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Higher Capelli elements for classical Lie algebras

Shotaro KAWATA *

Abstract

We construct the Capelli elements of lower degrees Ci(u) (kK = 1,...,n) with a parameter u
for the symplectic Lie algebras and orthogonal Lie algebras. They correspond to factorial Schur
functions with parameter u attached to the column partitions (1%). We also give explicit formulas
for Ck(u) arising from the expansion of C,, (u) of the highest degree with respect to the parameter u.
We use the Jacobi-Trudi formula for the factorial Schur functions R (x;u) to construct the higher
Capelli elements C(u). They are expressed as determinants of matrices whose entries are Capelli

elements of lower degrees.

Keywords: Classical Lie algebra, central element, higher Capelli element
2010 Mathematics Subject Classification: 17B35; 15A15

Introduction.

Let g be a classical Lie algebra, i.e. one of the Lie algebras gly (general linear), oy (orthogonal) and
sp (symplectic). It is fundamental in representation theory that the center ZU(g) of the universal
enveloping algebra of g is isomorphic to the ring (C[x]W of Weyl group invariant polynomials in certain
variables # = (21,...,2,) through the Harish-Chandra isomorphism ~ : ZU(g) — C[z]". In this
paper, we construct a class of central elements C)(u) € ZU(g) with a parameter u, which we call the
higher Capelli elements. They are parametrized by partitions A = (A1,...,A,), and correspond by the
Harish-Chandra isomorphism to the factorial Schur functions Ry (x;u) € C[a:]w with parameter u. (The
definition of Ry(z;u) will be given below). In the gly case, the higher Capelli elements C(0) with u = 0
have been constructed by Okounkov [9] and expressed in the form of quantum immanants.

The main point of this article is an explicit construction of the Capelli elements C(u) of lower degrees
(k=1,...,n) which correspond to factorial Schur functions attached to the column partitions (1*). The
higher Capelli element C(u) for an arbitrary partition X is then obtained by applying the Jacobi-Trudi
formula to the Capelli elements Cj(u) of lower degrees. It is constructed as the determinant of a matrix
whose entries are Capelli elements of lower degrees. This method of construction of the higher Capelli
elements from the Capelli elements of lower degrees has already been discussed in our previous paper
[5]. In the present paper, we mainly investigate explicit formulas for the Capelli elements Cy(u) of lower
degrees which arise from the expansion of the Capelli element C),(u) of the highest degree with respect

to the parameter u.

* Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
skawata@math.kobe-u.ac. jp



Following [7] and [10], we introduce the factorial Schur functions Rg\m) (z;a) with a parameter a in m
variables © = (21,...,2y). We first define the symbol (z;a) by
= Fma  (s=oly)
G ={ S 2 h e

depending on the choice of a classical Lie algebra, and the shifted factorials associated with (z;a) by
(z;a)p = (z;a)(z;a+1)---(z;a+k—-1) (k=0,1,2,...).
Then for each partition A = (A1,..., Ap,) with [(A) < m, we set

det (<33Zv a>/\j+m—j)1gi,jgm

det ((x;; a>m—j)1§i,j§m
Note that, if A = (1™) is the column partition of degree m, we have RET,Q)(x; a) = {xy;a) - (rm;a). We
remark that these functions Rf\m) (z;a) form C-basis of C[zy,...,2,]%™ or C[z?,...,22]%" according

r'm
as g = gly or g = spy,on. We simply write Rg\m)(a:; a) = Ry(x;a) when the number of variables are

R (x7a) =

obvious from the context.

In order to outline the idea of this paper, we now explain the case of gly (N = n) for comparison with
the cases of sp and 0. It is a classical result due to Capelli [1] that the central elements Cy(u) € U(gl,,)

attached to column partitions (1k) (k=1,...,n) are expressed as follows by column-determinants:

Cr(u) = Y det(Il; —u) € ZU(gl,,),

1=k
Ei i +k—-1 Ei i, I D
Ei, iy Eiyi,+k—=2 ... Ei;

H[ - . . . . 9
Eik,il Eik,iz Eikwik

where E;; (1 <4,j <n) denote the elements of gl,, corresponding to matrix units. According to Schur’s
lemma, each Cj(u) acts on the irreducible representation (V,,,m,) attached to a partition p by scalar

(eigenvalue). We can calculate the eigenvalue as follows:

k
(@)= 3 T G+ k= m ).

1<y < <ip<n m=1
This eigenvalue corresponds to the factorial Schur function Ryxy(z;u) € Clz]® (W = &) in « =
(21,...,2y) under the identification of variables x; = p; +n—i (1 <4 < n). This means that v(Cx(u)) =
R(iry(2;u). We remark that the Capelli elements Cy(u) of lower degrees are obtained as the coefficients

in the expansion
n

Cn(2) = Y (=1)*(zu)xCri(w)

k=0
of the Capelli element C),(z) of highest degree in terms of the shifted factorials. As we proved in [5], for an
arbitrary partition A, the higher Capelli element C (u) with Harish-Chandra image v(C(u)) = Rx(z;u)
is then constructed by means of the Jacobi-Trudi determinant

Cx(u) = det (C’A;,iﬂ-(u +j-1))

m

4,J=1



of Capelli elements of lower degrees, where X' = (A},...,Al,) denotes the conjugate partition of A. It is

known by Okounkov [9] that C(0) with parameter u = 0 is expressed as a quantum immanant

_ xa(1)
=

CA(O) Z Z <0 -&r, £T>Ei1,ia(1) (_CT(l)) to Eip,i(,(p) (_CT(p))7

Ie{l,...n}P oG,
where |A| = p (see [9] and [4] for details).
As for the symplectic Lie algebra sp,,,, Itoh [3] has constructed the Capelli element C*P(u) € ZU(sps,,)

of the highest degree with a parameter w. This C*"(u) corresponds to C,(u) in the gl case, and

is expressed by a symmetrized determinant. To be more precise, (—1)"u~1C*"(u) corresponds to the

factorial Schur function RE?)L)(:L‘; u) by the Harish-Chandra isomorphism; in this case of sp,,,, C[z]V =
Cla?,...,22]%. In Section 1, we deal with the Capelli elements of lower degrees for sp,,. We give

in Subsection 1.1 an alternative expression (Theorem 1.4) of Itoh’s Capelli element C*P(u), putting
the parameter u out of the symmetrized determinant. In Subsection 1.2, we expand the expression of
Theorem 1.4 in terms of the shifted factorials (u;a) in order to construct the Capelli elements Cj(a)

of lower degrees. In this way, we obtain an explicit formula (Theorem 1.9) for the central elements
(n)
(1%)
Explicit formulas of Theorems 1.4 and 1.9 are the main results of this paper for the case of sp,,. In

C'%(a) which correspond to the factorial Schur functions R, (x; a) by the Harish-Chandra isomorphism.
Subsection 1.3, we construct the higher Capelli elements C(u) for an arbitrary partition A by applying
the Jacobi-Trudi formula for the factorial Schur functions to Cx(a). This method of construction of the
higher Capelli elements is already included in our previous paper [5]. It would be an interesting problem
to find an expression of the higher Capelli elements C)(u) in terms of quantum immanants.

In Sections 2 and 3, we treat the cases of 0y, (type D) and 02,41 (type B) cases respectively. As
for the orthogonal Lie algebra oy, Wachi [11] has constructed the Capelli element C°(u) € ZU(o) of
the highest degree with a parameter . Similarly to the case of sp,,, (type C), we construct the Capelli
elements of lower degrees by expanding Wachi’s Capelli element C°(u) with respect to the parameter w.
Explicit formulas for the Capelli elements of lower degrees in Theorems 2.2 and 3.1 are our main results
for the case of on. In Section 4, we include the corresponding explicit formula for the Capelli elements

of lower degrees of the case of gl,, for comparison with those of the cases of sp,, and oy.

1 Higher Capelli elements in the case of sp,,
1.1 Putting the parameter u out of the symmetrized determinant of C*(u)
The symplectic Lie algebra sp,,, is defined by
spy, = {X € Mata, (C)['XJ + JX = 0}

0

with the skew-symmetric matrix J = ( )
n

) e
. Setting
0

FF =Eij—J 'EjiJ €spy, (1<i,j<2n),



we introduce a 2n x 2n matrix

PP = (Fijp)lgi,jgzn

with entries in the universal enveloping algebra U(sp,,,). Itoh [3] defined a central element C*P(u) €
U(sp,y,,) with parameter v which corresponds to Cp(u) in the gl, case. This central element C®P(u)
is expressed by the symmetrized determinant Det. For a general k& X k matrix Z with non-commuting

entries, the symmetrized determinant Det(Z; a1, ..., ax) with parameters ay, ..., ai is defined by
1
Det(Za1,..oae) = 25 D 58n(0)$0(r) Zo(r),r(1) (1) -+ Zogry,riiy ()
Lo, TEG
where Z; j(a) = Z; ; + ad; ; and 0; ; denotes the Kronecker delta. When a; = --- = a; = 0, we simply
write Det(Z;0,...,0) = Det(Z). Following Itoh, we set

C* (u) = Det(F*® + ulopsiin,n—1,...,—n)

with a (2n + 1) x (2n + 1) matrix

T B

o ... ... 0

whose entries of the last row and the last column are all zero. This central element C*?(u) is also called
the Capelli element. From Subsection 1.1 to Subsection 1.3, we express C**(u) = C(u) and F*? = F for
simplicity. In this section, we rewrite C'(u) removing the hat of F*® and putting parameter u out of the
symmetrized determinant. We introduce the polarization of the symmetrized determinant Det(A) by
n 1 1 n
PAW . A = — ZG sgn(o) Sgn(T)Az(r()l),T(l) e A((T(ZL))T(n)
o, 7€6n,

for A® € Mat,, (i =1,...,n) so that Det(4;a1,...,a,) = P(A+ail,..., A+ a,l).

Proposition 1.1. Let A be a general nxn matriz with non-commuting entries. Then, for a; = b;+c¢; (i =

1,...,n), we have
n -1
Det(A;al,...,an) = E (7’) E Cly * " Ck, E Det(AJ’J;bh’...,bls).
r+s=n 1<k1 < <kr<n JC{1,...,n}
1<l <-<ls<n |J|=5
KL L={1,..n}

Here, K = {ky,..., k. },L={l1,...,ls} and

Ajl,j1 J1,Js
AJ,J: ) J:{jla"'vjs}~
A

Js»J1 Js:Js



Proof. Since the matrix A and the identity matrix I commute with each other, we have

Det(A;aq,...,an) = P(A+a1l,...,A+a,l)

— PA+4 bl +erl, o, At bl +col)
1
= > sen(o)sen(r) (A+bil +eil) ) ) (A+ bl +enl) ) ()
o, 7€,

1
= Z Z sgn(o) sgn(r) (Ckl‘[)cr(kl),'r(kl) T (ck?r‘[)cr(kr)ﬂ'(k‘r)
"o 1<k <<k, <n
1<li<--<l;<n

KLIL={1,...n}
. (A + bllI)O’(ll),T(ll) e (A + blSI)O’(ls),T(ls) .
1 ... r r»r+1 ... n ,
Here, we put n = ) L l , o =on, 7 =7n. Then we have
1 T 1 s

1 _ -
Det(4;a1,...,a,) = ol E E sgn(a’n 1) sgn(7'n 1)(6161])0'(1)’7"(1) T (Ckr‘[)a/(r)n'/(r)
ol 1<k <--<kp.<n
1<l <-+<ls<n
K| L={1,....,n}

(A + bllI)O'/(T-‘rl),T’(r—i,-l) e (A + bls‘[)o"(n),‘r’(n)
1
B n! Z Z sgn() sgn(7)(cr, 1)0(1)77(1) T (Ckrl)a(r)rr(r)
Do 1<k < <kp<n

1<l <--<ls<n
K| L={1,....,n}

(A + blll)o'(’r’Jrl),T(’l"Jrl) e (A + blsI)U(n),T(n)

1
= Z Z sgn(o) sgn(r)cg, -« - ck,
’ a,T 1<k;<-<kp<n
o()=r(1)=m1 1<) <--<ls<n
KL L={1,n}

O'(T):T:(’l‘):mr
(A+b, Doriry,rrs1) - (A+ 01, D)o (n),7(n)-

Taking the decomposition

{il<"'<ir}|_|{j1<"'<js}:{1a"'7n}

of the indexing set such that {m1,...,m,} = {i1,...,i.}, we express the pair o, 7 as

oyt dper) Jx) o Jn(s) )] Gp(t) "t lp(r)  Jn) ct Jnts)
by permutations p € &, and 7,7 € &;. Since

]_ e r r + ]_ e n

sgn(o) =sgn| , ., ) sgn(p) sgn(r),
1 e r r _|_ 1 e n

sen(r) =sen (LT s seo)



we obtain

1
Det(A7 Ay, .- 7a’n) = E Z Z Z Sgn(ﬂ-) Sgn(n)ckl c e Ck,

pES, 1<i1<-<ip,<n 1<k <--<k,.<n
mNEGs 1</1 <+ <js<n 1<l1 <---<Is<n
I|J={1,....n} K| |L={1,...,n}

(Atbu L)y, 0 (A0 G0
rls!
_ S ek ek, S P(A+b D)y, (At b))
1<ki1<-<kp<n JC{1,...,;n}
1<l <--<l,<n |J|=s
K1|L={1,...n}
-1
n
_ Z@ S e Y Det(Ansibi, o b).
r4+s=n 1<ki<--<kr<n JCA{1,...,n}
1< < <ls<n |J|=s
K||L={1,..n}

O

Removing the hat of F in C (u), we express C(u) as a linear combination of symmetrized determinants
of F.

Proposition 1.2. The Capelli element C(u) of the highest degree can be expressed as follows:

2n+1
1 —
C(u) = 2n+1kg_l(u—l—n—k:—i-l)Det(F;u+n,u+n—1,...,u+n—k+1,...,u—n).

Here, u —|—n/;\k + 1 means removing u+n — k + 1.

Proof.
C(u) :Det(ﬁ—l—ul;n,n— 1,...,—n) =Det(ﬁ;u+n,u+n— 1,...,u—n)
1 ~ ~
T nt1) Y sen(0)sen(r)Fyayry(utn) - Fozntiyriansn (u —n)
D0, 7€EG a1
1 2n+1 R ~
T nt1) > Yo sea(o)sen(n) Foyray(utn) o (utn—k+ 1) Fyaniiyrnsn(u—n)
" k=1 o(k)=7(k)=2n+1
2n+1 N N
Z Z Sgn(al) sgn(T/)Fg/(l)T/(l)(u+n)~~~Fal(k_1)T/(k_1)(u—|—n— k+2)
k=1 o”;r'EngJrl
U’(2n+1):7'/(2n+1):2n+1
Fopr (e iy (e + 10— k) - Fyr oy (2 (w0 — )
2n+1
1 —
= ol Z(u+n—k+1)Det (F;u—|—n,u+n—1,...,u—|—n—k—|—1,...,u—n).
k=1
O
In the following, for each s =0, ...,2n we denote by

Det(F) = Z Det(F7 1)
|I|=s

6



the sum of all s X s symmetrized principal minor determinants of F. The next lemma follows from the

property of sp,,, only.
Lemma 1.3. If s is odd, Dets(F) = 0.

Proof. Setting

and €, ; = sgn(i)sgn(j), we have F; ; = E; ; — €, ;Ejr  and F; ; = —¢; jFjs ;. Then, we obtain

1
Det(Fl,I) = ol Z Sgn(o) Sgn(T)Fi(r(l)’iT(l) e Fia(s),if(s)
C o, TEG,

1
= QZSgn(U) Sgn(T)(_eiau),iT(1)FiT<1)/,ia(1)/) T (_eia(s)vir(s)Fiﬂ'(s)lfia(s)/)
o,T

1 s
= QZSgn(O—) Sgn(T)(_l) Fir(l)/via(l)/ e FiT(S)/aiU(S)/
= (—1)° Det(Fr,r),

and hence
Det(F) = (—1)° Dets(F).

O

If we apply Proposition 1.1 and Lemma 1.3 to the central element C'(u), we can remove the hat of F

and put the parameter u out of the symmetrized determinant.

Theorem 1.4. The Capelli element C(u) of the highest degree can be expressed in terms of the minor

determinants as follows:

n —1
2n+1
C(u):g <2r+1> eari1(u+mn,...,u—mn)Deto,_on(F)
r=0
n —1
2n+1
= ( 9 > €ant1—2s(u+n,...,u—n)Detas(F).
s=0



Proof.
C(u)zDet(ﬁ;u—i—n,...,u—n)
—1
= ¥ (2”:1) > (wtn—ki+1)-(ut+n—k,+1) > Det(Fy,)

r4+s=2n+1 1<k <...<kr<2n+1 JC{1,....2n+1}
|J|=s
—1
2n+1 =
) E (u+n—k+1)---(u+n—k.-+1) E Det(Fy, )
1<k1<...<k,<2n+1 .]C{l ..... 2n}

r+s= 2n+1

(",
- (2"+1) Z (w+n—Fki +1)(u+n—k.+1) Z Det(Fy, ;)
>

r+s=2n+1 r 1<k1<...<k-<2n+1 JCA{1,...,.2n}
[J|=s
2 1
= nt ) (u+n,...,u—n)Dets(F)
r4+s=2n+1
2n+1
— z_:o <2r+ ) egrﬂ(u—i—nw..,u—n) Detay,—o.(F)

—1

"o+ 1
= < 9 €ant1—2s(u +n,...,u—n)Detas(F).

1.2 Construction of the Capelli elements of lower degrees

In this subsection, we construct the Capelli elements of lower degrees associated with Itoh’s Capelli
element C(u) = C**(u) by a method similar to the gl,, case. For the sp,,, case, setting (z;a) = 22 — a?,

we define the shifted factorials (z;a), associated with (x;a) by
(x;a), = (z;a)(xsa+1)---(x;a+k—1) (k=0,1,2...).
We also introduce the central difference operator

1 1
Dy =—(TZ — Ty %),
v 23:( )

where TS f(x) = f(x + ¢) for an arbitrary polynomial f(x) in x. As we will see bellow (Theorem 1.7),
the factorial Schur functions R(yn-)(z;a) of lower degrees are obtained by expanding the factorial Schur
function R(i»(x;u) of the highest degree in terms of the shifted factorials (u;a),. This implies that the

Capelli elements C,_(u) of lower degrees are obtained from the Capelli element

of the highest degree as the expansion coefficients by (u;a). We use Propositions 1.5 and 1.6 below to
expand C,(u) of Theorem 1.4 in terms of the shifted factorials (u;a),. As a result we obtain an explicit
formula for each Capelli element Cy(u) of lower degree as a linear combination of symmetrized minor
determinants Dets(F') (Theorem 1.9).



Proposition 1.5. Let p(x) be a polynomial in = and suppose that o(x) is even, i.e. p(—x) =

Then @(x) is expanded into the form
Ck
o) = % i),
k>0

where the coefficients ci are given by

ke =Dip(@)],_,x  (k=0,12,..).
Proof. Note that
1 _1 1 1
(T2 =T *)(w;0), = <$+§§a>k— (= 5500k
1
:{($+2—a)(m++a+k—1)—(az——a—k;+1)(x_+a)}<

1
= 2kx <x;a—|— > .
2/ -1

Therefore, we have

Il
]
|
[
S

8

s

+
DN | =~

and hence

Ck+1
k!

l —_
Dx@(x)|w:a+% - ];) 2

1 _1
Noting that the difference operator 77 — T * and the multiplication operator -

(finite sum),

AN
a ja 5 k—cl.

1

alternately in the kth power D, of D,., we change the order of composition of operators.

Proposition 1.6. For k=0,1,2,..

., the kth power D of D, can be expressed as follows:

(22 — i)kt

where (z)y =x(x+1)---(x +k—1).

’ zk: <I:) (20— i)k_i(im: S SR

k .
_ <1?>(_1)i2x+k—21T§
i=0

—1

)

p(z).

O

are multiplied



Proof. By the mathematical induction, we have

k 1 k+1 . k—1

k 1 k1 k=1_,
DkJrl — ( > . Ta:2 l*TIZ i
v Zz; i) (2x —i)g—i(—2z —k+1); 2(x + kE_ Z)( )

1 LES B k=1_;
= T:2 -T2
E:() %_wbﬂz(zx—k+nf )

Z k 1 (K 1 e
— i —pp1i(—20—k+i); \i—1) 2z —i+ Vo (20 —k+i—1)_1) "
1 kil 1 k41
+ Tp? ——— T, % .
(22) k41 “ 2z — k)(—2x)g v

Here, we compute

k 1 1
Q)@m—@wlz(2m—k+z _( )@x—z+lsz(2x—k+i—ni1
M@z —2i+k+1)(20—2i+k+2) (20 —k+i—1)— (,F)) 2z —i) (22 — k+2i — 2)(-22 — k +2i — 1)
(22 — )pg3—i(—2x —k+i—1)i41
(2w —2i+k+1)(2x - 20+ k+2)("TH {5 (—20 -k +i — 1) — 25 (20 — i)}

(22 — )pq3—i(—2x —k+i— 1)1

- (k+1) 1
N 1 (QI — i)k+1_i(72z - (/{ + 1) + Z)Z '

Thus, we obtain

1 k+1

Dw—icﬁv Tt b Tt e Th b
! i ) Q2r—irs1-i(—22 — (k+1)+4); (20)k+1 (—2@)p41

i (k + 1) 1 TT—i
2 — i) p1—i(—20— (k+1)+4);, ©

The next theorem follows from the dual Cauchy formula of the factorial Schur functions (Theorem 2.2

of [5)).

Theorem 1.7. For a set of variables x = (21,...,%,), we have
R (u) = D (DR (w3 0) (s ).
k=0

Proof. Taking two matrices

1,1 o Tl,m4n

X = ;
Tm,a1 - Tm,m+n
Y11 e Y1, m+n

Y = : :
Yn,1 Yn,m+n

10



we set

Then we have

det Z = Z sgn (jl
L

{§1< <G YU{k1 <---<kyp }={1,...,m+n}

Xivgr 0 Kipgim
where X 1 = : : : . We put
Kiii 0 X
Un (X, Y)

T1,1

LTm,1
Y11

Yn,1

T1,m+n

Tm,m+n

yl,m—i-n

yn,m—i-n
mm-+1--- m+n
jm kl : kn
det Z

vy

et X{ det Y n

and 1 = Jp —m, o = jm-1— (m—1), ..., gm =j1 — 1, so that

U (X, V) = D (~)HSIM (X)S ().

= ((zisa)j-1); ;>

= ((wisa)j-1), 5

H1§i<j§7n+n(2]2 - 212)

nCn™
Then, by the specialization
1,1 o Tl,m4n
X =
Tm,1 " Tm,m+n
Y11 o Ylma4n
Y =
Yn,1 Yn,m4n
we obtain
U, (X,Y) = 5
H1§i<j§m(xj

:HH@j;Ii),

i=1j=1
where (21,..., Zm4n) = (T1, - s T, Y1y - -+, Yn)-
n

i=175=1 pnCnm

- 7) H1§i<j§n(y]2‘ )

This implies

11

(e = Y (D)™ RM (z;0)REY (5 a).

.....



Putting n = 1, we obtain

H(yﬁ%) =(=n" H<-Ti§yl>
i=1 i=1
= (=1)"R1r)(#;0) Ry (413 @)
r=0
= (1) R (@) (y1; a)m—r,
r=0
and hence
[Ttwiivn) = R (@ 9)
i=1
= Z(*l)mirR(lr)(I; a)(y1; a)m—r
r=0
= Z(_l)kREﬁsz)(fU; a){y1; a)k-
k=0

By Corollary 7.1 of [3], it is known that
Y (Cw) = u(u? — o) -+ (u? = 22) = (~1)"uR{}), (;u).

Hence #C’ (u) corresponds to RE?Q,)(:E; u) by the Harish-Chandra isomorphism. Thus, we put

_1n _1)n .
Cp(u) = %C’(u) = % Det(F* + ulapi1;n,n—1,...,—n).

The next theorem follows from the Theorem 1.7 by way of the Harish-Chandra isomorphism.

Theorem 1.8. The Capelli element of the highest degree Cy,(u) can be expanded in terms of the shifted

factorial as follows:

C(w) = (=1)*(u;a)xCr—i(a).

k=0

Here, Cp,_(a) denote the Capelli elements of lower degrees corresponding to Rg?g_k)(x; a) by the Harish-

Chandra isomorphism.

From Theorem 1.4, we have

n —1
2 1 —1)"
(;L) %egrﬂ(u—f—n,...,u—n) Deton_ar(F). (1.1)

We now put

1
or(u) = a62r+1(u+n,...,u—n) (r=0,1,...,n).

12



Since ¢, (u) is a polynomial in v and even, by Propositions 1.5 and 1.6, we can expand ¢, (u) into the

form

with the coefficients ¢, given by

k
k ; 2 . , .
ckrzg(Z)(—l) megrﬂ(a—l—k—z—l—n,a—i—k—z—i—n—1,...,a+/€—z—n).

Thus, comparing Theorem 1.8 with (1.1), we obtain the next theorem.

Theorem 1.9. The Capelli elements C,_i(a) of lower degrees can be expanded in terms of the sym-

metrized minor determinants as follows:

e " on+1\ e .
Cn—ir(a) =(-1) kZ( > % DetQ(n—T)(F)a

where

k
k , 2
Chor :Z(,)(—l)z%ki)eQTH(a—I—k—i—i—n,a—i—k—i—i—n—l,...,a—i—k—i—n).
; —1)k+1

Remark 1.10. The Capelli elements Cj(1) of lower degrees with parameter u = 1 here equal to
(-DIC5F (1 <1< n)in [3].

From these Capelli element of lower degrees, we can construct the higher Capelli elements by the

Jacobi-Trudi formula.

1.3 Construction of the higher Capelli elements C, (u)

In the framework of [7], the general Schur functions S/(\m) (X) have the Jacobi-Trudi formula

n

SUM(X) = det (e 57 (X))

)
4,j=1
where

r

el (X) = S (X).

In this Jacobi-Trudi formula, the dimension of the left-hand side ng)(X ) is m, while the elementary
symmetric functions of higher dimensions m 4 j — 1 appear on the right-hand side. For relating the
general Schur functions to the factorial Schur functions, we put X = X(a) = ((z;;a);j-1); ;, so that
Rg\m)(x; a) = Sg\m)(X (a)). Then by Theorem 1.11 below we can change the dimensions of the right-hand
side to m for adapting it to our setting of the Capelli elements of lower degrees. (Theorem 1.11 is
included in [5] as Lemma 2.4 and Theorem 2.5.)

Theorem 1.11. For each partition A C (n'™), we have the Jacobi-Trudi formula

n

(m)/ .\ _ (m) . ;
R, (x;a) = det (e)\;_iﬂ-(a?, a+j— 1)>i7j=1 )

13



Proof. We set Rg\m) (x;a) = Rgfn)(xl, s @ a) and (x55a); = xgj). When (M) <m < n,

Rgn)(xl,...,xm,a+n—m— lL,a+n—m-—2,...;a+1,a;a)
a:g)‘ﬁn_l) e xg/\"”'m_m) xgn_m_l) cee xgl) 1
QD g 2~V 2D
det O (atn—m-—-1)0—m=0 " (a+tn-—m-1)D
0 0 (a 4}'1')<1> 1
B 0 e e 0 1
acgnfl) . xgnfm) xgnfmfl) cee e xgl) 1
N 2= e oD i
det O (a+n—m-10C—"D " (a+n-m-1)D 1
0 0 (a +”1')<1> 1
0 0 1
mgxﬁnq) o xgx,,ﬂrnfm)
z%ﬁn_l) x%‘m—'_n_m)
- RO T
:E%l_l) x%b_m)
(x1;a+n—m)x,4m-1 ... (z1;a+n—m)y,

Ign_m) cee zg{_m) det

_ (Tmia+n—mYx,4m-1 ... (Tmja+n—mx,
(x1;a4+n—mypm_1  (zr;6+n—M)p—2 ... 1
mgn_m)-~-m57?_m)det :
(mia+n—m)pm_1 (Tm;a+n—m)py_o ... 1
:Rf\m)(xl,...,mm;a—i—n—m).

When m < [(\), and there exists j > 0 such that A,,4; > 0, the (m + j,m + j)-component of the
numerator equals to (a +n —m — j)Pm+itn=m=3) — (. Thus, RE\")(zl, e T, +n—m—1la+n—

m—2,...,a+ 1,a;a) = 0. In the Jacobi-Trudi formula

SU () = det “"“‘”(x))”

EX—itj ij=1
of [7] for X = X (a), the left-hand side does not depend on ®,41,...,Tm+;—1. Thus, we can put
ITm4+1 = a+] - 2uxm+2 = a+.7 - 3,...7.I'm+]‘71 =a

in the right-hand side. Then, we have

m m—+j—1
R(A )(x;a) = det (eg\,’i—t‘]—&-j )(x;a))

1,j=1

14



n

= det (e&?ﬂiﬂ(x;a +j— 1))Z i1

Remark 1.12. Theorem 1.11 holds also in the gl,, case if we put (z;a) = x — a and
(x;a) = (z;a)(z;a+ 1) -+ (z;a+ Kk — 1).

Since C,g") (u) corresponds to the factorial Schur function eggn) (z;u), from Theorem 1.11 we can con-

struct the higher Capelli elements C(u) which corresponds to the factorial Schur function Rf\n)(a:; u).
Theorem 1.13 ( Higher Capelli elements for sp,,,). For each partition A C (m"), we define

Cx(u) = det (Cxr—ipj(u+j—1))"

ij=1"

Then, Cx(u) corresponds to Rg\n) (z;u) by the Harish-Chandra isomorphism.

2 Higher Capelli elements in the case of 09,
The split realization of the orthogonal Lie algebra o,, is defined by
0(S) = {X € Mat,,(C)|’XS,, + S, X =0}

with the symmetric matrix Sy, = (6i,m+1—j)1<i,j<m, Where §; ; is the Kronecker delta. In this setting,
we use the matrix
F° = (F"

ij)lSi,jSm

€ Matm (u(U(Sm))) s
F=Eij — Enyi—jmy1—i € 0(Sm)-

In this section we treat the case of 0g,, so we put m = 2n. Following Wachi [11], we define the central
element C%2" (u) € U(0((S2y,)) of the highest degree which corresponds to RE?Z) (x; u) by Harish-Chandra
isomorphism. Then, we construct the higher Capelli elements for the 09, case, by the same method as

in the sp,,, case. We define the Capelli element of U (0((S2,)) by the symmetrized determinant
Cr(u) = (=1)"Det (ul — F°;n—1,n—2,...,0;0,—1,...,—n+1),

where 0 appears twice in the diagonal shift in the nth and (n + 1)th places. In [11], this C2"(u) is
expressed as (—1)"CH (u). Although certain Capelli elements CP°(u) (d < 2n) of lower degrees are
introduced as well in [11], their eigenvalues do not correspond to factorial Schur functions. Thus, we
propose to construct the Capelli elements Cy?"(u) (k < n) of lower degrees which correspond to the
factorial Schur functions attached to the column partitions. In this section we express F° = F and

Cy?" (u) = Ck(u) for simplicity. Firstly we confirm that Detagyq(F) = 0.

Lemma 2.1. If s is odd, Dets(F) = 0.

15



Proof. Setting i’ = 2n + 1 — ¢, we have F; ; = —F}s ;. Then,
1

Det(FIJ) = g Z Sgn(0)<T)F7;o'(l):i-r(l) e Fio’(s))i‘r(s)
C o, TEG,

1
a ZSgn(U) Sgn(T)(_FiTu)'xiam') T (_FiT(S)/aiU(S)/)
o,T

= (—1)5 Det(Fle).

Thus, we obtain
Detg(F) = (—1)° Dets(F).

Secondly we apply Proposition 1.1 to C,, (u):
Cp(u)=Det(—F;u+n—1liu+n—2,...,u;u,u—1,...,u—n+1)

-1
2 i

= E ( n) er(fu+n—lLu+n—2,...,u;u,u—1,...,u—n+1)(—1)° Dets(F)
r

r4+s=2n

n 2 -1

:Z (2n> ear(u+n—lu+n—2,...,u;u,u—1,...,u —n+ 1) Detoy,_o.(F) (2.1)

r

r=0
n m -1

—2(2 ) eon—as(u+n—Liu+n—2,... u;u,u—1,...,u—n+1)Detos(F).
s=0 5

Thirdly for (2.1) we put

Yr(u) =egr(u+n—lu+n—2,...,u;u,u—1,...,u —n+1).

Then .. (u) is a polynomial and an even function. Thus, by Propositions 1.5 and 1.6, we expand ,.(u)

into the form

where the coefficients ¢y, are given by

7

k .
k .2 2k — 2
ar=> | (—1)Za+—,lezr(a+k—z‘+n—1,a+k—z’+n—2, - a+k—isatk—i, ... atk—i—n+1).
’ 2 k—
i=0 (2a + D1

By Theorem 1.8,

Calu) =3 (1) (-1 32 S i Detago(F)

k=0

= (—1)k<u;a>kC’n_k(a).

Then, comparing the coefficients of (u;a), we obtain explicit formulas for the Capelli elements of lower

degrees.

16



Theorem 2.2. The Capelli elements C,,_(a) of lower degrees can be expressed in terms of the minor

symmetrized determinants as follows:

e " /on\ e .
Cucale) = (10" 30 (57) % Dot (F),
r=k ’

k .
k .2 2k — 2
Chor = g . (—1)la+—,legr(a+k—i—|—n—l, at+k—i+n—2,...,a+k—i;a+k—i, ..., atk—i—n+1).
Y (20 +k — i),y

The higher Capelli elements for the 09, case have the same form as in Theorem 1.13.

Theorem 2.3 ( Higher Capelli elements for 0, ). For each partition A C (m™) we define

m

Cy(u) = det (C’,\;_Hj(u +7— 1))

ij=1"

Then, Cy(u) corresponds to Rg\n)(:c; u) by the Harish-Chandra isomorphism.

3 Higher Capelli elements in the case of 09,11

We define the Capelli element of U (0((S2n+1)) by the symmetrized determinant

(1) 1 3 1 1 3 1

O2ni1(y) =~ Det(ul — F'n— =,n—=,...,=;0;—=,—=,...,—n— =).

Cn (u) u et(u yn 27” 27 72701 2a 27 y — 1 2)
02n41

This Capelli element corresponds to RE;Q,)(:U; u) by Harish-Chandra isomorphism. In [11], this Crp*"** (u)

is expressed as (711)” CDe | (u). In this section we express F° = F and C}”" ™" (u) = C(u) for simplicity.

Firstly we apply Proposition 1.1 and Lemma 2.1 to C),(u):

=nm

Cn(u) = » Det(F;qun;,u+n§,...,u+;;u;u;vu;“"un;)
_ (‘i)n ; (2712?: 1)132(m—s)+1 <u+n— %,...,u+%;u;u— %,...,u—n— ;) Detoy (F).

Secondly for (3.1) we put

€. )_1 L 1 +1' ' 1 1
r(@) =—erpi|utn—g,..ut uu— g, U5 |

Then &,(u) is a polynomial and an even function. Thus, by Proposition 1.5 and 1.6, we expand &, (u)

into the form




where the coefficients ¢y, , are given by

k
k ; 2 1 1 1
Ck,’r‘:z<'>(71)l( ——————e2r+1 <a+k7i+n7§,...,a+k7i+ 5;a+k7i;a+k7if5,...,a+k7i7n77).

=N 2a+k—i)p,

By Theorem 1.8,

"o 1\ ! L
Colu) = <2T+1> (-1) I;) 1 (us @) Detag ) (F)

NgRINg

(—1)*(u;a)Cpr_i(a).

i
o

Then, comparing the coefficient of (u;a)x, we obtain explicit formulas for the Capelli elements of lower

degrees.

Theorem 3.1. The Capelli elements C,,_i(a) of lower degrees can be expanded in terms of the sym-

metrized minor determinants as follows:

" o1\ ! Ck
Cnfk(a) = (_l)n_k Z (2’/’ + 1) /{;"T Detz(n_r)(F),
r=k ’

where

¢ _zk:<k>(_1)i¥e (a—l—k—i—i—n_l a+k—i+1'a+k—i-a+k—i—l a—l—k—i—n—l
b ( (2a+k =)y el 277 2’ ’ 27 2)°

=0

The higher Capelli elements for the 09,41 case have the same form as in Theorems 1.13 and 2.3.

Theorem 3.2 ( Higher Capelli elements for 09,11 ). For each partition A C (m™), we define

C)\(U) = det (C)\;_i_;,_j(u —|—j - 1))m

ig=1"

Then, Cy(u) corresponds to Rg\n)(az; u) by the Harish-Chandra isomorphism.

Remark 3.3. In [11], Wachi defined certain central elements Cy(u) of lower degrees with a parameter
u for 09, and 09,41 cases, but these are different from our Capelli elements, expect for the one of the

highest degree.

4 Higher Capelli elements in the case of gl,

In this section, we apply our method of construction of higher Capelli elements C(u) to the gl,, case.
In this case, the higher Capelli elements C(0) with u = 0 coincide with those constructed by Okounkov
[9]. For a general k x k matrix Z with non-commuting entries, the column determinant det(Z) is defined
by

det(Z) = Z sen(0) Zo(1),1 " Lo (k) k-

oceSy,

Similarly to Proposition 1.1, we have
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Proposition 4.1. For a; = b; + ¢;, we have

det (A + diag(ay,...,an)) = Z Z Chy * - Cx, det (A + diag(b1, ..., bn))p 1 -
r+s=n 1<k <---<k.<n
1<li<--<ls<n
K| |L={1,...,n}

Applying Proposition 4.1 to C),(u), we have

Cp(u) =det(E + diag(n —u,n — 1 —u,...,—u))
= Z er(n—u,n—1—u,...,—u)det, F
r4+s=n
= Zer(n —u,n—1—wu,...,—u)det, . F,
r=0

where detys E = Z‘ I)=s det Er 1 denotes the sum of all s x s column principal minor determinants of E.

The relation between the factorial Schur function of the highest degree RZ‘ln)(x; u) and lower degrees

RE?Z,,,C)(DC; a) is given in the same way as in Theorem 1.7.
Theorem 4.2. For a set of variables x = (x1,...,%,), we have
RE?E,)(x;u) = Z(—l)kRE?Z,_k)(ac; a)(u; a)g.

k=0

Here, we set
(u;a) =u—a and

(u;a)g = (u;a){u;a+ 1) - {u;a + k —1).
We define the difference operator A, by
Arp(z) = p(z+1) — ¢()

for an arbitrary polynomial ¢(x), then expansion of ¢(x) by the shifted factorials (x;a) is determined

as follows.

Proposition 4.3. If we ezpand a polynomial p(x) in the form

¢ .
p(x) = Z k—’j(x, a)r  (finite sum),
E>0
then the coefficients ci are given by
cr = Aigp(m)’x:a (k=0,1,2,...).

In this case, the powers of A, are expanded simply by the binomial coefficients.
Proposition 4.4. For k=0,1,2,..., the kth power AX of A, can be expressed as follows:

Ak = zk: (f) (—1)F—1t,

=0

By Theorem 4.2 and the Harish-Chandra isomorphism, we obtain
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Theorem 4.5. The Capelli element C,,(u) of the highest degree can be expanded in terms of the shifted

factorials as follows:
n

Culu) = D7 (1) Cui(@) s ).

k=0

Here, Cp,_(a) denote the Capelli elements of lower degrees corresponding to RET,)I,,C)(I‘; a) by the Harish-

Chandra isomorphism.

Thus we have

n

Cp(u) = Zer(n —u,n—1—u,...,—u)det,_,E
r=0
= (-1)*Cri(a)(u; a)y.
k=0
We put
Yr(u)=e(n—u,n—1—u,...,—u)
r Chr
-3 Sl
k=0

Then, comparing the coefficient of (u;a)k, we have

n

Cr(a) = Z(—l)k%rdetn_rE.
r==k ’

By Proposition 4.3, we can calculate these coefficients ¢y, as follows:

Crr = Aﬁ% (u) |u:a

Fk ‘
= E (_)(—1)’“_ler(n—a—i,n—1—a—i,...,—a—i).
7
i=0

In this way, we obtain explicit formulas for the Capelli elements C,,_(a) of lower degrees.

Theorem 4.6. The Capelli elements Cy,—i(a) of lower degrees can be expanded in terms of the column
minor determinants as follows:

n

Chr
Ch_ila) = Z(—l)k%detn,rﬂ
r=k ’

where
k

ckr:Z(?)(—l)k_ier(n—a—i,n—1—a—i,...,—a—i).

i=0
The higher Capelli elements for the gl,, case are obtained in the same way as in Theorems 1.13, 2.3,
and 3.2.
Theorem 4.7 ( Higher Capelli elements for gl, ). For each partition A C (m™), we define
Ox(w) = det (Cx—isj(u+j = 1)

Then, Cx(u) corresponds to Rg\n) (z;u) by the Harish-Chandra isomorphism.

20



Acknowledgements

We would like to thank Prof. Masatoshi Noumi for valuable comments on this paper.

References

1] A. Capelli: Sur les opérations dans la théorie des formes algébriques. Math. Ann. 37 (1890), 1-37.
2] M. Itoh: Capelli elements for the orthogonal Lie algebras. J. Lie Theory 10(2) (2000), 463-489.
3] M. Itoh: Capelli identities for the dual pair (O, Spy). Math. Z. 246 (2004), 125-154.

4] M. Ttoh: Extensions of the tensor algebra and their applications. Comm. Algebra 40 (2012), 3442
3493.

[5] S. Kawata and M. Noumi: Jacobi-Trudi formula for the higher Capelli elements of classical Lie

[
[
[
[

algebras, to appear in Kyushu J. Math.

[6] I.G. Macdonald: Schur functions: theme and variations, in Séminaire Lotharingien de Combinatoire.
(Saint-Nabor, 1992), Publ. Inst. Rech. Math. Av. 498 (1992), 5-39. Univ. Louis Pasteur, Strasbourg.

[7] J. Nakagawa, M. Noumi, M. Shirakawa and Y. Yamada: Tableau representation for Macdonald’s
ninth variation of Schur functions. Physics and Combinatorics 2000 (Nagoya), pp. 180-195, World
Scientific, 2001.

[8] M. Noumi: Elliptic Schur functions. Seminar talk at the University of Sydney, August 24, 2011.

[9] A. Okounkov: Quantum immanants and higher Capelli identities. Transform. Groups 1 (1996),
99-126.

[10] A. Okounkov and G. Olshanski: Shifted Schur functions. II. The binomial formula for characters
of classical groups and its applications. Kirillov’s Seminar on Representation Theory, pp. 245271,
Amer. Math. Soc. Transl. Ser. 2, 181, Amer. Math. Soc., 1998.

[11] A. Wachi: Central elements in the universal enveloping algebras for the split realization of the
orthogonal Lie algebras. LMP. 77 (2006), 155-168.

21



