

PDF issue: 2025-01-12

核磁気共鳴法を用いた硫化銅鉱物テトラヘドライト における銅原子非調和大振幅振動と電子系異常につ いての系統的研究

松井, 隆志

<mark>(Degree)</mark> 博士(理学)

(Date of Degree) 2021-09-25

(Date of Publication) 2023-09-25

(Resource Type) doctoral thesis

(Report Number) 甲第8132号

(URL) https://hdl.handle.net/20.500.14094/D1008132

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

博士論文

核磁気共鳴法を用いた硫化銅鉱物テトラヘドライトにおける 銅原子非調和大振幅振動と電子系異常についての 系統的研究

令和3年7月

神戸大学大学院理学研究科

松井 隆志

目 次

第1章	序論	4
1.1	研究背景	4
	1.1.1 概観	4
	1.1.2 調和振動と電子-格子相互作用	5
	1.1.3 非調和振動と電子 – 格子相互作用	5
	1.1.4 ラットリングの概略	5
	1.1.5 ラットリングの歴史	7
1.2	テトラヘドライト	8
	1.2.1 結晶構造	9
	1.2.2 ラットリング	10
	1.2.3 金属 – 半導体転移	13
	1.2.4 高温の異常	16
1.3	研究目的	16
1.4	課題設定	17
生っキ		10
<i>昻 4</i> 早	天殿・珪冊	19
		10
2.1	NMRの原理	18
2.1	NMRの原理 2.1.1 共鳴条件	18 18
2.1	NMRの原理 2.1.1 共鳴条件 2.1.2 核四重極相互作用	18 18 19
2.1	NMRの原理 2.1.1 共鳴条件 2.1.2 核四重極相互作用 2.1.3 ナイトシフト	18 18 19 22
2.1	NMRの原理 キ鳴条件 2.1.1 共鳴条件 2.1.2 核四重極相互作用 2.1.3 ナイトシフト 2.1.4 核スピン-格子緩和時間	 18 18 19 22 23
2.1	NMRの原理 2.1.1 共鳴条件 2.1.2 核四重極相互作用 2.1.3 ナイトシフト 2.1.4 核スピン-格子緩和時間 2.1.5 核スピン-スピン緩和時間	 18 19 22 23 25
2.1 2.2	NMRの原理 2.1.1 共鳴条件 2.1.2 核四重極相互作用 2.1.3 ナイトシフト 2.1.4 核スピン-格子緩和時間 2.1.5 核スピン-スピン緩和時間 電子-格子相互作用	 18 19 22 23 25 26
2.1 2.2 2.3	NMRの原理 2.1.1 共鳴条件 2.1.2 核四重極相互作用 2.1.3 ナイトシフト 2.1.4 核スピン-格子緩和時間 2.1.5 核スピン-スピン緩和時間 電子-格子相互作用 Dahm-Ueda 理論	 18 19 22 23 25 26 28
2.1 2.2 2.3 2.4	NMRの原理 2.1.1 共鳴条件 2.1.2 核四重極相互作用 2.1.3 ナイトシフト 2.1.4 核スピン-格子緩和時間 2.1.5 核スピン-スピン緩和時間 電子-格子相互作用 Dahm-Ueda 理論 実験	 18 19 22 23 25 26 28 30
2.1 2.2 2.3 2.4	NMRの原理 2.1.1 共鳴条件 2.1.2 核四重極相互作用 2.1.3 ナイトシフト 2.1.4 核スピン-格子緩和時間 2.1.5 核スピン-スピン緩和時間 電子-格子相互作用 Dahm-Ueda 理論 2.4.1 NMR 実験	 18 18 19 22 23 25 26 28 30 30
2.1 2.2 2.3 2.4	 NMR ○原理	 18 19 22 23 25 26 28 30 30 31
2.1 2.2 2.3 2.4 筆 3 音	NMRの原理. 2.1.1 共鳴条件. 2.1.2 核四重極相互作用. 2.1.3 ナイトシフト 2.1.4 核スピン - 格子緩和時間. 2.1.5 核スピン - スピン緩和時間. 電子 - 格子相互作用 Dahm-Ueda 理論. 実験. 2.4.1 NMR 実験. 2.4.2 試料合成.	 18 19 22 23 25 26 28 30 31 34
 2.1 2.2 2.3 2.4 第3章 31 	NMRの原理. 2.1.1 共鳴条件. 2.1.2 核四重極相互作用. 2.1.3 ナイトシフト 2.1.4 核スピン - 格子緩和時間. 2.1.5 核スピン - スピン緩和時間. 電子 - 格子相互作用 . Dahm-Ueda 理論 . 2.4.1 NMR 実験. 2.4.2 試料合成.	 18 19 22 23 25 26 28 30 30 31 34
 2.1 2.2 2.3 2.4 第3章 3.1 3.2 	NMRの原理. 2.1.1 共鳴条件. 2.1.2 核四重極相互作用. 2.1.3 ナイトシフト 2.1.4 核スピン - 格子緩和時間. 2.1.5 核スピン - スピン緩和時間. 電子 - 格子相互作用 Dahm-Ueda 理論. 2.4.1 NMR 実験. 2.4.2 試料合成.	 18 19 22 23 25 26 28 30 30 31 34 34

3.3	核スピン − 格子緩和時間 (<i>T</i> ₁)	44
	3.3.1 低温領域	44
	3.3.2 高温領域	48
3.4	核スピン‐スピン緩和時間 (T2)	52
	3.4.1 低温領域	52
	3.4.2 高温領域	54
	=*=	•
弗4草	· 我 ··································	56
4.1	電子系の異常	56
4.2	格子系の異常	62
4.3	電子-ラットリング相互作用................................	68
4.4	高温の異常・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	74
笠∊咅	約4	<u>80</u>
おり 早		80
第6章	補遺	82
6.1	第一原理計算について.................................	82
	-4174	
第7章	謝辞	85

第1章 序論

1.1 研究背景

1.1.1 概観

固体物理学において、電子や原子振動(格子振動)の性質から物性を理解する試みが古くから 行われてきたが、電子と格子振動が相互作用することで更に多彩な物性が実現することが知られ るようになってきた。物質中を運動する電子が格子振動によって散乱される現象を電子 – 格子相 互作用 [1] と呼び、電子 – 格子相互作用は電気伝導、熱伝導、間接半導体のバンドギャップ形成な ど物質の主要性質を決定するだけでなく、超伝導、ポーラロン形成、Peierls 転移など重要な物理 現象の原因となる [1, 2, 3]。

電子 – 格子相互作用について歴史を紐解くと、1911 年に H. Kamerlingh Onnes により水銀の 超伝導が発見され [4]、以来長らく謎であった超伝導機構であるが、1957 年に J. Bardeen、L. N. Cooper、J. R. Schrieffer が電子 – 格子相互作用により超伝導状態が実現するという機構を初めて 明らかにした [5]。また弱い電子 – 格子相互作用が超伝導を引き起こす一方、強い電子 – 格子相互 作用により、Peierls 転移と呼ばれる金属 – 絶縁体転移が起きることが知られる [3]。これは金属中 の伝導電子が周囲の格子と強く結びつくことで格子の変形を起こし、弾性エネルギーの損失を招 く一方、電荷密度の粗密を生じ絶縁化することでフェルミ面にギャップを生じさせ、電子系のエネ ルギーを減じることで系全体としてのエネルギーを減じるというものである [3]。

格子振動は従来、原子がバネで繋がれたモデルである調和振動としてよく理解されてきた [1, 2]。 一方で、調和近似が破綻した非調和振動も電子 – 格子相互作用を考える上で重要である。例えば 非調和性により、Peierls 転移が抑制され超伝導の転移温度が上昇することや、超伝導における同 位体効果が変化することが知られる [3]。

そのような歴史的経緯の中、最近構成原子の一部が「カゴ」状構造をとり、カゴ状構造に内包 される原子が空間的な自由度を有している物質系が開発された。これらの系では、格子振動の調 和近似が破綻するだけでなく、結晶構造の中にありながら一部の原子が孤立しているかのように 大振幅振動をするというものである。このような振動は「非調和大振幅振動」あるいは「ラット リング」とよばれ、2000年に入って精力的に研究がなされるようになってきたが、これらの非調 和大振幅振動そのものの性質や、それが電子系や格子系に与える影響については理解が及んでお らず、固体物理学における未解明の重要な課題の一つである。ここでは電子と格子の相互作用が 物性にもたらす効果について概観したが、以下の節で更に詳しく紹介する

4

1.1.2 調和振動と電子 - 格子相互作用

固体物理学において、様々な物性を理解する鍵として原子振動(格子振動)が盛んに研究され てきた。アインシュタインが、1911年に原子を独立調和振動子としてみなし量子論的に取り扱う アインシュタインモデルを発表し、比熱 C が高温で定数 $3N_Ak_B$ となるデュロン–プティの法則や 低温でゼロとなる法則を説明した [6]。一方、アインシュタインモデルではC は低温で指数関数的 温度依存を示し、実験的に得られた比熱の $C \propto T^3$ の温度依存性は説明できなかった。そこでデ バイは各原子がバネで繋がれた連続弾性体として考えるデバイモデルを提唱し、低温の T^3 の温度 依存性を説明した [1, 2]。

このように格子振動は調和振動子、そしてその振動を準粒子とみなしたフォノンの性質として 理解されてきた。このときポテンシャルは、原子変位*x*に対して、

$$U(x) = \frac{1}{2}kx^2$$
 (1.1)

の形で書ける。このような系における電子 – 格子相互作用は古くから議論されており、例えば超伝 導転移に関する BCS 理論 [5] や金属 – 絶縁体転移に関する Peierls 転移 [3] が挙げられる。電子 – 格子相互作用とは、電子が格子振動によって散乱される現象を指す。また、電子 – 格子相互作用 は電子がフォノンの衣をまとい有効質量が重くなる現象として理解され、このように重くなった 電子はポーラロンと呼ばれる準粒子として扱われる [1, 2]。理論的取り扱いについては第 2 章 2.2 節で述べる。特に相互作用が比較的弱い場合に超伝導が生じ、強い場合に Peierls 転移が生じるた め、超伝導転移温度には 30 K 程度の BCS の壁と呼ばれる限界があると言われてきた。しかしこ れらは調和振動を仮定した場合である。

1.1.3 非調和振動と電子 - 格子相互作用

一方、熱膨張や格子熱伝導率など従来型の調和振動では説明できない現象も明らかになってきた。このような物性を理解する上では調和振動よりも更に高次項を取り入れた非調和振動を考える必要がある。すなわち、高次項の入った非調和ポテンシャル、

$$U(x) = ax^2 + bx^3 + cx^4$$
(1.2)

を考える。特に、非調和性を取り入れた電子 – 格子相互作用を考えると、Peierls 転移が抑制され BCS の壁と呼ばれる超伝導転移温度の上限を超える超伝導転移温度が実現することや、超伝導同 位体効果が変化することがわかっており [3]、非調和性の強い系での電子 – 格子相互作用は興味深 いものであると言える。

1.1.4 ラットリングの概略

このように非調和性を持つ系の電子 – 格子相互作用の重要性も指摘されてきたが、その中で近 年、新しい非調和振動の舞台が知られるようになった。それはカゴ状の結晶構造に内包される原 子の示す原子振動であり、「ラットリング」と呼ばれる。ラットリング (rattling) は元々「がらが らと鳴る」という意味の言葉であるが、Sales らによって、カゴ状構造 (ホスト) と内包される原子 (ゲスト) をおもちゃのがらがら (rattler) に例えて名づけられた [7]。

物理学的には、ラットリングは

$$U(x) = \frac{1}{2}ax^2 + \frac{1}{4}bx^4$$
(1.3)

と表される非調和ポテンシャル中の原子振動によって特徴づけられる。これを模式的に示したものが図 1.1 である。特に、式 (1.3) において *a* > 0 の場合は「平らな」ポテンシャル中の原子振動 となり、一方で *a* < 0 の場合は二重井戸型ポテンシャルの飛び移りとなる。

図 1.1: 非調和ポテンシャル $U(x) = \frac{1}{2}ax^2 + \frac{1}{4}bx^4$ の模式図。

このようなラットリング系は、従来のような原子振動の調和近似、あるいは高次項を摂動として 取り入れたような系とは根本的に異なり、カゴ状構造に内包される原子が孤立しているかのよう に大振幅振動を示す [8]。したがって、ラットリング系はこれまでに知られてきた原子振動とは全 く異なる物性を示すことが期待される。実際、ラットリング系では熱伝導率が抑制されることが 知られており [7]、その性質から熱電物質としての応用が期待され盛んに研究されてきた。一方で 近年ラットリングと電子の新しい電子 – 格子相互作用により発現する超伝導が報告され、電子 – 格子相互作用の文脈でも注目されている [9, 10, 11, 12, 13]。そこで、本論文では電子とラットリ ングの相互作用を従来の電子 – 格子相互作用と区別して「電子 – ラットリング相互作用」と呼ぶ ことにする。以下にラットリング研究の歴史について詳しく記す。

1.1.5 ラットリングの歴史

ラットリングの発見

ラットリングは最初に Jeitschko らによる X 線回折実験から、カゴ状の構造を持つ物質、充填 スクッテルダイト系 *RTr*₄X₁₂(*R*: 希土類、*Tr*: 遷移金属) において報告された [14]。ここでラット リングは X 線回折による原子変位パラメータ (ADP) から見出された。原子変位パラメータは平均 二乗変位を意味し、以下のように表される。

$$U_{ij} = \langle \Delta x_i \Delta x_j \rangle$$
 $(i = 1, 2, 3 \quad j = 1, 2, 3)$ (1.4)

原子変位パラメータ U_{ij} は構造因子 F_{hkl} 内に現れ、 F_{hkl} は以下のように表される。

$$F_{hkl} = \sum_{j=1}^{n} g_j t_j(s) f_j(s) \exp[2\pi i (hx_j + ky_j + lz_j)]$$
(1.5)

$$t_j = \exp\left[-2\pi^2 (U_{11}^j h^2 a^{*2} + U_{22}^j k^2 b^{*2} + U_{33}^j l^2 c^{*2} + 2U_{12}^j h k a^* b^* + 2U_{13}^j h l a^* c^* + 2U_{23}^j k l b^* c^*)\right] (1.6)$$

ここで、jはj番目原子、 g_j は占有因子、 f_j は原子散乱因子、 $s = \sin \theta_{hkl}/\lambda, \lambda$ はX線波長、 t_j は 異方性原子変位因子であり、X線散乱強度は構造因子の2乗に比例する。JeitschkoらのLaFe₄P₁₂ の報告ではゲスト原子のLaが最も大きな ADP を持つことを報告し、カゴ状構造に内包されるLa 原子の大振幅振動を指摘した [14]。

ラットリングによる熱伝導の抑制

ラットリングが示す興味深い物性の一つとして、熱伝導を抑制する効果が知られている。熱伝 導率 κ は下記のように、電子成分 κ_{el} と格子成分 κ_{ph} に分けることができる。

$$\kappa = \kappa_{\rm el} + \kappa_{\rm ph} \tag{1.7}$$

Sales らによって充填スクッテルダイト系の研究がなされ、 $La_{0.75}Fe_3CoSb_{12}$ でゲスト原子 La の 原子変位パラメータが他のイオンの3倍程度もあること、 $CeFe_4Sb_{12}$ 、 $Ce_{0.75}Th_{0.2}Fe_3CoSb_{12}$ 、 $La_{0.75}Th_{0.2}Fe_3CoSb_{12}$ について κ_{ph} が室温でガラスと同程度まで抑えられることを示した[7]。

このような性質は熱電物質として都合がよく、今日では熱電発電研究の文脈でも盛んに研究されている [8]。熱電発電とは、物質に温度差を与えることによって起電力が生じるゼーベック効果 を利用した発電方法である。特にそのような発電の能力が高い物質を熱電物質と呼んでいる。熱 電性能は、ゼーベック係数 *S*、パワーファクター *PF*、無次元性能指数 *ZT*、熱電変換効率 η_{TE} か ら評価され、各物理量は以下のように定義される。

$$S = \frac{\Delta V}{T_{\rm H} - T_{\rm C}} \tag{1.8}$$

$$PF = S^2 \sigma \tag{1.9}$$

$$ZT = \frac{S^2 \sigma T}{\kappa} = \frac{S^2 \sigma T}{\kappa_{\rm el} + \kappa_{\rm ph}} \tag{1.10}$$

$$\eta_{\rm TE} = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}} \frac{\sqrt{1 + Z\bar{T}} - 1}{\sqrt{1 + Z\bar{T}} + \frac{T_{\rm C}}{T_{\rm C}}}$$
(1.11)

ここで ΔV は熱電効果により発生する電位差、 $T_{\rm H}$ は高温端温度、 $T_{\rm C}$ は低温端温度、 \bar{T} は低温端 と高温端の平均温度、 σ は電気伝導度、 κ 、 $\kappa_{\rm el}$ 、 $\kappa_{\rm ph}$ はそれぞれ全熱伝導度、熱伝導度の電子成分、 格子成分である。

特に実用的な熱電物質には ZT = 1 以上が必要であると言われている。これは発電効率にして 10% 程度の値となる。ここで、式 (1.10) から、ZT を高めるには高電気伝導と低熱伝導を両立す ることが重要とわかる。一方、通常金属では Wiedemann-Franz 則

$$\kappa_{\rm el}/\sigma = LT \tag{1.12}$$

が成り立つ。ここで*L*はローレンツ数であり、定数である。この関係から、電気伝導度と熱伝導度 の電子成分はトレードオフの関係にある。したがって、*ZT*を高めるためには熱伝導度の格子成分を 低下させることが重要となる。このような高電気伝導かつ低熱伝導の両立について「Phonon-Glass and Electron-Crystal (PGEC)」という概念が Slack らによって提唱された [15]。これを実現する 現象として注目されるのが「ラットリング」である。

ラットリングと電子の相互作用

このように応用科学面でも期待されるラットリングであるが、近年その非調和大振幅振動に起 因する物理現象が基礎科学面でも注目されるようになってきた。その一つはラットリング誘起超 伝導である。β-パイロクロアではラットリングエネルギーと超伝導を担うフォノンのエネルギー が一致し、ラットリング誘起超伝導であると言われている [10]。従来知られていた超伝導とは異な り、平らなポテンシャル中での遅い原子振動を媒介して電子が実空間上でのペアリングにより超 伝導を引き起こすことが指摘されており [10]、ラットリングがもたらす物理現象の例として注目 されている。

1.2 テトラヘドライト

このようにラットリングが応用科学、基礎科学の両面から注目される中で、硫化銅鉱物「テト ラヘドライト」がラットリング系として注目されるようになってきた。テトラヘドライトは銅原 子が大きな原子変位を持つことが知られており [16]、また近年高い熱電性能を示すことも報告さ れ [17]、ラットリング系熱電物質として注目されるようになった。一方で、金属から半導体に転移 する金属 – 半導体転移が発見され、その起源は明らかになっていない。金属から半導体に転移す る電子系現象と、ラットリングという格子系の現象に対応があれば、ラットリングと電子の相互 作用の新たな例となり非常に興味深い物質であると言える。以下では本研究の対象でもあるテト ラヘドライトについて詳細に述べる。

1.2.1 結晶構造

テトラヘドライトは $Cu_{12-x} Tr_x X_4 S_{13}$ の組成で表される物質群である。ここで Tr は遷移金属、 X はプニクトゲンである。図 1.2 は室温でのテトラヘドライトの結晶構造を示す。また、表 1.1 に テトラヘドライトの Wyckoff 位置を示す。

図 1.2: (a) Cu₁₂Sb₄S₁₃の結晶構造、(b) Cu₆Sb₄クラスター構造に注目した図 [18] ⓒ 日本物理学 会 2019

表 1.1: テトラヘドライトにおける各原子のワイコフ位置。Tr は遷移金属を意味する。

Crystallography				
Site	Wyckoff Position	Symmetry		
Cu(1), Tr	12d	4		
Cu(2)	12e	2.mm		
Sb, As	8c	<i>m</i>		
S(1)	24g	$\bar{4}3m$		
S(2)	2a	.3m		

この結晶構造は Pauling らにより最初に示された [19]。テトラヘドライトはユニットセル中に 58 個の原子を含む複雑な結晶構造をとる。このような結晶構造は格子熱伝導率の抑制に寄与して いると言われている [20]。

1.2.2 ラットリング

原子変位パラメータから見るラットリング

ここで、テトラヘドライトの原子変位パラメータをみる。表 1.2 に 295 K における各原子の原 子変位パラメータ [16] を示す。

	$U_{\rm iso}$	$U_{11} = U_{22}$	U_{33}	U_{12}	U_{13}	U_{23}
Cu(1)	0.0245(5)	0.0222(5)	0.029(1)	0	0	0
$\mathrm{Cu}(2)$	0.0615(6)	0.079(1)	0.026(1)	-0.049(2)	0	0
Sb	0.01728(8)	0.0173(1)	U_{11}	-0.010(1)	U_{12}	U_{12}
S(1)	0.0174(2)	0.0182(2)	0.0160(4)	0.0010(3)	-0.0020(2)	U_{13}
S(2)	0.0251(4)	0.0251(6)	U_{11}	0	0	0

表 1.2: テトラヘドライトの原子変位パラメータ [16]

図 1.2 に示した各原子の楕円体は、この原子変位パラメータをもとに原子の存在確率を 1σ まで 描いたものである。特に Cu(2) サイトの原子変位が S₃ 面垂直方向に一次元的に伸びていることが わかる。ここから Cu(2) 原子が S₃ 面垂直方向に一次元的なラットリングモードを持つことがわか る。さらに 2013 年、Suekuni らによって置換系 Cu₁₁NiSb₄S₁₃ においても表 1.2 と同様な ADP が 得られた [21]。つまり、後述のようにバルク物性は置換によって大きく変わる一方でラットリング 的性質は保たれることがわかる。ここで Suekuni らは等方的原子変位パラメータとデバイモデル、 異方的原子変位パラメータとアインシュタインモデルに基づき、以下の式を用い振動の特性エネ ルギーを求めた。

$$U_{\rm iso}(T) = \frac{3\hbar^2 T}{m_{\rm av} k_{\rm B} \theta_{\rm D}^2} \left[\frac{T}{\theta_{\rm D}} \int_0^{\theta_{\rm D}/T} \frac{x}{e^x - 1} dx + \frac{\theta_{\rm D}}{4T} \right] + d^2 \tag{1.13}$$

$$U_{2'2'}(T) = \frac{\hbar^2}{2mk_{\rm B}\theta_{\rm E,2'2'}} \coth\left(\frac{\theta_{\rm E,2'2'}}{2T}\right) + d_{2'2'}^2 \tag{1.14}$$

ここで m_{av} は Cu、Ni、Sb、S の平均質量、 θ_D はデバイ温度 $U_{2'2'} = U_{11} - U_{12}$ であり S₃ 三角面 垂直方向にとった軸方向の原子変位パラメータを意味する。m は Cu の質量、d および $d_{2'2'}$ は温 度依存しない無秩序パラメータ (disorder parameter)、 $\theta_{E,2'2'}$ はアインシュタイン温度である。こ こから、 $\theta_{E,2'2'}$ を 72 K と見積もっている。

比熱からみるラットリング

2014年、Lara-Curzioらによって天然結晶、合成された Cu₁₂Sb₄S₁₃、Cu₁₁ZnSb₄S₁₃、Cu₁₀Zn₂Sb₄S₁₃ の比熱のデータが示された [22]。ここでは Cu₁₀Zn₂Sb₄S₁₃ について、72 K のアインシュタイン モデルでは比熱の振る舞いはよく再現されないことが示された一方、デバイ振動と 1.0 meV、2.8 meV、8.4 meV の特性エネルギーを持つ 3 種類のアインシュタイン振動の和としてよく再現され ることが示された。2013 年には後に述べるように Lu らによってフォノンの計算が行われていた が [23]、不安定振動に起因する虚数振動数の振動モード、すなわち調和描像の限界を示しており単 純に比較はできないとしている。したがってここで得られた特性エネルギーは更に計算や中性子 非弾性散乱から確認される必要があると結論されている。

第一原理計算からみるラットリング

次にテトラヘドライトにおける第一原理計算によるフォノンについて述べる。2013 年、Lu ら によって DFT 線形応答法により Cu₁₂Sb₄S₁₃のフォノン分散が示された [23]。フォノン状態密度 (VDOS) では 3 meV 程度の低エネルギーにピークがみられる。また虚数振動数の調和フォノン モードが示されている。虚数振動数の調和フォノンモードは上凸のポテンシャル中の振動、すな わち不安定な振動モードを表しており [24]、Cu(2) 変位に関する全エネルギーのグラフは図 1.3 の ようになる。ここから 0.32 Å の変位で最安定となることがわかる。

図 1.3: Cu₁₂Sb₄S₁₃ の Cu 変位に対する全エネルギーの変化。[23]

また、2015 年、Lai らによって Cu₁₂Sb₄S₁₃ のサイト分解 VDOS が示され、Cu(2) サイトによ る VDOS が 4 meV にピークを持つことが示された [25]。特に、300 K の Cu(2)VDOS は 10 meV 以下に複数の構造を持っており、前述の比熱の結果と対応している可能性がある。

中性子非弾性散乱からみるラットリング

次に中性子非弾性散乱実験による VDOS の観点からラットリングを見る。2015 年 Bouyrie らに よって、 $Cu_{12}Sb_2Te_2S_{13}$ と Cu(2) サイトに欠損のある $Cu_{10}Te_4S_{13}$ の中性子非弾性散乱が示され た [26]。ここでは $Cu_{12}Sb_2Te_2S_{13}$ において第一原理計算による結果に一致する 3.5 meV に光学的 分枝、VDOS のピークが見いだされた。また 500-2 K の温度変化を測定することで 3.5 meV の ピークは 2 K において 2.5 meV までソフト化した。このようなソフト化は第 2 章 2.3 節で述べる Dahm-Ueda 理論 [27] により無次元非調和因子 β を 0.5 としてよく再現されている。つまり非調 和的な振動の存在を示唆している。一方、 $Cu_{10}Te_4S_{13}$ ではそのようなピークは消滅した。これは $Cu_{10}Te_4S_{13}$ においてラットリングが指摘される Cu(2) が欠損しているためであると推測されてい る。特に $Cu_{12}Sb_2Te_2S_{13}$ をみると 200 K で 10 meV 以下の領域に、8.5 meV、6.5 meV、3.5 meV と 3 つの山があるような結果が得られており、これも前述の比熱の解析に対応するのではないか と考えらえる。

次に、2016 年 May らによって母物質系 $Cu_{12}Sb_4S_{13}$ と Zn 置換系 $Cu_{10}Zn_2Sb_4S_{13}$ の中性子非 弾性散乱の結果が示された。Bouyrie らの結果と同様に母物質系では 200 K で 3.1 meV にピーク がみられた。母物質系の金属 – 半導体転移温度 $T_{MST} = 85$ K 以下でも低エネルギーのピークは 残っており、80 K の 3 meV 程度から 6 K では 2 meV までソフト化することが示された。一方、 $Cu_{10}Zn_2Sb_4S_{13}$ でも 300 K で 3.8 meV のピークがみられ、6 K では 2.6 meV までソフト化するこ とが示された。また、このような非調和振動は、Cu(2) 振動軸上にある Sb の孤立電子対によるも のではないかと推測されていた。

さらに2018年、Suekuniらによって母物質とCu置換系、プニクトゲン置換系、すなわちCu₁₂Sb₄S₁₃、 Cu₁₀Zn₂Sb₄S₁₃、Cu₁₂As₄S₁₃、Cu₁₀Zn₂As₄S₁₃、についての系統的な中性子非弾性散乱の結果が 示された [28]。いずれも 3 meV 程度の光学フォノンが観測されたが、ラットリングエネルギーが Zn 置換の影響を受けることから孤立電子対の影響に対して否定的な結果が得られている。一方 S₃ 三角面面積とラットングエネルギーに線形的な正の相関があることから、ラットリングの起源と して化学圧力が有力であろうと結論づけている。

核磁気共鳴からみるラットリング

2018 年、Ghassemi らによって核磁気共鳴 (NMR) における核スピン – 格子緩和時間からみた ラットリングの動的情報が報告された [29]。ここでは非調和振動を考慮した 2 フォノンラマン散乱 過程の式

$$\frac{1}{T_1^R} = \left(\frac{k_{\rm B}TV_2}{2M}\right)^2 \frac{2}{\Gamma_0} \frac{4\Gamma_0^2 + \omega_{\rm r}^2}{\omega_{\rm r}^6} \tag{1.15}$$

を用いた解析が行われている。ここで、V₂ は電場勾配の二階位置微分に比例し、 Γ_0 はフォノンダン ピング量、 ω_r は電子 – 格子相互作用がくりこまれたフォノン周波数であり、 $\omega_r^2 = \omega_0^2 + \omega_0 Re\Pi(\omega)$ に より得られる。ここからパラメーター $\beta = 55$ 、 $\omega_{00} = 24$ K、 $\Gamma_0 = 5.0$ K、 $\omega_0 Re\Pi(\omega) = -(4.0\text{K})^2$ 、 ポテンシャル構造

$$V(x) = (-13 \text{Jm}^{-2})x^2 + (4.2 \times 10^{22} \text{Jm}^{-4})x^4$$
(1.16)

が得られている。ポテンシャル構造を描くと図 1.4 のようになる。これは Lu らの結果 [23] に対し 1/2 程度の値である。

図 1.4: Cu₁₂Sb₄S₁₃ の Cu 変位に対する全エネルギーの変化 [29]

1.2.3 金属 - 半導体転移

テトラヘドライトの母物質 $Cu_{12}Sb_4S_{13}$ は転移温度 $T_{MST} = 85$ K で金属 – 半導体転移を起こす ことが知られているが、その機構はいまだ議論されている。特に、磁気的な秩序かどうか、 Cu^{2+} は存在するか、存在する場合 Cu(1) サイト、Cu(2) サイトどちらに存在するか、一次転移か二次 転移か、一次転移の場合低温の構造がどうなっているか、といった議論がなされてきた。

金属 - 半導体転移の発見

まず 2005 年、Di Benedetto らによって 79–86K の範囲で磁化率の段階的な減少、比熱のプラ トーが報告された [30]。また磁化率は T > 150 K の領域ではキュリーワイス則に従い、転移で減 少した後、T < 50 K の領域で再び低温でキュリーワイス的な発散を示している。この高温のキュ リーワイスフィットにより求まったキュリー温度は –566 K であり、強い反強磁性的な相互作用 を示唆している。テトラヘドライトは価数 Cu(1)⁴₄Cu(1)²⁺₂Cu(2)⁶₆Sb³⁺₄S²⁻₁₃ であると考えられてお り、Cu²⁺ が反強磁性的に秩序するだろうと考えられていた。

磁気秩序と価数

一方 2015 年、Kitagawa らによる NMR の結果から、Cu(1) のスペクトル形状は変化せず金属 – 半導体転移後は非磁性基底状態であることが報告され [31]、Cu²⁺ のランダムな二量化が起源である と考察されている。テトラヘドライトの価数については 2015 年、Chetty らによって光電子分光の結 果が報告された [32]。ここでは母物質を含む Cu₁₂Sb₄S₁₃、Cu_{11.5}Co_{0.5}Sb₄S₁₃、Cu_{10.5}Co_{1.5}Sb₄S₁₃ について Cu⁺、Cu²⁺ 両方に対応するピークが観測され、価数について A¹⁺₁₀B²⁺C³⁺₁₃S²⁻₁₃型の価数 を持つことが示唆された。一方、2016 年 Tanaka らによっても母物質 Cu₁₂Sb₄S₁₃ の光電子分光 の結果が示された [33]。ここでは A¹⁺₁₀B²⁺C³⁺S²⁻₁₃型の価数を仮定した 10Cu₂O+2CuO のシミュ レーションでは得られたスペクトルが再現できないことが示された。これは Cu がすべて一価であ ることを示唆している。さらに 2019 年、Sato らによって Cu1*s* PFY-XAS、Cu2*p*-1*s* XES 実験か ら Cu₂O、CuO 両方に対応するピークが見られ、Cu²⁺ の存在が報告された [34]。このように価数 についても未だ議論が続いている。

金属-半導体転移に対する元素置換効果

次に、金属 – 半導体転移に対する元素置換効果の研究背景を見る。2012 年、Suekuni らによって テトラヘドライトの遷移金属置換系 $Cu_{10} Tr_2 Sb_4 S_{13}$ の系統的な熱電物性の研究が発表された [17]。 ここでは置換系のうち、母物質でのみ抵抗率、ゼーベック係数、熱伝導率、磁化率において転移 温度 $T_{MST} = 85$ K で転移が観測された。またすべての置換系で転移が消滅することが示された。 また抵抗率、ゼーベック係数に小さいヒステリシスが観測され、一次転移であることが示唆され た。低温では抵抗率は Mott の可変範囲ホッピング (Variable Range Hopping) による $T^{1/4}$ 則で 表される。また 2017 年、Kosaka らによって金属 – 半導体転移に対する Zn、Ge、Sn ドープの影 響に関する研究が示された [35]。ここでは Cu に対し Zn 置換系 Cu₁₁ZnSb₄S₁₃ と Ge、Sn 置換系 Cu_{11.7}Ge_{0.3}Sb₄S₁₃、Cu_{11.7}Sn_{0.3}Sb₄S₁₃ がほぼ同等の転移抑制効果があることを明らかにした。こ こから、Zn 置換に対し、Ge、Sn 置換は 3 倍の電子ドープ効果があるため、電子ドープが転移を 抑制すると結論付けられている。ここで、図 1.5 に Kosaka らが報告した磁化率の温度依存 性と Zn 置換量依存性を示す。いずれも転移温度 85 K において母物質 Cu₁₂Sb₄S₁₃ に転移が見ら れ、Zn 置換により抑えられていることがわかる。

図 1.5: テトラヘドライト Cu_{10-x}Zn_xSb₄S₁₃ の電気抵抗率の温度依存性 [35]

図 1.6: テトラヘドライト Cu_{10-x}Zn_xSb₄S₁₃の磁化率の温度依存性 [35]

電子系不安定性

次に、電子系不安定性についての研究背景を見る。2013 年に Lu ら [23]、2014 年に Suekuni ら [36] によって Cu₁₂Sb₄S₁₃ のバンド構造が計算され、いずれも母物質 Cu₁₂Sb₄S₁₃ でフェルミ準位 に電子状態密度のピーク構造が示された。ここから電子系不安定性を持つことが示唆されている。 また、2013 年に Lu らによって Zn 置換系 Cu₁₀Zn₂Sb₄S₁₃ のバンド構造も計算され、フェルミ準 位がバンドギャップ内に存在することが報告されている [23]。

格子系不安定性

次に、格子系不安定性についての研究背景を見る。2013 年、Lu らによる第一原理計算から、不 安定な振動モードの存在が報告された。ここでは不安定な振動モードの凍結による構造転移が推 測されている [23]。また 2015 年、Suzuki らによって超音波測定が行われ、T_{MST} に向かって温度 を下げると弾性率が減少、すなわちソフト化することを見出した [37]。これは構造や電子状態の 不安定性を示唆している。そして T_{MST} において急激なハード化が起こることが示され、これは 不安定性が解消されたことを意味している。このソフト化の起源として、Cu(2) 運動の凍結、あ るいは Cu²⁺ が存在するならばヤーンテラー不安定性があるだろうと考察されている。

低温構造

金属 – 半導体転移機構についての議論が未だに続いている理由の一つとして低温構造の決定の難 しさが挙げられる。2016 年 Nasonova らによる粉末 X 線回折実験からは転移において格子定数に 異常が見られるものの、結晶の対称性は変化しないことが報告された [38]。一方、2016 年に May らによる粉末 X 線回折実験から、立方晶から $\sqrt{2a} \times \sqrt{2a} \times c$ の正方晶への転移が報告された [39]。 また、2016 年 Tanaka らによる単結晶 X 線回折実験からは超格子反射が観測され、 $2a \times 2a \times 2c$ の 正方晶への転移が報告された [33]。さらに、2019 年 Hathwar らによる単結晶 X 線回折実験では、 空間群 *I*42*m*、2*a*×2*a*×2*c* の正方晶への転移が報告された [40]。一方、2020 年 Long らによる多 結晶中性子回折実験では、空間群 *P*4*c*2、 $\sqrt{2a} \times \sqrt{2a} \times c$ の正方晶への転移が報告された [41]。こ のように、低温構造は未だに議論が続いている状況である。

1.2.4 高温の異常

図 1.5 においても見られるように、テトラヘドライト母物質は 170 K 以上の高温で抵抗率、ゼー ベック係数、熱伝導率に異常を示すことが知られている [17, 33]。また、この起源は明らかになっ ていない。

1.3 研究目的

ラットリングは、従来の調和、非調和振動とも異なる非調和かつ大振幅の原子振動であり、そ のような原子振動が物性にどのような影響を及ぼすのか興味が持たれ、近年研究されてきた。そ の中でも、ラットリングという格子系の現象が、電子系に与える影響については未だ理解が進ん でいない。特に、硫化銅鉱物テトラヘドライトは銅原子のラットリングが指摘され、その高い熱 電性能から熱電材料としての応用が期待されているだけでなく、金属 – 半導体転移や高温の輸送 特性の異常といった電子系の異常の起源が未解明のままであり、注目されている。そこで我々は、 テトラヘドライトにおける金属 – 半導体転移や高温の輸送特性の異常とラットリングとの関連性 を調べることで、**ラットリングと電子の相互作用が織りなす新しい物理現象についての知見を得** ることができると考えた。従ってテトラヘドライトを研究対象とした。

1.4 課題設定

本研究では、上記の研究目的を達成すべく、以下のように研究課題を設定した。

- 1. 電子系の不安定性について、電子状態を反映するナイトシフトや核スピン 格子緩和時間から議論する。
- 2. 格子系の不安定性について、局所構造情報を反映する NMR スペクトルから議論する。
- 3. 電子 ラットリング相互作用について、ラットリングダイナミクスを反映する核スピン 格 子緩和時間から議論する。
- 4. 電子 ラットリング相互作用と金属 半導体転移の対応を調べ、転移機構について議論する。
- 5. 高温の異常について、電子状態やダイナミクスの情報から議論する。

第2章 実験・理論

2.1 NMRの原理

本節では NMR(Nuclear Magnetic Resonance) の原理 [42, 43, 44, 45] について述べる。

2.1.1 共鳴条件

NMR は、磁場下に置かれた核スピンのゼーマン分裂幅に等しいエネルギーのパルス状電磁波を 入射することによって、共鳴的な核スピンの遷移を見る手法である。ゼーマン相互作用ハミルト ニアンは

$$\mathcal{H}_{\rm Z} = -\gamma_{\rm n} \hbar \boldsymbol{I} \cdot \boldsymbol{H}_0 \tag{2.1}$$

であり、 γ_n は核磁気回転比、 \hbar は換算プランク定数、 $\hbar I$ は原子核のスピン角運動量、 H_0 は磁場である。磁場方向をz軸とすると、エネルギー固有値は

$$E_m = -\gamma_n \hbar H_0 m \tag{2.2}$$

であり、mはIのz成分 I_z の固有値である。このとき、図 2.1 に示すように、エネルギー準位は 2I + 1 個に等間隔に分裂する。

図 2.1: I = 3/2の場合におけるゼーマン分裂。また、磁場下の原子核の歳差運動を模式的に示す。

NMR 実験では、このような核スピンのエネルギー分裂幅に等しいエネルギーを持つ電磁波(パ ルス状電磁波)を入射することで、共鳴的な準位間の遷移を引き起こす。共鳴を起こす条件は、遷 移確率の条件(遷移の選択則)Δ*m* = |*m*±1 - *m*| = 1から得られ、共鳴条件式は、

$$\hbar\omega_0 = \Delta E = \gamma_{\rm n}\hbar H_0 \tag{2.3}$$

$$\omega_0 = \gamma_{\rm n} H_0 \tag{2.4}$$

と書ける。ここで、 ω_0 は入射するパルス状電磁波の周波数である。 γ_n は核種固有の値をとるため、特定の原子核に注目した環境情報を得ることができる。NMR スペクトルは、周波数または磁場を掃引することにより、共鳴条件式 (2.4) を満たす位置でピークが現れる。例として 核スピン I = 3/2の場合で、後述の核四重極相互作用がない場合の磁場掃引 NMR スペクトルの模式図を図 2.2 に示す。核スピンのエネルギー準位はm = 3/2, 1/2, -1/2, -3/2に分裂するが、 $(-1/2 \leftrightarrow 1/2)$ 、 $(-3/2 \leftrightarrow -1/2)$ 、 $(1/2 \leftrightarrow 3/2)$ のエネルギー差は等しいため一本の信号のみが観測される。

図 2.2: NMR スペクトルの模式図

2.1.2 核四重極相互作用

核スピン $I \ge 1$ の原子核は球対称からずれ、回転楕円体と見なすことができ、有限の電気四重 極能率

$$eQ = e \int_{V} (3z^2 - r^2) dv$$
 (2.5)

を持つ。ここで、eは陽子の電荷、zは回転軸つまりスピンの方向、Vは原子核の体積である。また、回転軸が楕円体の長軸の場合 Q > 0、短軸の場合 Q < 0となる。原子核が有限の電気四重極 能率を持つとき、周囲の電場勾配と核四重極相互作用を示す。核四重極相互作用の模式図を図 2.3 に示す。

図 2.3: 核四重極相互作用の模式図

図 2.3 から明らかなように、正電荷を持つ原子核が楕円体近似できる場合、原子核の向き、す なわち核スピンの方向に対し、原子核周りの電荷環境に応じたエネルギー差が生じ、核のエネル ギー縮退が解けることがわかる。このとき、核四重極相互作用のハミルトニアンは

$$\mathcal{H}_{Q} = \frac{eQ}{6I(2I-1)} \sum_{i,j} V_{ij} \left\{ \frac{3}{2} (I_i I_j + I_j I_i) + -\delta_{ij} I^2 \right\}$$
(2.6)

であり、 $i, j \equiv x, y, z$ 、 $V_{i,j}$ は電場勾配テンソルである。電場勾配テンソルは静電ポテンシャル Vの位置二階微分 $V_{ij} \equiv \partial^2 V / \partial i \partial j$ で定義される。主軸変換を行い電場勾配テンソルの主値を V_{XX} 、 V_{YY} 、 V_{ZZ} 、 $|V_{ZZ}| \ge |V_{XX}| \ge |V_{YY}|$ とすると、

$$\mathcal{H}_{Q} = \frac{eQ}{6I(2I-1)} \left\{ V_{ZZ}(3I_{Z}^{2} - I^{2}) + V_{XX}(3I_{X}^{2} - I^{2}) + V_{YY}(3I_{Y}^{2} - I^{2}) \right\}$$
(2.7)

$$= \frac{e^2 q Q}{4I(2I-1)} \left\{ (3I_Z^2 - I^2) + \frac{1}{2} \eta (I_+^2 + I_-^2) \right\}$$
(2.8)

$$= \frac{1}{6}h\nu_{\rm Q}\left\{ (3I_Z^2 - I^2) + \frac{1}{2}\eta(I_+^2 + I_-^2) \right\}$$
(2.9)

となる。ここで、eq は電場勾配最大主値、 η は非対称パラメータ、 ν_Q または ω_Q は四重極周波数 であり、それぞれ

$$eq \equiv V_{ZZ} \tag{2.10}$$

$$\eta \equiv \frac{V_{XX} - V_{YY}}{V_{ZZ}} \tag{2.11}$$

$$h\nu_{\rm Q} \equiv \hbar\omega_{\rm Q} \equiv \frac{3e^2qQ}{2I(2I-1)} \tag{2.12}$$

と定義される。立方対称以上の高い対称性を持つサイトでは $\nu_{\rm Q} = 0$ であり、 $\nu_{\rm Q}$ は立方対称からのずれに対応する。また軸対称以上の以上の対称性を持つサイトでは $\eta = 0$ であり、 η は軸対称からのずれに対応する。すなわち $\nu_{\rm Q}$ 、 η は核周囲の局所対称性を反映しているパラメータである。

次に、磁場 H_0 が存在し、ゼーマン相互作用に対して核四重極相互作用が十分小さい場合について考える。また、簡単のため $\eta = 0$ とする。磁場方向 z と電場勾配の最大主軸方向 Z のなす角を θ とすると、

$$I_Z = I_z \cos\theta + I_x \sin\theta \tag{2.13}$$

であり、式 (2.13)、(2.1)、(2.9) から、ハミルトニアン $\mathcal{H} = \mathcal{H}_{Z} + \mathcal{H}_{Q}$ は、

$$\mathcal{H} = -\gamma_{\rm n}\hbar I_z H_0 + \frac{\hbar\omega_{\rm Q}}{12} \left[(3\cos^2\theta - 1)\{3I_z^2 - I(I+1)\} + 3\sin\theta\cos\theta \\ \times \{I_z(I_+ + I_-) + (I_+ + I_-)I_z\} + \frac{3}{2}\sin^2\theta(I_+^2 + I_-^2) \right]$$
(2.14)

となる。H_Qの一次摂動エネルギーシフトは

$$E_m^{(1)} = \frac{\hbar\omega_{\rm Q}}{12} (3\cos^2\theta - 1) \{3m^2 - I(I+1)\}$$
(2.15)

となり、遷移の選択則から共鳴周波数は

$$\omega_m = \omega_0 + \frac{\omega_Q}{4} (3\cos^2\theta - 1)(2m - 1)$$
(2.16)

となり、このとき共鳴周波数の間隔は

$$\Delta\omega = \frac{\omega_{\rm Q}}{2} (3\cos^2\theta - 1) \tag{2.17}$$

で 2*I* 本の信号が *I*(*I* + 1) – *m*(*m* + 1) に比例する強度で現れる。*I* = 3/2 の場合エネルギー準位 とスペクトルの模式図を図 2.4 に示す。

図 2.4: 核四重極相互作用によるエネルギー準位と NMR スペクトルの模式図

式 (2.15) より、ゼーマン分裂による準位に対し $\Delta = \hbar \omega_Q (3 \cos^2 \theta - 1)/4$ だけシフトする。また、 共鳴位置 ω_0 に $(-1/2 \leftrightarrow 1/2)$ の遷移に対する中心線、 $\omega_0 - 2\Delta/\hbar$ に $(1/2 \leftrightarrow 3/2)$ 、 $\omega_0 + 2\Delta/\hbar$ に $(-3/2 \leftrightarrow -1/2)$ の遷移に対するサテライトピークが現れ、信号強度は 4:3:3 である。一次摂動 では中心線は変化しないが、二次摂動まで考えると中心線のシフトは

$$\Delta\omega = \frac{\omega_{\rm Q}^2 \left\{ I(I+1) - \frac{3}{4} \right\} \sin^2 \theta (1 - 9\cos^2 \theta)}{16\gamma_{\rm n} H_0}$$
(2.18)

となる。さらに、多結晶や粉末試料では θ がランダムに分布することで、パウダーパターンと呼 ばれる特徴的なスペクトル形状が現れる。パウダーパターンの模式図を図に示す。

図 2.5: 多結晶や粉末試料における核四重極相互作用による NMR スペクトル、すなわちパウダー パターンの模式図。橙色実線は $\eta \sim 0$ の場合、赤色破線は $\eta = 0.5$ の場合を示す。

2.1.3 ナイトシフト

ここまで外部磁場 H₀ によるゼーマン相互作用を考えてきたが、実際は原子核位置に電子が作る 超微細磁場 H_{hf} も存在する。H_{hf} による共鳴線のシフトはナイトシフトと呼ばれる [44, 45]。ここ ではその詳細について述べる。

金属における核スピン I と電子スピン S の相互作用ハミルトニアンは

$$\mathcal{H}_{\rm hf} = A\boldsymbol{I} \cdot \boldsymbol{S} \tag{2.19}$$

であり、Aは結合定数である。したがって、有効ハミルトニアン $\mathcal{H} = \mathcal{H}_{Z} + \mathcal{H}_{hf}$ は

$$\mathcal{H} = -\gamma_{\rm n}\hbar \boldsymbol{I} \cdot \boldsymbol{H}_0 + A\boldsymbol{I} \cdot \boldsymbol{S} \tag{2.20}$$

$$= -\gamma_{\rm n}\hbar \boldsymbol{I} \cdot (\boldsymbol{H}_0 - A\boldsymbol{S}/\gamma_{\rm n}\hbar)$$
(2.21)

$$\equiv -\gamma_{\rm n}\hbar \boldsymbol{I} \cdot \boldsymbol{H}_{\rm eff} \tag{2.22}$$

となる。ここで、 H_{eff} は外部磁場 H_0 と局所磁場 $AS/\gamma_n\hbar$ を合わせた有効磁場である。局所磁場 H_{loc} は静的成分、動的成分の和として

$$\boldsymbol{H}_{\rm loc} \equiv A\boldsymbol{S}/\gamma_{\rm n}\hbar = \langle \boldsymbol{H}_{\rm loc} \rangle + \delta \boldsymbol{H}_{\rm loc}$$
(2.23)

と表される。第一項は共鳴線のシフトを引き起こし、これをナイトシフトと呼ぶ。第二項は緩和 現象を引き起こし、緩和現象の詳細は後述する。ここで、周波数掃引スペクトルにおいて観測さ れた共鳴周波数 ω_{res}、磁場掃引スペクトルにおいて観測された共鳴磁場 H_{res} を用いてナイトシフ トは以下のように定義される。

$$K \equiv \left(\frac{\omega_{\rm res} - \omega_0}{\omega_0}\right) = \left(\frac{H_0 - H_{\rm res}}{H_{\rm res}}\right) \tag{2.24}$$

ナイトシフトは外部磁場に対する局所磁場の割合、すなわち微視的磁化率を表している。

次に、微視的磁化率ナイトシフトと巨視的磁化率 χ との対応を考える。1 mol あたりの磁化率 は、電子スピンの g 因子 g、ボーア磁子 $\mu_{\rm B}$ 、磁場下でのスピン成分の熱平均値 $\langle S \rangle$ 、アボガドロ 定数 $N_{\rm A}$ 、磁場 H を用いて、

$$\chi = g\mu_{\rm B} \langle S \rangle N_{\rm A} / H \tag{2.25}$$

と表される。ここで、超微細結合定数 A_{hf} を以下のように定義する。

$$A_{\rm hf} \equiv \frac{A}{g\gamma_{\rm n}\hbar} \tag{2.26}$$

また、ナイトシフトに異方性がない場合、すなわち局所磁場の静的成分 $\langle H_{loc} \rangle$ が外部磁場方向 に一致する場合、観測される共鳴磁場は $H_{res} = H_0 - A \langle S \rangle / \gamma_n \hbar$ と書くことができる。これと式 (2.24)、(2.25)、(2.26) を用いてナイトシフトは、

$$K = \frac{A\langle S \rangle}{\gamma_{\rm n} \hbar H_{\rm res}} = \frac{A}{\gamma_{\rm n} \hbar g \mu_{\rm B} N_{\rm A}} \chi = \frac{A_{\rm hf}}{\mu_{\rm B} N_{\rm A}} \chi \tag{2.27}$$

と表される。すなわち *A*_{hf} は、*K* の温度依存性と χ の温度依存性から求めた *K* 対 χ のプロット、いわゆる *K*- χ プロットの比例係数として実験的に求められる。通常金属の場合ナイトシフトはパウリ常磁性 [1] に従い、

$$K = \frac{A_{\rm hf}}{N_{\rm A}\mu_{\rm B}}\chi_0(1 - \alpha T^2)$$
(2.28)

と表される。また 3*d* 遷移金属の場合、超微細結合定数に対する寄与の内訳として、(1) van Vleck 常磁性による軌道磁気モーメント、(2) スピン磁気モーメントによる双極子磁場、(3) *s* 電子によ るフェルミ接触磁場、(4) *d* 電子が内殻 *s* 電子をスピン偏極させる内殻偏極の寄与が存在する。

2.1.4 核スピン-格子緩和時間

励起された核スピンは、熱浴である格子系や電子系との相互作用を通じて有限時間で元の平衡 状態に緩和する。その特徴的時間を核スピン – 格子緩和時間と呼ぶ。一般に、摂動 H' による状態 *a* から *b* への遷移確率は

$$W_{a,b} = \frac{2\pi}{\hbar} |\langle a|\mathcal{H}'|b\rangle|^2 \delta(E_a - E_b)$$
(2.29)

であり、核スピン – 格子緩和時間 T₁ は

$$\frac{1}{T_1} \equiv 2W \tag{2.30}$$

と定義される。また、揺動散逸定理からダイナミクスについて一般に、

$$\frac{1}{T_1} \propto k_{\rm B} T \frac{{\rm Im}\chi_{\perp}(q,\omega_0)}{\omega_0} \tag{2.31}$$

となる。ここで $\chi_{\perp}(q,\omega_0)$ は動的磁化率の量子化軸垂直方向成分である。

電子系による一般的な核スピン-格子緩和

ここでは、電子系との双極子 – 双極子相互作用による核スピンの緩和を考える。摂動として前 節の *H*_{hf} を考えると、核スピン – 格子緩和時間は

$$\frac{1}{T_1} \equiv \frac{\gamma_n^2 A_{\rm hf}^2}{2} \int_0^\infty \langle S_+(\tau) S_-(0) \rangle \exp(i\omega_0 \tau) d\tau$$
(2.32)

と表される。ここで、 $\langle S_+(\tau)S_-(0) \rangle$ は $t = 0, \tau$ の間の量子化軸垂直方向のスピン相関関数である。 通常金属の場合、緩和はフェルミ準位 $E_{\rm F}$ 近傍の電子の $|k \uparrow \rangle$ の始状態から $|k' \downarrow \rangle$ の終状態への散 乱により引き起こされる。このとき始状態のエネルギーを $E_{\rm i}$ 、終状態のエネルギーを $E_{\rm f}$ とする と T_1 は、

$$\frac{1}{T_1} \equiv \frac{\gamma_n^2 A_{\rm hf}^2}{2} \int_0^\infty N(E_{\rm i}) f(E_{\rm i}) N(E_{\rm f}) (1 - f(E_{\rm f})) dE_{\rm i} dE_{\rm f}$$
(2.33)

と表され、f(E)はフェルミ分布関数、N(E)は電子状態密度である。ゼーマンエネルギーはフェ ルミ準位 $E_{\rm F}$ に対し十分小さく、 $E_i - E_f = \hbar\omega_0 \sim 0$ である。 $f(E)(1 - f(E)) \sim k_{\rm B}T\delta(E - E_{\rm F})$ を用いると、

$$\frac{1}{T_1} \sim \gamma_{\rm n}^2 A_{\rm hf}^2 N^2(E_{\rm F}) k_{\rm B} T$$
(2.34)

となる。すなわち、 T_1 はフェルミ準位の電子状態密度 $N(E_{\rm F})$ の情報を与える。特に、 $1/T_1T$ は温度に依らず一定値となる。

格子系による一般的な核スピン-格子緩和

ここでは、格子系との核四重極相互作用による核スピンの緩和 [9] について述べる。式 2.6 で表され る核四重極相互作用のハミルトニアンについて、式 (2.29) から準位 $|I_z = m\rangle$ 、 $|I_z = m\pm q\rangle$ (q = 1, 2) 間の遷移確率は、

$$W_q = \frac{1}{12} \left(\frac{eQ}{\hbar}\right)^2 \int_{-\infty}^{\infty} \langle [V_{+q}(t), V_{-q}(0)] \rangle e^{iq\omega_0 t} dt$$
(2.35)

と表される。ここで、 $V_{\pm 1} = V_{XZ} \pm i V_{YZ}$ 、 $V_{\pm 2} = (V_{XX} - V_{YY} \pm 2i V_{XY})/2$ である。ここでは、 電場勾配が球対称の揺らぎをもつ場合を考えると、 $W_1 = W_2 \equiv W$ と書ける。

V_{±q}を原子の平衡位置からの変位 x で展開すると、

$$V_{\pm q} = V_{\pm q,0} + \frac{\partial V_{\pm q}}{\partial x}x + \frac{1}{2}\frac{\partial^2 V_{\pm q}}{\partial x^2}x^2 + \cdots$$
(2.36)

となる。第二項は直接過程と呼ばれ、NMR 周波数 ω_0 近傍の周波数を持つフォノンのみが核スピンの緩和に寄与する。 ω_0 は MHz オーダーであり、フォノン周波数に対し十分小さいため実質的に緩和に寄与しない。第三項は2フォノンラマン過程と呼ばれる緩和をもたらす。これは ω 、 ω' の異なる周波数のフォノンの生成・消滅を伴い、 $\omega - \omega' = \omega_0$ を満たすすべてのフォノンが核スピンの緩和に寄与するため、実際の核四重極緩和において支配的となる。このとき、式 (2.30)、(2.35)、(2.36) よりラマン過程における T_1 は、

$$1/T_1^{\rm R} = V_2 \int_{-\infty}^{\infty} dt e^{i\omega_0 t} \langle x^2(t) x^2(0) \rangle$$
 (2.37)

となる。ここで、 V_2 は電場勾配の位置二階微分に比例する量である。また、フォノン状態密度 $\rho(\omega)$ 、 ω, ω' 間の遷移行列要素 $|A(\omega)|$ 、ボーズ関数 $n(\omega)$ を用いて、

$$1/T_1^{\rm R} \propto \int_{-\infty}^{\infty} d\omega \rho^2(\omega) |A^2(\omega)| [n(\omega) + 1] n(\omega)$$
(2.38)

となる。通常のデバイモデルを用いると、 $1/T_1^{\text{R}}$ はデバイ温度より十分高温で T^2 、低温で T^7 の温度依存性となり、降温に伴い単調減少する。

核スピン-格子緩和時間の測定

次に、 T_1 を実験的に得る方法について述べる。時刻 t における核磁化の外部磁場方向、すなわち z 軸方向の成分を M(t) とする。t = 0 において、NMR パルス状電磁波により核スピンを xy 方向に励起すると、M(0) = 0 となる。その後、熱浴との相互作用を通して有限時間で熱平衡状態における核磁化 M_0 まで回復する。これを図 2.6(a) に模式的に示す。ここから、 $1 - M(t)/M_0$ を考えると図 2.6(b) に示すように減衰型の曲線となる。この減衰型の曲線をフィッティングすることで、時定数として T_1 を得る。用いるフィッティング関数は核スピンが遷移する準位によって異なり、これについては第3章 3.3 節で詳しく述べる。

図 2.6: 核スピン - 格子緩和の模式図

2.1.5 核スピン-スピン緩和時間

核スピンの歳差運動の位相情報は有限時間で消失する。その特徴的時間を核スピン – スピン緩 和時間と呼ぶ。

NMR の信号検出を古典的に説明すると、外部磁場方向、すなわち z 軸方向に向いた核スピンを $\pi/2$ パルスにより xy 面内に倒すことで、核スピン歳差運動を誘導起電力として検出するという手 法である。しかし、xy 面内に倒れた核スピンの位相記憶は時間とともに消失し、誘導起電力とし て検出されなくなる。これを Free Induction Decay、FID と呼ぶ。一方 Hahn によって発見され たスピンエコー法は、 $\pi/2$ パルス後、 $t = \tau$ に π パルスを入射することによって、位相記憶を失っ た核スピンを $t = 2\tau$ に再収束させる手法である。スピンエコー法の模式図を図 2.7 に示す。

図 2.7: スピンエコー法と T₂の模式図

これにより、静的な磁場分布による位相記憶の消失をキャンセルすることが可能であり、2τの時間オーダーの核位置のダイナミクスによる位相記憶の消失だけが残る。これを図 2.7 に示したように、2τ を変化させエコー信号強度の減衰から測定することができる。この減衰における時定数をここでは *T*₂ と定義する。

2.2 電子-格子相互作用

ここでは、一般的な電子 – 格子相互作用 [46] について詳しく述べる。まず以下の Fröhlich ハミ ルトニアン

$$\mathcal{H} = \mathcal{H}_e + \mathcal{H}_{ph} + \mathcal{H}_{e\text{-}ph} \tag{2.39}$$

を考える。ここで、電子系は分散 ϵ_k を持つ相互作用を持たない準粒子として扱われる。第一項は クーロン相互作用

$$\mathcal{H}_e = \sum_{\boldsymbol{k}\nu\sigma} \epsilon_{\boldsymbol{k}\nu\sigma} c^{\dagger}_{\boldsymbol{k}\nu\sigma} c_{\boldsymbol{k}\nu\sigma}$$
(2.40)

であり、 $c_{k\nu\sigma}^{\dagger}$ 、 $c_{k\nu\sigma}$ はそれぞれ波数 k、バンドインデックス ν 、スピン σ 、バンドエネルギー $\epsilon_{k\nu}$ の電子状態に対する生成、消滅演算子である。第二項は相互作用の無い量子化された調和振動のフォノン

$$\mathcal{H}_{ph} = \sum_{\boldsymbol{q}j} \omega_{\boldsymbol{q}j} \left(b_{\boldsymbol{q}j}^{\dagger} b_{\boldsymbol{q}j} + \frac{1}{2} \right)$$
(2.41)

であり、 b_{qj}^{\dagger} 、 b_{qj} は波数 q、分枝インデックス j、エネルギー ω_{qj} の生成、消滅演算子である。第 三項は最低次の電子 – 格子相互作用

$$\mathcal{H}_{e-ph} = \sum_{\boldsymbol{k}\nu\nu'\sigma} \sum_{\boldsymbol{q}j} g_{\boldsymbol{k}+\boldsymbol{q}\nu',\boldsymbol{k}\nu}^{\boldsymbol{q}j} c_{\boldsymbol{k}+\boldsymbol{q}\nu'\sigma}^{\dagger} c_{\boldsymbol{k}\nu\sigma} \left(b_{\boldsymbol{q}j} + b_{-\boldsymbol{q}j}^{\dagger} \right)$$
(2.42)

であり、 $g_{k+q\nu',k\nu}^{qj}$ は電子 – 格子行列要素で、バンド ν 、波数kの状態の電子を、バンド ν' 、波数 k+qの状態に散乱する確率振幅を表し、分枝j、波数q(-q)のフォノンの吸収(放出)を伴う。 ここで、電子のグリーン関数、フォノンのグリーン関数をそれぞれ

$$G(k,\tau) = -\langle T_{\tau}c_{k\sigma}(\tau)c_{k\sigma}^{\dagger}(0)\rangle$$
(2.43)

$$D(q,\tau) = -\langle T_{\tau}(b_q(\tau) + b_{-q}^{\dagger}(\tau))(b_{-q}(0) + b_q^{\dagger}(0))\rangle$$
(2.44)

で与える。ここで T_{τ} は時間順序演算子、場の演算子は虚時間 $-i\tau$ 、 $c_{k\sigma}(\tau) = e^{H\tau}c_{k\sigma}e^{-H\tau}$ 、 $-\beta < \tau < \beta$ 、 $\beta = 1/T$ によるハイゼンベルク描像で与えられる。これらのフーリエ変換は

$$G(k, i\omega_n) = \frac{1}{2} \int_{-\beta}^{\beta} d\tau e^{i\omega_n \tau} G(k, \tau)$$
(2.45)

$$D(q, i\nu_m) = \frac{1}{2} \int_{-\beta}^{\beta} d\tau e^{i\nu_m \tau} D(q, \tau)$$
 (2.46)

であり、 $\omega_n = (2n+1)\pi T$ 、 $\nu_m = 2m\pi T$ はフェルミオン、ボゾンの松原周波数である。ここで非 摂動ハミルトニアン $H_0 = H_e + H_{ph}$ におけるグリーン関数はそれぞれ

$$G_0(k, i\omega_n) = \frac{1}{i\omega_n - \epsilon_k} \tag{2.47}$$

$$D_0(q, i\nu_m) = \frac{1}{i\nu_m - \omega_q} - \frac{1}{i\nu_m + \omega_q}$$
(2.48)

であり、電子-格子相互作用がくりこまれたグリーン関数は、

$$G(k, i\omega_n)^{-1} = G_0(k, i\omega_n)^{-1} - \Sigma(k, i\omega_n)$$
(2.49)

$$D(q, i\nu_m)^{-1} = D_0(q, i\nu_m)^{-1} - \Pi(q, i\nu_m)$$
(2.50)

となる。ここで Σ、Π はそれぞれ電子、格子の自己エネルギーであり、一粒子の既約ファインマン ダイアグラムの総和として定義される。ここで解析接続により

$$G(k,\epsilon) = \frac{1}{\epsilon - \epsilon_k - \Sigma(k,\epsilon)}$$
(2.51)

$$D(q,\omega) = \frac{2\omega_q}{\omega^2 - \omega_q^2 - 2\omega_q \Pi(q,\omega)}$$
(2.52)

となり、自己エネルギーが十分小さい場合、電子のスペクトル関数 $A_k(\epsilon) = -\text{Im}G(k,\epsilon)$ のピーク 位置 $\bar{\epsilon}_k$ および半値半幅 Γ_k はそれぞれ、

$$\bar{\epsilon}_k = \epsilon_k + \operatorname{Re}\Sigma(k, \bar{\epsilon}_k) \tag{2.53}$$

$$\Gamma_k = -\mathrm{Im}\Sigma(k,\bar{\epsilon}_k) \tag{2.54}$$

また格子のスペクトル関数 $A_q(\omega) = -\text{Im}D(q,\omega)$ についても同様にピーク位置 $\bar{\omega}_q$ および半値半幅 Γ_q はそれぞれ、

$$\bar{\omega}_q^2 = \omega_q^2 + 2\omega_q \text{Re}\Pi(q, \bar{\omega}_q) \tag{2.55}$$

$$\Gamma_q = -\mathrm{Im}\Pi(q,\bar{\omega}_q) \tag{2.56}$$

となる。このように、電子 - 格子相互作用をスペクトル関数のピークシフト、線幅にくりこんだ 電子や格子を準粒子として扱うことが出来、電子の場合はポーラロンとも呼ばれる。特に、ここ で述べた準粒子モデルが成り立つ場合、すなわち電子 - 格子相互作用が小さく、電子がフォノン の衣をまといながら遍歴している場合をラージポーラロン、電子 - 格子相互作用が強く電子が局 在化している場合スモールポーラロンと呼び区別される [3]。

2.3 Dahm–Ueda 理論

Dahm、Ueda は β-パイロクロアにおけるラットリングによる核スピン – 格子緩和時間に関する 理論を提唱した [27]。β-パイロクロアにおいて、1/T₁T がピーク構造を持つこと、そして強い電 子 – 格子相互作用の存在が示唆されていた [9]。そのような 1/T₁T の振る舞いを説明するべく、彼 らは非調和振動系における 2 フォノンラマン過程による緩和理論を構築した。ここではその詳細 を述べる。

まずラットリングフォノンによる緩和を考えるために、以下の非調和ハミルトニアンを考える。

$$\mathcal{H} = \frac{p^2}{2M} + \frac{1}{2}ax^2 + \frac{1}{4}bx^4 \tag{2.57}$$

ここで M はイオン質量である。これを自己無撞着準調和近似により、

$$\mathcal{H} = \frac{p^2}{2M} + \frac{1}{2}M\omega_0^2 x^2 \tag{2.58}$$

と置き換える。ここで、 ω_0 は温度依存する有効フォノン周波数であり、式 $M\omega_0^2 = a + b\langle x^2 \rangle_{\omega_0,T}$ により自己無撞着的に決定される。 $\langle x^2 \rangle_{\omega_0,T}$ は x^2 の熱平均であり、 ω_0 、T に依存し以下の式で与えられる。

$$\langle x^2 \rangle_{\omega_0,T} = \frac{\hbar}{M\omega_0} \left[\frac{1}{e^{\hbar\omega_0/k_{\rm B}T} - 1} + \frac{1}{2} \right]$$
(2.59)

ここで、 ω_0 のゼロ温度極限 $\omega_{00} \equiv \omega_0(T=0)$ は、

$$\omega_{00} = \frac{a}{M} + b \frac{\hbar}{2M^2 \omega_{00}} \tag{2.60}$$

となる。また、十分高温 $T \gg \omega_0$ の時、

$$\omega_0 \sim \left(\frac{bk_{\rm B}T}{M^2}\right)^{1/4} \tag{2.61}$$

となる。*w*0 は式

$$\left(\frac{\omega_0}{\omega_{00}}\right)^2 = 1 + \beta \left(\frac{\omega_{00}}{\omega_0}\right) \left(\frac{1}{e^{\hbar\omega_0/k_{\rm B}T} - 1} + \frac{1}{2} - \frac{\omega_0}{2\omega_{00}}\right)$$
(2.62)

を満たす。ここで、 $\omega_{00} = \omega_0 (T=0)$ 、 β は非調和パラメータであり、以下のように定義する。

$$\beta \equiv b \frac{\hbar}{M^2 \omega_{00}^3} \tag{2.63}$$

2.1 節でも述べたように、四重極相互作用による核スピン – 格子緩和時間は通常 2 フォノンラマン過程が支配的であり、以下のように表される。

$$1/T_1^{\rm R} = V_2 \int_{-\infty}^{\infty} dt e^{i\omega_L t} \langle x^2(t) x^2(0) \rangle$$
 (2.64)

ここで、 ω_L は NMR 周波数、 V_2 は電場勾配の位置二階微分に比例する量である。また、フォノン スペクトル関数 $A(\omega)$ 、ボーズ関数 $n(\omega)$ を用いて書き直すと、

$$1/T_1^{\rm R} = 2\pi \left(\frac{\hbar}{2\omega_0 M}\right)^2 V_2 \int_{-\infty}^{\infty} d\omega A^2(\omega) [n(\omega) + 1] n(\omega) \tag{2.65}$$

となる。また、フォノンスペクトル関数 A(ω) は以下のように与えられる。

$$A(\omega) = -\frac{1}{\pi} \text{Im} D(\omega) = \frac{1}{\pi} \frac{4\omega_0 \Gamma_0 \omega}{(\omega^2 - \omega_r^2)^2 + 4\Gamma_0^2}$$
(2.66)

ここで、 ω_r は式 (2.55)で表される電子 – 格子相互作用をくりこんだフォノン周波数、 Γ_0 はフォノン減衰率であり $\Gamma_0 = g^2 N^2(E_{\rm F}) \omega_0$ と表される。gは電子 – 格子結合定数である。2.1 節で述べた場合とは、フォノン周波数が (2.62) に起因する温度依存性を示し、スペクトル関数に電子 – 格子相互作用を考慮する点で異なる。ここから、十分高温および低温の振る舞いは、

$$1/T_1^{\rm R}T \sim \begin{cases} T\omega_0^{-4} \sim \text{const.} & (T \gg \omega_r) \\ \alpha T^2 & (T \ll \omega_r) \end{cases}$$
(2.67)

となる。特に、式 (2.61)、(2.63) より β が大きいほど ω_0 が強く増大することになり、式 (2.67) か ら高温でより急激に $1/T_1T$ が減少するようになる。結果として β が大きくなると $1/T_1T$ にこぶ状 構造が現れるようになる。 $1/T_1T$ の温度依存性の β による変化を図 2.8 に示す。計算は $\omega_{00} = 10$ K、 $\Gamma_0 = 1$ K、ReII = 0 K として行った。

図 2.8: 非対称パラメータ β による 1/T₁T の温度依存性の変化

2.4 実験

2.4.1 NMR 実験

NMR はスピンエコー法によって行われた。磁場装置として9T、12T 超伝導マグネットを用いた。NMR 装置はサムウェイ社のスーパーヘテロダインを用いた中間周波数増幅タイプの装置を用いた。周波数範囲は1MHz~400MHz まで幅広く対応している。高周波の場合、周波数により増幅度が異なってくることを避けるためである。実験装置の写真を図 2.9 に示す。また NMR ブロックダイアグラムを図 2.10 に示す。

図 2.9: 実験に用いた装置の写真。(a) 9 T 超伝導マグネット、(b) 12 T 超伝導マグネット、(c) ス ペクトロメータ。

図 2.10: NMR ブロックダイアグラム

2.4.2 試料合成

また、試料は広島大学大学院先端物質科学研究科 (現九州大学大学院総合理工学府) 末國准教授に より提供いただいた。作成者は田中博己氏、末國晃一郎氏である。試料は母物質である $Cu_{12}Sb_4S_{13}$, Cu(1) サイトが Zn で置換された $Cu_{11}ZnSb_4S_{13}$ および $Cu_{10}Zn_2Sb_4S_{13}$ の 3 種類の試料を用意し た。以後それぞれの物質を Zn の置換量で Zn0、Zn1、Zn2 と呼ぶことにする。

次に、Zn0、Zn1、Zn2 各試料について合成方法の詳細を記す。

$Cu_{12}Sb_4S_{13}$ (Zn0)

元素単体を化学量論比に秤量し、石英管に入れ、真空封入した。この石英管を、電気炉で 903 K で 10 h 加熱して原料を反応させた後、803 K まで 50 h かけて冷却し、その後炉冷した。得られた 試料を粉砕した後、ペレット状に成形し、773 K で 50 h 熱処理した。この試料を再度粉砕し、773 K で 15 min ホットプレス焼結して試料を緻密化した。最後に、焼結体を 673 K で 50 h 熱処理し た。この試料を 1 × 1 × 1 mm³ 程度または 3 × 3 × 3 mm³ 程度のサイズに加工したものを測定試 料とした。

$Cu_{11}ZnSb_4S_{13}$ (Zn1)

元素単体を化学量論比に秤量し、石英管に入れ、真空封入した。この石英管を、電気炉で 1003 Kで 10 h 加熱して原料を反応させた後、803 K まで 50 h かけて冷却し、その後炉冷した。得られ た試料を粉砕した後、ペレット状に成形し、773 K で 50 h 熱処理した。この試料を再度粉砕し、 803 K で 10 min ホットプレス焼結して試料を緻密化した。最後に、焼結体を 673 K で 50 h 熱処 理した。この試料を1×1×1 mm³程度または 3×3×3 mm³程度のサイズに加工したものを測 定試料とした。

$Cu_{10}Zn_2Sb_4S_{13}$ (Zn2)

元素単体を化学量論比に秤量し、石英管に入れ、真空封入した。この石英管を、電気炉で 1003 Kで 10 h 加熱して原料を反応させた後、803 K まで 50 h かけて冷却し、その後炉冷した。得られ た試料を粉砕した後、ペレット状に成形し、773 K で 50 h 熱処理した。この試料を再度粉砕し、 773 K で 12 min、さらに、803 K で 8min ホットプレス焼結して試料を緻密化した。最後に、焼 結体を 673 K で 50 h 熱処理した。この試料を1×1×1 mm³程度または 3×3×3 mm³程度のサ イズに加工したものを測定試料とした。

X 線構造解析

各試料についての粉末 X 線の結果を図 2.11 に示す。粉末 X 線の結果は全ての試料において、体 心立方構造で、空間群 $I\overline{4}3m$ 、No. 217 であることを示す。格子定数 a は、Zn2: a = 10.381 Å、 Zn1: a = 10.351 Å、Zn0: a = 10.316 Å となっている。また、Cu₁₂Sb₄S₁₃ においては、不純物 Cu₃SbS₄ による回折線が見られる。

図 2.11: Zn0、Zn1、Zn2 に対する粉末 X 線回折パターン。黒丸は不純物 Cu₃SbS₄ によるピーク を示す。

第3章 結果

本章では実験結果と解析、そしてそこから得られた物理量を列挙し、これらを用いた議論は次 章でまとめて行う。

まず NMR スペクトルを示し、Cu(1)、(2) サイト同定を行う。次にスペクトル解析によりナイトシフト、四重極周波数の温度依存性や置換量依存性を示す。さらに核磁化緩和曲線の解析から核スピン – 格子緩和時間、核スピン – スピン緩和時間を調べその温度依存性や置換量依存性を示す。

3.1 NMR スペクトル

$Cu_{12}Sb_4S_{13}(Zn0)$

まず母物質 Zn0 について、転移前後に当たる 95 K と 20 K の温度について NMR スペクトル測 定を行った。結果を図 3.1 の赤線に示す。

図 3.1: 金属 - 半導体転移前 (95 K) と転移後 (20 K) における NMR スペクトル [18]

まずは高温相 95 K のスペクトルに注目する。得られたスペクトルは 8.80 T におけるシャープ なもの、8.73–8.88 T におけるブロードなものが 2 成分観測された。ブロードな共鳴線は典型的な

四重極分裂したセンターピークの粉末パターンである。しかしながら、サテライトピークは観測で きず、これは S/N 比が著しく小さいためと考えられる。図 3.1 に示した緑色の面はシャープな線 に対するスペクトルシミュレーション、橙色の面はブロードな線に対するスペクトルシミュレー ションを示す。これらを足し合わせたものが黒線であり、スペクトル全体のシミュレーションを 示す。シミュレーションは厳密対角化法をトライアル・アンド・エラーにより行った。シミュレー ションにより得られたパラメータは表 3.1 に示す。次に、サイトの同定は局所対称性を考慮し行っ た。Cu(1)の対称性は -4.. であり、理論的には ν_Q は有限の値を持ち η は 0 である。一方、Cu(2) の対称性は 2.mm であり、理論的に ν_Q 、 η ともに有限の値とる。一般的に、対称性が高いほど電 場勾配が小さくなることから $\nu_{QCu(1)} < \nu_{QCu(2)}$ と予想される。したがって、シャープなピークは Cu(1) センターピーク (-1/2 \leftrightarrow 1/2)、ブロードなものが Cu(2) センターピーク (-1/2 \leftrightarrow 1/2) で あると結論づけた。これは先行研究 [31] に一致する値であり、先行研究 [29] とは異なる値である。 この値の正当性については第4章 4.2 節で議論する。

表 3.1: 高温相 NMR スペクトルシミュレーションにより得られた EFG パラメータ

Site	$\nu_{\rm Q}~({\rm MHz})$	η
Cu(1)	0.03 ± 0.02	0
$\mathrm{Cu}(2)$	18.6 ± 0.2	0.03 ± 0.02

次に、Cu(2) スペクトルの詳細な温度依存性を調べた。結果を図 3.2 に示す。

図 3.2: 強度カラーマップで示す Cu(2) に対する周波数掃引 NMR スペクトルの温度依存性 [47] ⓒ 日本物理学会 2020

図 3.3: 四重極周波数 v_Q の温度依存性 [47] ⓒ 日本物理学会 2020

ここから、温度 115 K あたりで線幅の温度依存性が反転していることがわかる。また、表 3.1 から Cu(2) の η は十分小さく、簡単のため $\eta = 0$ とすると、二次摂動による中心線の線幅 Δf と四重極周波数 ν_Q の関係は以下のようになる。

$$\Delta f = \frac{25}{9} \frac{\{I(I+1) - 3/4\}\nu_{\rm Q}^2}{16f_0}$$
(3.1)

Cuの核スピンは I = 3/2 のため簡略化すると、

$$\Delta f = \frac{25}{48} \frac{\nu_{\rm Q}^2}{f_0} \tag{3.2}$$

となる。ここから、線幅より ν_Q を求めたものが図 3.3 である。ここからも明らかに 115 K 付近での反転がわかる。これは格子の温度変化に関連し、第4章 4.2 節で議論する。

さらに、Cu(1) ピークの温度変化を温度 - 信号強度のカラーマップで図 3.4 に示す。

図 3.4: 高温の Cu(1) スペクトルの温度変化 [18] ⓒ 日本物理学会 2019

ここから、降温過程で線幅はほとんど変化せず、Cu(1) ピーク位置が低下することがわかった。 次に、低温相 20 K のスペクトルについて注目する。図 3.1 に示すように、低温相では高温相で みられていた 8.73-8.88 T のスペクトル形状がつぶれ、"なまった"共鳴線が観測された。これは 局所的な構造変化を示唆するが、得られたスペクトルは非典型的な形状であり、スペクトルシミュ レーションによるパラメータ決定は任意性が大きく困難である。これについては、第4章 4.2 節で 第一原理計算との組み合わせにより議論する。

次に、各種輸送特性に異常が見られていた 170 K以上の高温領域について NMR スペクトルを 測定した。すると、図 3.5、3.6 に示すように Cu(1)、Cu(2) いずれのサイトでも急激な信号強度 の減少が観測され、200 K以上の領域では信号が消失した。

図 3.5: 高温領域での Cu(1)、(2) サイトのスペクトルの消失

図 3.6: 高温領域での Cu(1) サイトのスペクトルの消失

一般に NMR 信号強度は温度に反比例するため、このような異常な信号強度の減少は Cu(1)、 Cu(2) 位置における電気的もしくは磁気的なダイナミクスに起因する核スピン – スピン緩和時間 T₂ の減少が起きていると考えられる。T₂ の結果は第3章 3.4 節に示す。

ここで、図 3.6 を見ると、信号消失後に高温で小さな信号が残っていることがわかる。これをス ペクトルシミュレーションすると、 $\nu_{\rm Q}=3.3~{
m MHz}$ として再現された。この残留スペクトルの起源 については第4章 4.4 節で議論する。 次に、スペクトルの置換量依存性を図 3.7 に示す。ここから、Zn0 で見られていた金属 – 半導体 転移前後の Cu(2) スペクトルの形状変化は Zn 置換により抑えられることがわかった。なお、Cu(1) の置換量依存性については次節のナイトシフトの項目で述べる。

図 3.7: NMR スペクトルの Zn 置換量依存性。(a): Zn0 (x = 0) における金属 – 半導体転移温度 T_{MST} (x = 0) より高温領域で測定されたスペクトル。(b): Zn0 (x = 0) における金属 – 半導体転 移温度 T_{MST} (x = 0) より低温領域で測定されたスペクトル。

3.2 ナイトシフト

次に、ナイトシフトの結果について示す。ナイトシフトは周波数掃引スペクトルのピーク位置 ω_{res} あるいは磁場掃引スペクトルのピーク位置 *H*_{res} を用いて以下の式より求まる。

$$K \equiv \left(\frac{\omega_{\rm res} - \omega_0}{\omega_0}\right) = \left(\frac{H_0 - H_{\rm res}}{H_{\rm res}}\right) \tag{3.3}$$

前節で述べたシャープな Cu(1) スペクトルのピーク位置の温度変化に対して、ガウシアンフィットを行うことでナイトシフトの温度依存性を調べた。結果を図 3.8 に示す。ここから Zn0 でのみ、転移温度でナイトシフトに飛びが見られ、Zn1 ではカーブ構造、Zn2 ではほぼフラットになっていることがわかった。

ここで、Zn0 の Cu(1) スペクトルについて、転移温度付近で詳細な測定を行った。結果を図 3.9 に示す。ここから、転移において不連続にピーク位置が変化する相分離が観測され、転移が一次 転移であることが微視的観点からも明らかとなった。

図 3.8: ナイトシフトの温度依存性

図 3.9: 転移温度前後の Cu(1) スペクトルの温度変化 [18] ⑥ 日本物理学会 2019

一方、今回 Cu(2) スペクトルに関しては、線幅がブロードであり、ナイトシフトの温度依存性 を求めるのに十分な精度がなかった。そこで、ここでは Cu(1) に着目することとする。ナイトシ フトは、Cu 核位置における電子による超微細磁場を反映しており、超微細結合定数と *A*_{hf} とし、 巨視的磁化率 χ と以下の関係が成り立つ。

$$K = \frac{A_{\rm hf}}{\mu_{\rm B} N_{\rm A}} \chi \tag{3.4}$$

したがって、温度を媒介変数とした $K - \chi$ プロットの傾きにより実験的に $A_{\rm hf}$ を得る。

Cu(1) に対するナイトシフトの温度依存性、及び置換量依存性は図 3.8 のようになった。各置換系に対する $K = \chi$ プロットを図 3.10–3.13 に示す。

図 3.10: Cu₁₂Sb₄S₁₃(Zn0)のK-χプロットと高温の線形フィット

図 3.11: Cu₁₂Sb₄S₁₃(Zn0) の *K*-χ プロットと 85–115K の線形フィット

図 3.12: $\operatorname{Cu}_{11}\operatorname{ZnSb}_4\operatorname{S}_{13}(\operatorname{Zn1})$ の K- χ プロット

図 3.13: $\mathrm{Cu}_{10}\mathrm{Zn}_{2}\mathrm{Sb}_{4}\mathrm{S}_{13}(\mathrm{Zn}2)$ のK- χ プロット

まず金属 – 半導体転移を示す Zn0 の $A_{\rm hf}$ を求める。図 1.6 に示した磁化率を用い、図 3.10 に示 すように、 $K-\chi$ プロットの線形フィットから、 $A_{\rm hf} = -0.49 \pm 0.05 \text{ T}/\mu_{\rm B}$ 、 $K_{\rm orb} = 0.17$ %を得た。 さらに、85–115 K の温度範囲で $K-\chi$ プロットの傾きが変化していることがわかる。図 3.11 に示 すように 85–115 K の温度領域で新たに $K-\chi$ プロットの線形フィットを行い、 $A_{\rm hf} = -0.04 \pm 0.01 \text{ T}/\mu_{\rm B}$ 、 $K_{\rm orb} = 0.07$ %を得た。 次に Zn1 の $A_{\rm hf}$ を求める。Zn1 は信号強度の問題から十分な精度で結果が得られなかったため、100–135 K の温度範囲のみを用いた。図 3.12 に示すように K- χ プロットの線形フィットから、 $A_{\rm hf} = -0.20 \pm 0.15 \text{ T}/\mu_{\rm B}$ 、 $K_{\rm orb} = 0.12 \%$ を得た。

次に Zn2 の A_{hf} を求める。Zn2 については、図 1.6 に示すように非常に電子状態密度が小さく なっており、不純物スピンによるキュリー則と反磁性のバックグラウンドの無視できない寄与が 存在すると考えられる。そのため、以下の磁化率 χ_{subtracted} を用い、*K*-χ プロットを行った。

$$\chi_{\text{subtracted}} = \chi - a - \frac{b}{T} \tag{3.5}$$

図 3.13 に示すように K- χ プロットの線形フィットから、 $A_{\rm hf} = -0.51 \pm 0.20 \text{ T}/\mu_{\rm B}$ 、 $K_{\rm orb} = 0.098$ %を得た。

以上より、超微細結合定数は Zn1 や Zn2 における絶対値の問題は残るものの、いずれも同程度 の負の値を取ることがわかった。

3.3 核スピン-格子緩和時間(T₁)

3.3.1 低温領域

$Cu_{12}Sb_4S_{13}$ (Zn0)

3.1 節の測定からスペクトルの Cu(1) 成分、Cu(2) 成分を分離することが出来た。ここから、各 成分に測定条件を合わせることで、Cu(1)-T₁ および Cu(2)-T₁ を測定した。

まず Cu(1) の核磁化緩和曲線を図 3.14 に示す。

図 3.14: Zn0-Cu(1) に対する核磁化緩和曲線 [18]。実線はフィッティングカーブを示す。 ⓒ 日本 物理学会 2019

ここで、 M_0 は熱平衡状態の核スピン磁化、M(t)は飽和パルス後t秒における核スピン磁化である。横軸tTプロットとすることで、典型的な金属に成り立つコリンハ則 $1/T_1T = \text{const.}$ に従う

とき磁化カーブは温度によらず一つの曲線に乗る。図 3.14 より、高温では一つの曲線に乗り、コ リンハ則の成立が見て取れるが、金属 – 半導体転移温度直上にあたる 86 K で遅い緩和カーブの発 達が見て取れる。これは相分離により、高温(金属)相の核スピン – 格子緩和曲線に、低温(半導 体)相の緩和が混ざってきていることを表している。すなわち、転移後では劇的に緩和が遅くなっ ていることがわかる。核スピン – 格子緩和時間は図 3.14 の黒線に示すように磁化カーブのフィッ ティングより得る。

まず、高温(金属)相の緩和について議論する。図 3.1 に示すように、Cu(1) の線幅はシャープ であり、飽和パルスにより、全遷移 ($-3/2 \leftrightarrow -1/2$)、($-1/2 \leftrightarrow 1/2$)、($1/2 \leftrightarrow 3/2$)が起こってい ると考えられる。その場合フィッティングカーブとして、

$$\frac{M_0 - M(t)}{M_0} = A \exp(-t/T_1)$$
(3.6)

が成り立つ。一方で、図 3.1 に示すように、Cu(1) ピーク位置では Cu(2) 成分が必ず入っている。 Cu(2) は $\nu_{\rm Q} = 18.6$ MHz であり、中心線の緩和、すなわち ($-1/2 \leftrightarrow 1/2$) の遷移のみ起こる。こ のとき、フィッティングカーブとして、

$$\frac{M_0 - M(t)}{M_0} = A \left\{ 0.9 \exp(-6t/T_1) + 0.1 \exp(-t/T_1) \right\}$$
(3.7)

が成り立つ。したがって、フィッティングは二成分の和

$$\frac{M_0 - M(t)}{M_0} = A \left[B \exp(-t/T_1) + (1 - B) \left\{ 0.9 \exp(-6t/T_1) + 0.1 \exp(-t/T_1) \right\} \right]$$
(3.8)

の式を用いて Cu(1) サイトの *T*₁ を求めた。ただし、Cu(2) サイトの *T*₁ についてはより確かな値 を得るため、図 3.15 矢印に示すように、Cu(2) だけの成分となる測定位置で測定する。

図 3.15: (a) 高温(金属)相における Cu(1)、Cu(2) 成分の測定位置の例。(b) 低温(半導体)相 における Cu(1)、Cu(2) 成分の測定位置の例。

このとき、緩和曲線を式 (3.7) の一成分でフィットすることで Cu(2) サイトの *T*₁ を求めた。結 果は、次の低温(半導体)相の *T*₁ と合わせて図 3.16 に示す。

次に低温(半導体)相の緩和について議論する。低温相では図3.15 矢印に示す位置で測定を行っ た。低温の詳細なサイト同定は第4章4.2 節で行う。低温ではスペクトルが広がっており、Cu(1)、 (2) サイト共に中心線の緩和、すなわち (−1/2 ↔ 1/2) の遷移となると考えられる。また、図3.14 からわかるように、低温相は核スピン – 格子緩和曲線が広がっており、T₁ に分布が生じているこ とを示す。分布のある場合の中心線のフィッティングカーブとして、

$$\frac{M_0 - M(t)}{M_0} = A \left[\exp\{-(6t/T_1)^{\alpha}\} + \exp\{-(t/T_1)^{\alpha}\} \right]$$
(3.9)

が用いられる。この式は対数スケールでの*T*₁がガウス型分布を持つ場合に相当し、*T*₁はその期待 値となる [48]。したがって、ここでは分布のない高温(金属)相の*T*₁ と同等に扱う。

以上の議論より求めた Zn0 の Cu(1)、(2) サイトの T_1 の逆数を温度で割った $1/T_1T$ の温度依存 性を図 3.16 に示す。

図 3.16: Cu(1)、Cu(2) サイトの 1/T₁T の温度依存性。

高温(金属)相の $1/T_1T$ の絶対値は、Cu(2) サイトに対し Cu(1) サイトが一桁以上大きく、また、金属 – 半導体転移後の $1/T_1T$ の減少量も Cu(2) サイトに対し Cu(1) サイトの方が大きいことが明らかとなった。緩和率の絶対値と電子状態については第4章 4.1 節で詳しく議論する。

Zn 置換系

まず、Zn0 において金属 – 半導体転移前後で絶対値が大きく減少した Cu(1) サイトについて、 1/*T*₁*T* の温度依存性と、その Zn 置換効果を図 3.17 に示す。

図 3.17: Cu(1) サイトにおける 1/T₁T の温度依存性と Zn 置換量依存性

ここから、 $1/T_1T$ の絶対値は Zn0 に対して Zn1 で一桁程度、Zn2 で三桁程度小さく、Zn 置換に対して系統的に減少することがわかった。

次に、ラットリングを示す Cu(2) サイトに対する、NMR による微視的運動情報 1/*T*₁ の温度依存性と、その Zn 置換効果を図 3.18 に示す。

図 3.18: Cu(2) サイトにおける核スピン – 格子緩和率 1/T₁ の温度依存性と Zn 置換量依存性

図から明らかなように、核スピン-格子緩和率の温度依存性からも、抵抗率や磁化率[35]と同

様に Zn 置換により金属 – 半導体転移に伴う $1/T_1T$ の急激な減少が抑制されることがわかった。また、いずれの系においても 5–10 K 程度と 50–100 K 程度の領域に $1/T_1T$ に二つのこぶ状の構造が見られることがわかった。

さらに、NMR 測定周波数を変化させ測定した T₁ を図 3.19 に示す。

図 3.19: Cu(2) サイトにおける核スピン – 格子緩和率 1/*T*₁ の温度依存性と NMR 測定周波数依存性

このように、低温側のこぶ状構造は NMR 周波数に依存し、高温側は周波数に依存しないことがわかった。これはダイナミクスを反映してると考えられ、第4章4.3節で詳細に解析することとする。

3.3.2 高温領域

次に、図 1.5 に示した輸送特性の異常 [35] や、図 3.5、3.6 に示したスペクトル消失が見られた 170 K 以上の高温領域まで核スピン – 格子緩和時間を測定した、Cu(1)の結果を図 3.20 に、Cu(2) の結果を図 3.21 に示す。

図 3.20: Cu(1) サイトの 1/T₁ の温度依存性

図 3.21: Cu(2) サイトの 1/T₁ の温度依存性

このように、Cu(1)-1/ T_1 、Cu(2)-1/ T_1 共に昇温に伴って発散することがわかり、輸送特性の高 温の異常はダイナミクスと関連する現象であることが確かめられた。また、Cu(2)-1/ T_1 のNMR 周波数依存性は十分な精度が得られず明らかではないが、Cu(1)-1/ T_1 は僅かなNMR 周波数分散 を示した。詳細な議論は第4章 4.4 節で行う。

さらに、図 1.5 から Zn 置換系では高温の輸送特性の異常は抑えられることがわかる。そこで Zn2 についても T_1 を調べた。Cu₁₂S₄S₁₃(Zn0) と Cu₁₀Zn₂Sb₄S₁₃(Zn2) の $1/T_1$ の温度依存性を比較を

図 3.22 に示す。図から明らかなように、Zn0 においてみられていた T > 175 K における $1/T_1$ の 急激な発散は、輸送特性と同様に Zn 置換により抑えられることがわかった。

図 3.22: $Cu_{12}S_4S_{13}$ (x = 0, Zn0) と、 $Cu_{10}Zn_2Sb_4S_{13}$ (x = 2, Zn2) の 1/T₁の温度依存性

次に、核スピン – 格子緩和時間の同位体比を示す。核スピン – 格子緩和時間は原子核をプロー ブとすることから、同位体の核スピン – 格子緩和率と比較することで、核磁化の緩和過程が磁気 緩和過程か、電気緩和過程かを調べることが出来る。磁気緩和過程は、核磁化と伝導電子を含む スピンとの磁気的な相互作用によるものであり、電気緩和過程は核四重極モーメントと周りのイ オンとの電気的な相互作用によるものである。幸いなことに、今回プローブとしている Cu 原子は 63 Cu と 65 Cu の 2 つの同位体があり、核スピン I = 3/2 であるため、核磁気モーメント γ のみな らず核四重極モーメント Q も持つ。このとき、核スピン – 格子緩和が磁気緩和過程であるときは

$$T_1^{63}/T_1^{65} = (\gamma^{65}/\gamma^{63})^2 \tag{3.10}$$

であり、電気緩和過程であるときは

$$T_1^{63}/T_1^{65} = (Q^{65}/Q^{63})^2 \tag{3.11}$$

となる。したがって、核スピン – 格子緩和時間の同位体比から、高温の異常な発散の起源がどの ような相互作用によるかを議論することが可能となる。図 3.23 に Zn0 核スピン – 格子緩和時間の 同位体比を示す。

図 3.23: Cu(1)、Cu(2) サイトの 1/T₁の同位体比

このように、Cu(1)、Cu(2) いずれについても核磁化の緩和過程が磁気緩和過程であることがわかった。次に、Zn2-Cu(1)の核スピン – 格子緩和時間の同位体比を図 3.24 に示す。

図 3.24: Cu₁₀Zn₂Sb₄S₁₃のCu(1)-1/T₁の同位体比

ここから、Zn2 では Cu(1) の核磁化の緩和過程は電気緩和過程であることがわかった。次に、 Cu(2) の同位体比を図 3.25 に示す。

図 3.25: Cu₁₀Zn₂Sb₄S₁₃のCu(2)-1/T₁の同位体比

ここでは、γ の比、*Q* の比の中間の値が得られ、Cu(2) サイトでは核磁化の緩和において磁気緩 和と電気緩和が同時に起こっていることを示す。

3.4 核スピン-スピン緩和時間 (T₂)

次に、核スピン-スピン緩和時間の結果を述べる。核スピン-スピン緩和時間は通常金属の場 合温度に対して一定となるため、温度依存を示す場合ダイナミクスの存在を示す証拠となる。特 に、核スピン-格子緩和時間は MHz オーダーのダイナミクスを反映するのに対し、核スピン-ス ピン緩和時間は kHz オーダーのダイナミクスを反映する。

3.4.1 低温領域

まず、ラットリングに関するダイナミクスについて見るため、低温領域における Cu(2) サイト の核スピン – スピン緩和時間を示す。

$Cu_{12}Sb_4S_{13}$ (Zn0)

図 3.26 は Zn0 の Cu(2) サイトにおける核スピン - スピン緩和率の温度依存性を示す。

図 3.26: Zn0 の Cu(2) サイトにおける核スピン - スピン緩和率の温度依存性

ここから、2 K 以下と 30 K 付近に緩和率の異常が観測され、ダイナミクスが存在することを示 す。特にこの二つの異常は 3.3 節図 3.18 の 1/*T*₁ の二つのピークに対応するものと思われる。1/*T*₂ における異常が 1/*T*₁ よりも低温側に出ていることは、1/*T*₂ は kHz オーダーの揺らぎを反映する のに対し、1/*T*₁ は MHz オーダーの揺らぎを反映しているためと考えられる。

$Cu_{11}ZnSb_4S_{13}$ (Zn1)

次に、図 3.26 は Zn1 の Cu(2) サイトにおける核スピン - スピン緩和率の温度依存性を示す。

図 3.27: Zn1 の Cu(2) サイトにおける核スピン - スピン緩和率の温度依存性

ここから、2.5 K と 25 K 付近にピークが観測され、これも 3.3 節図 3.18 の 1/*T*₁ の二つのピー クに対応するものと思われる。

3.4.2 高温領域

次に、Zn0 において輸送特性の異常が見られる高温領域について、核スピン – スピン緩和時間 を示す。

 $Cu_{12}Sb_4S_{13}$ (Zn0)

まず Zn0 について、Cu(1) サイトの核スピン – スピン緩和時間の温度依存性を図 3.28 に示す。 図から明らかなように、1/T₂ においても 3.3 節図 3.20 に示した 1/T₁ と同様の温度領域で発散が 見られた。

図 3.28: Cu(1) サイトの 1/T₂ の温度依存性

図 3.29: Cu(2) サイトの 1/T₂ の温度依存性

次に、Cu(2) サイトの核スピン – スピン緩和時間の温度依存性を図 3.29 に示す。Cu(2)-1/*T*₂ に おいても Cu(1)-1/*T*₂ や 1/*T*₁ 同様の温度領域で発散が見られた。また Cu(1)-1/*T*₂ で見られていた 不連続な飛びがこちらでも観測されている。また輸送特性の異常が見られていた 170 K 付近にお いて急激な傾きの変化と僅かな飛びが見られることは特筆すべき点である。ここからも、高温領域 で何らかのダイナミクスが起こっていると言える。その起源については第4章4.4 節で議論する。

第4章 議論

ここでは、これまでに示した実験結果を用いて議論を行う。まず、テトラヘドライトにおける電 子系の異常に対する議論を行い、次に格子系の異常について議論を行う。その後、電子 – ラット リング相互作用について議論し、電子系、格子系の議論を結びつけ、テトラヘドライトの異常に ついて包括的に議論する。最後に高温の異常について NMR から得られた知見を述べる。

4.1 電子系の異常

核スピン-格子緩和時間と電子状態

Cu₁₂Sb₄S₁₃の第一原理計算によって、フェルミエネルギーにおける電子状態密度 N(E_F)がピー クを持ち、電子系に不安定性を持つことが指摘されている [36, 49, 50, 51]。そのため、テトラヘド ライトの異常を議論する上で、電子状態の理解は重要であると考えられる。よって、ここではテ トラヘドライトの電子状態について議論する。

まず、電子状態密度について置換量依存性を含めて調べる。核スピン – 格子緩和は通常金属で はフェルミ面近傍の電子により起こり、以下のように表され、電子状態密度の情報を与える。

$$1/T_1 = \gamma_{\rm p}^2 \{A_{\rm hf} N(E_{\rm F})\}^2 k_{\rm B} T \tag{4.1}$$

ここで、 γ_n は核磁気回転比、 A_{hf} は超微細結合定数、 $N(E_F)$ はフェルミ準位での電子状態密度を表す。 特に、 $\{A_{hf}N(E_F)\}$ は測定サイトの局所電子状態密度に対応する量となる。そのため $1/T_1T = \text{const}$ の絶対値により局所電子状態密度について議論することができる。

ここで、金属 – 半導体転移を示す Zn0 について、Cu(1)、(2) サイトの局所電子状態密度の違い を見る。

図 4.1: Cu(1)、Cu(2) サイトの 1/T₁T の温度依存性

表 4.1: Expriment: 1/T₁T の絶対値と、それにより見積もった転移前の Cu(1) に対する局所電子 状態密度比。Calculation: 第一原理計算 [51] により見積もった局所電子状態密度と Cu(1) に対す る局所電子状態密度比。

		Experiment		Calculation	
State	Site	$1/T_1T (s^{-1}K^{-1})$	DOS Ratio (%)	DOS (eV^{-1})	DOS Ratio (%)
Metal	Cu(1)	45	100	2.044	100
	$\mathrm{Cu}(2)$	1.8	20	0.694	34
Semiconductor	$\mathrm{Cu}(1)$	0.008	1.3	-	-
	$\mathrm{Cu}(2)$	0.003	0.8	-	-

図 4.1 に示したように、転移前の Zn0 について、Cu(1) サイトの局所電子状態密度が Cu(2) サ イトに対して 5 倍程度の値を持つことが示された。ここで、Zn0 の金属 – 半導体転移前の結晶構 造を用いて行った第一原理計算の結果について図 4.2 にバンド分散と全電子状態密度、図 4.3 に局 所電子状態密度を示す。また、バンド計算の詳細は第 6 章 6.1 節に示す。

図 4.2: I43m 構造に対するバンド構造と電子状態密度 [51]

図 4.3: I43m 構造に対する各サイトの局所電子状態密度 [51]

バンド計算の結果は価電子帯最上部の電子状態密度ピーク位置にフェルミ準位が位置している ことを示し、電子系不安定性を持つことを示唆している。また、表 4.1 に示したように、金属 – 半 導体転移前の局所電子状態密度のサイト比は実験と計算で近い値が得られている。

さらに、金属 - 半導体転移後については、表 4.1 に示したように局所電子状態密度が Cu(1)、(2) でそれぞれ転移前に対して 1.3%、4%程度まで減少を示した。図 4.2 に示したように、第一原理計 算の結果において、Zn0 系の電子状態密度がフェルミ準位においてピークを持っていることから、 金属 - 半導体転移でフェルミ準位の電子状態密度が減少することで電子系の不安定性を解消して いると考えられる。また、Cu(1)の減少量がより大きいことから、Cu(1)が電子系不安定性解消の 影響を強く受けていると考えられる。そこで、Cu(1)電子状態に注目し、Zn 置換による影響を次 に議論する。

59

図 4.4: Cu(1) サイトにおける核スピン – 格子緩和率を温度で割った $1/T_1T$ の温度依存性。点線は $1/T_1T = \text{const}$ と見なした場合の見積もりを示す。

Experiment					
Sample	$1/T_1T \ ({ m s}^{-1}{ m K}^{-1})$	Cu(1) Local DOS Ratio (%)			
$\operatorname{Zn0}(T > T_{\mathrm{MST}})$	45	100			
Zn1	3.5	28			
Zn2	0.055	3.5			
${\rm Zn0}(T < T_{\rm MST})$	0.008	1.3			

表 4.2: Zn 置換に対する Cu(1) 局所電子状態密度比

1/T₁T の Zn 置換量依存性を図 4.4 に示す。図 4.4 点線に示したように、1/T₁T の絶対値から局 所電子状態密度比を見積もった結果を表 4.2 に示す。ここから、置換に伴い Cu(1) サイトの局所 電子状態密度が系統的に減少している事がわかる。したがって、1/T₁T の Zn 置換量依存性の結果 は、Zn 置換による電子ドープにより、フェルミ準位が電子状態密度ピーク位置からバンドギャッ プ側に上昇するという固定バンドモデルにより説明可能である。これは次にナイトシフトからも 議論する。また Kosaka らにより、巨視的磁化率の Zn 置換量依存性も固定バンドモデルにより説 明可能であることが報告されている [35]。

超微細相互作用と電子状態

次に、超微細結合定数から詳細に電子状態について議論する。第3章3.2節において図3.10–3.13 に示した通り、超微細結合定数をZn0、Zn1、Zn2に対してそれぞれ -0.49 ± 0.05 、 -0.20 ± 0.15 、 -0.51 ± 0.20 (T/ $\mu_{\rm B}$)と見積もり、いずれも負の値となった。負の超微細結合定数は、一般に核双 極子磁場、3d 電子による内殻偏極が起源として考えられる。ここで図3.4から、線幅に温度依存 性は見られない。双極子磁場の場合、線幅が温度依存を示すため、負の超微細結合定数は3d 電子 による内殻偏極が起源であると考えられる。このとき、高温のナイトシフトの温度依存性はパウ リ常磁性効果

$$K = \frac{A_{\rm hf}}{N_{\rm A}\mu_{\rm B}}\chi_0 \left(1 - \alpha T^2\right) \tag{4.2}$$

と考えられる。したがって、Zn0 の金属 – 半導体転移温度以下でのナイトシフトの不連続な上昇 は、T₁ と同じくCu(1) サイトの局所電子状態密度の減少により理解される。また、いずれの置換 系でも負の値を取り、超微細結合定数が内殻偏極相互作用で説明できるため、T > T_{MST} 領域で は Zn 置換によりバンド構造が大きく変わっていないと考えられる。すなわち、T₁ の議論に用い た固定バンドモデルが適用可能であることを示している。実際、Lu らが第一原理計算により示し た Zn0、Zn2 のバンド構造では、価電子帯最上部のピーク構造は変化せず電子ドープによりフェル ミ準位が上昇している [23]。

一方、図 3.11 に示したように、Zn0 では転移前 115 K 程度で A_{hf} が 1/10 程度に減少する電子 状態の変化が見られる。この減少は内殻偏極を生む 3*d* 電子の局所電子状態密度の減少に対応する と考えられ、金属 – 半導体転移以前の 115 K 程度から転移の前駆現象としてバンド構造の変化が 起きていると考えられる。

さらに、得られた A_{hf} を用い、 $1/T_1T$ より求めた Cu(1) 局所電子状態密度 $\{A_{hf}N(E_F)\}_{Cu(1)}$ を 全体の電子状態密度 $N(E_F)$ に直して比較したものを表 4.3 にまとめる。表 4.3 から、 $T > T_{MST}$ 領域における全電子状態密度は、Zn0 に対して Zn1 は 68%、Zn2 は 3.4%であり、Zn 置換に対し て系統的に減少していることが分かる。ここから、全電子状態密度に対しても、固定バンドモデ ルにおける電子ドープの描像が成り立つと言える。

表 4.3: $1/T_1T$ の値および $K-\chi$ プロットより見積もった $A_{\rm hf}$ と、それにより求めた全体の電子状態密度比。Zn0 の値を基準とした。

Sample	$1/T_1T (s^{-1}K^{-1})$	$A_{ m hf}~({ m T}/\mu_{ m B})$	Total DOS Ratio (%)
Zn0	45	-0.49	100
Zn1	3.5	-0.20	68
Zn2	0.055	-0.51	3.4

電子系不安定性と金属 - 半導体転移

以上より、Zn 置換により電子状態密度が系統的に減少することが実験的に明らかとなった。こ こから、Zn0の金属 – 半導体転移が Zn 置換により抑えられることは、Zn 置換による電子ドープ 効果のためフェルミ準位が上昇し、電子状態密度ピークから外れ、電子系の不安定性が解消され るためであると考えられる。したがって、Zn0の電子系不安定性が金属 – 半導体転移を引き起こ すと考えられる。

4.2 格子系の異常

次に、テトラヘドライトにおける格子系の異常について議論する。前節で母物質 Cu₁₂Sb₄S₁₃ (Zn0)における金属 – 半導体転移において電子系の不安定性が重要であることを示した。一方で、 テトラヘドライトは非調和大振幅振動ラットリングを示し、格子系においても特徴的な物質であ る。実際、金属 – 半導体転移に伴って構造相転移を示すこと [39, 33, 40] や、転移温度に向かって 降温すると弾性率がソフト化すること [37] が報告されている。また、第一原理計算から不安定な 振動モード [23] が理論的にも指摘されており、格子系の不安定性もテトラヘドライトの金属 – 半 導体転移を理解する上で重要であると考えられる。そこで、Zn0 の局所構造変化を NMR から議 論し、格子系の不安定性がどのように金属 – 半導体転移と関連するかを調べた。

負の熱膨張

まず、第 3 章 3.1 節の図 3.2、3.3 に示したように、Zn0 において 115 K 以下で見られた Cu(2)-NMR スペクトルの線幅、すなわち四重極周波数 *ν*_Q の温度依存の反転について議論する。

ν_Qは一般に熱膨張による温度依存性の式、

$$\nu_{\rm Q}(T) = \nu_{\rm Q}(0)(1 - \alpha T^{3/2}) \tag{4.3}$$

に従う。そのため、85–115 K の温度依存性は、熱膨張による温度依存性と逆の相関であることか ら、負の熱膨張とみなすことができる。負の熱膨張は一般に格子の不安定性から生じるため、金 属 – 半導体転移の前駆現象として格子不安定性が現れているといえる。

Zn0 における格子不安定性は他の実験からも指摘されている。Suzuki らの超音波測定による研 究 [37] では、金属 – 半導体転移前における弾性率のソフト化から、格子不安定性が議論されてい る。また、転移後には急激にハード化して不安定性が解消されていることが報告された。さらに、 Lu らによるフォノン第一原理計算の研究 [23] からは虚数振動数を持つフォノンの分散が現れてお り、格子不安定性を示している。

また、構造解析の実験から、転移温度以下で体積が膨張する振る舞いが報告されている [33, 39, 40, 41]。May らによる構造解析の結果 [39] よりピックアップした格子定数 *a* の温度依存性を図 4.5 に示す。

図 4.5: 格子定数の温度依存性 [39]

ここから、転移前後での体積を求めると、V(100K) = 1091.80Å³、V(80K) = 1093.76Å³と求 まり、負の熱膨張が観測されている。図 4.5 の測定点数では転移前からの負の熱膨張はわからない が、我々の結果 3.3 から、転移前から負の熱膨張が起き始めていることがわかる。

金属 - 半導体転移における構造変化

ここでは金属 – 半導体転移でどのように結晶構造が変化しているかを議論する。第3章3.1節図 3.1 に示したように、低温では NMR スペクトル形状が大きく変化することがわかった。スペクト ル形状は電場勾配の大きさと非対称性を反映しており、周囲の電荷配置、すなわち局所構造を反 映している。そこで、得られたスペクトルをシミュレーションすることにより金属 – 半導体転移 における局所構造の変化を議論する。

今回、低温(半導体)相のスペクトルは典型的な四重極分裂とは異なり、非常にブロードなものが観測された。これは転移前の Cu(2) サイトが複雑にサイト分裂したものが重ね合わせられていると考えられ、通常のスペクトルシミュレーションは適用不可である。そこで、まず点電荷モデル計算による解析を行った。

点電荷モデルによる電場勾配は、

$$V_{\aleph\beta} = -e \sum_{i} \left(\frac{\delta_{\alpha\beta}}{r_i^3} - \frac{3\alpha\beta}{r_i^5} \right) \tag{4.4}$$

と表され、ここで $\alpha, \beta = x, y, z$ であり、各イオンを点電荷とみなし、点電荷が注目サイトに作る 電場勾配を全イオンについて足し合わせることで計算する。ここで、Cu イオンの価数は XPS 実 験により Cu²⁺ が存在しないという報告 [33] がある一方、XAS-PFY 実験では Cu²⁺ が存在すると いう報告 [34] もあり、Cu の価数については統一した見解は得られていない。そこで今回、単一価 数モデル: $\operatorname{Cu}(1)_{6}^{+}\operatorname{Cu}(2)_{6}^{+}\operatorname{Sb}_{4}^{3+}\operatorname{S}_{13}^{2-}$ 、混合価数モデル: $\operatorname{Cu}(1)_{6}^{1.33+}\operatorname{Cu}(2)_{6}^{+}\operatorname{Sb}_{4}^{3+}\operatorname{S}_{13}^{2-}$ の二通りについ て計算を行った。ここで、 $V_{zz} = V_{zz}^{0}[1 - \gamma(r)]$ で与えられる Sternheimer 反遮蔽因子 $\gamma(r)[42]$ を 10とした。結果を表 4.4 に示す。

表 4.4: 点電荷 (PCA) モデルによる四重極周波数 $\nu_{\rm Q}$ と非対称パラメータ η の計算結果。 単一価数 (Monovalent) モデルは ${\rm Cu}(1)_6^+ {\rm Cu}(2)_6^+ {\rm Sb}_4^{3+} {\rm S}_{13}^{2-}$ 、混合価数 (Mixed-valent) モデルは ${\rm Cu}(1)_6^{1.33+} {\rm Cu}(2)_6^+ {\rm Sb}_4^{3+} {\rm S}_{13}^{2-}$ の価数で計算を行った。

	PCA Calc.	(Monovalent)	PCA Calc.	(Mixed-valent)	Exper	riment
Site	$\nu_{\rm Q}~({\rm MHz})$	η	$\nu_{\rm Q}~({\rm MHz})$	η	$\nu_{\rm Q}~({\rm MHz})$	η
Cu(1)	8.856	0	8.230	0	0.03 ± 0.02	0
Cu(2)	23.138	0.57	23.043	0.56	18.6 ± 0.2	0.03 ± 0.02

表 4.4 に示すように、Cu(2) サイトについては四重極周波数 ν_Q は比較的近い値を示すものの、 非対称性パラメータηは大きく異なる。また、Cu(1) サイトについては四重極周波数 ν_Q は明らか に実験値と異なり高温(金属)相の段階でスペクトルを再現できないことがわかった。これは共有 結合や Sb が持つローンペアの影響のため単純な点電荷モデルが成り立たないためと考えられる。 そこで第一原理計算と合わせて考察を行った。第一原理計算は共同研究者の広島大・長谷川准教 授に行っていただいた。

まず高温(金属)相について、既に知られている *I*43*m* 構造を元に第一原理計算から電場勾配 パラメータ ν_Q、ηの計算を行った。結果を表 4.5 に示す。

表 4.5: I43m 構造を用いた第一原理計算による EFG パラメータ

	First-princi	ples Calc.	Experiment		
Site	$\nu_{\rm Q}~({\rm MHz})$	η	$\nu_{\rm Q}~({\rm MHz})$	η	
Cu(1)	0.2 ± 0.5	0	0.03 ± 0.02	0	
Cu(2)	20.1 ± 0.5	0.04	18.6 ± 0.2	0.03 ± 0.02	

表 4.5 からわかるように Cu(1)、Cu(2) サイト共に第 3 章 3.1 節で実験的に求めた値と良く一致 する値が得られた。ここで、実験結果において Cu(1) の四重極周波数は 0.03MHz であるのに対 して計算結果は 0.2MHz と約 10 倍の値をとるが、これは第一原理計算の分解能が 0.5MHz 程度と なっているため、計算精度から実験結果と有意な差はないと言える。この計算結果は、我々の結 果及び、北川らの結果 [31] を支持する。

次に、低温(半導体)相について議論する。低温相の構造はわかっていないが、第3章3.1節の 図 3.1 に示したように、Zn0のCu(2) サイトのNMR スペクトル形状が変化しており、Cu(2) サイ トの局所対象性が大きく変化していることがわかる。そこで、Cu(2)のS₃ 三角面からの変位を仮 定し準安定構造を求め、その構造における電場勾配パラメータν_Q、ηを第一原理計算により求め た。図 4.6 に、それらの構造の概略を示す。各構造はCu(2)のSb方向への変位によって特徴づけ られる。各構造を一つのSbに対して近づくCu(2)の数をもとに、Sb-Cu₁、Sb-Cu₂、Sb-Cu₃と 呼ぶことにする。各構造の詳細は第6章6.1節に記す。各構造の、高温構造 *I*43*m* に対するエネル ギー利得はそれぞれ、-199、-275、-211 meV と求まった。ここから最安定構造はSb-Cu₂ である ことがわかる。また各構造により得られた電場勾配パラメータを表 4.6 に示す。これらの値をもと にスペクトルシミュレーションを行い、実験との対応を見ることでこれらの第一原理計算の正当 性を確認する。

	0					
Calculation						
Structure	Site	$ u_{ m Q}$	η			
	Cu(1)	2.5	0.99			
$\operatorname{Sb-Cu}_1$	Cu(2)Off	11.3	0.02			
	Cu(2)On	14.4	0.18			
	Cu(1)(a)	3.5	0.40			
	Cu(1)(b)	3.1	0.51			
$\mathrm{Sb}\text{-}\mathrm{Cu}_2$	Cu(2)Off	13.0	0.27			
	Cu(2)On(a)	13.0	0.43			
	Cu(2)On(b)	21.6	0.07			
	Cu(1)	1.7	0.61			
$\mathrm{Sb}\text{-}\mathrm{Cu}_3$	Cu(2)Off	12.8	0.06			
	Cu(2)On	21.6	0.08			

表 4.6: 計算により求まった準安定構造による EFG パラメータ

Semiconducting State

65

図 4.6: 第一原理計算より求まった準安定構造の概略図 [18]。図中の"On"は S₃ 面内に存在する Cu(2) サイトであることを示し、"Off"は S₃ 面外に変位した Cu(2) サイトであることを示す。

図 4.7: 第一原理計算より求まった準安定構造 Sb-Cu₁ による電場勾配パラメータを用いた低温相のスペクトルシミュレーション [18] ① 日本物理学会 2019

図 4.8: 第一原理計算より求まった準安定構造 Sb-Cu₂ による電場勾配パラメータを用いた低温相のスペクトルシミュレーション [18] ① 日本物理学会 2019

図 4.9: 第一原理計算より求まった準安定構造 Sb-Cu₃ による電場勾配パラメータを用いた低温相のスペクトルシミュレーション [18] ⑥ 日本物理学会 2019

各準安定構造によるスペクトルシミュレーションを図 4.7、4.8、4.9 に示す。いずれも大まかな 傾向が再現されていることがわかる。特に 3 構造の中で最も安定である Sb-Cu₂ 構造は、スペクト ルの再現性も問題ないため、これを低温(半導体)相の構造として推定した。

格子系不安定性と金属 - 半導体転移

ここで重要なのは、転移後において Cu(2) 原子の S₃ 面垂直方向への変位、および Sb との結合 が起きているということである。つまり、S₃ 面垂直方向に変位した Cu(2) 原子のラットリング運 動は凍結していると考えられ、これにより格子系の不安定性を解消していると考えられる。した がって、金属 – 半導体転移には Cu(2) ラットリングに起因する格子系の不安定性も重要であると 考えられる。

さらに、最近単結晶 X 線回折実験 [40] や多結晶中性子散乱実験 [41] が行われ、詳細な低温(半導 体)相の構造解析が報告された。Long らは低温(半導体)相の構造は空間群 P4c2構造であること を指摘し、実際に Cu(2) の Sb 方向への変位が報告された [41]。一方、Hathwar らは空間群 I42m 構造であることを指摘し [40]、依然として低温構造の議論は続いている。また、我々は Cu(2) の 変位に注目し単純化したモデルを考えたが、上述の研究 [40, 41] では S(2) 原子の変位の重要性も 報告されている。いずれにしても、今回の手法は結晶構造が不明な場合において、モデル化した 準安定構造と NMR スペクトルを対応させることで構造変化について議論することが可能となる 強力なツールとなると言える。

このように、我々の準安定構造は Cu(2) 変位による格子系のエネルギー利得から求まった単純 化したモデルであり、電子系の異常について説明するものではない。そこで次は、電子 – ラット リング相互作用を核スピン – 格子緩和時間から見積もることで、電子系との対応まで議論する。

4.3 電子 - ラットリング相互作用

ここでは、ラットリングを示す Cu(2) における核スピン – 格子緩和時間 (*T*₁) から電子 – ラット リング相互作用を議論し、これまで議論した電子系、格子系の異常について電子 – ラットリング 相互作用を通じて統一的に議論する。

図 4.10: $\operatorname{Cu}_{12}\operatorname{S}_4\operatorname{S}_{13}$ (Zn0, x = 0)、 $\operatorname{Cu}_{11}\operatorname{ZnSb}_4\operatorname{S}_{13}$ (Zn1, x = 1)、 $\operatorname{Cu}_{10}\operatorname{Zn}_2\operatorname{Sb}_4\operatorname{S}_{13}$ (Zn2, x = 2)の 1/ T_1T の温度依存性。破線は BPP モデルと Dahm–Ueda モデルを複合させたシミュレーションの 結果を示す。点線は Zn0 における金属 – 半導体転移温度を示す。

図 4.11: $\operatorname{Cu}_{10}\operatorname{Zn}_2\operatorname{Sb}_4\operatorname{S}_{13}$ (Zn2, x = 2)の 1/ T_1T の温度依存性。実線は BPP モデルと Dahm–Ueda モデルを 複合させたシミュレーションの結果を示す。

核スピン-格子緩和時間による電子-ラットリング相互作用の解析

結果において図 3.18 に示したように、いずれの置換系にも 1/T₁T に二つのこぶ状の構造がある ことがわかった。通常金属の場合 1/T₁T は一定値を取り、このようなこぶ状の構造は測定原子核 位置のダイナミクスを反映している。特に、Zn0 については前章でラットリングが Cu(2) 面外変 位により凍結し、一部は面内に残ると議論した。そのため Zn0 のこぶ状構造は面内に残るラット リングのダイナミクスを反映していると考えられる。そこで、このこぶ状構造の Zn 置換による系 統性からテトラヘドライトのダイナミクスについて議論する。

また、結果において図 3.19 に示したように、低温側のこぶ状構造は強い NMR 周波数依存性を 持ち、一方高温側のこぶ状構造は持たないことがわかった。NMR 周波数依存性を持つこぶ状構造 の機構として、Bloembergen–Purcell–Pound (BPP) 理論 [52] が知られる。一方、周波数依存性を 持たないこぶ状構造の機構として Dahm–Ueda 理論 [27] が知られる。そこで、BPP 理論により低 温側、Dahm–Ueda 理論により高温側のこぶ状構造について議論する。特に Dahm–Ueda 理論は 電子 – ラットリング相互作用を反映したラマン散乱による核スピン – 格子緩和の理論であり、こ こから電子 – ラットリング相互作用について議論する。

Bloembergen-Purcell-Pound (BPP) 理論による解析

まずは低温側のこぶ状構造に注目し、BPP 理論を用いた解析を行う。BPP 理論 [52] は、相関時間 τ_c を用いて相関関数が $G(t) = G(0) \exp(-t/\tau_c)$ と表される揺らぎによる緩和理論であり [53]、 ランダムな揺らぎにより引き起こされる核磁化の緩和を表す。 $1/T_1^{\text{BPP}}$ の式は以下のように表される。

$$1/T_1^{\rm BPP} = K \left[\frac{\omega_{\rm c}}{\omega_{\rm c}^2 + \omega_{\rm NMR}^2} + \frac{4\omega_{\rm c}}{\omega_{\rm c}^2 + 4\omega_{\rm NMR}^2} \right]$$
(4.5)

ここで、 $\omega_c \equiv 1/\tau_c$ は観測核位置における揺らぎの周波数、 ω_{NMR} は NMR 周波数を示す。この ω_{NMR} 項が NMR 周波数分散を与える。式 4.5 は $\omega_c \sim \omega_0$ において $1/T_1$ が極大となることを示している。

次に、温度グラフの極大を説明するため、 ω_c の温度依存性を考える。ここで、テトラヘドラ イトにおいて Cu(2) 原子は二重井戸型のポテンシャルを持つことが理論計算から示されている [23, 25, 54]。そのため、二重井戸型ポテンシャルのポテンシャル障壁を熱活性で飛び越えるモデ ルとして、 ω_c にアレニウス型 $\omega_c = A \exp(-E/k_{\rm B}T)$ の温度依存性を仮定した。以上の式を用い、 トライアル・アンド・エラー方式により低温側のこぶ状構造をシミュレートする。結果を図 4.10、 4.11、用いたパラメータを表 4.7 に示す。ただしシミュレーションは次に述べる高温側のシミュレー ションと足し合わせたものを示してある。用いたアレニウスの式におけるエネルギーギャップ *E* は、 $E_{\rm Zn0} = 14$ K、 $E_{\rm Zn1} = 9.4$ K、 $E_{\rm Zn2} = 5.8$ K であり中性子非弾性散乱から報告された 23 K の低エネルギーピーク [39] に対応すると考えられる。また、 $E_{\rm Zn0} > E_{\rm Zn1} > E_{\rm Zn2}$ という系統性が 見られることがわかった。これはユニットセル体積の系統性に一致している。ここで、May らに よって求められたユニットセル体積を表 4.8 に示す。ただし、Zn0 低温相の正方晶の体積は立方晶 に換算した。ここから、*E*_{Zn0} > *E*_{Zn1} > *E*_{Zn2} という系統性については周囲の電荷配置が近づくほ どポテンシャルが深くなるというモデルで説明できる。

表 4.7: BPP シミュレーションパラメータ。ZnO_{low} は低温(半導体)相における Zn0 を表す。

Sample	$\omega_{\rm NMR}$ (MHz)	$K (10^8 {\rm s}^{-2})$	$A (10^8 \mathrm{rad/s})$	E (K)
$\rm Zn0_{low}$	100	14	1.0	14
Zn1	100	21	100	9.4
Zn2	102	4.8	20	5.8

表 4.8: 格子定数とユニットセル体積 [39]。Zn0_{low} は低温(半導体)相における Zn0 を表す。また、 Zn0_{low} の体積は立方晶に換算した。

Sample	$a_{\rm 300K}$ Å	$a_{\rm 20K}$ Å	$c_{20\mathrm{K}}$ Å	$V_{300\mathrm{K}}$ Å ³	$V_{20\mathrm{K}}$ Å ³
$\mathrm{Zn0}_{\mathrm{low}}$	10.3221	14.5941	10.2746	1099.78	1094.18
Zn1	10.3533	10.3323	= a	1109.78	1103.04
Zn2	10.3805	10.3675	= a	1118.55	1114.35

Dahm-Ueda 理論による解析

次に、高温側のこぶ状構造に注目する。テトラヘドライトは二重井戸のポテンシャルを持つこ とが報告されており [23, 25, 54]、4 次の非調和振動とみなされる。このとき、図 3.19 のように周 波数分散を持たないこぶ状構造の機構として、第 2 章 2.3 節で述べた Dahm–Ueda 理論 [27] が適 用される。Dahm–Ueda 理論を用い、トライアル・アンド・エラー方式により高温側のこぶ状構造 をシミュレートする。ここで、第 2 章 2.3 節で述べた Dahm–Ueda 理論における 2 フォノンラマン 過程では、1/T₁ は式 (2.65)

$$1/T_1^{\rm R} = 2\pi \left(\frac{\hbar}{2\omega_0 M}\right)^2 V_2 \int_{-\infty}^{\infty} d\omega A^2(\omega) [n(\omega) + 1] n(\omega)$$

で与えられ、フォノンスペクトル関数 $A(\omega)$ に依存する。 $A(\omega)$ は式 (2.66)

$$A(\omega) = -\frac{1}{\pi} \text{Im}D(\omega) = \frac{1}{\pi} \frac{4\omega_0 \Gamma_0 \omega}{(\omega^2 - \omega_r^2)^2 + 4\Gamma_0^2}$$

で与えられる。ここで ω_0 は式 (2.62)

$$\left(\frac{\omega_0}{\omega_{00}}\right)^2 = 1 + \beta \left(\frac{\omega_{00}}{\omega_0}\right) \left(\frac{1}{e^{\hbar\omega_0/k_{\rm B}T} - 1} + \frac{1}{2} - \frac{\omega_0}{2\omega_{00}}\right)$$

である。したがって、 Γ_0 、 $\operatorname{Re}\Pi(\omega)$ 、 ω_{00} 、 β がフィッティングパラメータとなる。 Γ_0 、 $\operatorname{Re}\Pi(\omega)$ は電 子 – 格子相互作用パラメータであり、それぞれ $A(\omega)$ のピーク位置のシフト、線幅の増強に対応す
る。ここではパラメータが過剰とならないよう $|\Gamma_0| = |\text{Re}\Pi(\omega)|$ を仮定した。また、 ω_{00} は電子 – 格子相互作用が無い場合のフォノン周波数を指し、電子 – 格子相互作用が強くなるとフォノンの有 効周波数 ω_r 、つまり $1/T_1T$ のこぶ状構造の位置が低温側にシフトする。ここで、Zn0 のこぶ状構 造を再現するため、 $\omega_{00} \ge 160$ が要請され、ここでは下限値として $\omega_{00} = 160$ を用いた。したがっ て、 ω_{00} の値によって電子 – 格子相互作用パラメータ Γ_0 , Re $\Pi(\omega)$ の絶対値が変化するが、ここで は Zn 置換に対する系統性にのみ注目する。非調和パラメータ β については第 2 章 2.3 節図 2.8 に 示したように、 $\beta > 20$ であれば $1/T_1T$ に明らかにこぶ状構造が見られる。ここでは、 $1/T_1T$ に十 分こぶ状が現れる $\beta = 50$ を用いたが、 $\beta > 20$ では $1/T_1T$ の振る舞いにほとんど違いはなく、そ の絶対値は決定できないものの、実際にこぶ状構造が観測されていることから十分な非調和性は 存在すると考えられる。

以上の議論によりシミュレーションを行った結果を図 4.10 破線に示す。BPP 理論によるシミュ レーション、Dahm–Ueda 理論によるシミュレーション、コリンハ則による 1/T₁T = const. の 定数項の足し合わせにより行った。用いたパラメータを表 4.7、4.9 に示す。また、ここで用いた Dahm–Ueda 理論によるフィッティングパラメータを用い、シュレディンガー方程式を解くことで 描いたポテンシャルを図 4.12 に示す。

表 4.9: Dahm–Ueda シミュレーションパラメータ

Sample	ω_{00} (K)	β	Γ_0 (K)	${\rm Re}\Pi(\omega)$ (K)
$\mathrm{Zn0}_{\mathrm{low}}$	160	50	2	-2
Zn1	160	50	60	-60
Zn2	160	50	40	-40

図 4.12: Dahm–Ueda 理論による 1/T₁T フィッティングにより得たパラメータからシュレディン ガー方程式を解くことで得た二重井戸型ポテンシャル。

得られた電子 – ラットリング相互作用パラメータは $|\text{Re}\Pi(\omega)|_{\text{Zn0}} = 2 \text{ K}$ 、 $|\text{Re}\Pi(\omega)|_{\text{Zn1}} = 60 \text{ K}$ 、 $|\text{Re}\Pi(\omega)|_{\text{Zn2}} = 40 \text{ K}$ となり、 $|\text{Re}\Pi(\omega)|_{\text{Zn1}} > |\text{Re}\Pi(\omega)|_{\text{Zn2}} > |\text{Re}\Pi(\omega)|_{\text{Zn0}}$ 、という系統性が見られ ることがわかった。これは 4.1 節の表 4.2 に示した、フェルミ準位における Cu(1) 局所電子状態密 度の大きさの順と一致している。図 4.3 より、電子状態密度は Cu(1) 成分が支配的であることを 考慮すれば、電子状態密度が大きいほど電子 – ラットリング相互作用が強いといえる。

また、ここで議論した振動モードは May らによる、図 4.13 に示す中性子非弾性散乱から観測 された 100 K 程度のエネルギーを持った振動モード "peak2" [39] に対応すると考えられる。一方、 我々の解析による電子 – ラットリング相互作用をくりこんだフォノン周波数 ω_r は低温(半導体) 相の Zn0、Zn1、Zn2 についてそれぞれ 158 K、80 K、113 K であり近い値である。また、peak2 は金属 – 半導体転移温度 T_{MST} において Zn0 のみ高エネルギー側にシフト(ハード化)している ことがわかる。May らは構造転移によるシフトであると考察しているが、我々の結果と合わせる と半導体転移における電子状態密度減少により伝導電子のスクリーニングが消滅し、フォノンの 有効エネルギーが上昇していると解釈できる。このように中性子非弾性散乱とも整合が取れてい ると言える。

図 4.13: 中性子非弾性散乱により報告されたピークの一つ "peak2" のピーク位置の温度依存性 [39]

金属 - 半導体転移機構

ここまでの議論から、金属 - 半導体転移では電子系、格子系両方の不安定性を解消すると結論 づけた。さらに、Cu(2)核スピン - 格子緩和時間のZn置換効果から、電子状態密度が大きいほど 電子 - ラットリング相互作用が大きくなるという結論が得られた。電子 - ラットリング相互作用 の解析では置換系のうちZn0が最も電子 - ラットリング相互作用が小さいが、これは低温(半導 体)相の1/T₁Tのこぶ状構造、すなわち転移後の状態を測定しているためである。一方、第4章 4.1節の表4.3にも示したように、電子状態密度を比較すると高温(金属)相のZn0が最も大きく なる。すなわち、電子 - ラットリング相互作用も高温(金属)相におけるZn0で最も大きくなる と推測される。そのため、テトラへドライトではZn0の高温構造では最も大きな電子 - ラットリ ング相互作用を持つことが推測される。よって電子系、格子系の不安定性は電子 - ラットリング 相互作用により繋がっており、転移において電子系、格子系の不安定性が協力的に解消し、金属 -半導体転移を引き起こしていると考えられる。

4.4 高温の異常

第3章3.1節、3.3節、3.4節で示したように、Zn0 について輸送特性の異常 [17] とも対応する 170 K 以上の高温領域で、信号消失および Cu(1)、(2) サイトの 1/*T*₁、1/*T*₂ の発散が観測された。 ここでは高温領域の異常について議論する。 ここでは、図 3.6 に示した残留スペクトルの起源について考察する。 まず、Cu(1) サイトで測定した、核磁化の緩和曲線を図 4.14 に示す。

図 4.14: Zn0 における Cu(1) サイトの核磁化緩和曲線。横軸は時間 *t* に温度 *T* を掛けたものでプ ロットした。

ここで、t = 0における信号強度を1になるように規格化している。tT < 0.1 (sK) 領域の緩和は Cu(1) 成分を表しており、昇温に従ってtT < 0.1 (sK) 領域のCu(1) 成分が消失し、tT > 10 (sK) 領域の残留スペクトルによる成分が増加していることを示している。このように、残留スペクト ル成分は緩和時間のオーダーが三桁ほど大きく、テトラヘドライトによるCu(1) とは全く異なる 電子状態のCu 核による信号であることがわかる。また、 $1/T_1T$ は局所電子状態密度の二乗に比 例するため、局所電子状態密度はCu(1) の 1/30 程度である。また、残留スペクトルの信号強度は 187.5 K で Cu(1) の 10%程度であり、非常に小さいため不純物の寄与ではないかと考えられる。

第2章 2.4.2節の図 2.11 にも示したように $Cu_{12}Sb_4S_{13}$ の粉末 XRD の結果は不純物としてファ マチナ鉱 Cu_3SbS_4 の存在を報告している [33]。 Cu_3SbS_4 はバンド計算から半導体であることが報 告されており [55]、金属的である Cu(1)に対し局所電子状態密度が 1/30 程度であることも辻褄が 合う。したがって我々は高温で残る信号を Cu_3SbS_4 中の Cu によるものと考えた。

Cu(1) 核スピン-格子緩和時間

通常金属の場合は、コリンハ則 $1/T_1T = \text{const.}$ が成り立つため、 $1/T_1$ の発散的振る舞いは通常 とは異なる揺らぎの存在を示唆している。 $1/T_1$ は BPP 理論 [52] によると

$$1/T_1 = K \left[\frac{\omega_{\rm c}}{\omega_{\rm c}^2 + \omega_0^2} + \frac{4\omega_{\rm c}}{\omega_{\rm c}^2 + 4\omega_0^2} \right]$$
(4.6)

と表される。ここで、 ω_c は揺らぎの周波数、 ω_0 は NMR 周波数である。この式は、 $\omega_c \sim \omega_0$ で最 大値をとる。したがって、図 3.20 のような発散は NMR 周波数オーダーの揺らぎが発達している ことを示す。さらに、式 (4.6) は 1/ T_1 が NMR 周波数分散を持つことを意味するが、図 3.20 に示 したように、確かに NMR 周波数分散を持つことがわかった。このとき、1/ T_1 の温度依存性は揺 らぎの周波数の温度依存性に起因すると考えられる。最も簡単なモデルとして、アレニウス型の 温度依存性 $\omega_c(T) = A \exp(-E/k_{\rm B}T)$ を仮定する。これはエネルギーギャップ E を持つ特性周波 数 A の振動を表す。これを用い、79 MHz の測定データに対してフィッティングを行ったものが図 4.15 緑線である。

図 4.15: Zn0 における Cu(1) サイトの 1/T₁ の温度依存性と NMR 周波数依存性。実線は BPP モ デルによるフィッティングを示す。

ここからフィッティングパラメータとして活性化エネルギー *E* = 200 meV を得た。一方で、ア レニウス型の温度依存性では NMR 周波数分散が正確には再現できていないことも見て取れる。し たがってアレニウス型の温度依存性の適用には問題点が残る。ここでは粗いモデルとして採用す ることにする。活性化エネルギーのオーダーは正しいとすると、これはラットリングのエネルギー として中性子非弾性散乱 [39, 28] や第一原理計算 [25] の結果とは明らかに異なるエネルギースケー ルである。したがって、ラットリングとは別のダイナミクスを捉えていると考えられる。

Cu(2) 核スピン-格子緩和時間

図 3.21 に示すように、Cu(2) サイトでも同様の発散が見られた。一方で、Cu(2) サイトは Cu(1) サイトに対し非常に強度が小さいため、周波数分散は精度の範囲で観測できなかった。Cu(2) サ イトについても Cu(1) サイトと同様の解析を行い、活性化エネルギーを求めると、*E* = 278 meV が得られた。これは Cu(1) と同オーダーであり同じダイナミクスを観測していると考えられる。

高温の異常の起源の考察

本章では Cu(1)-1/ T_1 、Cu(2)-1/ T_1 、Cu(1)-1/ T_2 、Cu(2)-1/ T_2 いずれも高温で発散することがわ かった。また Cu(1)-1/ T_1 は 175 K に折れ、Cu(1)-1/ T_2 、Cu(2)-1/ T_2 は 175 K に不連続な飛びを 伴って発散することがわかった。

高温の異常の起源の候補の一つとして、超イオン伝導が挙げられる。超イオン伝導とは、融点 より十分低い温度においてイオン伝導性を示す現象である [53]。超イオン伝導体 Cu₂Te の Cu- $1/T_1$ [56] では我々の結果と酷似する振る舞いが得られており、我々と同等の解析から活性化エネル ギー E = 120 meV (Cu_{1.78}Te)と値もほぼ同じである。現時点では、テトラヘドライト Cu₁₂Sb₄S₁₃ には超イオン伝導的振る舞いの報告はなされていない。しかし、"Cu リッチ"テトラヘドライト Cu₁₄Sb₄S₁₃ には 400 K で超イオン伝導的振る舞いが報告されており [57, 58]、Cu₁₂Sb₄S₁₃ には存 在しない Cu(3) サイトを媒介して Cu(1)-Cu(3)、Cu(3)-Cu(2) のようなパスでイオン伝導するの ではないかと予想されている [57]。そのため Cu₁₂Sb₄S₁₃ でも超イオン伝導的振る舞いが起こる可 能性はある。特に Cu₁₂Sb₄S₁₃ においても、300 K 以上の領域で Cu(2) ポテンシャル形状が変化 し、超イオン伝導的なポテンシャルになると言われている [16]。

高温の異常の起源のもう一つの候補として、スモールポーラロンからラージポーラロンへの変 化が挙げられる。ラージポーラロンとは電子がフォノンの衣をまといながら遍歴している準粒子 を指し、スモールポーラロンとは、電子が強い電子 – 格子相互作用によって局在し、ホッピング により伝導する準粒子を指す [3]。スモールポーラロンホッピングによる電気抵抗の式は以下のよ うに書くことができる [59]。

$$\rho/T = \rho_{\alpha} \exp(E_p/k_{\rm B}T) \tag{4.7}$$

ここで、 $\rho_{\alpha} = [k_{\rm B}/\nu_{\rm ph}Ne^2R^2C(1-C)]$ であり、N は単位体積あたりのイオンサイト数、 $R = (1/N)^{1/3}$ は平均サイト間距離、C はポーラロンによるサイト占有率、 α は電子波動関数減衰定数、 $\nu_{\rm ph} = k_{\rm B}\theta_{\rm D}/h$ は光学フォノン周波数、 E_p は活性化エネルギーである。このような描像が成り立 つ場合、 $\ln(\rho/T)$ 対 1/T グラフが直線になる。ここで、Zn0 の電気抵抗率について、縦軸を対数と し ρ/T 対 1/T プロットしたものを図 4.16 に示す。また式 (4.7)を用いたフィッティングパラメー タを表 4.10 に示す。

図 4.16: Cu₁₂Sb₄S₁₃(Zn0)の電気抵抗率 ρ の温度依存性(左図)および、電気抵抗率を ρ/T 対 1/T プロットしたもの(右図)。実線はスモールポーラロンホッピングモデルによるフィッティングを 示す。

図 4.16(b) から、90–160 K の温度範囲で直線に乗ることがわかり、電気抵抗率の特異な温度依存性についてはスモールポーラロンホッピングによって説明することが可能である。

表 4.10: 図 4.16(b) 赤実線で示した、式 (4.7) を用いた ρ/T のフィッティングパラメータ。フィッ ティングの温度範囲は 90–160 K とした。

$$\frac{\rho_{\alpha} (\Omega \,\mathrm{m/K}) \quad E_p (\mathrm{K})}{4.50 \times 10^{-8} \quad 140}$$

一方、電気抵抗率は昇温の際 160 K 以上で異常な減少を示す。この温度領域では、電気抵抗以 外にも、熱起電力 S、電子熱伝導率 $\kappa_{\rm el}$ 、 $1/T_1T$ が大きな異常を示し、磁化率も僅かに温度依存性 が変わる [17]。しかし、X 線などによる格子定数 [39, 40, 41] や比熱 [22, 33, 41] では異常は現れて いない。高温では比熱は主として格子比熱が支配的になることを踏まえると、電子系での異常と 考えられる。これらを考え合わせると、160K 以上ではより遍歴性が強くなった電子状態と考えら れる。もし、160 K 以上の異常が超イオン伝導相への転移とすれば、結晶構造変化や格子系から の比熱に異常が観測されることが期待される。また、NMR 緩和過程において、イオン伝導の場合 は一般に電気緩和過程となることが知られている [53] が、図 3.23 に示したように実際は磁気緩和 が観測されていることからも、電子系の異常であると考えた方が良い。

以上より、Zn0 で見られる 160 K 以上の温度領域における電気抵抗率、熱伝導率、ゼーベック 係数、さらに NMR での異常は、超イオン伝導状態に転移するというよりは、160 K 以上の温度に おいて電子系が局在性の強いスモールホッピング状態から、遍歴性の強いラージポーラロン状態 に転移すると考えるのが妥当である。また、表 4.10 に示したようにスモールポーラロンホッピン グの活性化エネルギーは 140 K であり、この程度の温度以上で遍歴的になることは妥当であると 考えられる。さらに、価数について先行研究において、300 K で行われた XPS 実験により Cu²⁺ が観測されないこと [33]、100 K で行われた XAS-PFY 実験により Cu²⁺ が観測されること [34] に ついてもホールが 90–160 K では局在しており、160 K 以上では遍歴状態にあるとするとつじつま が合う。以上より、この転移は電子 – ラットリング相互作用に由来したラージ – スモールポーラロ ン転移であると推測される。現時点では結論には至らないが、光電子分光やフェムト秒レーザー などによる検証が期待される。

第5章 総括

本研究では以下の課題設定

- 1. 電子系の不安定性について、電子状態を反映するナイトシフトや核スピン 格子緩和時間か ら議論する。
- 2. 格子系の不安定性について、局所構造情報を反映する NMR スペクトルから議論する。
- 3. 電子 ラットリング相互作用について、ラットリングダイナミクスを反映する核スピン 格 子緩和時間から議論する。
- 4. 電子 ラットリング相互作用と金属 半導体転移の対応を調べ、転移機構について議論する。
- 5. 高温の異常について、電子状態やダイナミクスの情報から議論する。

に対し、以下のように達成をした。

- Cu₁₂Sb₄S₁₃ ナイトシフトによる超微細結合定数や核スピン 格子緩和時間の測定から、金属 半導体転移によりフェルミ準位の電子状態密度が減少し、転移で電子系不安定性が解消 されることを明らかにした。また Zn 置換系の核スピン – 格子緩和時間の測定から、Zn 置換 により電子状態密度が系統的に減少することを明らかにし、金属 – 半導体転移において電子 系不安定性の重要性を指摘した。
- 2. Cu₁₂Sb₄S₁₃ スペクトルの温度変化から、金属 半導体転移前からの負の熱膨張を発見し、格 子系の不安定性を指摘した。また、Cu₁₂Sb₄S₁₃ の金属 – 半導体転移前後のスペクトル変化 から、金属 – 半導体転移における局所構造変化、及び Zn 置換系のスペクトルから局所構造 変化が抑制されることを明らかにした。さらに、Cu₁₂Sb₄S₁₃ の第一原理計算と NMR スペ クトルシミュレーションの組み合わせから、格子系不安定性を解消するような局所構造変化 でスペクトル変化が説明可能であることを明らかにした。
- 3. 核スピン 格子緩和時間のこぶ状構造の Zn 置換量に対する系統性から、電子状態密度と電子 ラットリング相互作用の相関を明らかにした。
- 金属 半導体転移は電子 ラットリング相互作用が最も大きい母物質 Cu₁₂Sb₄S₁₃ でのみ起こることから、転移機構として電子 ラットリング相互作用による電子系、格子系不安定性の協力的解消と考えられると指摘した。

 高温の輸送特性で見られる異常と同温度で核スピン - 格子緩和時間および核スピン - スピン 緩和時間に異常を発見し、ダイナミクスに関する異常であることを明らかにした。さらに、 電子 - 格子相互作用に関するラージ - スモールポーラロン転移のような現象が起こっている 可能性を指摘した。

これらを総括し「ラットリングと電子の相互作用が織りなす新しい物理現象についての知見を 得る」という研究目的に対し、本研究では、従来議論されてきた電子 – 格子相互作用とは異なる、 テトラヘドライトにおける電子とラットリングの相互作用、すなわち**電子 – ラットリング相互作 用と金属 – 半導体転移の相関を初めて明らかにし、**電子 – ラットリング相互作用により金属 – 半 導体転移や輸送特性の異常が誘起されるという、ラットリングと電子の相互作用が織りなす新し い物理現象が起こる可能性を指摘した。本研究より電子 – ラットリング相互作用と相転移に注目 した比熱や中性子、X線非弾性散乱実験や理論研究といった物理学的広がりが生まれることが期 待される。

第6章 補遺

6.1 第一原理計算について

第一原理計算は広島大、長谷川准教授に行っていただいた。以下にその詳細を示す。

計算手法

Cu₁₂Sb₄S₁₃ (Zn0) に対する第一原理計算は密度汎関数理論の枠組みにおける PAW 法 (projector augmented wave method)[60] に基づく ABINIT パッケージ [61, 62] を用いて行われた。計算は local density approximation (LDA) に基づき行われた。

電子構造は Cu: $4s^{1}3d^{10}$ 、S: $3s^{2}3p^{4}$ 、Sb: $5s^{2}5p^{3}$ を仮定した。

ソフトモードと準安定構造

Zn0 はラットリングに対応するソフトモードを持っていると考えられる。Cu(2) 振動方向は S₃ 三角面垂直方向であり、プリミティブセルあたり 6 の自由度を持つ。この 6 つのモードは既約表 現 T₁ + T₂ に分解される。また Lu らにより報告された 3 つの不安定なバンド [23] は、波数ベク トル q = 0 における T₂ モードであることを確認した。またソフトモードの既約表現からランダウ 理論に基づき可能な構造を推定することが可能である。

NMR からは図 3.1 に示したように Cu(2) 局所構造が大きく変化していることがわかる。一方 X 線回折からは $2a \times 2a \times 2c$ の超格子が報告されている [33] が、その複雑さから NMR に対応する 電場勾配を見積もるのは困難である。しかし、電場勾配を見積もるという目的であれば図 1.2 (b) に示した Cu₆Sb₄ クラスター構造に注目すれば十分であると考えた。よって波数ベクトル q = 0 に おける T₂ モードから準安定構造を考える。

T₂ モードは三重縮退しており、そのオーダーパラメータはベクトル (Q_x, Q_y, Q_z) で表される。 ランダウの自由エネルギー Fは4次まで以下のように展開される。

 $F = A(Q_x^2 + Q_y^2 + Q_z^2) + BQ_xQ_yQ_z + C(Q_x^2 + Q_y^2 + Q_z^2)^2 + D(Q_x^2Q_y^2 + Q_y^2Q_z^2 + Q_z^2Q_x^2)$ (6.1)

可能な極値は (Q,0,0)、(Q,Q,Q) に存在する。空間群は (Q,0,0) に対して Fmm2、(Q,Q,Q) に対 して R3m となる。また、(Q,Q,Q) と (-Q,-Q,-Q) の構造は異なっており、これらを R3m(+)、 R3m(-) と区別することにする。このとき、Fmm2 が第 4 章 4.2 節における図 4.6(b)(Sb-Cu₂)、 R3m(+) が図 4.6(a)(Sb-Cu₁)、R3m(-) が図 4.6(c)(Sb-Cu₃) にそれぞれ対応する。

また、以下に各準安定構造の結晶構造パラメータを示す。

表 6.1: *R*3*m*(+)(Sb-Cu₁) 構造の結晶構造パラメータ。格子定数 *a* は 8.757 Å、菱面体の角 *α* は 109.736° である。WP はワイコフ位置を示す。

Site	х	У	Z	WP	Sym.
Cu(1)	0.49008	0.24834	0.74391	6c	1
Cu(2)On	0.00187	0.20122	0.20122	3b	<i>.m</i>
Cu(2)Off	0.08156	0.81588	0.81588	3b	<i>.m</i>
Sb(a)	0.54565	0.54565	0.54565	1a	3m
Sb(b)	0.44973	-0.00783	-0.00783	3b	<i>.m</i>
S(1)(a)	0.47195	0.47195	0.22463	3b	<i>.m</i>
S(1)(b)	0.24276	0.24276	0.77096	3b	<i>.m</i>
S(1)(c)	0.51889	0.74642	0.00162	6c	1
S(2)	-0.04418	-0.04418	-0.04418	1a	3m

表 6.2: *Fmm*2(Sb-Cu₂) 構造の結晶構造パラメータ。格子定数 *a*, *b*, *c* はそれぞれ 14.450、14.187、10.009 Å である。WP はワイコフ位置を示す。

Site	x	У	Z	WP	Sym.
Cu(1)(a)	0.37434	0.37096	0.49464	16e	1
Cu(1)(b)	0.25	0.25	0.25641	8b	2
Cu(2)Off	0.12359	0.08956	0.04196	16e	1
Cu(2)On(a)	0.5	0.5	0.20936	4a	mm2
Cu(2)On(b)	0.5	0.5	0.75806	4a	mm2
Sb(a)	0	0.27644	0.27450	8c	<i>m</i>
Sb(b)	0.27340	0.5	0.22907	8d	<i>.m</i> .
S(1)(a)	0.5	0.61573	0.36387	8c	<i>m</i>
S(1)(b)	0.37423	0.23755	0.61938	16e	1
S(1)(c)	0.26367	0.12387	0.39048	16e	1
S(1)(d)	0.61933	0.5	0.62611	8d	<i>.m</i> .
S(2)	0.5	0.5	-0.02052	4a	mm2

表 6.3: *R*3*m*(–)(Sb-Cu₃) 構造の結晶構造パラメータ。格子定数 *a* は 8.723 Å、菱面体の角 *α* は 109.206° である。WP はワイコフ位置を示す。

Site	х	У	Z	WP	Sym.
Cu(1)	0.50982	0.25447	0.75798	6c	1
Cu(2)On	0.00387	0.23069	0.23069	3b	. <i>m</i>
Cu(2)Off	-0.06956	0.75169	0.75169	3b	<i>.m</i>
Sb(a)	0.55084	0.55084	0.55084	1a	3m
Sb(b)	0.45248	0.00366	0.00366	3b	<i>.m</i>
S(1)(a)	0.48708	0.48708	0.23471	3b	<i>.m</i>
S(1)(b)	0.25406	0.25406	0.76800	3b	<i>.m</i>
S(1)(c)	0.52638	0.75535	0.00170	6c	1
S(2)	0.01693	0.01693	0.01693	1a	3m

第7章 謝辞

本論文の作成に当たり、多くの方々のご助力を頂きました。まず主査をご担当いただいた神戸 大学理学研究科教授・藤秀樹先生には本研究において非常に尽力をいただきました。実験のご指 導だけでなく論文作成、書類作成などでも膨大なご指導をいただきました。また、生活や健康に までお気遣いいただき、本論文の作成に至ることが出来ました。厚く感謝申し上げます。副査を ご担当いただいた神戸大学理学研究科教授・早田次郎先生には理論的見地から鋭いご指摘をいた だき、本論文を大いに改善していただきました。謹んでお礼申し上げます。副査をご担当いただ いた神戸大学理学研究科教授・菅原仁先生には物性物理の他分野の見地からご指摘を頂き、本論 文に広い視点を与えていただきました。厚くお礼申し上げます。副査をご担当いただいた神戸大 学理学研究科准教授・小手川恒先生には同分野の専門的見地から的確なご指摘を頂き、本論文に 深い視点を与えていただきました。また、ゼミなどでも非常に論理的にご指導頂き、思考力を培 わせていただき、厚く感謝申し上げます。

九州大学総合理工学研究院准教授・末國晃一郎先生には試料や実験データを提供していただい ただき、本研究は末國先生のお力なくしては成立しないものでした。それだけでなく、議論や相 談なども快くお受けしてくださり、非常に感謝しております。広島大学先進理工系科学研究科准 教授・長谷川巧先生には第一原理計算を行っていただき、本研究に対して重要な進展を与えてい ただき、深くお礼申し上げます。東北大学金属材料研究所教授・佐々木孝彦先生には共同研究者の 松野さんが強磁場 NMR 測定を行った際にご協力いただき、当該データは本研究にも利用させて いただいております。厚くお礼申し上げます。広島大学先進理工系科学研究科特任教授・高畠敏郎 先生には論文に共著になっていただき、的確なコメントを頂き大変学ばせていただきました。謹 んでお礼申し上げます。田中博己さんには本研究に提供いただいた試料の作成にご協力いただい ただき、厚くお礼申し上げます。また田中さんの論文は本研究において大いに参考にさせていた だきました。

松野治貴さんには測定データを一部利用させていただいただけでなく、研究遂行にあたり多大 なご指導を頂き、特に NMR 測定技術は松野さんに多くを教えていただき、大変感謝しておりま す。岡山理科大学理学部応用物理学科講師・久保徹郎先生には作成されたソースコードを利用さ せていただきました。また NMR についての議論などを通して大変勉強させていただき、厚くお 礼申し上げます。青山泰介さんには研究のご指導や作業の補助などを大いに頂き、大変感謝して おります。また、本研究は研究室の学生の皆様との装置・寒剤管理、共同作業などの上に成り立っ ているものであり、皆様に深く感謝申し上げます。

最後に、日常生活を支えて頂いた家族にも感謝申し上げます。

85

参考文献

- [1] A. W. N. Ashcroft, N. Mermin, N. Mermin, and B. P. Company: *Solid State Physics* (HRW international editions. Holt, Rinehart and Winston, 1976), HRW international editions.
- [2] C. Kittel: Introduction to Solid State Physics (Wiley, 1996).
- [3] 津田惟雄, 那須奎一郎, 藤森淳, and 白鳥紀一: 電気伝導性酸化物 (物性科学選書 / 鈴木平, 近角聰信, 中嶋貞雄編. 裳華房, 1983), 物性科学選書 / 鈴木平, 近角聰信, 中嶋貞雄編.
- [4] H. Kamerlingh Onnes: Comm. Phys. Lab. Univ. Leiden 122 (1911) 122.
- [5] J. Bardeen, L. N. Cooper, and J. R. Schrieffer: Physical Review 108 (1957) 1175.
- [6] A. Einstein: Annalen der Physik **339** (1911) 170.
- [7] B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, and J. R. Thompson: Physical Review B 56 (1997) 15081.
- [8] T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita: Reviews of Modern Physics 86 (2014) 669.
- [9] M. Yoshida, K. Arai, R. Kaido, M. Takigawa, S. Yonezawa, Y. Muraoka, and Z. Hiroi: Physical Review Letters 98 (2007) 197002.
- [10] Y. Nagao, J.-i. Yamaura, H. Ogusu, Y. Okamoto, and Z. Hiroi: Journal of the Physical Society of Japan 78 (2009) 064702.
- [11] Z. Hiroi, S. Yonezawa, Y. Nagao, and J. Yamaura: Physical Review B 76 (2007) 014523.
- [12] K. Oshiba and T. Hotta: Journal of the Physical Society of Japan 80 (2011) 094712.
- [13] Z. Hiroi, A. Onosaka, Y. Okamoto, J.-i. Yamaura, and H. Harima: Journal of the Physical Society of Japan 81 (2012) 124707.
- [14] W. Jeitschko and D. Braun: Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 33 (1977) 3401.
- [15] D. Rowe: CRC Handbook of Thermoelectrics (CRC Press, 1995).

- [16] A. Pfitzner, M. Evain, and V. Petricek: Acta Crystallographica Section B Structural Science 53 (1997) 337.
- [17] K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano: Applied Physics Express 5 (2012) 051201.
- T. Matsui, H. Matsuno, H. Kotegawa, H. Tou, K. Suekuni, T. Hasegawa, H. I. Tanaka, and T. Takabatake: Journal of the Physical Society of Japan 88 (2019) 054710.
- [19] L. Pauling and E. W. Neuman: Zeitschrift f
 ür Kristallographie Crystalline Materials 88 (1934) 54.
- [20] R. Chetty, A. Bali, and R. C. Mallik: Journal of Materials Chemistry C 3 (2015) 12364.
- [21] K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano: Journal of Applied Physics 113 (2013) 043712.
- [22] E. Lara-Curzio, A. F. May, O. Delaire, M. A. McGuire, X. Lu, C.-Y. Liu, E. D. Case, and D. T. Morelli: Journal of Applied Physics 115 (2014) 193515.
- [23] X. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher: Advanced Energy Materials 3 (2013) 342.
- [24] 和佐田祐子 and 和佐田裕昭:名古屋大学情報連携基盤センターニュース 6 (2007) 190.
- [25] W. Lai, Y. Wang, D. T. Morelli, and X. Lu: Advanced Functional Materials 25 (2015) 3648.
- [26] Y. Bouyrie, C. Candolfi, S. Pailhès, M. M. Koza, B. Malaman, A. Dauscher, J. Tobola,
 O. Boisron, L. Saviot, and B. Lenoir: Phys. Chem. Chem. Phys. 17 (2015) 19751.
- [27] T. Dahm and K. Ueda: Physical Review Letters **99** (2007) 187003.
- [28] K. Suekuni, C. H. Lee, H. I. Tanaka, E. Nishibori, A. Nakamura, H. Kasai, H. Mori, H. Usui, M. Ochi, T. Hasegawa, M. Nakamura, S. Ohira-Kawamura, T. Kikuchi, K. Kaneko, H. Nishiate, K. Hashikuni, Y. Kosaka, K. Kuroki, and T. Takabatake: Advanced Materials **30** (2018) 1706230.
- [29] N. Ghassemi, X. Lu, Y. Tian, E. Conant, Y. Yan, X. Zhou, and J. H. Ross: ACS Applied Materials & Interfaces 10 (2018) 36010.
- [30] F. Di Benedetto, G. P. Bernardini, C. Cipriani, C. Emiliani, D. Gatteschi, and M. Romanelli: Physics and Chemistry of Minerals 32 (2005) 155.

- [31] S. Kitagawa, T. Sekiya, S. Araki, T. C. Kobayashi, K. Ishida, T. Kambe, T. Kimura, N. Nishimoto, K. Kudo, and M. Nohara: Journal of the Physical Society of Japan 84 (2015) 093701.
- [32] R. Chetty, A. Bali, M. H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R. C. Mallik: Acta Materialia 100 (2015) 266.
- [33] H. I. Tanaka, K. Suekuni, K. Umeo, T. Nagasaki, H. Sato, G. Kutluk, E. Nishibori, H. Kasai, and T. Takabatake: Journal of the Physical Society of Japan 85 (2016) 014703.
- [34] H. Sato, T. Nagasaki, K. Suekuni, H. I. Tanaka, A. Rousuli, S. Nakamura, N. Kawamura, X.-G. Zheng, T. Fujii, and T. Takabatake: Radiation Physics and Chemistry 175 (2020) 108148.
- [35] Y. Kosaka, K. Suekuni, K. Hashikuni, Y. Bouyrie, M. Ohta, and T. Takabatake: Phys. Chem. Chem. Phys. 19 (2017) 8874.
- [36] K. Suekuni, Y. Tomizawa, T. Ozaki, and M. Koyano: Journal of Applied Physics 115 (2014) 143702.
- [37] T. Suzuki, H. Goto, I. Ishii, Y. Noguchi, S. Kamikawa, K. Suekuni, H. I. Tanaka, and T. Takabatake: Physics Proceedia 75 (2015) 443.
- [38] D. I. Nasonova, V. Y. Verchenko, A. A. Tsirlin, and A. V. Shevelkov: Chemistry of Materials 28 (2016) 6621.
- [39] A. F. May, O. Delaire, J. L. Niedziela, E. Lara-Curzio, M. A. Susner, D. L. Abernathy, M. Kirkham, and M. A. McGuire: Physical Review B 93 (2016) 064104.
- [40] V. R. Hathwar, A. Nakamura, H. Kasai, K. Suekuni, H. I. Tanaka, T. Takabatake, B. B. Iversen, and E. Nishibori: Crystal Growth & Design 19 (2019) 3979.
- [41] S. O. Long, A. V. Powell, S. Hull, F. Orlandi, C. C. Tang, A. R. Supka, M. Fornari, and P. Vaqueiro: Advanced Functional Materials **30** (2020) 1909409.
- [42] C. P. Slichter: Principles of magnetic resonance; 3rd ed. (Springer series in solid-state sciences. Springer, Berlin, 1990), Springer series in solid-state sciences.
- [43] 朝山邦輔: **遍歴電子系の核磁気共鳴**: 金属磁性と超伝導 (物性科学選書 / 鈴木平, 近角聰信, 中嶋貞雄編. 裳華房, 2002), 物性科学選書 / 鈴木平, 近角聰信, 中嶋貞雄編.
- [44] 石田憲二:物性研究・電子版 **3** (2014) 033208.
- [45] 瀧川仁: 物性研究 93 (2010) 782.

- [46] E. Pavarini, E. Koch, R. Martin, and R. Scalettar: The physics of correlated insulators, metals, and superconductors (Number FZJ-2017-06396. Theoretische Nanoelektronik, 2017), number FZJ-2017-06396.
- [47] T. Matsui, H. Matsuno, H. Kotegawa, H. Tou, K. Suekuni, T. Hasegawa, H. I. Tanaka, and T. Takabatake: Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019), Vol. 30, mar 2020, p. 011075.
- [48] V. F. Mitrović, M.-H. Julien, C. de Vaulx, M. Horvatić, C. Berthier, T. Suzuki, and K. Yamada: Physical Review B 78 (2008) 014504.
- [49] X. Lu, D. T. Morelli, Y. Xia, and V. Ozolins: Chemistry of Materials 27 (2015) 408.
- [50] K. Knížek, P. Levinský, and J. Hejtmánek: Journal of Electronic Materials 48 (2019) 2018.
- [51] T. Hasegawa. private communications.
- [52] N. Bloembergen, E. M. Purcell, and R. V. Pound: Physical Review 73 (1948) 679.
- [53] 中村浩一, 道廣嘉隆, and 金城辰夫: 日本結晶学会誌 46 (2004) 399.
- [54] J. Li, M. Zhu, D. L. Abernathy, X. Ke, D. T. Morelli, and W. Lai: APL Materials 4 (2016) 104811.
- [55] B. Xu, X. Zhang, Y. Sun, J. Zhang, Y. Wang, and L. Yi: Journal of the Physical Society of Japan 83 (2014) 094606.
- [56] A. A. Sirusi, A. Page, C. Uher, and J. H. Ross: Journal of Physics and Chemistry of Solids 106 (2017) 52.
- [57] P. Vaqueiro, G. Guélou, A. Kaltzoglou, R. I. Smith, T. Barbier, E. Guilmeau, and A. V. Powell: Chemistry of Materials 29 (2017) 4080.
- [58] E. Makovicky and B. J. Skinner: The Canadian Mineralogist 17 (1979) 619.
- [59] W. Khan, A. H. Naqvi, M. Gupta, S. Husain, and R. Kumar: The Journal of Chemical Physics 135 (2011) 054501.
- [60] P. E. Blöchl: Physical Review B **50** (1994) 17953.
- [61] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli,

R. Shaltaf, M. Torrent, M. Verstraete, G. Zerah, and J. Zwanziger: Computer Physics Communications 180 (2009) 2582.

[62] X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D. R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M. J. T. Oliveira, S. Poncé, Y. Pouillon, T. Rangel, G.-M. Rignanese, A. H. Romero, B. Rousseau, O. Rubel, A. A. Shukri, M. Stankovski, M. Torrent, M. J. Van Setten, B. Van Troeye, M. J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, and J. W. Zwanziger: Computer Physics Communications **205** (2016) 106.