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Abstract

In recent years, due to the development of measurement technology, various time

series data have been obtained and accumulated in various fields. To understand

latent dynamical systems underlying observed time-series data, it is important to

estimate latent dynamics from the observed time-series data.

A state space model is a probabilistic model for time-series data that assumes the

existence of latent variables which cannot be observed directly. State space models

have been used in various fields to forecast observation values and to estimate latent

variables. However, model parameters of the state space models are unknown in

many cases, and it is important to estimate the parameters from observations.

The particle Markov chain Monte Carlo (PMCMC) methods have been used to

estimate latent variables and parameters governing dynamics in state space mod-

els from time-series observations. There are two well-known PMCMC methods, the

particle-Gibbs (PG) method and the particle marginal Metropolis-Hastings (PMMH)

method. Both PMCMC methods consist of Markov chain Monte Carlo (MCMC)

methods with the sequential Monte Carlo (SMC) method. The PG method combines

the SMC method with Gibbs sampling, and samples latent variables and parame-

ters from the joint posterior distribution of latent variables and parameters alter-

nately. On the other hand, the PMMH method combines the SMC method with

the Metropolis-Hastings (MH) algorithm, and samples parameters of state space

models from the marginal posterior distribution of parameters. However, both the

PG method and the PMMH method are known to have the problems of the initial
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value dependencies, and cannot estimate the latent dynamical system accurately; the

conventional PMCMC methods cannot find the global optimum depending on the

initial values in a finite number of samples. Even the extended version of the PG

method called the particle-Gibbs with ancestor sampling (PGAS) method, which

includes sampling in the backward direction, has the problem of the initial value

dependency, and it may not be possible to estimate the latent variables and the

parameters precisely depending on the initial values.

In this dissertation, we propose replica exchange particle Markov chain Monte

Carlo (REPMCMC) methods for estimating dynamical systems from observable

time-series data. We introduce the effect of replica exchange method to probabilis-

tic time-series data analysis in order to realize the local precise search and global

search simultaneously for estimating probabilistic state space models. In the pro-

posed method, extended variables corresponding to temperatures are introduced

in order to conduct PMCMC methods in parallel at different temperatures. By

exchanging samples called replicas between different temperatures, the proposed

methods realize the local precise search and global search simultaneously for proba-

bilistic state space models. Firstly, we propose a replica exchange particle Gibbs with

ancestor sampling (REPGAS) method for simultaneously estimating distribution of

latent variables and model parameters. In the REPGAS method, the exchanges be-

tween replicas of pairs of latent variables and model parameters are considered for

precisely estimating latent variables and model parameters. Secondly, we propose a

replica exchange particle marginal Metropolis-Hastings (REPMMH) method for es-

timating distribution of model parameters. In the REPMMH method, the exchanges

between replicas of model parameters are considered for precisely estimating model

parameters.

We verify the effectiveness of proposed REPMCMC methods (the REPGAS

method and the REPMMH method) by conducting experiments using a benchmark

nonlinear state space model, a nonlinear neuronal model, and a stochastic volatility
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model. These validation experiments showed that the proposed methods improve

the problems of the initial value dependencies as well as the sampling efficiencies of

both the conventional PGAS and PMMH methods. These results suggest that the

proposed REPGAS method is effective for estimating distribution of latent variables

and model parameters of the probabilistic state space model whereas the proposed

REPMMH method is effective for estimating distribution of model parameters.

Furthermore, in this dissertation, we apply the REPGAS method to an estima-

tion problem of nonlinear dynamical system with time series of point process. We

propose a probabilistic framework for extracting the nonlinear neural dynamics from

observable spike-train data of neurons. In this application, we formulate the genera-

tive process of the spike-train data as the state space model based on the Izhikevich

neuron model, which is known to be able to express a variety of responses of mem-

brane potentials of neurons. We also formulate the process observing the spike-train

data according to the latent membrane potential by using the Poisson distribution.

We verified that the proposed method precisely estimates the latent variables and

the parameters that can represent the important responses of neurons through vali-

dation experiments using simulated data. This result shows the proposed framework

with the REPGAS method and probabilistic framework from nonlinear dynamics to

spike-train data is effective for the inverse problem for nonlinear neural dynamics

from spike-train data.
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Chapter 1

Introduction

1.1 Background

In recent years, due to the development of measurement technology, various time-

series data have been obtained and accumulated in various fields. To understand

latent dynamical systems underlying observed time-series data, it is important to

estimate latent dynamics from the observed time-series data. A state space model

is a probabilistic model for time-series data, that assume the existence of latent

variables which cannot be observed directly [1–26]. State space models have been

used in various fields to forecast observation values [7,23,24] and to estimate latent

variables [12, 20, 21, 27]. However, model parameters of the state space models are

unknown in many cases. Therefore, it is important to estimate the model parameters

of the state space model from observations.

To estimate the parameters of the state space models from observations, a

method combining the sequential Monte Carlo (SMC) method [3–5, 8–12, 15–20,

25, 26] with the expectation-maximization (EM) algorithm [8, 22, 28–31] has been

proposed [9, 10, 12, 15, 20]. In this approach, the SMC method has been used to

estimate the latent variables where as the EM algorithm has been used to esti-

mate the parameters of the state space models. The EM algorithm is based on a
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maximum likelihood estimation framework and estimates the parameters by sequen-

tially updating the parameters so that the likelihood of the parameters increases.

Although it is guaranteed for the EM algorithm that a local optimum can be es-

timated by iteratively updating the parameters, the global optimum may not be

estimated depending on the initial values of the parameters. Furthermore, since the

EM algorithm is a point estimation method, it is not possible to identify whether

converged values are local or global optima.

To estimate the distribution of parameters of state space models rather than

a specific point value of parameters, two kinds of the particle Markov chain Monte

Carlo (PMCMC) methods have been proposed: the particle-Gibbs (PG) method and

the particle marginal Metropolis-Hastings (PMMH) method [11]. Both PMCMC

methods consist of Markov chain Monte Carlo (MCMC) methods with the SMC

method, and the distribution of parameters is estimated by collecting samples. The

PG method combines the SMC method with Gibbs sampling [8,32–37], and samples

latent variables and parameters of state space models alternately from the joint

posterior distributions of latent variables and parameters. In the PG method, the

SMC method is employed for sampling latent variables. On the other hand, the

PMMH method combines the SMC method with the Metropolis-Hastings (MH)

algorithm [8,38–42], and samples parameters of state space models from the marginal

posterior distributions of parameters. In the PMMH method, the SMC method is

employed for calculating the likelihood marginalized over the distribution of latent

variables. Both the PG method and the PMMH method have been widely applied

(for example, the PG method [43–45], the PMMH method [46–48]).

1.2 Problems

Both the PG method and the PMMH method are known to have the problems of the

initial value dependencies, and the samples of the conventional PMCMC methods

may be trapped in local optima. In other words, it is difficult to precisely estimate

2



the latent variables and the parameters by employing both the PG method and the

PMMH method when the model of interest is very complex. Even the extended

version of the PG method called the particle-Gibbs with ancestor sampling (PGAS)

method, which includes sampling in the backward direction [16,18,19], also has the

problem of the initial value dependency, and it may not be possible to estimate

the latent variables and the parameters precisely depending on the initial values.

Therefore, it is necessary to develop new methods that can escape the local optima

and can precisely find the global optimum for time-series data.

1.3 Purpose of this study

In this dissertation, as new methods to estimate the series of latent variables z1:N

and parameters θsys from observable time-series data y1:N in dynamical systems, we

propose replica exchange particle Markov chain Monte Carlo (REPMCMC) meth-

ods. As shown in Fig 1.1, we construct the framework for accurately estimating

latent variables z1:N and parameters θsys from observable time-series data y1:N at

time steps 1, 2, . . . , N in dynamical systems. We introduce the effect of replica ex-

change method [49–51] to probabilistic time-series data analysis in order to realize

the local precise search and global search simultaneously for estimating probabilis-

tic state space models. In the proposed method, extended variables corresponding

to temperatures are introduced in order to conduct PMCMC methods in parallel

at different temperatures. By exchanging samples called as replicas between differ-

ent temperatures, the proposed methods realize the local precise search and global

search simultaneously for probabilistic state space models.

Firstly, we propose a replica exchange particle Gibbs with ancestor sampling

(REPGAS) method for simultaneously estimating distributions of latent variables

z1:N and model parameters θsys of state space models from observations y1:N . In the

REPGAS method, the exchanges between replicas of pairs of latent variables z1:N

and model parameters θsys are considered for precisely estimating latent variables
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Figure 1.1: The framework for estimating latent variables and parameters from
observable time-series data in dynamical systems. In this dissertation, in order
to precisely estimate the series of latent variables z1:N and parameters θsys from
observed time-series data y1:N in dynamical systems, we propose two kinds of replica
exchange particle Markov chain Monte Carlo (REPMCMC) methods: the replica
exchange particle-Gibbs with ancestor sampling (REPGAS) method and the replica
exchange particle marginal Metropolis-Hastings (REPMMH) method.

z1:N and model parameters θsys. Secondly, we propose a replica exchange particle

marginal Metropolis-Hastings (REPMMH) method for estimating distribution of

model parameters θsys. In the REPMMH method, the exchanges between replicas

of model parameters θsys are considered for precisely estimating model parameters

θsys. In the proposed methods, the problems of initial value dependencies in the

conventional PMCMC methods are improved due to the global searches, and we can

precisely estimate probabilistic state space models.
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1.4 Organization of this dissertation

The organization of this dissertation is as follows. In Chapter 2, we describe some

Monte Carlo methods for time-series data. We describe the SMC method to estimate

latent variables of state space models, and we explain the MCMC methods used to

estimate parameters in the PMCMC methods. In Chapter 3, we first describe the

PGAS method which is an extended version of the PG method. After that, we

propose the REPGAS method to precisely estimate latent variables and parameters

of state space models simultaneously by combining the replica exchange method with

the PGAS method, and verify the effectiveness of the proposed REPGAS method by

using the benchmark nonlinear state space model. In Chapter 4, as an application

of the proposed REPGAS method, we propose a method to simultaneously estimate

the latent variables and the parameters of the Izhikevich neuron model, which is

a mathematical model of neurons, only from limited observations. In Chapter 5,

we first describe the PMMH method to estimate marginal posterior distributions of

parameters in state space models obtained by marginalized over the distributions of

latent variables. After that, we propose the REPMMH method to precisely estimate

parameters of state space models by combining the replica exchange method with

the PMMH method, and verify the effectiveness of the proposed REPMMH method

by using the Izhikevich neuron model and a stochastic volatility model. Finally, the

conclusion is given in Chapter 6.
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Chapter 2

Monte Carlo methods for

time-series data

In this chapter, we explain the Monte Carlo methods used to estimate latent vari-

ables and parameters of state space models in this dissertation. First, we explain

probabilistic models for state space models and the sequential Bayesian filtering for

estimating latent variables of state space models. After that, we describe the al-

gorithm of the sequential Monte Carlo (SMC) method for obtaining the posterior

distribution of latent variables approximately. Next, we describe the Markov chain

Monte Carlo (MCMC) methods used to estimate parameters of state space models

in this dissertation. We explain the conditions to satisfy in the MCMC methods,

and introduce the Gibbs sampling and the Metropolis-Hastings (MH) algorithm,

which are widely used in the MCMC methods.

2.1 Sequential Monte Carlo method

The state space model is a general model to represent a generative process of

time-series data, and assumes that there are time-varying latent variables in the

background of obtaining observations [1–26]. In various fields, the state space
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model has used to forecast future observations [7, 23, 24] and estimate latent vari-

ables [12,20,21,27].

The state space model consists of two models called a system model and an ob-

servation model. The system model represents the time evolution of latent variables,

and the observation model expresses the process of obtaining the observations from

the latent variables. In this section, we first describe the probabilistic models of the

state space model. Next, we explain three kinds of posterior distributions of the

latent variables and the sequential Bayesian filtering for estimating these posterior

distributions. After that, we describe the SMC method, which is a typical method

to estimate the posterior distributions of the latent variables from the observations

approximately.

2.1.1 State space model

Let us denote the latent variables by zn and the observations by yn at time step

n ∈ {1, 2, . . . , N}. Figure 2.1 shows the state space model as a graphical model.

Here, in Fig. 2.1, the arrow from zn−1 to zn represents a system model, and the

arrow from zn to yn represents an observation model. The system model and the

observation model at time step n are expressed as follows:

zn ∼ p (zn | zn−1,θsys) , (2.1)

yn ∼ p (yn | zn,θobs) , (2.2)

where θsys and θobs are the parameters in the system model and the observation

model, respectively.
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Figure 2.1: Probabilistic graphical model of a state space model. z1:N =
{z1, z2, . . . , zN} and y1:N = {y1,y2, . . . ,yN} respectively represent latent variables
and observations for time step n = 1, 2, . . . , N . The arrow to the latent variables zn

at the time step n from the latent variables zn−1 at the previous time step n − 1
represents a system model p (zn | zn−1,θsys), and the arrow to the observations yn

at the time step n from the latent variables zn at the time step n represents an
observation model p (yn | zn,θobs). Θ = {θsys,θobs} are parameters.

2.1.2 Sequential Bayesian filtering for estimating latent variables

To estimate latent dynamics, we consider posterior distribution p (zn | y1:l,Θ) of la-

tent variables zn at time step n given the series of observations y1:l at the time steps

1, 2, . . . , l and parameters Θ = {θsys,θobs}. Depending on the relationship between

time steps n and l, we consider three kinds of posterior distributions: the predictive

distribution, the filtering distribution, or the smoothing distribution. These poste-

rior distributions p (zn | y1:l,Θ) of latent variables zn can be calculated sequentially

with the sequential Bayesian filtering as follows.

The distribution p (zn | y1:l,Θ) of latent variables at time step n given obser-

vations up to previous time step l (l < n) is called the predictive distribution. In

particular, when l = n − 1, it is called the one-step-ahead predictive distribution

8



p
(
zn

∣∣ y1:n−1,Θ
)
and expressed with the system model p (zn | zn−1,θsys) as follows:

p
(
zn

∣∣ y1:n−1,Θ
)
=

∫
p (zn | zn−1,θsys) p

(
zn−1

∣∣ y1:n−1,Θ
)
dzn−1, (2.3)

where the distribution p (zn | y1:n,Θ) of latent variables at time step n given ob-

servations up to the same time step n (l = n) is called the filtering distribution, in

order to obtain the one-step-ahead predictive distribution p
(
zn

∣∣ y1:n−1,Θ
)
at the

time step n, the filtering distribution p
(
zn−1

∣∣ y1:n−1,Θ
)
at the previous time step

n− 1 is needed.

The filtering distribution p (zn | y1:n,Θ) at the time step n is represented with

the observation model p (yn | zn,θobs) as follows:

p (zn | y1:n,Θ) =
p (yn | zn,θobs) p

(
zn

∣∣ y1:n−1,Θ
)∫

p (yn | zn,θobs) p
(
zn

∣∣ y1:n−1,Θ
)
dzn

, (2.4)

where the one-step-ahead predictive distribution p
(
zn

∣∣ y1:n−1,Θ
)
at the time step n

is needed in order to obtain the filtering distribution p (zn | y1:n,Θ) at the time step

n. In other words, by iterating to calculate the one-step-ahead predictive distribution

p
(
zn

∣∣ y1:n−1,Θ
)
and the filtering distribution p

(
zn−1

∣∣ y1:n−1,Θ
)
at each time

step n ∈ {1, 2, . . . , N} alternately, the filtering distributions for all time steps can

be obtained.

If the time step l is more than n, the distribution p (zn | y1:l,Θ) is called the

smoothing distribution. When l = N , the smoothing distribution p (zn | y1:N ,Θ) (n <

N) at the time step n is obtained as follows:

p (zn | y1:N ,Θ) = p (zn | y1:n,Θ)

∫
p (zn+1 | y1:N ,Θ) p (zn+1 | zn,θsys)

p (zn+1 | y1:n,Θ)
dzn+1,

(2.5)

where the one-step-ahead predictive distribution p (zn+1 | y1:n,Θ) at the next time

step n + 1, the filtering distribution p (zn | y1:n,Θ) at the time step n, and the

smoothing distribution p (zn+1 | y1:N ,Θ) at the next time step n+ 1 are needed in

9
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Figure 2.2: The flow of the sequential Bayesian filtering to obtain the predictive,
filtering, and smoothing distributions. The predictive distribution p

(
zn

∣∣ y1:n−1,Θ
)

and filtering distribution p (zn | y1:n,Θ) need to be obtained alternately, and the
smoothing distribution p (zn | y1:N ,Θ) needs to be obtained sequentially in the back-
ward direction after obtaining the filtering distribution at the time step N .

order to obtain the smoothing distribution p (zn | y1:N ,Θ) at the time step n. In

brief, in order to obtain the smoothing distributions at all time steps, it is necessary

to calculate the smoothing distributions retroactively from the time step N to 1 after

alternately calculating the one-step-ahead predictive distribution and the filtering

distribution from the time step 1 to N .

We show the flow of the sequential Bayesian filtering to obtain the predictive,

filtering, and smoothing distributions in Fig. 2.2. The predictive and filtering dis-

tributions need to be obtained alternately, and the smoothing distributions need

to be obtained sequentially in the backward direction after obtaining the filtering

distribution at the time step N .
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Algorithm 1 Sequential Monte Carlo (SMC) method

1: generate initial particles
{
ẑ
(1)
1 , ẑ

(2)
1 , . . . , ẑ

(M)
1

}
from initial distribution p (z1) by

Eq. (2.6)

2: calculate likelihoods as the weights of the particles
{
w

(1)
1 , w

(2)
1 , . . . , w

(M)
1

}
by

Eq. (2.7)

3: normalize the weights of particles
{
W

(1)
1 ,W

(2)
1 , . . . ,W

(M)
1

}
by Eq. (2.8)

4: resample particles
{
ẑ
(1)
1 , ẑ

(2)
1 , . . . , ẑ

(M)
1

}
according to the normalized weights{

W
(1)
1 ,W

(2)
1 , . . . ,W

(M)
1

}
5: for n = 2, . . . , N do

6: update particles
{
ẑ(1)
n , ẑ(2)

n , . . . , ẑ(M)
n

}
for prediction by Eq. (2.9)

7: calculate likelihoods as the weights of the particles
{
w

(1)
n , w

(2)
n , . . . , w

(M)
n

}
by

Eq. (2.10)

8: normalize the weights of the particles
{
W

(1)
n ,W

(2)
n , . . . ,W

(M)
n

}
by Eq. (2.11)

9: resample particles
{
ẑ(1)
n , ẑ(2)

n , . . . , ẑ(M)
n

}
according to the normalized weights{

W
(1)
n ,W

(2)
n , . . . ,W

(M)
n

}
10: end for

2.1.3 Sequential Monte Carlo method

The SMC method is also called the particle filter, and it is a method for obtaining

the filtering distribution approximately using particles with realized values of latent

variables [3–5, 8–12, 15–20, 25, 26]. We show the algorithm of the SMC method in

Algorithm 1 and the flow of the SMC method in Fig. 2.3. In the SMC method,

the filtering distribution can be approximated by iterating the three processes of

generating or updating the particles, calculating the weights of the particles, and

resampling the particles at each time step.

When the time step n = 1, particles
{
ẑ
(1)
1 , ẑ

(2)
1 , . . . , ẑ

(M)
1

}
are generated using

the initial distribution of latent variables p (z1). Here, M is the number of particles,

and i-th particle is generated as follows:

ẑ
(i)
1 ∼ p (z1) . (2.6)

11
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Figure 2.3: The flow of the sequential Monte Carlo (SMC) method. In the SMC
method, the filtering distribution p (zn | y1:n,Θ) can be approximated by iterating
the three processes of updating the particles, calculating the weights of the particles,
and resampling the particles at each time step.

Next, the weights w
(i)
1 of each particle is calculated using the observation model

p (yn | zn,θobs) as follows:

w
(i)
1 = p

(
y1

∣∣∣ ẑ(i)
1 ,θobs

)
. (2.7)

Moreover, we normalize the weights of the particles as follows:

W
(i)
1 =

w
(i)
1∑M

j=1w
(j)
1

. (2.8)

Finally, we resample the particles
{
ẑ
(1)
1 , ẑ

(2)
1 , . . . , ẑ

(M)
1

}
according to the normalized

weights
{
W

(1)
1 ,W

(2)
1 , . . . ,W

(M)
1

}
.

When n = 2, 3, . . . , N , we update the particles using the system model p (zn | zn−1,θsys)

as follows:

ẑ(i)
n ∼ p

(
ẑ(i)
n

∣∣∣ ẑ(i)
n−1,θsys

)
. (2.9)

Moreover, we calculate the weights of particles using the observation model p (yn | zn,θobs)

12



and normalize the weights of particles as follows:

w(i)
n = p

(
yn

∣∣∣ ẑ(i)
n ,θobs

)
, (2.10)

W (i)
n =

w
(i)
n∑M

j=1w
(j)
n

. (2.11)

Finally, we resample the particles
{
ẑ(1)
n , ẑ(2)

n , . . . , ẑ(M)
n

}
according to the normalized

weights
{
W

(1)
n ,W

(2)
n , . . . ,W

(M)
n

}
.

In the SMCmethod, the particles updated with the system model p (zn | zn−1,θsys)

in Eq. (2.9) are samples from the one-step-ahead predictive distributions p
(
zn

∣∣ y1:n−1,Θ
)
,

and the particles resampled with the normalized weights
{
W

(1)
n ,W

(2)
n , . . . ,W

(M)
n

}
calculated by the observation model p (yn | zn,θobs) in Eqs. (2.10) and (2.11) are

samples from the filtering distribution p (zn | y1:n,Θ). Moreover, by iterating the

above processes at all time steps, the filtering distribution at each time step is ob-

tained approximately as follows:

p (zn | y1:n,Θ) ≃ 1

M

M∑
i=1

δ
(
zn − ẑ(i)

n

)
, (2.12)

where δ (zn) is the Dirac delta distribution.

2.2 Markov chain Monte Carlo methods

The MCMC methods are used in the field of statistical physics to obtain sam-

ples from arbitrary probability distributions [8, 32–42, 49–51]. In recent years, the

MCMC methods have been utilized for optimization problems in machine learn-

ing [33,34,37,40–42]. In the MCMC method, samples are obtained according to the

transition probabilities satisfying certain conditions, which allows us to indirectly

obtain samples from the target distribution for which we want to obtain samples.

It is known that we can reproduce the target distribution by collecting a sufficient

13



number of samples obtained by the MCMC method. In this dissertation, we ap-

ply the MCMC methods to estimate the parameters of state-space models. In this

section, we describe the conditions to satisfy in the MCMC methods, and then in-

troduce the algorithms that satisfy these conditions, the Metropolis-Hastings (MH)

algorithm and Gibbs sampling.

2.2.1 Conditions to be satisfied in the MCMC method

In the MCMC methods [8, 32–42, 49–51], to generate the sample set {X} from the

target distribution π (X), we constitute a Markov chain of the random variables X.

The Markov chain is defined by determining the initial state X [0] of the random

variables X and the transition probability W (X →X ′) between states X and X ′.

In the MCMC methods, it is guaranteed that the sample set {X} from the consti-

tuted Markov chain converges to the target distribution π (X) when the transition

probability W (X →X ′) satisfies following (a) detailed balance condition and (b)

ergodic condition [8].

(a) Detailed balance condition

For any two states X and X ′, the transition probability W (X →X ′) satisfy

the following equality:

π (X)W
(
X →X ′) = π

(
X ′)W (

X ′ →X
)
. (2.13)

(b) Ergodic condition

The transition probability between any two states X and X ′ is expressed as

the product of a finite number of non-zero transition probabilities.

In the MCMC method, it is necessary to design the transition probabilities

W (X →X ′) to satisfy the detailed balance condition and the ergodic condition,

and there are well-known algorithms to satisfy the detailed equilibrium condition,

such as the MH algorithm and Gibbs sampling.

14



Algorithm 2 Metropolis-Hastings (MH) algorithm

1: initialize X [0]
2: k ← 1
3: repeat
4: sample a new sample candidate X ′ ∼ q (X ′|X [k − 1])
5: calculate the acceptance probability a = A (X,X ′)
6: X [k]←X ′ with the acceptance probability a, otherwise X [k]←X [k − 1]
7: k ← k + 1
8: until k ≤ K{K : number of iteration}

2.2.2 Metropolis-Hastings algorithm

In the MH algorithm [8,38–42], we express the trainsition probability W (X →X ′)

as the product of two probabilities, the proposal probability q (X ′ |X) and the

acceptance probability A (X,X ′), as follows:

W
(
X →X ′) = q

(
X ′ |X

)
A
(
X,X ′) . (2.14)

Here, q (X ′ |X) represents the probability that the random variables X ′ are pro-

posed from the random variables X. The acceptance probability A (X,X ′) is rep-

resented with the proposal probability q (X ′ |X) as follows:

A
(
X,X ′) = min

(
1,

q (X |X ′)π (X ′)

q (X ′ |X)π (X)

)
. (2.15)

Here, we show the flow of the MH algorithm in Algorithm 2. In the MH algo-

rithm, the transition probability W (X →X ′) are represented by proposing a new

sample candidate X ′ from the current state X according to the proposal probability

q (X ′ |X) and deciding whether to accept or reject the sample candidate X ′ with

the acceptance probability A (X,X ′). As shown in Fig. 2.4, in the MH algorithm,

the sample from the target distribution π (X) is obtained indirectly by proposing

sample candidates and deciding whether to accept or reject them repeatedly.

In the MH algorithm, by using arbitrary proposal probability q (X ′ |X), the
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𝑿

Figure 2.4: The diagram of Metropolis-Hastings (MH) algorithm. In the MH al-
gorithm, the sample from the target distribution π (X) is obtained indirectly by
proposing sample candidates and deciding whether to accept or reject them repeat-
edly.

detailed balance condition [Eq. (2.13)] is satisfied as follows:

π (X)W
(
X →X ′) = π (X) q

(
X ′|X

)
A
(
X,X ′)

= min
(
q
(
X ′|X

)
π (X) , q

(
X|X ′)π (X ′))

= π
(
X ′) q (X|X ′)min

(
q (X ′|X)π (X)

q (X|X ′)π (X ′)
, 1

)
= π

(
X ′) q (X|X ′)A (X ′,X

)
= π

(
X ′)W (

X ′ →X
)
.

In other words, the sample set {X} obtained by the MH algorithm converges to the

target distribution π (X) by using the proposal probability q (X ′ |X) satisfying the

ergodic condition.
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2.2.3 Gibbs sampling

Next, we describe the Gibbs sampling [8, 32–37] which is one of the MCMC meth-

ods in this subsection. Here we consider L dimensional random variables X =

[X1, X2, . . . , Xl, . . . , XL]. In the Gibbs sampling, we use the following conditional

probability p
(
Xl

∣∣X\l
)
of the l-th variable Xl of the random variables X condi-

tioned by the other variables X\l = [X1, X2, . . . , Xl−1, Xl+1, . . . , XL] in X as the

proposal probability q (X ′ |X) in the MH algorithm:

p
(
Xl

∣∣X\l
)
=

π (X)

p
(
X\l

) =
π
(
Xl,X\l

)
p
(
X\l

) (l = 1, 2, . . . , L), (2.16)

where p
(
X\l

)
is the joint probability of the variables X\l.

As shown in Fig. 2.5, in the Gibbs sampling, we propose a sample of each variable

Xl in the random variables X according to the conditional probability p
(
Xl

∣∣X\l
)

in turn while keeping the other variables X\l fixed. Then, the acceptance probability

A (X,X ′) of the MH algorithm are calculated as follows:

A
(
X,X ′) = min

(
1,

q (X |X ′)π (X ′)

q (X ′ |X)π (X)

)
= min

(
1,

π
(
Xl,X\l

)
p
(
X\l

) p
(
X\l

)
π
(
X ′

l ,X\l
) π (X ′)

π (X)

)

= min

(
1,

π
(
Xl,X\l

)
π
(
X ′

l ,X\l
) π (X ′

l ,X\l
)

π
(
Xl,X\l

))
= min (1, 1)

= 1,

where X ′ =
{
X ′

l ,X\l
}
. In other words, if a sample candidate X ′ =

{
X ′

l ,X\l
}
is

proposed from the conditional distribution p
(
Xl

∣∣X\l
)
by using Gibbs sampling,

the sample candidate X ′ =
{
X ′

l ,X\l
}

is always accepted in the MH algorithm.

Furthermore, since the Gibbs sampling satisfies the criteria of the MH algorithm,

the Gibbs sampling also satisfies the detailed balance condition.
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Figure 2.5: The diagram of the Gibbs sampling. In the Gibbs sampling, we propose
a sample of each variable Xl in the random variables X according to the conditional
probability p

(
Xl

∣∣X\l
)
in turn while keeping the other variables X\l fixed.

2.3 Summary

In this chapter, we explained the SMC method and the MCMC methods used to

estimate latent variables z1:N and parameters Θ = {θsys,θobs} of state space mod-

els. The SMC method approximately estimate the filtering distributions of latent

variables p (zn | y1:n,Θ) at each time step by using particles with realized values

of latent variables z1:N . The MCMC methods can obtain samples from the target

distribution π (X) by using the transition probability W (X →X ′) satisfying the

two conditions: the detailed balance condition and the ergodic condition.

In this dissertation, we propose new methods to estimate latent variables and

parameters of state space models based on the particle Markov chain Monte Carlo
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(PMCMC) methods. The PMCMC methods consist of the SMC method and the

MCMC methods, and can estimate latent variables and parameters of state space

models. In the PMCMC methods, the SMC method is used to estimate latent

variables, and the MCMC methods are used to estimate parameters mainly. In

Chapters 3, 4, and 5, we propose new PMCMC methods and its application, which

more precisely estimate latent variables and parameters of state space models.
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Chapter 3

Replica exchange particle-Gibbs

with ancestor sampling method

3.1 Introduction

The particle-Gibbs (PG) method is one of the particle Markov chain Monte Carlo

(PMCMC) method for sampling from the joint posterior distribution of latent vari-

ables and parameters in a state space model [11]. The PG method combine the

sequential Monte Carlo (SMC) method [3–5,8–12,15–20,25,26] with the Gibbs sam-

pling [8,32–37], and the latent variables and the parameters are sampled alternately

in the PG method. Note that, the SMC method is used to sample the latent vari-

ables. However, the SMC method has the problem of degeneracy, and the PG

method is affected by the problem of degeneracy in the SMC method. As a result,

the sampling efficiency of the PG method becomes low when the number of parti-

cles in the SMC method is small. Moreover, the PG method guarantees that it is

possible to sample from the joint posterior distribution of the latent variables and

the parameters in an infinite number of trials, but there also is the problem that it

depends on the initial values in a finite number of trials.

The particle-Gibbs with ancestor sampling (PGAS) method has been proposed
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to overcome the problem of degeneracy in the PG method [16, 18, 19]. The PGAS

method is a method to sample the latent variables not only in the forward direc-

tion but also in the retroactive direction in the PG method. By considering the

retroactive direction, the latent variables of the early time steps, which tend to be

degenerate in the SMC method, can be efficiently sampled. By using the PGAS

method, the problem of degeneracy and the sampling efficiency in the PG method

can be improved. However, similar to the PG method, the PGAS method also has

the problem of initial value dependence in a finite number of trials.

In the Markov chain Monte Carlo (MCMC) methods, the replica exchange

method has been proposed in order to improve the problem of initial value de-

pendence [49–51]. The replica exchange method introduces an extension variables

called temperatures and samples by the MCMC methods at multiple temperatures

in parallel. The temperature is extension variable that adjusts the complexity of the

target distribution. When the temperature becomes high, distribution approaches

to a uniform distribution. Therefore, at high temperature, it is possible to search a

wide range without depending on the initial values. In the replica exchange method,

the problem of initial value dependence in the MCMC method can be improved by

exchanging samples between different temperatures and allowing samples to pass

through high temperatures.

In this chapter, we propose the replica exchange particle-Gibbs with ancestor

sampling (REPGAS) method combining the PGAS method with the replica ex-

change method in order to improve the problem of initial value dependence in the

PGAS method. We first describe the PGAS method for estimating the joint poste-

rior distribution of the latent variables and the parameters in the state space model.

After that, we explain the proposed REPGAS method, and we conduct the exper-

iments using the nonlinear benchmark model in order to verify the effectiveness of

the proposed REPGAS method.
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Algorithm 3 Particle-Gibbs with ancestor sampling (PGAS) method

1: initialize the samples of the latent variables z1:N [0]
2: initialize the samples of the parameters Θ [0]
3: for k = 1, . . . ,K do
4: sample the latent variables z1:N [k] by employing the CSMCAS method in

Algorithm 4
5: sample the parameters Θ [k] ∼ p (Θ | z1:N [k] ,y1:N ) by employing a MCMC

method (e.g., the MH algorithm [8,38–42])
6: end for

3.2 Conventional method: particle-Gibbs with ancestor

sampling method

We explain the PGAS method for estimating the joint posterior distribution p (z1:N ,Θ | y1:N )

of the latent variables z1:N and the parameters Θ in a state space model. We show

the algorithm of the PGAS method in Algorithm 3. In the PGAS method, the

latent variables z1:N and the parameters Θ are initialized as z1:N [0] and Θ [0] =

{θsys [0] ,θobs [0]}, and the samples of latent variables are obtained by the conditional

sequential Monte Carlo with ancestor sampling (CSMCAS) method and the samples

of parameters are obtained by an MCMC method (e.g., the MH algorithm [8,38–42])

alternately.

In the PGAS method, the k-th sample of latent variables z1:N [k] is obtained

by employing the CSMCAS method. At k-th step, the CSMCAS method uses

the observations y1:N and the previous sample of parameters Θ [k − 1] as well as

the previous sample of latent variables z1:N [k − 1] as the conditioned sample of

latent variables. The CSMCAS method use the previous sample z1:N [k − 1] as a

conditional particle in the SMC method. Moreover, when the particles are resampled

in the SMC method, the indices of the particles that are the sources of resampling are

expressed by the ancestor indices
{
A

(1)
n , A

(2)
n , . . . , A

(M)
n

}
. In the CSMCAS method,

by sampling the ancestor index of the conditional particle based on different weights

than resampling, retrospective samples of latent variables are realized.
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Algorithm 4 Conditional sequential Monte Carlo with ancestor sampling (CSM-
CAS) method

1: set the previous sample z1 [k − 1] as M -th particle ẑ
(M)
1 with Eq. (3.1)

2: generate particles
{
ẑ
(1)
1 , ẑ

(2)
1 , . . . , ẑ

(M−1)
1

}
with Eq. (2.6)

3: calculate weights
{
w

(1)
1 , w

(2)
1 , . . . , w

(M)
1

}
with Eq. (2.7)

4: calculate normalized weights
{
W

(1)
1 ,W

(2)
1 , . . . ,W

(M)
1

}
with Eq. (2.8)

5: for n = 2, . . . , N do

6: sample ancestor indices
{
A

(1)
n−1, A

(2)
n−1, . . . , A

(M−1)
n−1

}
according to the normal-

ized weights
{
W

(1)
n−1,W

(2)
n−1, . . . ,W

(M)
n−1

}
7: calculate backward weights

{
ŵ

(1)
n−1, ŵ

(2)
n−1, . . . , ŵ

(M)
n−1

}
with Eq. (3.2)

8: calculate normalized backward weights
{
Ŵ

(1)
n−1, Ŵ

(2)
n−1, . . . , Ŵ

(M)
n−1

}
with Eq.

(3.3)

9: sample M -th ancestor index A
(M)
n−1 according to the normalized backward

weights
{
Ŵ

(1)
n−1, Ŵ

(2)
n−1, . . . , Ŵ

(M)
n−1

}
10: set the previous sample zn [k − 1] as M -th particle ẑ(M)

n with Eq. (3.1)

11: update particles
{
ẑ(1)
n , ẑ(2)

n , . . . , ẑ(M−1)
n

}
with Eq. (3.4)

12: calculate weights
{
w

(1)
n , w

(2)
n , . . . , w

(M)
n

}
with Eq. (2.10)

13: calculate normalized weights
{
W

(1)
n ,W

(2)
n , . . . ,W

(M)
n

}
with Eq. (2.11)

14: end for
15: sample one of the particles

{
ẑ
(1)
1:N , ẑ

(2)
1:N , . . . , ẑ

(M)
1:N

}
as k-th latent variables

z1:N [k] according to the normalized weights
{
W

(1)
N ,W

(2)
N , . . . ,W

(M)
N

}

We show the algorithm of the CSMCAS method in Algorithm 4. First, when

the initial step n = 1, we set the previous sample z1 [k − 1] as M -th particle ẑ
(M)
1

as follows:

ẑ
(M)
1 ← z1 [k − 1] . (3.1)

Next, we generate the particles
{
ẑ
(1)
1 , ẑ

(2)
1 , . . . , ẑ

(M−1)
1

}
with Eq. (2.6) for the par-

ticle numbers i ∈ {1, 2, . . . ,M − 1}. Moreover, we calculate the weights of particles{
w

(1)
1 , w

(2)
1 , . . . , w

(M)
1

}
with Eq. (2.7), and the normalized weights

{
W

(1)
1 ,W

(2)
1 , . . . ,W

(M)
1

}
with Eq. (2.8) for all the particle numbers i ∈ {1, 2, . . . ,M}.
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When step n ∈ {2, 3, . . . , N}, the ancestor indices
{
A

(1)
n−1, A

(2)
n−1, . . . , A

(M−1)
n−1

}
are sampled according to the normalized weights

{
W

(1)
n−1,W

(2)
n−1, . . . ,W

(M)
n−1

}
. This

process corresponds to resampling process in the SMC method. Moreover, we cal-

culate the backward weights
{
ŵ

(1)
n−1, ŵ

(2)
n−1, . . . , ŵ

(M)
n−1

}
and the normalized backward

weights
{
Ŵ

(1)
n−1, Ŵ

(2)
n−1, . . . , Ŵ

(M)
n−1

}
for the ancestor index of the M -th particle as

follows:

ŵ
(i)
n−1 = W

(i)
n−1f

(
zn [k − 1]

∣∣∣ ẑ(i)
n−1,θsys

)
, (3.2)

Ŵ
(i)
n−1 =

ŵ
(i)
n−1∑M

j=1 ŵ
(j)
n−1

. (3.3)

Note that the normalized weights W
(i)
n−1 is different from the normalized backward

weights Ŵ
(i)
n−1 Furthermore, the ancestor index of the M -th particle A

(M)
n−1 is sampled

according to the normalized backward weights
{
Ŵ

(1)
n , Ŵ

(2)
n , . . . , Ŵ

(M)
n

}
. For the

particle numbers i = 1, 2, . . . ,M − 1, the latent variables ẑ(i)
n at the time step n are

sampled using the system model as follows:

ẑ(i)
n ∼ f

(
zn

∣∣∣∣∣ ẑ
(
A

(i)
n−1

)
n−1 ,θsys

)
. (3.4)

On the other hand, for the particle number i = M , the latent variable ẑ(M)
n at time

step n are expressed as follows:

ẑ(M)
n = zn [k − 1] . (3.5)

By merging states of each particle up to time step n, the particles are set to be

ẑ
(i)
1:n ←

{
ẑ

(
A

(i)
n−1

)
1:n−1 , ẑ(i)

n

}
for the particle numbers i ∈ {1, 2, . . . ,M}. Finally, as in

the case of n = 1, the weights are calculated and normalized using the Eqs. (2.10)

and (2.11). We iterate these process for the time steps n ∈ {2, 3, . . . , N}, and sample

one of the particles
{
ẑ
(1)
1:N , ẑ

(2)
1:N , . . . , ẑ

(M)
1:N

}
as the k-th sample of latent variables

z1:N [k] according to the normalized weights
{
Ŵ

(1)
N , Ŵ

(2)
N , . . . , Ŵ

(M)
N

}
at time step
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Figure 3.1: Schematic diagrams of the replica exchange particle-Gibbs with ancestor
sampling (REPGAS) method. (Left) Observations of time series data y1:N are given
as the input. (Middle) The left figures are the distributions of latent variables and
the right figures are the distributions of parameters in low and high temperatures.
The arrows express the transitions of samples in the REPGAS method. In the REP-
GAS method, the transitions that are difficult to achieve with the particle-Gibbs
with ancestor sampling (PGAS) method (dashed arrows) can be realized by pass-
ing through high temperature (solid arrows). (Right) The estimated distributions
of latent variables z1:N and parameter θ are obtained as the output by collecting
samples.

N . The k-th sample of parameters Θ [k] is obtained from p (Θ | z1:N [k] ,y1:N ) with

an MCMC method (e.g., the MH algorithm [8, 38–42]) given the k-th sample of

latent variables z1:N [k].

The PGAS method iterating infinitely is guaranteed to sample from the target

distribution. However, if the target distribution is multimodal and the peaks are

apart, it is difficult to sample from the target distribution with a finite number of

samples and the estimated distribution has strongly dependent on the initial values.
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3.3 Proposed method: replica exchange particle-Gibbs

with ancestor sampling method

In this section, we propose the REPGAS method combining the PGAS method and

the replica exchange method for improving the problem influenced by the initial value

of the PGAS method. As shown in the schematic diagram of the REPGAS method

of Fig. 3.1. The estimated distributions of the latent variables z1:N and parameter θ

in the state space model are obtained by providing the time series data y1:N to the

REPGAS method as inputs. In the REPGAS method, we introduce the extension

variables called temperature into the PGAS method. By running the PGAS method

in multiple temperatures and exchanging samples between temperatures as shown in

the middle part of the figure, the transitions that are difficult to achieve with PGAS

can be realized by passing through high temperatures. Although Fig. 3.1 shows the

case where both the latent variable zn and the parameter θ are one-dimensional, the

REPGAS method is also applicable to the case of multidimensional data.

We introduce temperatures T =
[
T (1), T (2), . . . , T (R)

]
(R is the number of tem-

peratures) as extension variables and consider the following extended joint posterior

distribution:

πEX ({z1:N} , {Θ} | y1:N ) =
R∏

r=1

πT (r)

(
z
(r)
1:N ,Θ(r)

∣∣∣ y1:N

)
, (3.6)

where {z1:N} and {Θ} are expressed as follows:

{z1:N} =
{
z
(1)
1:N , z

(2)
1:N , . . . , z

(R)
1:N

}
, (3.7)

{Θ} =
{
Θ(1),Θ(2), . . . ,Θ(R)

}
. (3.8)

Furthermore, the joint posterior distribution at each temperature πT (r)

(
z
(r)
1:N ,Θ(r)

∣∣∣ y1:N

)
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is represented as follows:

πT (r)

(
z
(r)
1:N ,Θ(r)

∣∣∣ y1:N

)
=

1

Z
(
T (r)

)p(z(r)
1:N ,Θ(r)

∣∣∣ y1:N

) 1

T (r)
, (3.9)

where Z
(
T (r)

)
represents a partition function. At sufficiently high temperatures,

the latent variables and the parameters almost follow a uniform distribution, in-

dependent of observed y1:N . The distribution with T (1) = 1.0 corresponds to

the original posterior distribution to be investigated. The posterior distribution

p
(
z
(r)
1:N ,Θ(r)

∣∣∣ y1:N

)
is obtained using Bayes’ theorem as follows:

p
(
z
(r)
1:N ,Θ(r)

∣∣∣ y1:N

)
=

p
(
y1:N

∣∣∣ z(r)
1:N ,Θ(r)

)
p
(
z
(r)
1:N

∣∣∣ Θ(r)
)
p
(
Θ(r)

)
p (y1:N )

, (3.10)

where p (y1:N ) is a constant, and p (Θ) is a prior distribution of parameters Θ.

Algorithm 5 Replica exchange particle-Gibbs with ancestor sampling (REPGAS)
method
1: initialize the samples of the latent variables {z1:N} [0]
2: initialize the samples of the parameters {Θ} [0]
3: for k = 1, . . . ,K do
4: for r = 1, . . . , R do

5: sample the latent variables z
(r)
1:N [k] and the parameters Θ(r) [k] from the dis-

tribution in Eq. (3.9) with one iteration of the PGAS method in Algorithm
3

6: end for
7: choose replica numbers r and r + 1 for replica exchange
8: calculate pEX with Eq. (3.11)
9: draw an uniform random number αEX ∼ U (0, 1) (where U (a, b) is an uniform

distribution with range [a, b))
10: if αEX ≤ pEX then
11: exchange replicas ({Θ} [k] , {z1:N} [k])← ({Θ∗} [k] , {z∗

1:N} [k])
12: end if
13: end for

We show the algorithm of the proposed REPGAS method in Algorithm 5. In the

REPGAS method, we obtain samples of the latent variables z
(r)
1:N and parameters
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Θ(r) for each temperature with the PGAS method according to Eq. (3.9), and

exchange samples between temperatures T (r) and T (r+1) according to the following

exchange probability:

pEX = min (1, REX) , (3.11)

REX =
πEX ({z∗

1:N} , {Θ
∗} | y1:N )

πEX ({z1:N} , {Θ} | y1:N )
, (3.12)

where {z∗
1:N} and {Θ

∗} are expressed as follows:

{z∗
1:N} =

{
z
(1)
1:N , . . . , z

(r+1)
1:N , z

(r)
1:N , . . . , z

(R)
1:N

}
, (3.13)

{Θ∗} =
{
Θ(1), . . . ,Θ(r+1),Θ(r), . . . ,Θ(R)

}
. (3.14)

In the REPGAS method, it becomes possible to overcome the problem of initial

value dependence in the PGAS method by passing through a high temperature

state in the replica exchange method. Moreover, it also becomes possible to prevent

increasing the calculation time because each the PGAS method is able to be run in

parallel.

3.4 Experiments

In this section, to verify the effectiveness of the proposed method, we use the fol-

lowing benchmark nonlinear state space model [1, 11,17–19]:

zn ∼ N
(
zn

∣∣∣∣ zn−1

a
+ b

zn−1

1 + z2n−1

+ c cos (dn) , σ2
z

)
, (3.15)

yn ∼ N
(
yn

∣∣∣∣ z2ne , σ2
y

)
, (3.16)

where a, b, c, d, and e are constants, and σz and σy are standard deviations of

the system model and observation model, respectively. In this model, the latent
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Figure 3.2: The data of the benchmark nonlinear state space model. Observations
yn (blue solid line) and true latent variables zn (red dashed line) obtained from the
benchmark nonlinear state space model at time step n = 100 – 300.

variables have both positive and negative values, but the observations are converted

to only positive values through the observation model.

In the following numerical experiments, we estimate the joint posterior distri-

bution of latent variables and parameters p (z1:N ,Θ | y1:N ) from the observations

y1:N with the parameters
{
a, b, c, d, e, σ2

z , σ
2
y

}
= {2, 25, 8, 1.2, 20, 10, 1} and the num-

ber of data N = 1500. Here we focus on estimating the system model parameters

Θ = [a, b, c, d].

We show a portion of the data used in the following experiments in Fig. 3.2,

where the vertical axis represents the value of observation yn and latent variable zn,

the horizontal axis represents the time step n, the solid line is observation yn, and

the dashed line is latent variable zn.

3.4.1 Experiment to compare sampling efficiency

To compare the sampling efficiency of PGAS and the REPGAS method, we estimate

the joint posterior distribution of latent variables and parameters p (z1:N ,Θ | y1:N )

when the initial values of parameters Θ [0] are true values. Here, the number of
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samples is K = 106, the number of burn-in samples is Kburn−in = 5 × 105, and the

number of particles is M = 50. The initial values of latent variables are z1:N [0] =

[0, 0, . . . , 0], and the number of replicas of the REPGAS method is R = 90.

We show in Fig. 3.3 the autocorrelation function results calculated with PGAS

and REPGAS samples of parameters Θ at T (1) = 1.0. In all the graphs, the vertical

axis represents the value of the autocorrelation function and the horizontal axis

represents the lag length of the autocorrelation function. The dashed lines are the

results calculated with PGAS samples of parameters a, b, c, and d. The solid lines

are the results calculated with the REPGAS method samples.

In all of the parameters a, b, c, and d, the decays of the autocorrelations are

faster with the REPGAS method than the PGAS method. Therefore, it was shown

that the sampling efficiency of the REPGAS method is higher than of the PGAS

method.

3.4.2 Experiment to compare dependence on initial values

To verify whether the proposed REPGAS method improves the conventional PGAS

method in terms of initial values dependence, we estimate the joint posterior distri-

bution of latent variables and parameters p (z1:N ,Θ | y1:N ) when the initial values

of parameters are Θ [0] = [a, b, c, d] = [1.5, 28, 7, 1.195], which are far from the true

values [a, b, c, d] = [2, 25, 8, 1.2]. Here, the number of samples is K = 2 × 106, the

number of burn-in samples is Kburn−in = 106, and the number of particles is M = 50.

The initial values of latent variables are z1:N [0] = [0, 0, . . . , 0], and the number of

replicas of the REPGAS method is R = 90.

We show the estimated results of the parameters Θ and latent variables z1:N in

Figs. 3.4, 3.5, and 3.6. Figure 3.4 shows the results of parameters Θ = [a, b, c, d]

estimated with the PGAS method, and Fig. 3.5 shows the results estimated with the

REPGAS method. In Figs. 3.4 and 3.5, the vertical axis in each graph represents

the value of the probability density function and the horizontal axis represents the
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Figure 3.3: Autocorrelation function results of samples obtained by employing the
PGAS method and the REPGAS method in the benchmark nonlinear state space
model. In each graph, the vertical axis represents the value of the autocorrelation
function and the horizontal axis represents the lag length of the autocorrelation
function. The blue dashed lines are the results calculated with the PGAS samples
of parameters a, b, c, and d, the red solid lines are the results calculated with the
REPGAS samples at T (1) = 1.0.

values of parameters a, b, c, and d. The solid lines are true values, the dashed lines

are initial values, and the histograms are estimated posterior distributions of the

parameters.

As shown in Fig. 3.4, the estimated distributions obtained by the conventional

PGAS method are far from the true values. PMCMC methods including PG are

guaranteed that the sample from the target distribution can be realized with infinite
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Figure 3.4: Estimated posterior distributions of parameters obtained by employing
the PGAS method in the benchmark nonlinear state space model. In each graph
the vertical axis represents the value of the probability density function and the
horizontal axis represents the values of parameters a, b, c, and d. The red solid lines
are true values; the light blue dashed lines are initial values.

samples. However, as shown in Fig. 3.4, it may not be possible with a finite number

of samples, and in PGAS there is dependence on initial values. In contrast, as

shown in Fig. 3.5, the peak values of the estimated distributions obtained using the

proposed REPGAS method match the true values. Furthermore, the distributions

by the REPGAS method have multiple peaks in addition to the true ones, and it

can be seen from Fig. 3.5 that the PGAS method is stuck on the peak that is not

true.

Figure 3.6 shows the estimated results of the latent variables at time steps be-
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Figure 3.5: Estimated posterior distributions of parameters obtained by employing
the REPGAS method in the benchmark nonlinear state space model. See also the
captions of the figure and subfigures for Fig 3.4.

tween n = 100 and 300, and the upper graph is the result obtained with the PGAS

method and the lower graph is the result obtained with the REPGAS method. In

both graphs, the vertical axis represents the value of latent variable zn, and the

horizontal axis represents the time step n. The dashed lines are true values, the

solid lines are mean values of estimated distributions and the filled areas are the

range µ± σ (µ is the mean and σ is the standard deviation).

As shown in Fig. 3.6, in the estimated distributions obtained using the PGAS

method, there are parts where the positive and negative signs of the latent variable

zn are wrong. In consideration of the form of Eq. (3.16), it is considered that there is
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Figure 3.6: Estimated posterior distributions of latent variables obtained by em-
ploying the PGAS method and the REPGAS method in the benchmark nonlinear
state space model. The upper figure is the result of PGAS and the lower figure is
the result of REPGAS. The red dashed lines are true values, the blue solid lines are
mean values of estimated distributions, and the blue filled area are the range µ± σ
(µ is the mean and σ is the standard deviation).

a local optimum at the point where the positive and negative signs are reversed. In

contrast, since the parameters can be estimated appropriately as shown in Fig. 3.5,

the estimated distributions of latent variables obtained using the proposed REPGAS

method captured the true values.

The above results show that it is possible to overcome the problem of initial

value dependence of the PGAS method by employing the REPGAS method.
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3.5 Summary

In this chapter, we have proposed the REPGAS method, a method for estimating

the joint posterior distribution of latent variables and parameters in a state space

model. The problem of initial value dependence in the REPGAS method is improved

compared to the PGAS method by combining the PGAS method with the replica

exchange method. We have shown in experiments using the benchmark nonlinear

state space model that the REPGAS method can improve the problem of initial

value dependence of the PGAS method and estimate the joint posterior distribution.

In addition to improving the problem, the REPGAS method succeeds in sampling

from a multimodal posterior distribution. Furthermore, we have also shown that

the autocorrelation time is reduced in the Izhikevich neuron model by employing

the REPGAS method compared to the PGAS method.
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Chapter 4

Estimation of neural dynamics

from spike-train data by

employing REPGAS method

4.1 Introduction

Elucidating neuronal dynamics is one of the important subjects to reveal informa-

tion processing in neural systems. For this purpose, it is necessary to establish a

data-driven method for estimating neuronal dynamics from spike-train data. Each

neuron in neural systems is known to have various electrical characteristics, such as

tonic, phasic, and rebound spikings, and many kinds of neuronal models have been

proposed for expressing a part of such electrical responses of the neurons [52–61].

The Izhikevich neuron model, one of neuronal models, is known to reproduce vari-

ous kinds of electrical responses with low computational cost [60,61]. However, it is

difficult to determine the model parameters that reproduce the electrical responses

of neurons since the latent variables of the neurons such as membrane potential and

channel variables cannot be observed directly and only one of multidimensional la-

tent variables of neurons or only spike-train data can be observed through partial
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observations.

In order to estimate neuronal dynamics based on data-driven approaches, meth-

ods based on the maximum likelihood (ML) method has been proposed [9,10,12,15].

However, previous studies based on the ML method [9, 10, 12, 15] assumed that we

can observe a continuous latent variable such as membrane potential or florescence of

calcium imaging rather than spike-train. A previous study proposed an ML method

for estimating leaky integrate-and-fire neuron based on spike-train data [62]. How-

ever, the kind of neuronal response is limited to tonic spiking and estimated results

would be a local optimum. Moreover, other study proposed a method for estimating

the Hodgkin-Huxley model [52] based on spike-train data [13]. In this method, the

process of obtaining spikes is formulated as the state space model [1–12,14–21,23–26]

based on the Hodgkin-Huxley neuron model, and the membrane potentials, which

are the latent variables of the neuron, are estimated from spike-train data by using

the sequential Monte Carlo (SMC) method [3–5, 8–12, 15–20, 25, 26]. The parame-

ters in the model are also estimated simultaneously by the SMC method with the

self-organizing state space model (SOSSM) [5,13], that the parameters are assumed

as the latent variables that do not change over time. However, this method requires

that the range of possible values of the parameters be known in advance. Moreover,

the accuracy of this method is strongly affected by the problem of the degeneracy

in the SMC method.

A method that combines the SMC method and the expectation-maximization

(EM) algorithm [8, 22, 28–31] has been proposed for estimating the parameters of

state space models [9,10,12,15,20]. This method is a method of sequentially updating

the parameters so that the likelihood increases, and it is guaranteed that a local

optimum can be estimated. However, this method is highly dependent on the initial

values of the parameters used in the estimation, and there is a possibility that a

global optimum cannot be estimated.

In this chapter, we propose a data-driven method for estimating the joint poste-
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rior distribution of latent variables and parameters in the Izhikevich neuron model

from only spike-train data by employing the replica exchange particle-Gibbs with

ancestor sampling (REPGAS) method as described in Chapter 3. We assume that

only spike-train data is observable due to partial observations, while most of previ-

ous works assumed either direct measurements of membrane potentials or imaging

measurements of membrane responses [9, 10, 12, 15]. We realize the estimation of

the global optimum for the Izhikevich neuron model that expresses various neuronal

responses, and realize the precise estimation of neural dynamics from the spike-train

data. We also describe the Izhikevich neuron model, formulate the state-space model

based on the Izhikevich neuron model, and propose a method for estimating the joint

posterior distribution of latent variables and parameters. Moreover, in order to ver-

ify the effectiveness of the proposed method, we conduct numerical experiments by

using simulated data generated from the Izhikevich neuron model.

4.2 Izhikevich neuron model

The Izhikevich neuron model is one of the neuronal models that represent the mem-

brane potential activities of neurons [60, 61]. Although it is formulated by two rel-

atively simple differential equations for the membrane potential and the membrane

recovery variable, it can represent various responses depending on the parameters,

and its computational cost is low.

When the membrane potential is expressed as v and the membrane recovery

variable is expressed as u, the Izhikevich neuron model is represented by the following

two differential equations:

dv

dt
= 0.04v2 + 5v + 140− u+ Iext + ξv(t), (4.1)

du

dt
= a(bv − u) + ξu(t), (4.2)
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where Iext is the external input, and a and b are the parameters. In Eqs. (4.1)

and (4.2), we consider additive white Gaussian noise terms ξv(t) and ξu(t) for

the Izhikevich neuron model (⟨ξv(t)⟩ = ⟨ξu(t)⟩ = 0, ⟨ξv(t)ξv(s)⟩ = σ2
vδ(t − s),

⟨ξu(t)ξu(s)⟩ = σ2
uδ(t−s) and ⟨ξv(t)ξu(s)⟩ = 0, where δ(t) is the Dirac delta function).

Here, standard deviations of membrane potential and membrane recovery variable

are expressed by σv and σu, respectively. As shown in Fig. 4.2, the membrane po-

tential v is affected by the membrane recovery variable u, and the increase of the

membrane potential v is suppressed by the increase of the membrane recovery vari-

able u. Moreover, when the membrane recovery variable u decreases, the membrane

potential v tends to increase. When the membrane potential v exceeds the threshold

value Vth = 30, the membrane potential v and the membrane recovery variable u

are reset to c and u+ d, respectively, as follows:

v ← c, (4.3)

u← u+ d, (4.4)

where c and d are also the parameters.

As described above, there are four parameters θ = [a, b, c, d] in the Izhikevich

neuron model, and various responses can be expressed by adjusting these parameters.

In Fig. 4.1 we show the examples of the responses that can be represented by the

Izhikevich neuron model. By using different parameters, the various responses,

such as the tonic spiking, the phasic spiking, and the mixed mode, are obtained

respectively.
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Figure 4.1: Examples of the responses of the Izhikevich neuron model. In the Izhike-
vich neuron model, various responses can be represented by adjusting parameters
θ = [a, b, c, d]. For example, as examples of three typical responses, tonic spik-
ing (left), phasic spiking (center), and mixed mode (right) are reproduced by θ =
[0.02, 0.20,−65.0, 6.0], θ = [0.02, 0.25,−65.0, 6.0], and θ = [0.02, 0.20,−55.0, 4.0],
respectively.

4.3 Proposed method: replica exchange particle-Gibbs

with ancestor sampling method for Izhikevich neu-

ron model

The conceptual diagram of the proposed method is shown in Fig. 4.2. As shown in

Fig. 4.2, we propose a method that simultaneously estimates the parameters and the

latent variables consisting of the membrane potentials and the membrane recovery

variables in the Izhikevich neuron model from spike-train data. In this section, we

first explain the Izhikevich neuron model that represents the membrane potential

activity of neurons. Moreover, we formulate the process of obtaining spikes as the

state-space model based on the Izhikevich neuron model, and propose a data-driven

method based on the REPGAS method for the Izhikevich neuron model to simul-

taneously estimate the parameters and the latent variables such as the membrane

potentials and the membrane recovery variables.
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Figure 4.2: Conceptual diagrams of estimating neural dynamics from spike-train
data. We propose a method for simultaneously estimating the parameters and the
latent variables consisting of the membrane potential v1:N and the membrane recov-
ery variable u1:N in the Izhikevich neuron model from the obtained spikes y1:N .

4.3.1 State space model

In this chapter, in order to consider generative process of spike-train data from

neuronal dynamics, we discretize the differential equations of the Izhikevich neuron

model [Eqs. (4.1)–(4.4)] with respect to time, and consider two kinds of descretized

latent variables: the membrane potential vn and the membrane recovery variable un

at time step n. Moreover, we consider that the observation is the number of spikes

yn at each time step n.

The system model p (vn, un | vn−1, un−1,θ), a probabilistic model for latent vari-

ables vn, un at time step n, is represented as the product of probabilistic models for
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vn and un given latent variables at the preceding step and parameters θ = [a, b, c, d]

as follows:

p (vn, un | vn−1, un−1,θ) = p (vn | vn−1, un−1,θ) p (un | vn−1, un−1,θ) . (4.5)

Here, p (vn | vn−1, un−1,θ) can be derived by employing the Euler-Maruyama method

for Eqs. (4.1) and (4.3):

p (vn | vn−1, un−1,θ)

=

N
(
vn
∣∣ vn−1 +∆t(0.04v

2
n−1 + 5vn−1 + 140− un−1 + Iext,n),∆tσ

2
v

)
vn−1 ≤ Vth (4.6)

N
(
vn
∣∣ c+∆t(0.04c

2 + 5c+ 140− un−1 − d+ Iext,n),∆tσ
2
v

)
vn−1 > Vth, (4.7)

where N
(
x
∣∣ µ, σ2

)
is the Gaussian distribution with mean µ and variance σ2, and

∆t is the finite length between time steps. Until the membrane potential vn−1

exceeds the threshold value Vth, the membrane potential vn obeys the distribution

with preceding membrane potential vn−1 and other terms expressed by Eq. (4.6).

When it exceeds the threshold value Vth, the membrane potential vn obeys the

distribution with reset membrane potential c and other terms expressed by Eq.

(4.7). Similarly, p (un | vn−1, un−1,θ) can be derived based on Eqs. (4.2) and (4.4)

as follows:

p (un | vn−1, un−1,θ) =

N
(
un
∣∣ un−1 +∆ta(bvn−1 − un−1),∆tσ

2
u

)
vn−1 ≤ Vth (4.8)

N
(
un
∣∣ un−1 + d+∆ta(bc− un−1 − d),∆tσ

2
u

)
vn−1 > Vth. (4.9)

Furthermore, we assume that the observation model p (yn | v1:n+k), which is the

distribution of the number of spikes yn for a given set of the membrane potentials,

v1:n+k, in the time steps from 1 to n + k, is expressed by the following Poisson

distribution [13]:

p (yn | v1:n+k) =
1

yn!
exp (yn log (∆tλ (v1:n+k))−∆tλ (v1:n+k)) , (4.10)
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where λ (v1:n+k) is a function that increases with spiking behavior seen in the mem-

brane potential v around the time step n. We assume that the time interval of ∆t

is sufficiently small and the number of spikes at time step n is either zero or one.

The function λ (v1:n+k) is assumed to be obtained using a sigmoid function with

temporal convolution as follows:

λ (v1:n+k) = η

n+k∑
τ=1

g (vτ ) f (τ −∆tn) , (4.11)

g (v) =
1

1 + exp (−β (v − Vg))
, (4.12)

f (τ) =


p−τ τ ≤ 0

qτ τ > 0

, (4.13)

where Vg is a constant representing a firing threshold, and η, β, p, and q are positive

constants.

4.3.2 Replica exchange particle-Gibbs with ancestor sampling method

We propose a method for simultaneously estimating the membrane potentials v1:N ,

the membrane recovery variables u1:N , and the parameters θ = [a, b, c, d] in the

Izhikevich neuron model from spikes y1:N by employing the REPGAS method as de-

scribed in Chapter 3. The REPGAS method is one of the PMCMCmethods, and can

be used to obtain samples from the joint posterior distribution p (v1:N , u1:N ,θ | y1:N )

of the latent variables, v1:N and u1:N , and the parameters θ. In this chapter, by

collecting the samples obtained by the REPGAS method, we estimate the joint

posterior distribution p (v1:N , u1:N ,θ | y1:N ).

In the REPGAS method, we introduce R different temperatures T =
[
T (1), T (2), . . . , T (R)

]
as extension variables and consider the following extended joint posterior distribu-
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tion:

πEX ({v1:N} , {u1:N} , {θ} | y1:N ) =
R∏

r=1

πT (r)

(
v
(r)
1:N , u

(r)
1:N ,θ(r)

∣∣∣ y1:N) , (4.14)

where the membrane potentials {v1:N}, the membrane recovery variables {u1:N}, and

the parameters {θ} in all temperatures T are represented as {v1:N} =
{
v
(1)
1:N , . . . , v

(R)
1:N

}
,

{u1:N} =
{
u
(1)
1:N , . . . , u

(R)
1:N

}
, and {θ} =

{
θ(1), . . . , θ(R)

}
, respectively. Furthermore,

the joint posterior distribution at each temperature πT (r)

(
v
(r)
1:N , u

(r)
1:N ,θ(r)

∣∣∣ y1:N) is

represented as follows:

πT (r)

(
v
(r)
1:N , u

(r)
1:N ,θ(r)

∣∣∣ y1:N) =
1

Z
(
T (r)

)p(v(r)1:N , u
(r)
1:N ,θ(r)

∣∣∣ y1:N) 1

T (r)
(4.15)

where Z
(
T (r)

)
represents the partition function, and p

(
v
(r)
1:N , u

(r)
1:N ,θ(r)

∣∣∣ y1:N) is

represented as follows:

p
(
v
(r)
1:N , u

(r)
1:N ,θ(r)

∣∣∣ y1:N) =
p
(
y1:N

∣∣∣ v(r)1:N

)
p
(
v
(r)
1:N , u

(r)
1:N

∣∣∣ θ(r)
)
p
(
θ(r)

)
p (y1:N )

, (4.16)

where p
(
y1:N

∣∣∣ v(r)1:N

)
and p

(
v
(r)
1:N , u

(r)
1:N

∣∣∣ θ(r)
)
are evaluated by using the observation

model [Eq. (4.10)] and the system model [Eq. (4.5)] for all time steps, respectively.

Here, p
(
θ(r)

)
is the prior distribution of the parameters θ(r), and p (y1:N ) is the

marginal likelihood.

We obtain samples of the parameters θ(r) and the latent variables consisting of

the membrane potentials v
(r)
1:N and the membrane recovery variables u

(r)
1:N alternately

for each temperature according to Eq. (4.15). The l-th samples of latent variables,

v
(r)
1:N [l] and u

(r)
1:N [l], are obtained from p

(
v
(r)
1:N , u

(r)
1:N

∣∣∣ v(r)1:N [l − 1] , u
(r)
1:N [l − 1] , y1:N ,θ(r) [l − 1]

)
with the conditional SMC with ancestor sampling. In the conditional SMC with an-

cestor sampling, the distribution of latent variables is approximated by particles,
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{
v̂
(1)
1:N , v̂

(2)
1:N , . . . , v̂

(M)
1:N

}
and

{
û
(1)
1:N , û

(2)
1:N , . . . , û

(M)
1:N

}
, as follows:

p
(
v1:N , u1:N

∣∣∣ v(r)1:N [l − 1] , u
(r)
1:N [l − 1] , y1:N ,θ(r) [l − 1]

)
≃ 1

M

M∑
i=1

δ
(
v1:N − v̂

(i)
1:N

)
δ
(
u1:N − û

(i)
1:N

)
, (4.17)

where v̂
(i)
1:N and û

(i)
1:N are the latent variables of i-th particle, M is the number of par-

ticles, and δ (x) is the Dirac delta distribution. To obtain particles, at the time step

n, the indices of ancestor particles
{
A

(1)
n−1, A

(2)
n−1, . . . , A

(M−1)
n−1

}
at the previous time

step n− 1, are sampled based on the normalized weights
{
W

(1)
n−1,W

(2)
n−1, . . . ,W

(M)
n−1

}
obtained as follows:

W
(i)
n−1 =

w
(i)
n−1∑M

j=1w
(j)
n−1

, (4.18)

w
(i)
n−1 = p

(
yn−1

∣∣∣ v̂(i)1:n+k−1

)
, (4.19)

where w
(i)
n−1 is the unnormalized weight for i-th particle. Here, the likelihood of

the i-th particle, p
(
yn−1

∣∣∣ v̂(i)1:n+k−1

)
, is calculated using the observation model

[Eq. (4.10)] with observation data yn−1 and membrane potential of i-th parti-

cle v̂
(i)
1:n+k−1. Latent variables at the time step n, vn and un, are sampled from

the system model p

(
vn, un

∣∣∣∣∣ v̂
(
A

(i)
n−1

)
n−1 , û

(
A

(i)
n−1

)
n−1 ,θ(r) [l − 1]

)
. The particles are set

to be v̂
(i)
1:n ←

{
v̂

(
A

(i)
n−1

)
1:n−1 , v̂

(i)
n

}
and û

(i)
1:n ←

{
û

(
A

(i)
n−1

)
1:n−1 , û

(i)
n

}
for particle numbers

i ∈ {1, 2, ...,M − 1}, while the M -th particle is set to be the previous sample v̂
(M)
1:n ←{

v̂

(
A

(M)
n−1

)
1:n−1 , v

(r)
n [l − 1]

}
and û

(M)
1:n ←

{
û

(
A

(M)
n−1

)
1:n−1 , u

(r)
n [l − 1]

}
. Here, the index of an-

cestor particle A
(M)
n−1 is sampled based on the normalized weights

{
Ŵ

(1)
n−1, Ŵ

(2)
n−1, . . . , Ŵ

(M)
n−1

}
calculated as follows:

Ŵ
(i)
n−1 =

ŵ
(i)
n−1∑M

j=1 ŵ
(j)
n−1

, (4.20)

ŵ
(i)
n−1 = W

(i)
n−1p

(
v(r)n [l − 1] , u(r)n [l − 1]

∣∣∣ v̂(i)n−1, û
(i)
n−1,θ

(r) [l − 1]
)
, (4.21)
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where ŵ
(i)
n−1 is the unnormalized weight for sampling the index of ancestor particle

A
(M)
n−1. Here, p

(
v
(r)
n [l − 1] , u

(r)
n [l − 1]

∣∣∣ v̂(i)n−1, û
(i)
n−1,θ

(r) [l − 1]
)
is calculated by using

the system model [Eq. (4.5)] with the following variables and parameters: the latent

variables of previous sample at time step n, v
(r)
n [l − 1] and u

(r)
n [l − 1], the latent

variables of i-th particle at time step n − 1, v̂
(i)
n−1 and û

(i)
n−1, and the parameters

of previous sample θ(r) [l − 1]. We iterate the above flow from time step 1 to N

and the l-th sample of the latent variables, v
(r)
1:N [l] and u

(r)
1:N [l], is obtained based

on normalized weights
{
W

(1)
N ,W

(2)
N , . . . ,W

(M)
N

}
. The l-th sample of the parameters

θ(r) [l] is obtained from p
(
θ
∣∣∣ v(r)1:N [l] , u

(r)
1:N [l] , y1:N

)
with the Metropolis method

[8,38].

In REPGAS, we obtain samples at each temperature as described above, and

exchange samples between temperatures T (r) and T (r+1) according to the following

exchange probability:

pEX = min (1, REX) , (4.22)

REX =
πEX ({v∗1:N} , {u∗1:N} , {θ

∗} | y1:N )

πEX ({v1:N} , {u1:N} , {θ} | y1:N )
, (4.23)

where {v∗1:N}, {u∗1:N}, and {θ
∗} are expressed as follows:

{v∗1:N} =
{
v
(1)
1:N , . . . , v

(r+1)
1:N , v

(r)
1:N , . . . , v

(R)
1:N

}
, (4.24)

{u∗1:N} =
{
u
(1)
1:N , . . . , u

(r+1)
1:N , u

(r)
1:N , . . . , u

(R)
1:N

}
, (4.25)

{θ∗} =
{
θ(1), . . . , θ(r+1),θ(r), . . . , θ(R)

}
. (4.26)

We summarize the algorithm of the REPGAS method for Izhikevich neuron model

in Algorithm 6. The sampling efficiency of PG is improved by passing through a

high temperature state in the replica exchange method. Moreover, it can prevent

increasing the calculation time because sampling at each temperature can be paral-

lelized.
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Algorithm 6 REPGAS method for Izhikevich neuron model

1: initialize the membrane potentials {v1:N} [0] and the membrane recovery vari-
ables {u1:N} [0]

2: initialize the samples of the parameters {θ} [0]
3: for l = 1, . . . , L do
4: for r = 1, . . . , R do

5: sample the membrane potentials v
(r)
1:N [l] and the membrane recovery vari-

ables u
(r)
1:N [l] from the distribution in Eq. (4.17) by employing the condi-

tional SMC method
6: sample the parameters θ(r) [l] from the distribution

p
(
θ
∣∣∣ v(r)1:N [l] , u

(r)
1:N [l] , y1:N

)
by employing the Metropolis method

7: end for
8: choose replica numbers r and r + 1 for replica exchange
9: calculate pEX with Eq. (4.22)

10: draw a uniform random number αEX with range [0, 1)
11: if αEX ≤ pEX then
12: exchange replicas

({v1:N} [l] , {u1:N} [l] , {θ} [l])← ({v∗1:N} [l] , {u∗1:N} [l] , {θ
∗} [l])

13: end if
14: end for

4.4 Experiments

In this section, we verify the effectiveness of the proposed method. First, we esti-

mate the joint posterior distribution p (v1:N , u1:N ,θ | y1:N ) of the parameters θ and

the latent variables consisting of the membrane potentials v1:N and the membrane

recovery variables u1:N by employing the proposed method for the simulation data

generated from the Izhikevich neuron model. Next, the estimation results of the

proposed method and other methods are compared for some typical response char-

acteristic parameters. Finally, the reproducibility of the response is verified with

the inputs not used for estimation of parameters and the parameters estimated by

each method.

We use the simulated data generated with the four parameter sets (i) tonic

spiking, (ii) phasic spiking, (iii) mixed mode, and (iv) rebound spike shown in Table

4.1. The variances of the membrane potentials v1:N and the membrane recovery
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Table 4.1: True parameters of the Izhikevich neuron model for the experiments.

Model a b c d

(i) Tonic spiking 0.02 0.20 −65.0 6.0
(ii) Phasic spiking 0.02 0.25 −65.0 6.0
(iii) Mixed mode 0.02 0.20 −55.0 4.0
(iv) Rebound spike 0.03 0.25 −60.0 4.0

variables u1:N are σ2
v = 0.25 and σ2

u = 10−4, respectively. As an example of the data

used, the data generated with the parameters of (i) tonic spiking is shown in Fig.

4.3, where the true membrane potentials v1:N , the true membrane recovery variables

u1:N , the spikes y1:N , and the input currents Iext,1:N are shown in order from the

top. The horizontal axes represent the time, and the vertical axes represent the

value of each variable. The latent variables, v1:N and u1:N , and the parameters θ

are estimated from spikes y1:N obtained by applying the same input currents Iext,1:N

to other parameter sets. In the proposed method, the number of particles M is

50, the number of samples L is 3 × 105, the number of burn-in samples Lburn−in

is 1.5 × 105, the number of replicas R is 64, and the temperatures T are set as

T =
[
1.0, 1.1, 1.12, . . . , 1.1R−1

]
. Moreover, we assume that the prior distribution

p (θ) is a uniform distribution. In this section, we focus on estimating parameters

θ = [a, b, c, d] and assume that the variances
{
σ2
v , σ

2
u

}
of the membrane potentials

v1:N and the membrane recovery variables u1:N are known. Furthermore, for all

estimation results, the parameter set of (i) tonic spiking is used as the initial value,

and the hyper parameters for the observation model are η = 1.02, β = 0.28, Vg =

−19.5, p = 0.23, and q = 0.05.

Figures 4.4 and 4.5 are the estimated distributions of the parameters θ =

[a, b, c, d] of (iii) mixed mode and (iv) rebound spike by using the proposed method.

As shown in Fig. 4.4, even though true values of c and d (c = −55.0, d = 4.0) are

far from initial values (c = −65.0, d = 6.0), the true values of (iii) mixed mode are

found to be estimated appropriately. Also in Fig. 4.5, although all the true param-
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Figure 4.3: Generated data with the parameters of (i) tonic spiking. From the top,
they are the graphs of the true membrane potentials v1:N , the true membrane re-
covery variable u1:N , the spikes y1:N , and the input currents Iext,1:N . The horizontal
axes show the time and the vertical axes show the value of each variable. All the
data are generated by applying the same input currents Iext,1:N for each parameter
set.

eters (a = 0.03, b = 0.25, c = −60.0, d = 4.0) are different from the initial values

(a = 0.02, b = 0.20, c = −65.0, d = 6.0), all the parameters show high probability
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densities around the true values of (iv) rebound spike, and it can be verified that

the estimations can be performed appropriately. Moreover, since not only the global

optimum but also the local optimum can be found simultaneously, it can be verified

that a wide range can be searched. Figures 4.6 and 4.7 are the estimated results of

the latent variables such as the membrane potentials v1:N and the membrane recov-

ery variables u1:N . There the horizontal axes represent the time, and the vertical

axes represent the value of each latent variable. In each graph, the solid lines rep-

resent the true values and the filled areas represent the 95% confidence intervals of

the estimated distributions. In both figures, the complex response of the membrane

potential can be properly captured, and it can be verified that the estimations are

properly performed.

Next, we show in the Table 4.2 the estimated results of all parameter sets. As re-

sults estimated by other methods, we show the results estimated by the SMC method

with the SOSSM, the method to estimate the parameters in the SMC method by

considering the parameters as a part of latent variables [5,13], and results estimated

by the SMC method with the EM algorithm, a point estimation method that se-

quentially updates the parameters so that the likelihood increase [9, 10, 12, 15, 20].

In the SMC method with the SOSSM, the number of particles MSOSSM is 5 × 105,

and the parameters of the initial particles are generated as follows using a uniform

distribution:

a ∼ U (0, 0.5) , (4.27)

b ∼ U (−1.5, 1.0) , (4.28)

c ∼ U (−70,−50) , (4.29)

d ∼ U (3, 10) . (4.30)

In the SMC method with the EM algorithm, the number of particles MEM is 103,

the number of iterations LEM is 104, and the initial values of parameters are the
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Figure 4.4: Estimated result of parameters of (iii) mixed mode by the replica ex-
change particle-Gibbs with ancestor sampling (REPGAS) method. The horizontal
axes represent the value of each parameter, the vertical axes represent the proba-
bility densities, the red solid lines represent the true values, the black dashed lines
represent the initial values, and the blue histograms represent the estimated distri-
butions.

parameters of (i) tonic spiking as in the proposed method. In the proposed method

and the SMC method with the SOSSM, the mode values of the estimated distribu-

tions are used as the estimated results. One can see from the results in Table 4.2,

that values close to the true values can be estimated by the SMC method with the

SOSSM. However, it is considered that the particles closer to the true values have

been lost due to the degeneracy of the SMC method since the standard deviations

of the result of (iii) mixed mode are very small values. Regarding the results of the

SMC method with the EM algorithm, compared to the result of (i) tonic spiking,
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Figure 4.5: Estimated result of parameters of (iv) rebound spike by the REPGAS
method. See also the captions of the figure and subfigures for Fig. 4.4.

which starts the estimation from the true values, the estimation results of the other

parameter sets are poor. Since this method is a point estimation method, it is con-

sidered that the global optimum could not be estimated without getting out of the

local optimum. In the proposed method, it can be verified that the estimated values

are closest to the true values in all parameter sets even though the proposed method

uses the same initial values of parameters as the SMC method with EM algorithm.

In other words, the proposed method using a set of initial values achieves more ac-

curate estimation than the SMC method with the SOSSM using many sets of initial

values.

Finally, in Figs. 4.8, 4.9, 4.10, and 4.11, we show results when comparing the re-

producibilities of the responses to the new inputs with the parameter sets estimated
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Table 4.2: Estimated results of parameters in the Izhikevich neuron model.

Model Parameter True SOSSM EM REPGAS
Mode Std Mode Std

(i) Tonic a 0.0200 0.0251 0.0081 0.0216 0.0207 0.0068
spiking b 0.200 0.151 0.289 0.181 0.193 0.389

c −65.00 −60.04 4.12 −63.70 −64.13 6.20
d 6.00 5.94 1.15 5.92 5.94 1.05

(ii) Phasic a 0.0200 0.0222 0.0039 0.0255 0.0202 0.0058
spiking b 0.250 0.224 0.168 0.146 0.250 0.153

c −65.00 −67.10 1.36 −87.46 −65.39 2.63
d 6.00 6.04 0.27 6.08 6.00 0.69

(iii) Mixed a 0.0200 0.0170 0.00002 0.0119 0.0202 0.0019
mode b 0.200 0.222 0.0007 0.336 0.201 0.021

c −55.00 −55.33 0.01 −73.31 −54.98 0.53
d 4.00 3.62 0.01 5.79 4.01 0.20

(iv) Rebound a 0.0300 0.0387 0.0020 0.0154 0.0299 0.0048
spike b 0.250 0.224 0.011 0.272 0.252 0.115

c −60.00 −58.72 0.59 −87.50 −60.00 1.87
d 4.00 4.62 0.22 6.00 4.00 0.43
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Figure 4.6: Estimated result of latent variables of (iii) mixed mode by the REPGAS
method. The horizontal axes represent the time, the vertical axes represent the
value of each latent variable, the red solid lines are the true values, and the blue
filled areas represent the 95% confidence intervals of the estimated distributions.

by each method for (i) tonic spiking, (ii) phasic spiking, (iii) mixed mode, and (iv)

rebound spike, respectively. In each figure, the upper graphs show the reproduction

results of the membrane potentials v1:N , the lower graphs show the input currents

Iext,1:N , the vertical axes show the value of each variable, and the horizontal axes

show the time. In the upper graphs, the solid lines show the responses obtained
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Figure 4.7: Estimated result of latent variables of (iv) rebound spike by the REPGAS
method. See also the captions of the figure and subfigures for Fig. 4.6.

when using the true parameters, and the dashed lines show the responses obtained

when using the parameters estimated by each method. In all figures, it can be veri-

fied that the proposed method can output spikes at timings closer to the simulation

results with true parameters than the results of the other methods. It is also ver-

ified in Figs. 4.9 and 4.11 that the number of spikes is correct only in the results

of the proposed method. Table 4.3 shows the quantitative comparison results of
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Table 4.3: Reproducibility comparison results for new inputs.

Model True SOSSM EM REPGAS

RMSE (i) Tonic spiking 25.76 23.74 18.09
(ii) Phasic spiking 7.04 10.21 0.09
(iii) Mixed mode 22.49 24.54 10.57
(iv) Rebound spike 7.43 10.62 7.11

Number of spikes (i) Tonic spiking 5 5 5 5
(ii) Phasic spiking 1 0 0 1
(iii) Mixed mode 6 8 6 6
(iv) Rebound spike 1 0 2 1

Average deviation (i) Tonic spiking +8.1 +2.6 +0.5
time of the spike (ii) Phasic spiking – – 0.0
timings (iii) Mixed mode −19.67 17.58 −0.5

(iv) Rebound spike – −5.0 −3.0

each method. There we compare the root mean square error (RMSE), the number

of spikes, and the average deviation time of the spike timings when the membrane

potentials are reproduced by each parameter. In the average deviation time of the

spike timings, “–” is displayed when no spikes can be obtained and the calculation

cannot be performed. It can be verified that the REPGAS method shows the best

results for all results. The above results confirm that Izhikevich neuron model pa-

rameters that can reproduce actual responses can be estimated from the spike-train

data by using the proposed method.

4.5 Summary

In this chapter, we proposed the method to estimate the parameter and the latent

variables consisting of the membrane potentials and the membrane recovery variables

of the Izhikevich neuron model from only spike-train data based on the REPGAS

method. In the proposed method, the process of obtaining spikes is formulated as

the state space model based on the Izhikevich neuron model, and the latent vari-

ables and the parameters are estimated simultaneously by employing the REPGAS
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Figure 4.8: Comparison of reproduction results of (i) tonic spiking response. The
upper graph shows the membrane potentials v1:N , the lower graph shows the input
currents Iext,1:N , the horizontal axes show the time, and the vertical axes show the
value of each variable. In the upper graph, the response obtained when using the
true parameters (red solid line), the responses obtained when using the parameters
estimated by the REPGAS method (blue dashed line), the responses obtained when
using the parameters estimated by the sequential Monte Carlo (SMC) method with
the expectation-maximization (EM) algorithm (black dashed line), and the responses
obtained when using the parameters estimated by the SMC method with the self-
organizing state space model (SOSSM) (gray dashed line) are shown.

method. Moreover, we verified that the latent variables and the parameters of the

Izhikevich neuron model can be estimated simultaneously by using the proposed

method for simulated data generated from the Izhikevich neuron model with several

parameter sets. Furthermore, it was also shown that the proposed method can esti-

mate parameters closer to the true values than the SMC method with the SOSSM

and the SMC method with the EM algorithm, and that the responses to new inputs

is more reproducible.
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Figure 4.9: Comparison of reproduction results of (ii) phasic spiking response. See
also the captions of the figure and subfigures for Fig. 4.8.
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Figure 4.10: Comparison of reproduction results of (iii) mixed mode response. See
also the captions of the figure and subfigures for Fig. 4.8.
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Figure 4.11: Comparison of reproduction results of (iv) rebound spike response. See
also the captions of the figure and subfigures for Fig. 4.8.
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Chapter 5

Replica exchange particle

marginal Metropolis-Hastings

method

5.1 Introduction

In order to estimate the distribution of parameters in a state space model, two

kinds of the particle Markov chain Monte Carlo (PMCMC) methods have been

proposed: the particle-Gibbs (PG) method and the particle marginal Metropolis-

Hastings (PMMH) method [11]. Both methods are combining Markov chain Monte

Carlo (MCMC) methods with the SMC method, and the distribution of parameters

is estimated by collecting samples. The PG method combines the SMC method

with Gibbs sampling [8,32–35,37], and the PG method samples latent variables and

parameters in a state space model from the joint posterior distribution of latent

variables and parameters alternately. In the PG method, the SMC method is em-

ployed for sampling latent variables. The PMMH method, on the other hand, com-

bines the SMC method with the Metropolis-Hastings (MH) algorithm [8,38–42], and

the PMMH method samples parameters in a state space model from the marginal
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posterior distribution of parameters. In the PMMH method, the SMC method is

employed for calculating the likelihood marginalized over the distribution of latent

variables. Both the PG method and the PMMH method have been widely applied

(for example, the PG method [43–45], the PMMH method [46–48]).

In Chapter 3, we proposed the replica exchange particle-Gibbs with ancestor

sampling (REPGAS) method in order to improve the problem of initial value de-

pendence in the PG method. However, the PMMH method also has the problem of

initial value dependence . Therefore, it is important to improve the PMMH method

for accurate estimation of parameters.

In this chapter, we propose the replica exchange particle marginal Metropolis-

Hastings (REPMMH) method, which combines the PMMH method with the replica

exchange method [49–51] in order to improve the problem of initial value dependence

in the PMMH method. Combining the replica exchange method with the PMMH

method makes it possible to estimate the parameters governing the dynamics for

very complex and nonlinear time-series data. We first describe the PMMH method

as a conventional method. Then, after explaining the proposed method, we conduct

experiments to compare the proposed method with the conventional methods, the

PMMH method and the REPGAS method.

5.2 Methods

In this section, we propose the replica exchange particle marginal Metropolis-Hastings

(REPMMH) method. First, we describe the conventional particle marginal Metropolis-

Hastings (PMMH) method to estimate the marginal posterior distribution of param-

eters obtained by marginalization over the distribution of latent variables in a state

space model. After that, we propose the REPMMH method that combines the

PMMH method with the replica exchange method to improve the problem of initial

value dependence in the PMMH method.
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5.2.1 Conventional method: particle marginal Metropolis-Hastings

method

The colorredPMMH method combines the sequential Monte Carlo (SMC) method

[3–5, 8–12, 15–20, 25, 26] with the Metropolis-Hastings (MH) algorithm [8, 38–42].

The PMMH method was proposed to estimate the marginal posterior distribution

of parameters p (Θ | y1:N ) for time-series observations y1:N represented as a state

space model [11].

In the PMMH method, the marginal likelihood p (y1:N | Θ) is used to evaluate

the appropriateness of parameters Θ. Here, the SMC method is used to calculate

the marginal likelihood p (y1:N | Θ) of the parameters Θ obtained by marginal-

ization over the distribution of latent variables z1:N . A new sample candidate of

parameters Θ∗ =
{
θ∗
sys,θ

∗
obs

}
is proposed from an arbitrary proposal distribution

q (Θ | Θ [k − 1]) given the sample one step before Θ [k − 1], where k is the sample

number. Moreover, whether to accept or reject the sample candidate Θ∗ is deter-

mined based on the following acceptance probability:

paccept = min

(
1,

p (y1:N | Θ∗) p (Θ∗)

p (y1:N | Θ [k − 1]) p (Θ [k − 1])

q (Θ [k − 1] | Θ∗)

q (Θ∗ | Θ [k − 1])

)
, (5.1)

where p (Θ) represents the prior distribution of parameters. p (y1:N | Θ) is the

marginal likelihood obtained by marginalization over the distributions of latent vari-

ables z1:N as follows:

p (y1:N | Θ) =

∫
p (y1:N , z1:N | Θ) dz1:N

=

∫
p (y1 | z1,θobs) p (z1)

N∏
n=2

p (yn | zn,θobs) p (zn | zn−1,θsys) dz1:N ,

where p (z1) is the distribution of latent variables z1 at time step 1. Since it is dif-

ficult to obtain the marginal likelihood p (y1:N | Θ) analytically, the SMC method

is used in the PMMH method to calculate the marginal likelihood p (y1:N | Θ) nu-
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merically.

The SMC method estimates the distribution of latent variables by approximating

the distribution with the density of the particles
{
ẑ
(1)
1:N , ẑ

(2)
1:N , . . . , ẑ

(M)
1:N

}
as follows:

p (z1:N | y1:N ,Θ) ≃ 1

M

M∑
i=1

δ
(
z1:N − ẑ

(i)
1:N

)
, (5.2)

where ẑ
(i)
1:N is the i-th particle and M is the number of particles. δ (z1:N ) is the

Dirac delta distribution.

To obtain particles
{
ẑ(1)
n , ẑ(2)

n , . . . , ẑ(M)
n

}
at a time step n, we sample the i-th

particle ẑ(i)
n at the time step n from the i-th particle ẑ

(i)
n−1 at the previous time step

n− 1 for each i ∈ {1, 2, . . . ,M} with the system model as follows:

ẑ(i)
n ∼ p

(
zn

∣∣∣ ẑ(i)
n−1,θsys

)
. (5.3)

Moreover, the obtained particles
{
ẑ(1)
n , ẑ(2)

n , . . . , ẑ(M)
n

}
are resampled based on the

normalized weights
{
W

(1)
n ,W

(2)
n , . . . ,W

(M)
n

}
obtained as follows:

W (i)
n =

w
(i)
n∑M

j=1w
(j)
n

, (5.4)

w(i)
n = p

(
yn

∣∣∣ ẑ(i)
n ,θobs

)
. (5.5)

By iterating the above flow for time step n ∈ {1, 2, . . . , N}, particles that approxi-

mate the distribution of latent variables z1:N can be obtained. Here, the marginal

likelihood p (y1:N | Θ) can be calculated approximately as follows:

p (y1:N | Θ) =
N∏

n=1

p
(
yn

∣∣ y1:n−1,Θ
)
≃ 1

M

N∏
n=1

M∑
i=1

w(i)
n . (5.6)

By calculating the acceptance probability paccept in Eq. (5.1) with the marginal

likelihood p (y1:N | Θ∗) for the sample candidate Θ∗ obtained by Eq. (5.6), it is
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Algorithm 7 Particle marginal Metropolis-Hastings (PMMH) method

1: initialize the parameters Θ [0]
2: for k = 1, . . . ,K (K is the number of samples) do
3: draw the sample candidate of parameters Θ∗ ∼ q (Θ∗ | Θ [k − 1])

4: draw the initial particles ẑ
(i)
1 ∼ p (z1) for i = 1, . . . ,M (i is the particle

number of the particle that is the source of resampling)

5: calculate the weights of particles
{
w

(1)
1 , w

(2)
1 , . . . , w

(M)
1

}
with Eq. (5.5)

6: normalize the weigths of particles
{
W

(1)
1 ,W

(2)
1 , . . . ,W

(M)
1

}
with Eq. (5.4)

7: resample the particles
{
ẑ
(1)
1 , ẑ

(2)
1 , . . . , ẑ

(M)
1

}
according to the normalized

weights
{
W

(1)
1 ,W

(2)
1 , . . . ,W

(M)
1

}
8: for n = 2, . . . , N do

9: draw the particles
{
ẑ(1)
n , ẑ(2)

n , . . . , ẑ(M)
n

}
at time step n with Eq. (5.3)

10: calculate the weights of particles
{
w

(1)
n , w

(2)
n , . . . , w

(M)
n

}
with Eq. (5.5)

11: normalize the weigths of particles
{
W

(1)
n ,W

(2)
n , . . . ,W

(M)
n

}
with Eq. (5.4)

12: resample the particles
{
ẑ(1)
n , ẑ(2)

n , . . . , ẑ(M)
n

}
according to the normalized

weights
{
W

(1)
n ,W

(2)
n , . . . ,W

(M)
n

}
13: end for
14: calculate the marginal likelihood p (y1:N | Θ∗) with Eq. (5.6)
15: calculate the acceptance probability paccept with Eq. (5.1)
16: draw a uniform random number α ∼ U (0, 1) (U (a, b) is a uniform distribution

with range [a, b))
17: if α ≤ paccept then
18: set the sample of parameters Θ [k]← Θ∗

19: else
20: set the sample of parameters Θ [k]← Θ [k − 1]
21: end if
22: end for

determined whether to accept or reject the proposed sample candidate Θ∗. We

show the flow of the PMMH method described above in Algorithm 7.
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5.2.2 Proposed method: replica exchange particle marginal Metropolis-

Hastings method

In this chapter, we propose the REPMMH method which combines the PMMH

method with the replica exchange method [49–51] to improve the problem of initial

value dependence in the PMMH method. By employing the REPMMH method,

we estimate the marginal posterior distribution of parameters from the time-series

observations.

Brief summary of proposed method

We show the schematic diagram of the REPMMH method in Fig. 5.1. In the pro-

posed REPMMH method, we introduce multiple different replicas of parameters

{Θ} =
{
Θ(1),Θ(2), . . . ,Θ(r), . . . ,Θ(R)

}
at temperatures T =

[
T (1), T (2), . . . , T (r), . . . , T (R)

]
into the PMMH method. As shown in the middle part of Fig. 5.1, we employ the

PMMH method in parallel at each temperature. In the PMMH method at each

temperature T (r), we obtain the respective marginal likelihood p
(
y1:N

∣∣∣ Θ(r)∗
) 1

T (r)

by employing the SMC method [Fig. 5.1 (c)] with the respective sample candidate

Θ(r)∗ proposed in the MH algorithm [Fig. 5.1 (b)].

For each temperature T (r), the SMC method and the MH algorithm are con-

ducted as follows. In the SMC method [Fig. 5.1 (c)], the marginal likelihood

p
(
y1:N

∣∣∣ Θ(r)∗
) 1

T (r)
is obtained by iterative procedures of predictions, likelihood

calculations, and resampling; the latent variables zn of the current time step n are

predicted and the likelihood is calculated for each particle, and resampling is per-

formed according to the calculated likelihoods of particles at each time step. In

the MH algorithm [Fig. 5.1 (b)], the sample candidate Θ(r)∗ is determined to be

accepted or rejected with the marginal likelihood p
(
y1:N

∣∣∣ Θ(r)∗
) 1

T (r)
. At this time,

the target distribution becomes smooth as the temperature becomes high. As a re-

sult, it becomes easier to obtain samples from a wide range. Furthermore, exchanges

between the samples at different temperatures are conducted in order to realize the
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Figure 5.1: Schematic diagrams of the proposed replica exchange particle marginal
Metropolis-Hastings (REPMMH) method. (a) The time-series observations y1:N

as inputs. (b) and (c) The REPMMH method consisting of (b) the Metropolis-
Hastings (MH) algorithms and (c) the sequential Monte Carlo (SMC) methods par-
allelly conducted at multiple temperatures. In The SMC method, the sample candi-
date Θ(r)∗ proposed by the MH algorithm is used to obtain the marginal likelihood

p
(
y1:N

∣∣∣ Θ(r)∗
) 1

T (r)
. By the SMC method, the marginalization over time-series of

latent variables z1:N is conducted iteratively for time steps n = 1, 2, . . . , N . In the

MH algorithm, the marginal likelihood p
(
y1:N

∣∣∣ Θ(r)∗
) 1

T (r)
is used to determine

whether to accept or reject the sample candidate. In the REPMMH method, ex-
changes between samples at different temperatures are considered in order to achieve
the transitions that are difficult to achieve with the particle marginal Metropolis-
Hastings (PMMH) method. The transitions can be realized by passing through high
temperature due to exchange between temperatures as shown by the red arrows in
the MH algorithm. (d) The estimated posterior distributions of parameters Θ as
the output.

transitions that are difficult depending on the initial values by the conventional

PMMH method.

Introducing the replica exchange method into the PMMH method

Here, we propose the REPMMH method to accurately estimate the distribution of

parameters from observed data y1:N . In the proposed method, we introduce repli-
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cas of parameters {Θ} =
{
Θ(1),Θ(2), . . . ,Θ(r), . . . ,Θ(R)

}
at different temperatures

T =
[
T (1), T (2), . . . , T (r), . . . , T (R)

]
and consider the extended joint marginal poste-

rior distribution as follows:

πEX ({Θ} | y1:N ) =
R∏

r=1

πT (r)

(
Θ(r)

∣∣∣ y1:N

)
, (5.7)

where πT (r)

(
Θ(r)

∣∣∣ y1:N

)
expresses the marginal posterior distribution at temper-

ature T (r), which is expressed by using the original marginal posterior distribution

p
(
Θ(r)

∣∣∣ y1:N

)
of the parameter Θ(r) at the temperature T (1) = 1.0 as follows:

πT (r)

(
Θ(r)

∣∣∣ y1:N

)
=

1

z
(
T (r)

)p(Θ(r)
∣∣∣ y1:N

) 1

T (r)
(r = 1, 2, . . . , R) , (5.8)

where z
(
T (r)

)
is a partition function. Note that as expressed in Eq. (5.8), at

sufficiently high temperatures, the distribution of parameters becomes closer to a

uniform distribution, independent of the values of y1:N . The distribution with T (1) =

1.0 corresponds to the original marginal posterior distribution p (Θ | y1:N ) to be

investigated.

The marginal posterior distribution at each temperature p
(
Θ(r)

∣∣∣ y1:N

)
is ob-

tained using Bayes’ theorem as follows:

p
(
Θ(r)

∣∣∣ y1:N

)
=

p
(
y1:N

∣∣∣ Θ(r)
)
p
(
Θ(r)

)
p (y1:N )

(r = 1, 2, . . . , R) . (5.9)

Namely, the marginal posterior distribution p
(
Θ(r)

∣∣∣ y1:N

)
is proportional to a

product of a marginal likelihood p
(
y1:N

∣∣∣ Θ(r)
)
and a prior distribution p

(
Θ(r)

)
of

parameters Θ(r). To obtain the marginal likelihood p
(
y1:N

∣∣∣ Θ(r)
)
, marginalization

of the joint distribution at each temperature should be conducted as follows:

p
(
y1:N

∣∣∣ Θ(r)
)
=

∫
p
(
y1:N , z

(r)
1:N

∣∣∣ Θ(r)
)
dz

(r)
1:N (r = 1, 2, . . . , R) , (5.10)
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where z
(r)
1:N are the latent variables at the temperature T (r). By performing the SMC

method for all the time step at each temperature, the marginalization is conducted

numerically.

As shown in Fig. 5.1 (b) and (c), in the proposed method, the SMC method and

the MH algorithm are conducted for each temperature. In the SMC method, the

marginal likelihood of parameters p
(
y1:N

∣∣∣ Θ(r)∗
)
is determined by the numerical

marginalization using candidate of parameters Θ(r)∗ proposed in the MH algorithms.

In the MH algorithm, the candidate of parameters Θ(r)∗ is determined to be ac-

cepted or rejected at each temperature T (r) with the marginal posterior πT (r)

(
Θ(r)∗

∣∣∣ y1:N

)
[Fig. 5.1 (b)]. Here, the acceptance probability p

(r)
accept at each temperature is calcu-

lated as follows:

p
(r)
accept = min

1,
p
(
y1:N

∣∣∣ Θ(r)∗
)
p
(
Θ(r)∗

)
p
(
y1:N

∣∣∣ Θ(r) [k − 1]
)
p
(
Θ(r) [k − 1]

) q
(
Θ(r) [k − 1]

∣∣∣ Θ(r)∗
)

q
(
Θ(r)∗

∣∣∣ Θ(r) [k − 1]
)
 .

(5.11)

Moreover, we exchange samples between different temperatures T (r) and T (r+1)

according to the exchange probability as follows:

pEX ({Θ} , {Θ}∗) = min (1, REX ({Θ} , {Θ}∗)) , (5.12)

REX ({Θ} , {Θ}∗) = πEX ({Θ}∗ | y1:N )

πEX ({Θ} | y1:N )
, (5.13)

where {Θ}∗ is expressed as follows:

{Θ}∗ =
{
Θ(1), . . . ,Θ(r+1),Θ(r), . . . ,Θ(R)

}
. (5.14)

Note that the exchange probability pEX ({Θ} , {Θ}∗) corresponds to the Metropo-

lis criterion for proposing to exchange the samples between different temperatures

T (r) and T (r+1). By deciding whether to accept or reject the proposed samples

{Θ}∗ with the Metropolis criterion of Equation (5.12), the transition probability
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W ({Θ} → {Θ}∗) for the exchange process satisfies the detailed balance condition

as follows:

πEX ({Θ} | y1:N )W ({Θ} → {Θ}∗)

= πEX ({Θ} | y1:N ) q ({Θ}∗ | {Θ}) pEX ({Θ} , {Θ}∗)

= min (πEX ({Θ} | y1:N ) q ({Θ}∗ | {Θ}) , πEX ({Θ}∗ | y1:N ) q ({Θ}∗ | {Θ}))

= πEX ({Θ}∗ | y1:N ) q ({Θ}∗ | {Θ})min

(
πEX ({Θ} | y1:N )

πEX ({Θ}∗ | y1:N )
, 1

)
= πEX ({Θ}∗ | y1:N ) q ({Θ}∗ | {Θ}) pEX ({Θ}∗ , {Θ})

= πEX ({Θ}∗ | y1:N ) q ({Θ} | {Θ}∗) pEX ({Θ}∗ , {Θ})

= πEX ({Θ}∗ | y1:N )W ({Θ}∗ → {Θ}) ,

where q ({Θ}∗ | {Θ}) is the proposed probability for {Θ}∗ and the proposed proba-

bility of the exchange process is symmetric q ({Θ}∗ | {Θ}) = q ({Θ} | {Θ}∗). Thus,

since the exchange process in the REPMMH method satisfies the detailed balance

condition, the REPMMHmethod can sample from the distribution πEX ({Θ} | y1:N ).

By this exchange process, the REPMMH method makes it possible to improve

the problem of initial value dependence in the PMMH method. The sampled distri-

butions of the replica πT (r)

(
Θ(r)

∣∣∣ y1:N

)
at higher temperatures become closer to a

uniform distribution ideally as follows:

lim
T (r)→∞

πT (r)

(
Θ(r)

∣∣∣ y1:N

)
= lim

T (r)→∞

1

z
(
T (r)

)p(Θ(r)
∣∣∣ y1:N

) 1

T (r) ∝ p
(
Θ(r)

∣∣∣ y1:N

)0
= const.

Therefore, in practice, it becomes possible to escape from local optima at sufficiently

high temperatures (Fig. 5.1 (b)). Moreover, the samples may not stay in one local

optimum since each replica is exchanged between high temperature and low temper-

ature repeatedly, and we can sample the parameters efficiently. We show the flow of

the REPMMH method described above in Algorithm 8.
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Algorithm 8 Replica exchange particle marginal Metropolis-Hastings (REPMMH)
method
1: initialize the parameters {Θ} [0]
2: for k = 1, . . . ,K do
3: for r = 1, . . . , R do

4: draw the sample candidate of parameters Θ(r)∗ ∼ q
(
Θ(r)∗ | Θ(r) [k − 1]

)
5: calculate the marginal likelihood p

(
y1:N

∣∣∣ Θ(r)∗
)
by using the SMC method

according to Eq. (5.10)

6: calculate the acceptance probability p
(r)
accept with Eq. (5.11)

7: draw a uniform random number α ∼ U (0, 1) (U (a, b) is a uniform distribu-
tion with range [a, b))

8: if α ≤ p
(r)
accept then

9: set the sample of parameters Θ(r) [k]← Θ(r)∗

10: else
11: set the sample of parameters Θ(r) [k]← Θ(r) [k − 1]
12: end if
13: end for
14: choose the replica number rEX ← 1 or rEX ← 2 for replica exchange
15: repeat
16: calculate exchange probability pEX ({Θ} , {Θ}∗) with Eq. (5.12) for replica

numbers rEX and rEX + 1
17: draw a uniform random number αEX ∼ U (0, 1)
18: if αEX ≤ pEX ({Θ} , {Θ}∗) then
19: exchange replicas

(
Θ(rEX) [k] ,Θ(rEX+1) [k]

)
←
(
Θ(rEX+1) [k] ,Θ(rEX) [k]

)
20: end if
21: set the replica number rEX ← rEX + 2 for the exchange
22: until rEX ≤ R− 1
23: end for

Relations among particle Markov chain Monte Carlo methods

We briefly summarize the differences among the conventional particle Markov chain

Monte Carlo (PMCMC) methods and proposed REPMMHmethod that can estimate

parameters of a state space model in Table 5.1. The particle-Gibbs (PG) method is

another PMCMC method, and it samples latent variables and parameters in a state

space model alternately by using Gibbs sampling [8, 32–37]. The PMMH method

combines the SMC method with the MH algorithm, whereas the PG method com-

bines the SMC method with Gibbs sampling. While the SMC method is employed
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to calculate the marginal likelihood p (y1:N | Θ) of parameters Θ in the PMMH

method, the SMC method is employed to obtain samples of latent variables z1:N in

the PG method [11]. The PMMH method directly targets the marginal posterior

distribution p (Θ | y1:N ), whereas the PG method targets the joint posterior distri-

bution p (z1:N ,Θ | y1:N ) [11]. Note that the SMC method used in the PG method

is called the conditional SMC method and uses the previous sample of latent vari-

ables z1:N [k − 1] as a particle in the SMC method [11]. Furthermore, advanced

versions of the PG method have been proposed, such as the particle-Gibbs with

ancestor sampling (PGAS) method [16,18,19] for improving sampling efficiency and

the replica exchange particle-Gibbs with ancestor sampling (REPGAS) method pro-

posed in Chapter 3 for improving the initial value dependence. Samples obtained

by employing the PMMH method also have a problem of initial value dependence,

similar to those obtained by employing the PG method, and it is considered that

combining the PMMH method with the replica exchange method would be effective.

5.3 Experiments

In this section, we show that by employing the proposed replica exchange parti-

cle marginal Metropolis-Hastings (REPMMH) method for the Izhikevich neuron

model [60, 61] and Lévy-driven stochastic volatility model [11, 63–65], the marginal

posterior distribution of parameters p (Θ | y1:N ) can be estimated from observations

y1:N , and verify whether the REPMMH method can overcome the problem of initial

value dependence in the particle marginal Metropolis-Hastings (PMMH) method.

Moreover, we compare the sampling efficiency of the REPMMH method with those

of the conventional methods, the PMMH method and the replica exchange particle-

Gibbs with ancestor sampling (REPGAS) method.
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Table 5.1: The PMCMC methods for estimating parameters in a state space model.

Method Target Overview

PG p (z1:N ,Θ | y1:N )

Sample parameters Θ and latent variables z1:N

alternately with Gibbs sampling for targeting
the joint posterior distribution p (z1:N ,Θ | y1:N ).
Note that the SMC method is used for sampling
latent variables z1:N . The SMC method used in
the PG method is called the conditional SMC
method and uses the previous sample of latent
variables z1:N [k − 1] as a particle in the SMC
method [11].

PGAS p (z1:N ,Θ | y1:N )
Sample latent variables z1:N not only in the
forward direction but also in the backward
direction in the PG method [16,18,19].

REPGAS p (z1:N ,Θ | y1:N )
Improve the problem of initial value dependence
in the PGAS method by combining the replica
exchange method and the PGAS method.

PMMH p (Θ | y1:N )

Sample parameters Θ with the MH algorithm
for targeting directly the marginal posterior
distribution p (Θ | y1:N ) obtained by
marginalization over the distribution of latent
variables z1:N . Note that the SMC method is
used to calculate the marginal likelihood
p (y1:N | Θ) [11].

REPMMH p (Θ | y1:N )
Improve the problem of initial value dependence
in the PMMH method by combining the replica
exchange method and the PMMH method.

5.3.1 Izhikevich neuron model

To verify the effectiveness of the proposed method, we use the Izhikevich neuron

model. The Izhikevich neuron model is a computational neuronal model represented

by Eqs. (4.1)–(4.4). The system model of the Izhikevich neuron model is represented

by Eqs. (4.5)–(4.9) as in Chapter 4. Here, we assume that the observations y1:N

are the membrane potentials with Gaussian observation noise, and we estimate the

parameters Θ = {a, b, c, d} from only the observations y1:N . We use the true param-
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eters Θ = {a, b, c, d} = {0.02, 0.2,−65, 6} and the number of data N = 5.0× 102 to

generate data. In the system model, the means and the variances of the Gaussian

noise are
{
µv, σ

2
v

}
= {0, 0.25} and

{
µu, σ

2
u

}
=
{
0, 10−4

}
. In the observation model,

the mean and the variance of the Gaussian noise are
{
µy, σ

2
y

}
= {0, 1}. We show the

generated data from the Izhikevich neuron model in Fig. 5.2. In Fig. 5.2, complex

spike activities with different inter-spike intervals and different peaks are seen in

response to external inputs. We assume that only one dimensional time series of

observed data yn and external inputs can be used for estimating underlying parame-

ters while the latent dynamics are governed by two dimensional nonlinear dynamical

systems with four parameters Θ = {a, b, c, d}. We employ the REPMMH method

and the conventional methods, the PMMH method and the REPGAS method, to

the generated data in Fig. 5.2 to estimate the posterior distribution of the param-

eters Θ = {a, b, c, d}. In all methods, the initial values of the parameters Θ [0] are

{a, b, c, d} = {0.025, 0.15,−60, 5.5}, the number of samples K is 106, the number

of burn-in samples Kburn−in is 106, and the number of particles M is 50. In the

REPMMH method and the REPGAS method, the number of temperatures R is 64.

Figure 5.3 shows the estimated posterior distribution of parameters p (Θ | y1:N )

obtained by employing the PMMH method. In each graph the vertical axis expresses

the value of the probability density function, while the horizontal axis expresses the

values of parameters a, b, c, and d. Furthermore, the solid lines represent the true

values, the dashed lines represent the initial values, and the histograms represent

the estimated posterior distributions of the parameters. From Fig. 5.3, we find

that a peak of the estimated posterior distribution of parameter d, p (d | y1:N ), is

located around its true value d = 6.0. However the maximum values of the estimated

posterior distribution of the other three parameters, a, b, and c remain around their

initial values (a = 0.025, b = 0.15, c = −60), which are far from their true values

(a = 0.020, b = 0.20, c = −65). Thus the joint posterior distribution of four
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Figure 5.2: Observations and external inputs of Izhikevich neuron model used to
evaluate the proposed REPMMH method. Observed membrane potential of the
Izhikevich neuron model yn (top) in response to input current Iext,n (bottom) are
shown.

parameters are found to be not adequately estimated. From this result, the samples

in the PMMH method is consider to remain in the local optimum since the initial

values are far from the true value.

Figure 5.4 shows the estimated posterior distribution of parameters p (Θ | y1:N )

obtained by employing the REPMMH method. From Fig. 5.4, we find that the max-

imum values of estimated posterior distribution of parameters are located around

true values (a = 0.020, b = 0.20, c = −65, d = 6.0) even though the initial values of

parameters (a = 0.025, b = 0.15, c = −60, d = 5.5) are set to be far from the true

values. This improvement of estimation accuracy would be induced by combining

the replica exchange method. In the proposed REPMMH method, it is easier to ob-

tain samples from a wider range since the replica exchange method allows samples

to pass through high temperatures. From these results, we find that the problem

of initial value dependence in the PMMH method is improved by employing the
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Figure 5.3: Estimated posterior distributions obtained by employing the PMMH
method in the Izhikevich neuron model. In each graph, the estimated probability
density function of parameter (a, b, c, and, d) is shown by the blue histogram. The
red solid and black dashed lines express the true and initial values, respectively.

proposed method.

Moreover, Fig. 5.5 shows the estimated posterior distribution of parameters

p (Θ | y1:N ) obtained by employing the REPGAS method. As shown in this figure,

the distributions are estimated almost the same as those obtained by employing the

REPMMH method, which indicates that the true values are estimated properly.

In order to investigate efficiency of sampling parameters in the proposed method

and existing methods, we show in Fig. 5.6 the autocorrelation function results cal-

culated using the samples of the PMMH method, the REPGAS method, and the

proposed REPMMH method. In all the parameters a, b, c, and d, the decay of

the autocorrelation in the REPMMH samples is faster using the REPMMH sam-
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Figure 5.4: Estimated posterior distributions obtained by employing the REPMMH
method in the Izhikevich neuron model. See also the captions of the figure and
subfigures for Fig 5.3.

ples than those calculated using the PMMH samples and the REPGAS samples.

In particular, the introduction of the replica exchange method drastically improves

the sampling efficiency of the PMMH method. Even if we compare two PMCMC

methods with the replica exchange method, the proposed method provides more

efficient sampling. Thus, we find that the sampling efficiency of the proposed REP-

MMH method is higher than that of the PMMH method and the REPGAS method.

The time constant of the autocorrelation function has a strong influence on the con-

vergence time of the PMCMC method. The time constants of the autocorrelation

functions for the REPMMH samples are around 20 for all parameters a, b, c and d,

while those of the autocorrelation functions for the PMMH samples are more than
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Figure 5.5: Estimated posterior distributions obtained by employing the replica ex-
change particle-Gibbs with ancestor sampling (REPGAS) method in the Izhikevich
neuron model. See also the captions of the figure and subfigures for Fig 5.3.

105, as shown in Figure 5.6. Since the computational cost of the exchange process in

the REPMMH method is very small compared to the computational cost of the SMC

method, the computational cost of the REPMMH method is approximately R = 64

times the computational cost of the PMMH method. Nevertheless, the REPMMH

method drastically improves the sampling efficiency compared to the increase in the

computational cost; the REPMMH method is R = 64 times more computationally

expensive than the PMMH method, while the effective sample size of the REPMMH

method is much larger (around 103 times larger) than that of the PMMH method.

When the same number of temperatures and particles is used, the REPGAS

method is more computationally expensive than the REPMMH method since the
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Figure 5.6: Autocorrelation as a function of the lag length for parameters a, b,
c, and d in the Izhikevich neuron model. Results for the PMMH method (black
dashed-dotted line), the REPGAS method (blue dashed line), and the REPMMH
method (red solid line) are shown. Each inset figure represents the result when the
horizontal axis is the logarithmic scale. In results obtained by the REPGAS method
and the REPMMH method, samples at T (1) = 1.0 are used.

REPGAS method requires the sampling of the latent variables z1:N and the ancestor

sampling, which considers sampling of the latent variables z1:N not only in the

forward direction but also in the backward direction in the conditional SMC method.

Nevertheless, the REPMMH method has high sampling efficiency compared to the

REPGAS method. Thus, we find that the sampling efficiency of the REPMMH

method is higher than that of the conventional methods.

Moreover, in order to evaluate the influence of the number of temperatures R and

the number of particlesM on the estimated results, we compare the estimated results

in various settings. We show the estimated results with the numbers of temperatures

R = 1, 4, 16 and 64 in Table 5.2. Table 5.2 shows the mode values of the estimated

distributions, the standard deviations (Std) of the estimated distributions and the

79



values of autocorrelation functions (ACF) with the lag length 30 for the numbers of

temperatures R = 1, 4, 16 and 64. Note that the numbers of particles M are 50 in

all cases and the maximum value of temperature is fixed at T (R) = 1.163 for R > 1.

As mentioned above, for the number of temperatures R = 1, we can estimate

the parameter d around the true value d = 6.0, while the other three parameters a,

b and c remain at their initial values (a = 0.025, b = 0.15, c = −60). We also find

that the samples of parameters a, b and c cannot move enough from their initial

values since the values of the standard deviations are very small. For the number of

temperatures R = 4, we find the samples can escape the local optima and we can

estimate the true values of all parameters a, b, c and d accurately due to the high

temperatures that allow escape from the local optima. However, since the values of

the autocorrelation functions are close to 1.0, we need a large number of samples in

order to estimate the shape of the distribution p (Θ | y1:N ). On the other hand, we

find that the values of the autocorrelation functions are smaller for R = 16 and 64.

Table 5.2: The estimated results with the numbers of temperatures R = 1, 4, 16
and 64.

Parameter R = 1 R = 4 R = 16 R = 64

a = 0.020 Mode 0.0251 0.0200 0.0205 0.0205
Std 5.5× 10−5 6.9× 10−4 6.7× 10−4 7.8× 10−4

ACF 0.9999 0.9914 0.5175 0.3074
b = 0.20 Mode 0.155 0.200 0.200 0.200

Std 3.0× 10−4 7.2× 10−3 7.3× 10−3 7.0× 10−3

ACF 0.9999 0.9919 0.5773 0.3082
c = −65 Mode −60.0 −64.75 −65.0 −65.0

Std 2.1× 10−3 2.8× 10−1 2.5× 10−1 2.6× 10−1

ACF 0.9999 0.9926 0.5359 0.3117
d = 6.0 Mode 6.10 6.10 6.05 6.05

Std 2.0× 10−2 8.9× 10−2 9.8× 10−2 9.8× 10−2

ACF 0.9999 0.9928 0.5222 0.3176

We show the estimated results with the numbers of particles M = 10, 20, 30,

40 and 50 in Table 5.3. Note that the numbers of temperatures R are 64 in all

80



cases. For the numbers of particles M = 10 and 20, the estimated values of the

parameters a, b, c and d are far from the true values (a = 0.020, b = 0.20, c = −65,

d = 6.0). We consider that these results are due to the low approximation accuracy

of the marginal likelihood p (y1:N | Θ) in the SMC method with too small numbers

of particles. For the numbers of particles M ≥ 30, we can estimate the true values

of parameters a, b, c and d. Since there is no significant difference between the mode

values, the standard deviations and the values of the autocorrelation functions for

the numbers of particles M = 30, 40 and 50, we consider that the number of particles

M is sufficient for this problem if it is above 30.

Table 5.3: The estimated results with the numbers of particles M = 10, 20, 30, 40
and 50.

Parameter M = 10 M = 20 M = 30 M = 40 M = 50

a = 0.020 Mode 0.0220 0.0210 0.0200 0.0200 0.0205
Std 5.9× 10−4 7.5× 10−4 7.3× 10−4 6.7× 10−4 7.8× 10−4

ACF 0.5548 0.2707 0.3072 0.3391 0.3074
b = 0.20 Mode 0.195 0.190 0.200 0.195 0.200

Std 4.9× 10−3 8.3× 10−3 7.1× 10−3 5.9× 10−3 7.0× 10−3

ACF 0.2738 0.2611 0.2932 0.3352 0.3082
c = −65 Mode −60.75 −64.50 −65.00 −65.00 −65.00

Std 2.9× 10−1 3.7× 10−1 2.7× 10−1 2.8× 10−1 2.6× 10−1

ACF 0.9223 0.3071 0.2793 0.3701 0.3117
d = 6.0 Mode 6.50 6.10 6.10 6.05 6.05

Std 1.4× 10−1 8.2× 10−2 1.0× 10−1 9.3× 10−2 9.8× 10−2

ACF 0.6096 0.2750 0.3220 0.2985 0.3176

5.3.2 Lévy-driven stochastic volatility model

Next, we also verify the effectiveness of the proposed method using the Lévy-driven

stochastic volatility model [11, 63–65]. In this model, the dynamics of logarithm of

asset price y∗ (t) is represented by the following differential equation:

dy∗ (t) =
{
µ+ βσ2 (t)

}
dt+ σ (t) dB (t) , (5.15)
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where µ is the drift parameter and β is the risk premium. B (t) is the Brownian

motion and σ2 (t) represents the volatility. The dynamics of the volatility σ2 (t) is

modeled by the following Lévy-driven Ornstein-Unlenbeck process:

dσ2 (t) = −λσ2 (t) dt+ dz (λt) , (5.16)

where λ is a positive constant and z (t) is a non-Gaussian Lévy process with positive

increments. The observation at the time step n, yn, in this model is obtained by the

following Gaussian distribution:

yn ∼ N
(
µ∆+ βσ2

n, σ
2
n

)
, (5.17)

where ∆ is the length of the time interval.

The stochastic volatility models are numerically investigated by using discretized

dynamical models [11, 63, 64], and the estimation algorithm for parameters of the

stochastic volatility models have been investigated using such the discretized models

[11]. The integrated volatility σ2
n at the time step n is calculated as follows:

σ2
n =

∫ n∆

(n−1)∆
σ2 (u) du

= λ−1
[
z (λn∆)− σ2 (n∆)− z {λ (n− 1)∆}+ σ2 {(n− 1)∆}

]
, (5.18)

where σ2 (n∆) and z (λn∆) are respectively represented as follows:

σ2 (n∆) = exp (−λ∆)σ2 {(n− 1)∆}+ ησ,n, (5.19)

z (λn∆) = z {λ (n− 1)∆}+ ηz,n. (5.20)

Here, we address the case where the volatility σ2 (t) follows a tempered stable

82



marginal distribution [64]. Following [3, 64], ησ,n and ηz,n are obtained as follows:

ησ,n =
∞∑
i=1

min

(( aiκ

Aλ∆

)−1/κ
, eiv

1/κ
i

)
exp (−λ∆ri) +

N(λ∆)∑
i=1

ci exp (−λ∆r∗i ) , (5.21)

ηz,n =
∞∑
i=1

min

(( aiκ

Aλ∆

)−1/κ
, eiv

1/κ
i

)
+

N(λ∆)∑
i=1

ci, (5.22)

where A = 2κδκ2/Γ (1− κ), a1 < a2 < . . . are arrival times of a Poisson process

with intensity 1, e1, e2, . . . are independent and identically distributed exponential

random variables with mean 2γ−1/κ, and v1, v2, . . ., r1, r2, . . ., and r∗1, r
∗
2, . . . are stan-

dard uniform random variables. c1, c2, . . . are obtained from a gamma distribution

with the shape parameter 1 − κ and the scale parameter 2γ−1/κ, and N (λ∆) is

obtained from a Poisson distribution with mean λ∆δγκ. Here, κ, δ, γ, and λ are

the parameters Θ = {κ, δ, γ, λ} to be estimated.

In this section, we employ the proposed method and the PMMH method to

the stochastic volatility model. The PMMH-based methods, including the proposed

REPMMHmethod, can be applied to complex models like the Lévy-driven stochastic

volatility model, as long as the probability density of the observation model can be

calculated. On the other hand, the PG-based method is difficult to apply to the

stochastic volatility model since it is necessary to calculate the probability density

of the system model in addition to that of the observation model [11]. Following [11],

we use the true parameters Θ = {κ, δ, γ, λ} = {0.5, 1.41, 2.83, 0.1}, the number of

data N = 4.0 × 102, and the time interval of length ∆ = 1.0 to generate data.

In order to estimate the parameters Θ, we use the initial values of the parameters

Θ [0] = {0.25, 7.41, 9.83, 1.5}, the number of samples K = 1.5 × 105, the number

of burn-in samples Kburn−in = 105, and the number of particles M = 200. In the

REPMMH method, the number of temperatures R is 64 in both the REPMMH

method and the PMMH method.

Figure 5.7 shows the estimated posterior distribution of parameters p (Θ | y1:N )
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Figure 5.7: Estimated posterior distributions obtained by employing the PMMH
method in the Lévy-driven stochastic volatility model. In each graph, the estimated
probability density function of parameter (κ, δ, γ, and λ) is shown by the blue
histogram. The red solid and black dashed lines express the true and initial values,
respectively.

obtained by employing the PMMH method. From Fig. 5.7, we find that a peak of

the estimated posterior distribution of parameter λ, p (λ | y1:N ), is located around

its true value λ = 0.1. However, the maximum values of the estimated posterior

distribution of the other three parameters, κ, δ, and γ are far from their true val-

ues (κ = 0.5, δ = 1.41, γ = 2.83). Thus, the joint posterior distribution of four

parameters are found to be not adequately estimated. It is consider that the tar-

get distribution is not reached with a small number of samples since the sampling

efficiency of the PMMH method is low.

Figure 5.8 shows the estimated posterior distributions of parameters p (Θ | y1:N )

obtained by employing the REPMMH method. From Fig. 5.8, we find that the
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true values of parameters Θ = {κ, δ, γ, λ} = {0.5, 1.41, 2.83, 0.1} are estimated

appropriately by using the same number of samples and the same initial values

Θ [0] = {0.25, 7.41, 9.83, 1.5} used in the PMMH method. The results in Figs. 5.7

and 5.8 show that the REPMMH method has higher sampling efficiency than the

PMMH method. Moreover, we show in Fig. 5.9 the autocorrelation function results

calculated using the samples of the PMMH method and the REPMMH method. In

all parameters κ, δ, γ, and λ, the decay of the autocorrelation is faster using the

REPMMH samples than that is using the PMMH samples. As shown in Figure

5.9, the time constants of the autocorrelation functions for the REPMMH sam-

ples are less than 15 for all parameters κ, δ, γ and λ, while the time constant of

the autocorrelation functions for the PMMH samples for the parameter γ is more

than 3.0 × 103. As mentioned above, since the computational cost of the REP-

MMH method is approximately R = 64 times the computational cost of the PMMH

method, the REPMMH method improves the sampling efficiency compared to the

increase in the computational cost.

5.4 Summary

In this chapter, we have proposed the replica exchange particle marginal Metropolis-

Hastings (REPMMH) method in order to estimate the marginal posterior distribu-

tion of parameters p (Θ | y1:N ) of the state space model. The proposed method can

be applied to complex models like the Lévy-driven stochastic volatility model even

if the probability densities of the system models cannot be calculated explicitly. By

the proposed method, we introduce the exchange between samples of model parame-

ters Θ at different temperatures and realize the efficient sampling method for model

parameters governing the nonlinear dynamical systems.

Using nonlinear dynamical models such as the Izhikevich neuron model and

Lévy-driven stochastic volatility model, we showed that the proposed REPMMH

method can improve the problem of initial value dependence of the particle marginal
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Figure 5.8: Estimated posterior distributions obtained by employing the REPMMH
method in the Lévy-driven stochastic volatility model. See also the captions of the
figure and subfigures for Fig 5.7.

Metropolis-Hastings (PMMH) method. The results have shown that the proposed

REPMMH method accurately estimates the marginal posterior distribution of pa-

rameters. Moreover, by comparing the autocorrelation functions of the obtained

samples, it has been also shown that the proposed REPMMH method can sample

more efficiently than the conventional methods. In the replica exchange particle-

Gibbs with ancestor sampling (REPGAS) method, the next sample of latent vari-

ables is obtained under the strong influence if the current sample of latent variables.

On the other hand, in the REPMMH method, the correlation of the latent variables

between current and next steps is low since the REPMMH method only calculates

the marginal likelihood of the next step regardless of the latent variables obtained in

the current step. Therefore, it is considered that the REPMMH method can sample

86



0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0
PMMH
REPMMH

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0
PMMH
REPMMH

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

PMMH
REPMMH

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0
PMMH
REPMMH

Figure 5.9: Autocorrelation as a function of the lag length for parameters κ, δ, γ,
and λ in the Lévy-driven stochastic volatility model. Results for the PMMH method
(black dashed-dotted line) and the REPMMH method at T (1) = 1.0 (red solid line)
are shown.

parameters more efficiently than the REPGAS method.
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Chapter 6

Conclusion

In this dissertation, we proposed the new particle Markov chain Monte Carlo (PM-

CMC) methods to more precisely estimate latent variables and parameters in state

space models. First, we proposed the replica exchange particle-Gibbs with ancestor

sampling (REPGAS) method to estimate joint posterior distributions of latent vari-

ables and parameters of state space models. The REPGAS method combined the

particle-Gibbs with ancestor sampling (PGAS) method, which is one of the extended

versions of the particle-Gibbs (PG) methods, with the replica exchange method used

in the field of statistical physics. The proposed REPGAS method has introduced

the extended variables corresponding to temperatures, and conduct MCMC meth-

ods in parallel at different temperatures. Moreover, the REPGAS method realized

the local precise search and global search simultaneously by exchanging samples

between different temperatures. We verified that the proposed REPGAS method

can improve the problem of the initial value dependence and the sampling efficiency

in the PGAS method by conducting the experiment with the nonlinear benchmark

state space model.

Next, we proposed the method to estimate the nonlinear neural dynamics from

spike-train data based on the REPGAS method. We formulated the generative

process of the spike-train data as the state space model based on the Izhikevich
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neuron model. Moreover, we formulated the process observing the spike-train data

according to the latent membrane potential by using the Poisson distribution. Fur-

thermore, we verified that the proposed method can be used to estimate the latent

variables and the parameters that can represent the important responses of neurons

through validation experiments using simulated data.

Finally, we proposed the replica exchange particle marginal Metropolis-Hastings

(REPMMH) method to estimate the posterior distribution of the parameters marginal-

ized out the distribution of latent variables. The conventional particle marginal

Metropolis-Hastings method also has the problem of the initial value dependence as

well as the PG method. Therefore, we proposed the REPMMH method by com-

bining the particle marginal Metropolis-Hastings (PMMH) method with the replica

exchange method. We verified that the REPMMH method can improve the problem

of the initial value dependence in the PMMH method by conducting the experiments

with the Izhikevich neuron model and the stochastic volatility model. Moreover, we

showed that the REPMMH method has higher sampling efficiency than the REP-

GAS method and the PMMH method.

In the REPGAS method, the next sample of latent variables is obtained under the

strong influence to the current sample of latent variables. On the other hand, in the

REPMMHmethod, the correlation of samples of the latent variables between current

and next steps is low since the REPMMH method only calculates the marginal

likelihood of the next step regardless of the latent variables obtained in the current

step. Therefore, it is considered that the REPMMH method has higher sampling

efficiently than the REPGAS method in the estimation of the parameters. However,

since the REPMMH method marginalizes out the latent variables, it is considered

that the REPGAS method is also an effective method when the joint posterior

distribution of the latent variables and parameters need to be estimated.

In this dissertation, we conducted the experiments by using the fix temperature

distributions. By optimizing the temperature distributions, it may be possible that
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the sampling efficiencies of the proposed REPGAS method and REPMMH method

are higher than the results in this dissertation. Furthermore, the optimum tem-

perature distributions would be different between the REPGAS method and the

REPMMH methods. Therefore, it is important to consider optimization problems

for temperature distributions in the proposed REPGAS method and the REPMMH

method. Moreover, although we conducted the experiments by using simulated data

with no missing values in this dissertation, both the REPGAS method and the REP-

MMH method can be applied to time-series data with missing values. It is important

to evaluate the robustness of the proposed methods to missing values for application

to real data. We leave these as future works.
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