group; orientation of the worms is 0 degrees). The parameters for the Combination pattern (offset 

and iteration) were set to (a) (50, 5) and (200, 5) or (b) (200, 1) and (200, 5), respectively.  

3.2.6 Synthetic images with different sizes of granules recapitulated the 

difference in COR between Day 1 and Day 3 oocytes 

To investigate what factor causes the d value at which COR converges to zero to differ between Day 1 and Day 3 

oocytes, I created simple synthetic images based on two hypotheses: that the (1) number or (2) size of granules in the 

cytoplasm changes with aging. I therefore evaluated the convergence of COR to zero in the synthetic images with 

different granule numbers (N) or sizes (R pixels) (Figure 3.12a). 

When I varied granule number but kept the granule size constant at R = 10, COR in the synthetic images converged 

to zero at approximately the same d regardless of whether 200 or 150 granules were present (Figure 3.12b). In contrast, 
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when I varied the granule size but kept the granule number constant at N = 200, COR converged at a larger d when the 

granule size was 12 pixels compared with 10 pixels (Figure 3.12c). Therefore, merely altering the number of the 

granules did not recapitulate the difference in the convergence of COR between Day 1 and Day 3 oocytes, but changing 

the size of cytoplasmic granules did recapitulate this difference. 

To objectively assess whether changing granule size in synthetic images yields the anticipated difference in the 

d at which COR converges to zero, I exponentially approximated COR curves by using equation (3.1), where a is the 

amplitude, b is a constant that dictates the d value at which f(x) converges to zero, and c is the offset. 

 𝑓(𝑥) = 𝑎𝑒−
𝑥
𝑏 + 𝑐 (3.1) 

In the approximation function, as b increases, the d value at which f(x) converged to zero increases. The difference in 

the d at which COR converges to zero between Day 1 and Day 3 oocytes should reflect the difference in b values. 

When I compared the b in the function approximating COR between Day 1 and Day 3 oocytes, the b of Day 3 (b = 1.7) 

was larger than that of Day 1 (b = 0.7; Figure 3.12d). Next, I approximated COR of the synthetic images. The difference 

in b was greater when I manipulated granule size R (Figure 3.12f; [N, R] = [200, 10], b = 3.0; [N, R] = [200, 12], b = 

4.7) than when I varied granule number (N) (Figure 3.12e; [N, R] = [200, 10], b = 3.0; [N, R] = [150, 10], b = 3.4). The 

b was larger for the larger granule size than the smaller granule size. These results indicate that the difference of the 

COR property “d at which COR converges to zero” between Day 1 and Day 3 oocytes can be reproduced by changing 

the size of the granules. 
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Figure 3.12  Synthetic images created by using different numbers and sizes of particles. 

(a) Synthetic images created by setting the number (N) and size (R pixels) of particles to (left) 200 and 10, (middle) 

200 and 12, or (right) 150 and 10, respectively. (b and c) Curves of mean Correlation (COR) as a function of distance 

d when θ = 135 are shown for synthetic images with different (b) numbers (N) or (c) sizes (R pixels) of particles. Gray 

arrows indicate d converging to zero. (d) Exponential curves fitted to COR values as a function of d when θ = 135 are 



 27 

shown for actual Day 1 and Day 3 oocytes (n = 10 animals in each age group; orientation of the worms is 0 degrees). 

(e and f) Exponential curves fitted to COR values as a function of d when θ = 135 are shown for synthetic images with 

different (e) numbers (N) or (f) sizes (R pixels) of particles. 

3.2.7 Granules in C. elegans Oocytes are Larger on Day 3 than Day 1 

In the synthetic images, changing the granule size reproduced the difference in COR between Day 1 and Day 3 oocytes, 

suggesting that cytoplasmic granules in C. elegans oocytes might change in size with aging. To examine whether 

granules in DIC images demonstrated age-associated size variation, I manually measured granules and compared their 

size on Days 1 and 3 (n = 8 animals in each age group; Figure 3.13a). Granules were significantly larger in Day 3 

oocytes than Day 1 oocytes (Figure 3.13b). 

 

Figure 3.13  Measurement of the size of cytoplasmic granules in differential interference contrast images. 

(a) Representative differential interference contrast images of oocytes. Left, Day 1 oocyte. Right, Day 3 oocyte. Top, 

Raw images. Bottom, Manual detection of granules on raw images. (b) Comparison of the size of granules manually 

measured in Day 1 and Day 3 oocytes. The sizes of many of the elongated and clustered granules in Day 3 oocytes 

were not measured. Circles indicate individual animals (n = 8 animals in each age group); red bars indicate the mean 

value. Error bars indicate SEM. Asterisks indicate statistical significance (**P < 0.01; Welch’s two-tailed t test). 
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3.3 Discussion 

In this study, I found that the texture of the cytoplasm in C. elegans oocytes varies with their age. These changes were 

characterized quantitatively through the DIC image features of Mm Value and COR, the second of which is based on 

the second-order statistic GLCM. In addition, with the use of appropriate parameter sets, COR characterized these age-

associated changes in texture more significantly than Mm Value. Furthermore, analysis of synthetic images and 

measurement of the size of cytoplasmic granules suggested that the cytoplasmic granules in C. elegans oocytes become 

larger with aging.  

Mm Value, a measure of texture roughness, is calculated as the mean of the difference between the maximum and 

minimum intensities within successive moving windows. The statistical significance of the difference in Mm Values 

between Day 1 and Day 3 oocytes decreased as the window size increased (Figure 3.2e). If the texture contrast is 

uniform within an oocyte, calculating Mm Value by using a window size that is smaller than the granule size enables 

the Mm Value to fluctuate depending on the size or density of granules. However, this variation in the Mm Value 

cannot occur when the window size used for determining Mm Value might contains multiple granules, such as 13×13, 

15×15, or 17×17 pixels. Mm Value for Day 1 oocytes remained significantly larger than that for Day 3 oocytes for 

these window sizes (P values < 0.05; Figure 3.2e). Therefore, texture contrast might decrease with aging. However, 

the utility of Mm Value for characterizing the age-associated changes in cytoplasmic texture disappeared when window 

size was set to 19×19 pixels or larger (all P values > 0.05; Figure 3.2e). When determined by using windows sufficiently 

large to contain multiple granules, the P values for age-associated differences in Mm Value increased as the window 

size increased. This may indicate that texture contrast changes in a spatially inhomogeneous manner. 

Regardless of window size, the Mm Values of the Day 3-fied images based on the Smoothed pattern were 

significantly smaller than those of Day 1 images (Figure 3.14a). In addition, the Mm Values of the Day 3 images did 

not differ significantly from those of Day 1 images when the window was 25×25 pixels or larger. Furthermore, contrast 

in the Smoothed pattern image was decreased due to normalization to the overall texture contrast throughout the image. 

Therefore, the results suggest that texture contrast in oocytes does not change homogeneously from Day 1 to Day 3. 

The relationship between the Mm Values of Day 1 and 3 images may reflect the inhomogeneous changes of the texture 

contrast. Given that changes in the optical phase gradient can alter contrast in DIC images, the age-associated decrease 

in texture contrast might reflect a change in granule content due to chemical modification or a difference in content 

quantity. Similar to the results for Mm Values of Day 3 images, the Mm Values of Day 3-fied images with the Large 

Structure and Combination patterns were not significantly different from Day 1 images when the window was 25×25 

pixels or larger (Figure 3.14b and c). The Day 3-fied images based on the Large Structure and Combination patterns 

were created by changing the contrast of the Day 1 image in a spatially inhomogeneous manner. 

Compared with SD and entropy, the Mm value characterized the age-associated differences in cytoplasmic texture 

between Day 1 and 3 oocytes for a broader range of window size (Figure 3.2e–g; Figure 3.4). SD and entropy were 
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calculated by using the grey values of all pixels in the moving window, whereas the Mm Value was calculated by using 

the grey values of only the maximum and minimum intensities in the moving window. The applicability of the Mm 

Value across many window sizes may stem from the use of these two extreme values. 

COR significantly characterized age-associated variations between the Day 1 and Day 3 oocytes when using smaller 

d but not or less significantly when using larger d (Figure 3.5b–e). This finding suggests some small changes in structure 

with aging. Therefore, COR likely characterized age-associated changes in texture by recognizing small structures in 

the cytoplasm. 

The d value at which COR converged to zero was larger in Day 3 oocytes than in Day 1 oocytes (Figure 3.5b–e). 

The d at which COR converged to zero in Day 3-fied images differed markedly from that in actual Day 3 images 

(Figure 3.9d and e), and the d at which COR converged to zero in the synthetic images was affected by the size of the 

granules rather than their quantity (Figure 3.12b and c). These results suggest that granule size is the major factor 

affecting the convergence of COR to zero, and that the difference in the convergence properties of COR between Day 

1 and Day 3 images may reflect the larger size of granules in Day 3 oocytes. Supporting this notion, I found that 

cytoplasmic granules in Day 3 oocytes were significantly larger than those in Day 1 oocytes (Figure 3.13b); i.e., 

cytoplasmic granules in C. elegans oocytes become larger with age. 

At the optimal parameter setting (d = 1, θ = 135) and a window of 3×3 pixels, COR characterized cytoplasmic texture 

with a lower P value than that obtained with the Mm Value. However, COR was not always superior to Mm value 

because the effectiveness of COR depended on the angle θ and distance d. The results of image analysis of rotated 

worms suggest that the age-associated differences in texture include an angle-dependent property that is intrinsic to the 

DIC imaging system. The results of analyzing rescaled images suggest that the age-associated differences also include 

a size-dependent property intrinsic to the resolution of the imaging system. At appropriate parameters, COR 

characterized the changes in texture with lower P values than those obtained with Mm Value, but Mm Value was more 

informative at a broader range of parameters and was not particularly influenced by the angle-dependent property of 

DIC images. Mm Value may detect a feature of the age-associated changes that COR cannot detect. Further studies are 

needed to clarify the difference in the characteristics of the age-associated changes detected by Mm Value and COR. 

Reported age-associated changes in the morphologic appearance of C. elegans oocytes include oocyte shrinkage, 

loosened contacts, and aggregation into large clusters [18][19]. Here I have quantitatively characterized age-associated 

changes in the cytoplasmic texture of C. elegans oocytes through several statistical image features, such as Mm Value 

and COR. Cytoplasmic texture would reflect the internal status of oocytes more directly than the external morphologic 

appearance. Quantitative analysis of cytoplasmic texture and measurement of granules suggest that the cytoplasmic 

granules in C. elegans oocytes become larger with aging. Mm Value and COR can be used as objective methods to 

quantify age-associated differences in oocyte appearance, which may reflect oocyte fertility. To use the image features 

to classify the texture of oocytes according to their age, image features should differ markedly relative to oocyte age. 
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Although Mm value and COR characterized age-associated changes in cytoplasmic texture, their distribution 

overlapped between age groups, and the values differed significantly between Day 1 and Day 3 oocytes but not between 

Day 1 and Day 2 oocytes. These results suggest that Mm value and COR may be insufficiently sensitive for accurate 

recognition and classification of small textural changes. To increase sensitivity, multi-dimensional analysis using 

additional image features or application of machine learning methods, such as deep learning, may be required. The age-

associated changes in cytoplasmic texture can be subtle. 

COR was similar on Day 1 and Day 2, and significantly increased on Day 3. Mm value was similar on Day 1 and 

Day 2, and significantly decreased on Day 3. A possible explanation of these results is that the age-related change in 

oocyte quality is not reflected in the cytoplasmic texture of oocytes between Day 1 and Day 2. Alternatively, there 

could be almost no age-related change in the oocyte quality between Day 1 and Day 2. Given that almost all of the 

fertilized embryos developed successfully in the Day 1 and Day 2 adults, but not the Day 3 adults, it is likely that oocyte 

quality does not change much between Day 1 and Day 2, but remarkably decreases on Day 3. 

Some of the cytoplasmic granules in the DIC texture images may be yolk granules [71][72]. Yolk is a lipoprotein 

composed of lipids and lipid-binding proteins called vitellogenins [73]. In C. elegans, vitellogenins are synthesized in 

the intestine and transported into maturing oocytes through endocytosis [74][75]. Yolk provides essential nutrients to 

the eggs to support embryonic development [75]. During reproductive senescence, the intestine continues to produce 

and secrete large amounts of yolk protein. In adult C. elegans hermaphrodites, yolk accumulates towards the end of the 

self-fertile reproductive period [76][77]. Provisioning of vitellogenin to embryos increases with maternal age [78] and 

might increase the lipid content in embryos and oocytes, given that vitellogenins transport lipids into embryos [73][78]. 

Taking these findings together with my data, I propose that the cytoplasmic granules in aged adults (Day 3 and later) 

might enlarge due to an increase in vitellogenin content or in vitellogenin-transported embryonic lipid content.  

What is the relationship between decreased fertility and yolk accumulation with aging? Yolk accumulation may 

contribute to the decrease in fertility. High levels of yolk appear to be detrimental and decrease the lifespan of C. 

elegans [79]. In contrast, knockdown of vitellogenin expression extends lifespan [80][81]. Increased amounts of yolk 

might accelerate the aging of oocytes or animals, resulting in decreased fertility. Alternatively, decreased oocyte 

fertility might contribute to yolk accumulation. Moreover, I cannot exclude the possibility that yolk accumulation does 

not affect fertility directly. Further experiments are needed to clarify the relationship between yolk levels and fertility 

in this and other species. 
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Figure 3.14  Comparison of Max-min Values between actual Day 1, actual Day 3, and Day 3-fied oocyte images for 

various window sizes from 3×3 to 29×29 pixels. 

Data are means ± SEM (n = 10 animals each age group; orientation of the worms is 0 degrees) (a) Day3-fied images 

were created with Smoothed pattern (offset was set to 100). (b) Day3-fied images were created with Large Structure 

pattern (iteration was set to 3). (c) Day3-fied images were created with Combination pattern [(offset, iteration) were 

set to (50, 1)]. Symbols indicate statistical significance (Tukey–Kramer test) between Day 1 and Day 3 images 

(*P < 0.05, **P < 0.01) or Day 1 and Day 3-fied images (†P < 0.05, ††P < 0.01). 
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3.4 Methods 

3.4.1 C. elegans Strains and Growth Conditions 

Caenorhabditis elegans (Bristol N2 strain) were grown under standard conditions [23]. The L4 larval stage was 

considered as Day 0; worms were defined as Day 1, Day 2, and Day 3 adults at 18–24 h, 43–46 h, and 67–70 h after 

L4, respectively. This experiment was done by Hatsumi Okada (H.O.) in Laboratory for Developmental Dynamics at 

RIKEN Center for Biosystems Dynamics Research. 

3.4.2 Imaging of Oocytes 

Worms were immobilized in a polystyrene nanoparticle suspension [82] supplemented with 5-hydroxytryptamine [83] 

on agarose pads. The anterior gonad was observed by Nomarski DIC microscopy with the use of a Leica HCX PL APO 

63×/1.20 W CORR objective and an iXonX3 electron-multiplying CCD camera controlled with live-cell imaging 

software (Andor iQ). The plane of focus was through the oocyte nucleus. Images of nematodes at four angles (0, 45, 

90, and 135 degrees) were obtained by rotating the Day 1 samples; 0 degrees was defined as horizontal orientation. 

Digital images of 512×512 pixels were converted to 14-bit TIFF format (0.25 μm per pixel). The images were captured 

by H.O. 

3.4.3 Calculation of Image Features 

To calculate image features, random regions of 30×30 pixels were extracted from the cytoplasm, without including 

nuclei or cell boundaries. The three oocytes most proximal to the spermatheca in the anterior gonad were used for each 

animal, and one region was extracted from each oocyte. Image features of individual animals were defined as the mean 

of those in the extracted three regions.  

The first-order statistical features Mm Value, SD, and entropy were calculated by moving the local window within 

the confines of the border of the extracted region. SD was defined as the mean of the standard deviations of the pixel 

intensities in the moving window. Entropy was defined as the mean of entropies (calculated according to the following 

the equation) in the moving window: 

 − ∑ 𝑃(𝑘) log2 𝑃(𝑘),

G−1

𝑘=0

  

where G is the number of gray levels, and P(k) is the probability of occurrence of gray level k in the moving window. 
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Second-order statistical features based on GLCM—Correlation (COR), Angular Second Moment (ASM), Contrast 

(CON), Inverse Difference Moment (IDM), and Entropy (ENT)—were calculated by using the following equations and 

the co-occurrence matrix P(i, j | d, θ): 

 

COR =  
∑ ∑ 𝑖𝑗𝑃(𝑖, 𝑗)  − 𝜇𝑥𝜇𝑦

G−1
𝑗=0

G−1
𝑖=0

𝜎𝑥𝜎𝑦
 

ASM = ∑ ∑{𝑃(𝑖, 𝑗)}2

G−1

𝑗=0

G−1

𝑖=0

 

CON =  ∑ ∑(𝑖 − 𝑗)2𝑃(𝑖, 𝑗)

G−1

𝑗=0

G−1

𝑖=0

 

IDM =  ∑ ∑
𝑃(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

G−1

𝑗=0

G−1

𝑖=0

, and 

ENT =  − ∑ ∑ 𝑃(𝑖, 𝑗) log(𝑃(𝑖, 𝑗)),

G−1

𝑗=0

G−1

𝑖=0

 

 

where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, and 𝜎𝑦 are the means and standard deviations in the x and y direction given by 

 

𝜇𝑥 =  ∑ ∑ 𝑖𝑃(𝑖, 𝑗)

G−1

𝑗=0

G−1

𝑖=0

,  𝜇𝑦 =  ∑ ∑ 𝑗𝑃(𝑖, 𝑗)

G−1

𝑗=0

G−1

𝑖=0

 and 

𝜎𝑥
2 =  ∑ ∑ 𝑃(𝑖, 𝑗)

G−1

𝑗=0

(𝑖 − 𝜇𝑥)2

G−1

𝑖=0

,  𝜎𝑦
2 =  ∑ ∑ 𝑃(𝑖, 𝑗)

G−1

𝑗=0

(𝑗 − 𝜇𝑦)
2

G−1

𝑖=0

. 

 

P(i, j | d, θ) was defined as symmetric (see Figure 3.5a). 

3.4.4 Computational Complexity 

The computational complexity of the Mm Value is of the order of O(W2M2), where W is the window size, and M is the 

size of the input image. The computational complexity of the COR is divided into two components: (1) creating the 

GLCM and (2) calculating the COR from the GLCM [84]; the computational complexity is of the order of O(L2)+O(G2), 

where L is the length of the neighborhood window in GLCM feature extraction, and G is the number of grey levels of 

the input image. Using my codes, it takes about 0.5 × 10-3 s per image to calculate the Mm Value for W = 3 pixels and 

M = 30 pixels on my PC (Intel® Core™ i5, 1.6 GHz). The calculation of the COR for L = 1 pixel and G = 256 takes 

about 2.4 × 10-3 s per image on my PC (Table 3.1). 
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Table 3.1 The processing time per image for Max-min Value, SD, entropy and Correlation 

The processing time was measured for input images of various sizes. The parameter settings were changed according 

to the image size. Processing time per image was calculated by averaging the processing time of 1000 images. The 

processing time for Max-min Value (Mm Value) was equivalent to that for SD, and that for entropy was greater than 

that for MmValue or SD. The computational complexities of the SD and entropy are of the order of O(W2M2) and 

O(W2M2)+O(GM2), respectively, where W is the window size, M is the size of the input image and G is the number of 

grey levels of the input image. The processing time for the first-order statistical features was less than that for COR 

when the input images were small (30×30 pixels), but greater than that for Correlation (COR) when the input images 

were large (150×150 pixels). This was because the processing times for the first-order statistical features increased with 

the image size, but the processing time for COR was largely unaffected by the image size. 

 

 

3.4.5 Creation of the Rescaled Images 

The images were rescaled using bilinear interpolation. I used data from worms oriented at 0 degrees (n = 10 animals) 

as the original images (30×30 pixels). To halve the resolution of the original images, the images were downscaled to 

15×15 pixels. To double the resolution of the original images, the images were upscaled to 60×60 pixels. 

3.4.6 Creation of the Synthetic Images 

Synthetic images were created by randomly locating N white granules with diameter R pixels on a black background 

image of 300×300 pixels. Granules could not overlap or protrude from the border of the image. 

3.4.7 Fitting Equations to the COR Curves 

To fit equations to the COR datasets (actual Day 1 and Day 3 images, and synthetic images), I performed nonlinear 

regression analyses using the exponential function described in the Results section: 

𝑓(𝑥) = 𝑎𝑒−
𝑥
𝑏 + 𝑐 . 

I used the COR data for d of 1 to 7 pixels to estimate the curve for convergence of COR to zero. I used data from worms 

oriented to 0 degrees (n = 10 animals).  

Mm Value SD entropy COR (θ  = 135 deg)

30×30 3 1 0.5 × 10
-3

0.5 × 10
-3

1.0 × 10
-3

2.4 × 10
-3

60×60 5 2 0.6 × 10
-3

0.7 × 10
-3

3.4 × 10
-3

2.3 × 10
-3

150×150 11 5 1.2 × 10
-2

1.1 × 10
-2

2.8 × 10
-2

2.3 × 10
-3

Size of input image (pixels)
Window size (pixels)

for Mm Value, SD, and entropy

Distance parameter (pixels)

for COR

Processing time per image (s)
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3.4.8 Quantification of the Granule Size 

For each worm, I manually measured the cytoplasmic granules in the oocyte that was second-most proximal to the 

spermatheca. Granules were determined as non-overlapping circular or nearly circular regions where signal intensity 

exceeded the background intensity. Many of the elongated and clustered granules in Day 3 oocytes were not measured. 

3.4.9 Statistical Analyses 

Statistical analyses were performed using R software. P values for pair-wise comparisons of data sets were calculated 

using Welch’s two-tailed t test. Those for multiple comparisons of data sets were calculated using Tukey–Kramer test. 
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Chapter 4  

Texture-based Screening of Genes Involved in 

Reproductive Aging 

 

4.1 Introduction 

Reproductive ability declines with aging, thereby increasing errors in fertilization, chromosome segregation, and 

embryonic cleavage [6][32][33]. However, the mechanisms regulating reproductive aging remain incompletely 

understood. 

Caenorhabditis elegans (C. elegans) is a leading model for studying aging because of its short lifespan (~ 3 weeks) 

and the evolutionary conservation of longevity pathways from C. elegans to humans [28]. In particular, C. elegans has 

been developed as a model for studying age-related decline in fertility [18]. 

Age-related changes in oocytes are found not only in its function but also in appearance [18][19][33]. I showed that 

the texture of the cytoplasm in C. elegans oocytes varies with age [85] (explained in Chapter 3). I quantitatively 

characterized this change through the differential interference contrast (DIC) image features of Max-min Value (Mm 

Value) and Correlation (COR), which is based on Gray Level Co-occurrence Matrix (GLCM) [66] (Figure 4.1a and b; 

explained in Chapter 3). Mm Value is a contrast feature that is calculated as the mean of the difference between the 

maximum and minimum intensities within successive moving windows. The Mm Value in the cytoplasmic texture of 

oocytes decreases with aging while the COR, at several levels of parameters, increased with aging [85] (explained in 

Chapter 3). However, how variances in texture are related to biological and genetic process has not been clarified. 

Genes whose knockdown causes the texture changes as seen in the oocytes with aging are considered to be candidate 

genes involved in the aging pathway. The identification of candidate genes involved in the aging pathway may lead to 

understanding of the mechanisms underlying oocyte aging. 

Worm Developmental Dynamics Database 2 (WDDD2; https://wddd.riken.jp) is an update of WDDD [86]. It shares 

four-dimensional DIC microscopy images of 33 wild-type and 1728 RNA interference (RNAi)-treated C. elegans 

embryos. RNAi is a phenomenon in which specific genes are inactivated by introduction of double-stranded RNA with 

complementary sequences [26]. The RNAi-treated embryos correspond to the 316 essential embryonic genes that 

exhibited an embryonic lethal phenotype in 100% of offspring when silenced in the previous genome-wide screen [87]. 
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RNAi screening using computational image processing or automatic screening system is one of the state-of-the-art 

technologies in biomedical research [88][89]. RNAi screening based on morphological features from image processing 

is unbiased and high-throughput approach. Recently, I proposed a method to quantify the age-associated changes in the 

cytoplasmic texture of C. elegans oocytes [85] (explained in Chapter 3). This method provides a new opportunity to 

apply the computational image processing-based RNAi screening to studies of aging in C. elegans oocytes.  

Here, to examine whether gene knockdown can decrease the Mm Value or increase the COR (as seen in oocytes 

with aging), I analyzed the cytoplasmic texture in the early embryo images in WDDD2. Morphological defects in 

oocytes correlate with a decreased embryo-hatching rate [18][19]. I assumed that the cytoplasmic texture properties in 

the oocytes are reflected in the early embryo and screened for genes whose knockdown decreased the Mm Value or 

increased the COR in cytoplasmic regions of early embryos. I identified five genes whose knockdown resulted in a 

decreased Mm Value, and one gene whose knockdown led to increased COR, suggesting that the genes are involved 

in reproductive aging. 

4.2 Results 

4.2.1 Overview of the Experiments 

To identify genes whose expression might affect Mm Values and/or the COR in aging oocytes, I examined the 

differences in image features between RNAi-treated and wild-type embryos in WDDD2 (Figure 4.1c). I used 33 

datasets from wild-type embryos and 1728 datasets from RNAi experiments, where 316 embryonic essential genes 

were individually silenced. 
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Figure 4.1  Schema of image analysis methodologies. 

(a)

(b)

(c)

Local moving window 

Max 

min

Max − min 

Averaging

Max-min Value
(Mm Value)
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(a) Algorithm for calculating the Max-min Value (Mm Value). (b) Algorithm for calculating the Gray Level Co-

occurrence Matrix (GLCM). When the distance is 1 pixel and the direction is 90 degrees, the calculated number of 

pixels with i = 1 and j = 2 or i = 2 and j = 1 is 2. (c) Overview of our in silico experiments. The labels under the images 

refer to the individual genes. We screened for genes whose knockdown decreased the Mm Value or increased the COR 

in cytoplasmic regions of early embryos. 

4.2.2 RNAi Screening using the Mm Value 

Of the 316 genes tested, I detected five genes, F35G12.8 (smc-4), F10C2.4, T09B4.9 (tin-44), C29E4.8 (let-754) and 

K05C4.6 (hmp-2), whose knockdown significantly reduced the Mm Value compared with that of the wild type (Figure 

4.2), suggesting that they are involved in reproductive aging. No genes were found to significantly increase the Mm 

Value compared with that of wild type. 

The smc-4 gene encodes an ortholog of human SMC4 (structural maintenance of chromosomes 4) protein, a mitotic 

condensing subunit that acts with MIX-1 to enable chromosome segregation [90]. Chromosomal abnormalities are a 

major cause of age-related decline in oocyte quality [6]. In C. elegans mutants of the TGF-β Sma/Mab pathway, 

reproductive aging is delayed [91]. The smc-4 gene is upregulated in the TGF-β mutant oocytes [19]. The condensin 

SMC declines in both mouse and human oocytes with aging [92][93], suggesting that chromosome segregation is a key 

process determining oocyte quality that is conserved between worms and mammals [19]. Knockdown of smc-4 

degrades germline and oocyte morphology and increases the rate of unfertilized oocytes and unhatched embryos [19]. 

In WDDD2, almost all smc-4 RNAi worms exhibited embryonic lethality and some of them produced unfertilized 

oocytes. 

The F10C2.4 gene encodes the DNA polymerase delta complex subunit and is required for normal chromosome 

segregation [94]. Reduced expression of this gene may affect reproductive aging due to chromosome segregation errors, 

similar to smc-4.  

The tin-44 gene functions in transporting proteins into the inner mitochondrial membrane and matrix [95][96]. 

Mitochondria have a pivotal role not only in energy metabolism but also in regulation of the rate of aging [97]. tin-44 

RNAi worms exhibited a shorter lifespan than wild type [98], suggesting that mitochondrial dysfunction caused by 

RNAi of tin-44 possibly affects aging.  

The genes let-754 encodes adenylate kinase [99][100] and hmp-2 encodes β-catenin and is required for proper cell 

migration [101]. Neither protein has been directly linked to aging. The genes let-754 and hmp-2 may be related to the 

aging pathway or may cause abnormalities in cytoplasmic textures via alternative pathways. 



 40 

 

Figure 4.2  Genes identified using the Max-min Value. 

When the five genes displayed were silenced in Caenorhabditis elegans embryos, the cytoplasmic region showed a 

significantly lower Max-min Value (Mm Value) than was seen in wild-type embryos. Red bars indicate mean values; 

error bars indicate SEM. Asterisks indicate statistical significance versus wild type (*P < 0.05, **P < 0.01; Dunnett’s 

test). 

4.2.3 Interaction among the Candidate Genes Screened by the Mm Value 

I then automatically predicted the interactions (genetic interactions, co-expression, and physical interactions) among 

all five gene candidates identified by the Mm Value by using GeneMania software (http://www.genemania.org) [102]. 

In particular, I examined whether let-754 and hmp-2 interact with the three candidate genes that have known age-related 

functions (i.e., smc-4, F10C2.4, tin-44). From the network shown in Figure 4.3, three genes, hcp-3, zfp-1, and mut-7 

have predicted simultaneous interactions with smc-4, F10C2.4, and hmp-2. Although tin-44 was predicted to interact 

with hmp-2 via two genes, the interaction was relatively weak. I found no association between let-754 and the genes 

identified by the Mm Value. The results suggest that smc-4, F10C2.4, and hmp-2 have high genetic interactions and 

tin-44 and let-754 have less interactions with other genes. 

I then examined whether the knockdown of the five candidate genes shares any of the phenotype categories annotated 

by Piano et al [103], which are available in the RNAi Database (http://www.rnai.org) [104]. I focused on cytoplasmic 

phenotypes and found that knockdown of smc-4, F10C2.4, and hmp-2 was included in the category “Multiple cavities”, 

which is described as “multiple vesicles, vacuoles, or cavities are seen during early embryogenesis”. Both the shared 

phenotype category and the predicted gene interactions mentioned above suggest that smc-4, F10C2.4, and hmp-2 have 

similar properties in terms of function and phenotype; therefore, hmp-2 may function in an aging pathway related to 

chromosome segregation like smc-4 and F10C2.4. In addition, out of the 27 genes in the “Multiple cavities” category, 
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13 genes were not included in WDDD2. These 13 genes might include gene(s) whose knockdown decreases Mm Value 

and have a related function to smc-4, F10C2.4, and hmp-2.  

The five genes whose knockdown reduced the Mm Value can be divided into three groups: a chromosome 

abnormality group (smc-4, F10C2.4, and hmp-2), mitochondrial function group (tin-44), and unknown group (let-754), 

based on the results of the gene interaction and phenotype category analyses. Therefore, multiple pathways may 

contribute to reductions in Mm Value. 

 

Figure 4.3  Gene interactions among the genes whose knockdown decreased the Max-min Value.  

The genes identified by changes in Max-min Value are highlighted by red circles. 
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4.2.4 RNAi Screening using the COR 

I then screened the RNAi-treated embryos’ images in WDDD2 to find RNAi-treated embryos whose cytoplasmic 

regions displayed significantly higher COR than in wild type. The angle parameter of GLCM was set to θ = 0, 45, 90, 

and 135 degrees. For the 316 genes tested, the COR when the angle was set to 0, 45, or 135 degrees did not differ 

significantly between RNAi and wild-type embryos. However, for two genes, csr-1 and gbp-1, knockdown significantly 

increased and decreased the COR, respectively, compared with wild type when θ =90 (Figure 4.4). 

The csr-1 gene encodes CSR-1, an Argonaute protein that is essential for chromosome segregation and embryo 

viability [105]. CSR-1 is a core component of P granules and acts with P granules to maintain germline integrity [106]. 

Because the COR increased when csr-1 was silenced, csr-1 is a candidate for involvement in oocyte aging. 

Conversely, knockdown of gpb-1 decreased the COR. The gpb-1 gene encodes the heterotrimeric G protein β subunit, 

which is required for proper spindle orientation and regulation of egg laying [107][108], but has not yet been shown to 

be directly related to reproductive aging. Further experiments are needed to clarify the associations between the decline 

of the COR and gene functions.  

 

Figure 4.4  Genes identified using the Correlation. 

Correlation (COR) is displayed as a function of distance d for two genes whose knockdown resulted in significantly 

increased or decreased COR compared with wild type. Error bars indicate SEM. Asterisks indicate statistical 

significance between the RNA interference embryos and wild-type embryos (*P < 0.05, Dunnett’s test). 

 

4.3 Discussion 

By screening images of RNAi-treaded embryos in WDDD2, I identified genes whose knockdown changes the 

cytoplasmic texture in early C. elegans embryos, mirroring the changes in oocytes with aging. Of 316 target genes, 
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knockdown of five genes was found to significantly decrease the Mm Value and knockdown of one gene significantly 

increased the COR. These genes could potentially be involved in reproductive aging. 

In Chapter 3, the Mm Value and the COR in oocytes changed simultaneously with aging [85]. However, in the 

current experiment, knockdown of specific genes changed the image features independently, suggesting that the image 

features can be used to characterize different properties of the age-associated changes in the cytoplasmic texture. In 

other words, texture changes caused by RNAi knockdown can be divided into two patterns, one that decreases the Mm 

Value and one that increases the COR, and the associated genes might function in different pathways involved in aging. 

The insulin/insulin-like growth factor pathway, a well-known pathway controlling the lifespan of C. elegans, and the 

TGF-β Sma/Mab pathway are considered to regulate reproductive lifespan independently [56][91][109]. My results 

show that knockdown of smc-4, which functions in the TGF-β Sma/Mab pathway, decreased the Mm Value in 

cytoplasmic regions of C. elegans embryos, implying that the texture characterized by the Mm Value is involved in the 

TGF-β pathway. In contrast, the texture characterized by the COR is possibly involved in the insulin/insulin-like growth 

factor pathway although there is no direct experimental evidence to support this. The texture characterized by the Mm 

Value reflects the changing contrast in the DIC granules, which may be due to chemical modification or a difference 

in content quantity of the granules. A change in the COR reflects a change in the size of cytoplasmic granules [85] 

(explained in Chapter 3). Further experiments are needed to understand the association between gene function and the 

morphology of the cytoplasmic granules. Elucidation of this association may be helpful for understanding the aging 

pathways and mechanisms. 

4.4 Methods 

4.4.1 WDDD 2 

Four-dimensional DIC microscope images in the WDDD2 (https://wddd.riken.jp) were recorded in multiple focal 

planes and at multiple time points (0.10 µm per pixel). In the RNAi screen, young adult worms were separately injected 

with each double-stranded RNA, and embryos were dissected from the worms immediately after fertilization. 

4.4.2 Calculation of Image Features 

I used the images at the first time point in embryo development in WDDD2 and at the focal planes where the Mm 

Value in the entire image was maximum. To detect the cytoplasmic region, I used local image entropy [110]. To 

calculate image features, random regions of 80×80 pixels were extracted from the cytoplasmic region. Image features 

of individual embryos were defined as the mean of those in the extracted four regions. 
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The Mm Value was calculated by moving the local window except for the border in the same way as Chapter 3 [85]. 

I set the size of the moving window to 3×3 pixels. COR, a second-order statistical feature based on GLCM, was 

calculated in the same way as Chapter 3.  
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Chapter 5  

Improvement and Evaluation of a Mathematical 

Model for Fertilization Calcium Wave  

 

5.1 Introduction 

Ca2+ waves (increase in calcium ion concentration) propagate through the oocyte during fertilization [8]. They trigger 

several processes such as resumption of meiosis, release of surface granules, and formation of the pronucleus, which 

are collectively called oocyte activation, and initiate embryonic development [9]. Ca2+ waves are found in almost all 

animal species and are caused by Ca2+ channels called inositol 1, 4, 5-trisphosphate receptors on the endoplasmic 

reticulum, which functions as an intracellular Ca2+ store [9][10]. Ca2+-induced Ca2+-release (CICR) is a mechanism of 

Ca2+ wave formation [46]. In CICR, a local increase in Ca2+ concentration induces a release of Ca2+ from the 

endoplasmic reticulum, resulting in recurrent releases, which form waves. The spatiotemporal patterns of Ca2+ waves 

differ among animal species and seem to be related to oocyte activation [9]. However, the mechanisms of wave pattern 

generation are poorly understood. 

Takayama and Onami quantified Ca2+ wave during fertilization in the nematode Caenorhabditis elegans (C. elegans), 

one of the simplest model animals, by using high-speed imaging and image analysis [22]. These animals are easy to 

observe because their body is transparent, and are easy to manipulate experimentally. They showed that Ca2+ wave 

have two phases: a rapid local rise and a slow global wave. The Ca2+ concentration decreases to the basal level after 

reaching its peak. The fertilized oocyte shows a single Ca2+ response [22]. They also performed a simulation using the 

Nagumo model that assumed CICR and a high initial Ca2+ concentration (local rise) in a restricted region. The model 

produced a biphasic waveform similar to the observed one [22][111], but could not represent the observed gradual 

decrease in maximum Ca2+ concentration with increasing distance from the point of sperm entry. In this study, I propose 

an improved model that satisfies both conditions of formation of a biphasic wave and the decrease in maximum 

concentration depending on the position in the oocyte. 
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5.2 Results 

5.2.1 Proposed Model 

In the current study, I propose a modified Nagumo model, a reaction–diffusion model that proposed previously 

[22][111]. In general, a reaction–diffusion equation for the concentration variable c in one-dimensional space is the 

following equation (5.1), where D is the diffusion coefficient, t is the time variable, and x is the space variable. 

 
𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2
+ 𝑓(𝑐) (5.1) 

The Nagumo model adopts a cubic polynomial function of c for its reaction term, as expressed in equation (5.2). The 

Nagumo model is also known as a bistable equation because its reaction term has two stable points at c = 0 and 1 [111]. 

 𝑓(𝑐) = 𝐴𝑐(1 − 𝑐)(𝑐 − 𝛼) (5.2) 

The parameters in the reaction term, α and A, can be regarded as the threshold at which the endoplasmic reticulum 

releases Ca2+ and as a coefficient regarding the speed of this release, respectively. The maximum [Ca2+]exp values 

decreased with increasing distance from the point of sperm entry (Figure 5.1c), whereas the maximum [Ca2+]sim values 

were constant irrespective of the distance (Figure 5.2). The constancy could be due to the reaction term of the Nagumo 

model, in which convergence values are independent of the space variable x. 

To solve the qualitative inconsistency between the experimental and simulated results, I modified the Nagumo model 

by introducing cmax, a linear monotonically decreasing function of x instead of the constant 1. With cmax, the 

convergence values are expected to decrease with increasing distance from the point of sperm entry. The cmax function 

was obtained by applying the least squares method to the maximum Ca2+ concentration in each region of interest (ROI), 

which is calculated from the experimental data (Figure 5.3), resulting in equation (5.4). The maximum concentrations 

were then calibrated to c (0–1). 

 
𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2 + 𝐴𝑐(𝑐𝑚𝑎𝑥 − 𝑐)(𝑐 − 𝛼) (5.3) 

 𝑐𝑚𝑎𝑥 = −0.00990 𝑥 + 0.882 (5.4) 
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Figure 5.1  Quantification of experimental data. 

(a) Time-lapse images of Ca2+ wave in a fertilized oocyte of the nematode Caenorhabditis elegans. Black arrowhead 

indicates the point of sperm entry. (b) Regions of interest (ROIs). (c) Quantification of Ca2+ dynamics in each ROI. 
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Figure 5.2  Representative results of simulation using the Nagumo model. 

 

Figure 5.3  Obtaining the cmax function.  

(a) Ca2+ dynamics in each ROI. (b) The cmax function. The horizontal axis indicates the distance from the point of sperm 

entry. 

5.2.2 Parameter Search 

To examine whether my model can produce a biphasic waveform and the distance-dependent decrease in convergence 

values, I searched the threshold α (0 < α < 1) and amplitude A (A > 0). The concentration c was calculated by 

exhaustively combining the parameters within the following range: 0.025 < α < 1 and 2.5 < A < 40 (Δα = 0.025, ΔA = 

2.5). From the distribution of the total absolute error (Figure 5.4), I found that it was smallest in the range 0.005 < α < 

0.1 and 1 < A < 5. Thus, the range of parameter search for α and A was set as 0.005 < α < 0.1 for α (Δα = 0.005) and 

0.25 < A < 5 (ΔA = 0.25). 
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Parameter spaces for the presence of the biphasic waveform and for the convergence to cmax are shown in Figure 5.5a 

and b, respectively. I found a range that satisfied both conditions (Figure 5.5c). These results showed that my proposed 

model has a parameter range in which it can produce the biphasic waveform and the distance-dependent decrease in 

convergence values. 

Next, I searched for parameters that minimize total absolute error within the range (Figure 5.5d). The total absolute 

error was lowest at α = 0.010, A = 1.75 (Figure 5.5d). Results of simulation with this parameter set was shown in Figure 

5.5e. The wave speed with this parameter was about 4.8 µm/s. In experiment, the wave speed was estimated to be about 

1.0 µm/s [22]. The wave speed in simulations is the same as that in experiments in the order of magnitude. By searching 

α and A, my model can produce a waveform qualitatively similar to the observed waveform in that the maximum 

concentration values decrease with increasing distance from the point of sperm entry, whereas the maximum values 

are constant in the previous model. I also confirmed that my new model can produce the biphasic waveform 

simultaneously with the decrease of the maximum concentration. 

 

Figure 5.4  Distribution of the total absolute error. 
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Figure 5.5  Parameter search for biphasicity and convergence. 

(a) Parameter space in which my model produces or does not produce the biphasic waveform. (b) Parameter space in 

which my model produces a wave converging to cmax or zero. (c) Parameter spaces in which my model produces a 

biphasic wave converging to cmax (green), only a biphasic waveform (yellow), only a wave converging to cmax (blue), 

and a non-biphasic wave converging to zero (grey). (d) Distribution of total absolute error. (e) Results of simulation at 

the best parameter combination (α = 0.010, A = 1.75), which minimizes total absolute error. 

To examine whether the best parameter set for one oocyte is consistent among other oocytes, I simulated Ca2+ wave 

in another wild-type oocyte. Three ROIs (15 ×15 pixels each) were set along the long axis of the oocyte (Figure 5.6a) 

and [Ca2+]exp was calculated for each ROI (Figure 5.6b). The spatial step size was set to 0.42 µm. I simulated Ca2+ 

wave in the second oocyte by using equation (5.3) and (5.4) with the best parameter set for the first oocyte (Figure 5.7). 

The result showed a biphasic waveform as well as the decrease in the maximum concentration with increasing distance 

from the point of sperm entry. However, the converged concentrations were markedly different from those in the 

experimental data. 

The converged concentrations in simulation depend on the cmax function and the scaling equation. To reduce the 

differences in the converged concentrations between the simulation and the experiment, I generated a new cmax function 

and a new scaling equation optimized for the second oocyte, as expressed in equation (5.5) and (5.6), respectively. 
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 𝑐𝑚𝑎𝑥 = −0.0136 𝑥 + 0.953 (5.5) 

 [Ca2+]sim = 80 c +100 (5.6) 

To examine whether the model using the new cmax function and the new scaling equation can produce a waveform 

similar to that in the second oocyte, I searched the threshold α (0.005 < α < 0.1) and amplitude A (0.25 < A < 5). The 

results of simulation at the parameter combination (α = 0.035, A = 1.25), which minimized total absolute error, are 

shown in Figure 5.8a. The results with the best parameter combination for the first oocyte (α = 0.010, A = 1.75) are 

also shown (Figure 5.8b). These waveforms are similar to that in the second oocyte in the converged concentration and 

the wave speed. 

 

Figure 5.6  Quantification of experimental data of the second oocyte. 

(a) Regions of interest (ROIs). (b) Quantification of Ca2+ dynamics in each ROI. 

 

Figure 5.7  Results of simulation of the second oocyte using the cmax function and the scaling equation optimized for 

the first oocyte with the best parameter set for the first oocyte (α = 0.010, A = 1.75). 
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Figure 5.8  Results of the model using the cmax function and the scaling equation optimized for the second oocyte. 

(a) Results of simulation at the best parameter combination (α = 0.035, A = 1.25), which minimizes total absolute error. 

(b) Results of simulation at the best parameter combination for the first oocyte (α = 0.010, A = 1.75). 

5.3 Discussion 

I introduced a linear monotonically decreasing function into the reaction part of the Nagumo model. In the modified 

model, the convergence values depend on the position in the oocyte. My model qualitatively reproduced the observed 

decrease in the maximum Ca2+ concentration with increasing distance from the point of sperm entry. In my model, I 

used the linear function cmax instead of the constant 1 in the Nagumo model. The proposed model assumes that cmax, 

which can be regarded as the upper limit of the Ca2+ concentration at which there is no net flux through Ca2+ channels, 

depends on the distance from the point of sperm entry, whereas the Nagumo model assumes that the limit is the same 

in different regions of the oocyte. These results might be explained by a non-uniform distribution of Ca2+ stores along 

the long axis of the fertilized oocyte. In fact, the endoplasmic reticulum is not uniformly distributed in the oocyte [112]. 

Alternatively, a diffusible factor(s) introduced by the sperm may be non-uniformly distributed and thus non-uniformly 

affect the upper limit Ca2+ concentration of the Ca2+ channel in the oocyte. In fertilized oocytes of the polyspermic 

newt, Ca2+ wave starting from the sperm entry point does not reach the opposite pole of the oocyte [113]. This 

phenomenon might be explained by the distribution of a sperm factor only in a small part of the oocyte. Takayama and 

Onami observed that the maximum Ca2+ concentration decreased with increasing distance from the point of sperm 

entry in a mutant oocyte where the sperm entered from the lateral side of the oocyte [22]. The non-uniformity of sperm 

factor distribution possibly causes the non-uniform activity of Ca2+ channels. A stable linear gradient of sperm factor 

can be generated by the source-sink mechanism [114]. Alternatively, a transient gradient might be generated by simple 

diffusion of the sperm factor. Further experiments are needed to clarify the mechanism. A mammalian sperm factor is 

the sperm-specific phospholipase C ζ [11], which does not have an apparent ortholog in C. elegans. 
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Adjustment of the α and A parameters resulted in a biphasic waveform. Thus, my model can reproduce a clear 

biphasic waveform and the changes in the convergence values depending on the position in the oocyte. 

The cmax function and scaling equation optimized for the first oocyte did not produce similar waveform to that in the 

second oocyte, whereas those optimized for the second oocyte produced similar one even when with the best parameter 

set for the first oocyte. The results suggest that the basic property of Ca2+ channels, relating to parameters α and A, does 

not differ among oocytes. It is likely that the difference in the waveform among oocytes largely comes from the 

difference in the spatial distribution of the activity of Ca2+ channels. 

I must note the remaining inconsistencies between my model and experimental results; for example, Ca2+ 

concentration calculated in my model was constant after it converged, whereas it actually gradually decreases after 

reaching maximum. My model cannot reproduce this decrease because c increases until it reaches the cmax. To overcome 

this limitation, I may need to further modify the reaction term. 

I evaluated the waveform and the convergence values of the simulation results calculated in one dimension. Although 

such calculations are sufficient for qualitative evaluation of waveform propagation along the long axis of the oocyte, 

they are insufficient to simulate more complex situations. Three-dimensional calculations may be necessary for a more 

rigorous simulation. Thus, I need to further improve the model in order to resolve the differences between simulated 

and experimental results. 

5.4 Methods 

5.4.1 Calculation and Parameter Settings 

The explicit Euler method was used for the reaction term, and the implicit method was used for the diffusion term to 

solve reaction–diffusion equations. I used the Neumann boundary condition, which assumes that there is no flow in or 

out of the oocyte. The oocyte was assumed to be a one-dimensional bar 57 µm in length. The diffusion coefficient was 

set to 20 µm2/s [115]. The initial concentration f0 was given by equation (5.7), where x is the distance from the point 

of sperm entry. The spatial step size was 0.21 µm and the time step size was 0.001 s. 

 𝑓0 = {
 7  ( x = 0 )
 0  ( x ≠ 0 )

 (5.7) 

5.4.2 Quantification 

Ca2+ concentration in a ROI of the oocyte was calculated by image analysis as described in the reference method [22] 

(Figure 5.1a). The original image data for Figure 5.1 from the same research group [22] was used for the calculation of 
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the first oocyte. I set eight ROIs (30 × 30 pixels each) along the long axis of the oocyte and numbered them from the 

point of sperm entry (Figure 5.1b). I quantified the Ca2+ fluorescence change relative to that at time zero, ΔF/F0, for 

each ROI at each time frame, where ΔF = F – F0, F is the average fluorescence intensities of all pixels within the ROI, 

and F0 is the average fluorescence intensity in each ROI during the initial ten time frames before fertilization (–4.5 s 

to 0 s). Then I calibrated this fluorescence change to the concentration by equation (5.8) used in the previous study [22] 

(Figure 5.1c), where [Ca2+]exp is the experimentally determined Ca2+ concentration value. 

 [Ca2+]exp = 330 × 
4.02 F/F0 - 1

14 - 4.02 F/F0
 (5.8) 

Simulated values in the ROIs were calculated by one-dimensional simulation. Because the [Ca2+]exp values ranged from 

approximately 100 to 250 nM, I scaled the simulated Ca2+ concentration values, [Ca2+]sim, by equation (5.9) using the 

concentration variable c of the model. I note that the concentration calculated by equation (5.9) is not necessarily equal 

to the actual concentration. 

 [Ca2+]sim = 150 c  + 100 (5.9) 

The original image data for Figure S2 in the previous study of the same research group [22] was used for the 

calculation of the second oocyte. [Ca2+]exp and [Ca2+]sim were calculated as were done for the first oocyte. 

5.4.3 Evaluation 

(1) Total Absolute Error 

Total absolute error E is defined as the sum of the absolute values of the differences between simulated and 

experimental values in each ROI at each time step. I defined r as the index of the ROIs. Then, E is expressed by equation 

(5.10) using [Ca2+]sim (r, t) and [Ca2+]exp (r, t). 

 𝐸 =  ∑ ∑  |[Ca2+]sim(𝑟, 𝑡) − [Ca2+]exp(𝑟, 𝑡) |

60

𝑡=0

8

𝑟=1

 (5.10) 

(2) Biphasicity 

To evaluate the presence or absence of a biphasic waveform, I used the results for ROI1, in which it appears most 

clearly. I counted inflection points in the time course of the Ca2+ concentration. Two sign changes are observed in the 

second-order differential values if the biphasic waveform appears, whereas no sign change is observed if it does not 

appear (Figure 5.9). I judged that the biphasic waveform appears in ROI1 if the number of inflection points was two. 
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Figure 5.9  An example of a biphasic waveform and the second-order differential values. 

(3) Convergence to cmax 

Simulated values converge to 0 or cmax because of the characteristics of the reaction term in my model. I assumed that 

the simulated values in all ROIs converged when the difference of simulated values of ROI8 between consecutive time 

steps was less than 0.1 nM continuously for 10 s after 50 s of simlation. I defined the simulated value of ROI8 at the 

10 s as the converged concentration. I executed the simulation until ROI8 converged. The converged concentrations 

obtained in this way were either about 100 nM or about 160 nM. I assumed that the simulated value converged to cmax 

when the converged concentrations were more than 130 nM. 

(4) Wave Speed 

I calculated t50%, the time when the simulated value exceeded 50% from the initial concentration to the converged 

concentration, for ROI 2~7. I excluded ROI1 because it showed biphasicity. Then, I calculated Δx andΔt50%, the 

distance and the difference of t50% between each adjacent ROIs, respectively. The wave speed of simulations was 

calculated by averagingΔx /Δt50% for all adjacent ROIs. 
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Chapter 6  

Conclusion 

 

6.1 Conclusion 

In this study, I aimed to understand the phenomena related to fertilization and developmental ability of oocytes, 

especially the age-related changes in oocyte quality and the fertilization Ca2+ waves. I quantitatively and 

mathematically analyzed these phenomena using in vivo imaging data of Caenorhabditis elegans (C. elegans). I 

verified whether the quantitative and mathematical analyses provide the biological findings and reasonable hypotheses 

regarding the phenomena related to fertilization and developmental ability of oocytes. 

Firstly, in Chapter 3, I performed statistical image processing of differential interference contrast (DIC) images to 

quantify the age-associated changes in oocyte appearance, which is thought to reflect oocyte quality. I showed that the 

cytoplasmic texture significantly changes with aging by using the statistical image features of Max-min Value (Mm 

Value) and Correlation (COR); the Mm Value is the mean difference between the maximum and minimum intensities 

within each moving window and the Grey Level Co-occurrence Matrix based feature, COR. The analyses using 

synthetic images suggest that the texture changes characterized by COR reflect increased granule size in the cytoplasm. 

Manual measurements in the DIC images validated that the cytoplasmic granules in oocytes become larger with aging. 

Secondly, in Chapter 4, I predicted the genes involved in reproductive aging by applying the image features proposed 

in Chapter 3 to the DIC image data obtained from large-scale gene silencing experiments. Genes whose knockdown 

causes the texture changes as seen in aged oocytes are thought to be candidate genes involved in reproductive aging. 

These genes were screened by identifying images that had a decreased Mm Value or increased COR – properties that 

were found to occur in aged oocytes. The cytoplasmic texture images were sourced from the Worm Developmental 

Dynamics Database 2, which stores DIC microscopy images of early C. elegans embryos with genes silenced by RNA 

interference. Of 316 target genes, five genes (smc-4, F10C2.4, tin-44, let-754, hmp-2) were identified to increase Mm 

Values and one gene (csr-1) was identified to increase COR. Of the identified genes, smc-4 has functions related to 

chromosome segregation and has been documented to be related to reproductive aging of C. elegans. These results 

suggest that screening Mm Values could identify genes involved in reproductive aging. Through these analyses, six 

genes were identified to potentially be involved in reproductive aging. 

Finally, in Chapter 5, I focused on fertilization Ca2+ waves and proposed an improved model based on Nagumo 

model. In the previous study, reaction-diffusion Nagumo model can produce a similar biphasic waveform to observed 

one, but cannot represent the observed gradual decrease in maximum Ca2+ concentration depending on the position in 
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the oocyte [22]. I introduced a linear monotonically decreasing function into the reaction part of the Nagumo model. I 

demonstrated that my new model can produce the gradual decrease in maximum Ca2+ concentration with increasing 

distance from the point of sperm entry and a biphasic waveform simultaneously. My model assumed the upper limit of 

the Ca2+ concentration at which there is no net flux through Ca2+ channels depends on the distance from the point of 

sperm entry, which suggests a factor that causes non-uniformity in the amounts of Ca2+ released during fertilization. 

I quantitatively and mathematically analyzed the age-related changes in oocyte quality and the fertilization Ca2+ 

wave, which are important phenomena related to fertilization and developmental ability of oocytes. I have derived new 

findings and hypotheses that are potentially useful for understanding the phenomena related to fertilization and 

developmental ability of oocytes. By image processing of the age-associated changes in the oocyte appearance in the 

DIC images, I showed that the cytoplasmic texture in oocytes significantly changes with aging. The image analyses 

using the COR suggest that the size of granules in oocytes increases with aging, which is consistent with the results of 

manual measurements of granule size in the DIC images. Assuming the DIC granules are yolk granules, the age-

associate changes in the cytoplasmic texture might be affected by the amounts of yolk protein in oocytes. In addition, 

the analyses using the Mm Value in the manipulated images suggest that the contrast of the cytoplasmic texture changes 

with aging in a spatially inhomogeneous manner. The changes in texture contrast also possibly reflect the biological 

factor(s) that changes with aging in the oocytes. The candidate genes involved in reproductive aging, which are 

identified using the image features of Mm Value and COR, included the gene involved in reproductive aging of C. 

elegans. These genes could potentially be involved in reproductive aging. The functions of candidate genes should be 

verified by biological experiments. The Mm Value and the COR simultaneously changed with aging, whereas the 

knockdown of specific genes changed the image features independently, suggesting that each of these image features 

characterizes different properties of the age-associated changes in the cytoplasmic texture. The different properties of 

age-associated texture changes might be explained by the multiple pathways of reproductive aging. The reproductive 

aging pathway is possibly associated with the multiple aging pathways, such as the insulin/insulin-like growth factor 

pathway and the TGF-β Sma/Mab pathway. The model of Ca2+ wave proposed in this study suggested a factor that 

produces a position-dependent gradient of the amounts of Ca2+ released. This gradient might be due to the non-

uniformity of sperm factor distribution, which might be explained based on sperm factor model, one of the three major 

models of oocyte activation. 

I have performed quantitative image analysis using the oocytes captured by the DIC microscopy and mathematical 

modeling of Ca2+ wave dynamics visualized by high-speed in vivo imaging. I have derived new findings and hypotheses 

regarding the phenomena of fertilization and developmental ability of oocytes by interpreting the quantitative and 

mathematical results based on biological mechanisms. 
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6.2 Future Work 

This study is expected to develop fundamental biological research and medical engineering applications. The biological 

findings and hypotheses derived from this study are expected to be useful for fundamental biological research aimed 

to elucidate the mechanisms of the phenomena related to fertilization and developmental ability of oocytes. The analysis 

methods proposed in this study might be applicable to other species as well, which may contribute to the development 

of assisted reproductive technology (ART) in the medical and animal breeding industries. 

The biological findings and hypotheses derived from this study may contribute to elucidate the mechanisms of the 

age-associated changes in oocyte quality and the fertilization Ca2+ waves. The quantitative analysis of age-associated 

changes in cytoplasmic texture suggests that the size of cytoplasmic granules in oocytes increases with aging. Assuming 

the granules are yolk granules, biological experiments would enable to verify whether the amounts of yolk protein in 

oocytes increases with aging. To investigate whether the candidate genes are involved in reproductive aging, which 

were predicted in this study, gene silencing experiments would enable to confirm whether the genes are involved in 

reproductive aging. These results will lead to new insights into the age-related changes in oocytes and gene pathways 

involved in reproductive aging. The model of Ca2+ wave may be applicable to aged and mutant oocytes in C. elegans 

and oocytes in other organisms. In this study, I improved the model using Ca2+ wave of wild-type C. elegans. A study 

of Ca2+ wave of aged or mutant oocytes using the proposed model possibly clarify effects of aging and gene functions 

on the Ca2+ wave. The model of Ca2+ wave in C. elegans might be applicable to Ca2+ waves in other organisms. The 

model possibly needs to be modified to apply Ca2+ waves in other organisms because spatiotemporal patterns of Ca2+ 

response differ among species. 

The proposed DIC image features of Mm Value and COR possibly become quantitative markers for clinical 

observation. The age-related morphological deterioration is a common phenomenon between C. elegans and mammals 

including humans. DIC microscopy, which was used in this study, is often used for observation of oocytes and embryos 

in ART. Although the various parameters for evaluating human oocyte quality have been proposed, current evaluation 

methods using the parameters are not able to eliminate subjectivity of observer. The morphological abnormalities in 

cytoplasmic granules are also found in human oocytes [116]. Proposed image features might be able to characterize the 

cytoplasmic texture in human oocytes. Further experiments are needed to clarify whether the age-associated changes 

in cytoplasmic texture can be found in other organisms as seen in C. elegans. The image features proposed in my study 

are expected to contribute to the development of ART in the biomedical, and animal breeding industries. 

I hope that this study will contribute to elucidate the mechanisms of phenomena related to the fertilization and 

development ability of oocytes and will help to develop ART in the biomedical and animal breeding industries. 
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