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Chapter 1
Introduction

Let 2;, 2o = 0, be a complex Brownian motion starting at the origin. Many works have been
done on the limit theorems for additive functionals of z;. The main purpose of this paper
is to present some extentions of the old results and related theorems. Well-known classical
results are due to G. Kallianpur and H. Robbins [5] for occupation times and to F. Spitzer
[11] for winding number of z; around a given non-zero point: Since 2, is neighborhood
recurrent, for any open domain D in C, the random occupation time of D by z, before time
t, Js 1p(z,) ds, has limit co almost surely as ¢ — co. Then Kallianpur-Robbins showed that

if 0 < area(D) < oo, then
d, 1
. — D —
(1.1) logt/ 27rarea,( )VH (t — 00),

where H is a random variable with the standard exponential distribution and 9, indicates
convergence in distribution. On the other hand, since z; does not hit points, we can define a
winding process ©,(t), the continuous total angle wound by z, around the point a € C\{0}
up to time t. More precisely, we define X,(¢) and ©,(t) by

t d
(1.2) / %~ log (Zt “) = Xa(t) + V=10,(t).

0 a

Zy—a

Then Spitzer showed that

d
— — t — o0
o7 €0 C (o),

(1.3)
where C is a random variable with the standard Cauchy distribution.

Y. Kasahara and S. Kotani [6] generalized these classical results from the standpoint of
the convergence as stochastic processes: In the following, we denote the local time at 0 of
one-dimensional Brownian motion £(t) by I(¢, 0, £), the maximum process maxo<,<¢ £(s) of €

by u(t, ) and the Legesgue measure on C by m(dz). Set
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1) /t ds
)= | —.
0o |z, — af?

Since 7(t) = (Xa), = (©.), (Generally, (Al), is the usual quadratic variation process of a

conformal (local) martingale M(t) ) , it is clear from the Knight theorem that

ag [ B eI - w)

where £(t) and 7(t) are mutually independent one-dimensional Brownian motions and L
indicates convergence in law on the continuous path-space. Kasahara-Kotani showed that if
f is a bounded function from C to C satisfying [ |f(2)||z]|¢ m(dz) < oo for some € > 0 |
then it hold that

T=1(3%t) -
(1.5) %/0 ° flz)ds - 2,0,8F (A — o)
and

(1.6) %log(T—l(Azt)-{-l) Loou8) (A= oo)

jointly with (1.4), where f = (1/27) fc f(2) m(dz) . Denoting the right continuous time
inverse u~1(t, €) by (¢, £), We obtain from (1.5) and (1.6) that

(1.7) A/‘ Tdi ol(0(t,6),0,6)F (A — o)

and from (1.4) and (1.6) that

a9 1[0 TTnee) ()

where £% indicates convergence in the sense of finite dimensional distributions. Note that
o(t,€) = inf{u;&(u) = t}. Now we can understand (1.1) and (1.3) as the section at ¢t = 1
of (1.7) and (1.8), respectively. Indeed, I(o(t,£),0,&) has the exponential distribution with
mean ¢t for fixed ¢t > 0 and n(o(t,€)) is a Cauchy process.

Kasahara-Kotani [6] discussed also the case that f = 0. In this case, the study is
intimately related by Itd’s formula to the study of an additive functional of z; given in the
form

GO

(1.9) \/_/ (z.) dz



for some function F. P. Messulam and M. Yor [7] discussed (1.9) itself when F' is bounded
with compact support. The limit law of (1.9) as A\ — oo is B(2l(t,0,£)F), where B(t) is a
complex Brownian motion independent of £.

On the other hand, J. Pitman and M. Yor [8],[9] gave another extention of Spitzer’s law
(1.3): Let a;,---,a, be given distinct points on C\{0}. We write the processes X,, and
Q,, given in (1.2) corresponding to a,; simply by X; and O, respectively. Then Pitman-Yor
showed that

(1.10) { 2

logt

@i(t)a l(t,O,X,)} —d—) {"V, + W+) A}]S;‘Sn (t - OO),

1<:<n

where for each 7 the triple (W;, W4, A) is equivalent in law to

a(1) a(1)
(1.11) (/0 I dn(s), [ Lo dn(s) l(au),o,s))

and the n + 1 random variables Wy, --- W, W, are mutually conditionally independent
given A. Here £(t) and 7n(¢) are mutially independent one-dimensional Brownian motions
and o(1) = inf{u;&(u) = 1}. The W;,-.-, W, are individual components for each point
a;, attributable to small windings about a;, and the W, is a component in common to all
points, attributable to big windings made when z, is far from all points.

We can investigate their result (1.10)-(1.11) from the viewpoint of (1.4)-(1.6). The facts
(1.4)-(1.6) are that

4 { 3\

1 'O dz,
A &) + V=Tt
7% L -
R T AT S 20(,0,6)7 [ (A=)
1 -
25 log (r10%) - 1) u(t, &)

for each i, where 7;(t) = i |2, — a;|72ds and (&;,n;) is a two-dimensional Brownian motion.
If we consider these processes jointly for : = 1,--- n, then the Brownian motions £ =

(&,--+,&,) and np = (m,---,m,) have the following structure:

t t
(113)  &(t) = o (/0 Lgis)<0) dS) + ay (/O Lei(s)>0) d8>

t t
Bi (/O Leis)<0) dS) + B+ (/0 L(¢i(s)>0) dS) ,

(1.14)  m(t)



where oy, -+, 0y, @4, B, '+, Bn, B+ are n+ 2 mutually independent 1-dimensional Brownian

motions. ! Then as a corollary to (1.12), we have

1 Id. ai(t) ai(t)
{X@;(ez*‘ - 1)} o {)61’ (/ Ligi(s)<0) dS) + B4 (/ Lei()>0) dS)}
1<i<n JO 0

as A — oo, where 0;(t) = inf{u;&(u) = t}. Thus we can understand Pitman-Yor’s result

1<i<n

(1.10)—(1.11) as the section at ¢ = 1 of the above convergence. These facts were pointed out
and proved by S. Watanabe in an unpublished note [12].
Pitman-Yor [10] extended their results (1.10)—(1.11) to the case of
9 ot
(1.15) { / fileV104) d@i(s)} ,
0

log t 1<i<n

where f1,---, f, are bounded Borel functions on C. In this case, another Brownian motions
(or Gaussian random measures) independent of (£, 7) appear in the limit process. Can we
reproduce and extend also this result in the context of Kasahara-Kotani-Watanabe?

In Chapter 2, we execute this program above: We extend (1.12) to additive functionals
of z; given in the form

1 'O f,(z,)
1.16) ——— 222707 dz,
( ) )\N,J()\) .[) 2y — Qy ¢

-1
_ XJ_\_,.i(_A) /O-ri (A%8) f,‘j (Cl;' _ aie,‘{,-(s)+\/—_1®,(s)) d(X,'(S) + \/—_1@,'(8)),

where N;;(}) are some normalizing functions. We call the above additive functionals “winding-

type”. The case that f;; = 1 corresponds to windings, and the case that fi;(a; — ageI+‘/:_l_9)

depends only on 6 corresponds to (1.15). We do not assume that each f;; is bounded, but

we treat, roughly speaking, the case that the asymptotic behaviour of f;;(a; — a;e***V=1)

as A — oo is |z|Pic;;(0) where p;; > —1/2 and ¢;; € L*(0, 27).

In our proof of the limit theorem, an ergodic theorem such that

IThe processes such as (1.13) exist uniquely in the sense of law. Indeed, since by Tanaka's formula we

can express the processes in the right hand side of {1.13) as

{ o (Jy 1euwr<or ds) =1 ([ 1euor<or ds) + 14,0, &)

oy (s gm0 ds) =4 (5 1euor>or ds) = 14,0, &),

where 7y, -+, 7y, 7+ are mutually independent reflecting Brownian motions, using these Skorchod equations
and the excursion theory, we can construct (£;)i<i<a satisfying (1.13) by the Poisson point process pt of
positive Brownian excursion corresponding to r4 and the Poisson point processes p7” , 1 = 1,---,n, of negative
Brownian excursions corresponding to ;. We can also see from this construction that I(p=1(2,£),0, &),
i=1,---,n, are identical to I(c4(t),0,74) where 04 () = inf{u;74+(u) = t}. See remark 2.4.1 in the last

part of Chapter 2, section 2.4.



(1.17)  FE sup —0 (A — 00),

0<LtLT

[ X, (0:05)) ds — 75 [ Xt ds

where ¢ = (1/27) [" ¢;;(8) d6, plays an essential role. We prove this ergodic theorem for a
class of diffusion processes (X(t),©(t)) on R x M where M is a compact C*®-Riemannian

manifold.
In Chapter 3, we prove another ergodic theorem for (X (¢), ©(t)) on R? x M such that

/Ot g(X()\s), @(,\s)) ds — /Ot ﬁ(X()\s))ds

where ¢:R% x M — R is a function satisfying some conditions for integrability, 7(z) =

(1.18) N(A) E sup
0<t<T

(A — o),

(1/27) [" g(z,68) df and N()) is some normalizing function corresponding to g. Using this
ergodic theorem, we extend naturally the class of functionals in the limit theorems for (1.5)
and (1.9). More precisely, we prove the convergence (1.5) for f € L}(C)NL?(C) (1 < p < o)
and the convergence of (1.9) for F' € L?(C) N LP(C) (2 < p < o0).

In Chapter 4, we extend the ergodic theorem (1.17) to a similar form as (1.18). Moreover,
we show that these ergodic theorems are also valid in the case that Af is R™ which is endowed

with the normal distribution v(d6) instead of dff and ©, is an Ornstein-Uhlenbeck process.



Chapter 2

On Limit Theorems Related to a
Class of “Winding-Type” Additive
Functionals of Complex Brownian

Motion

2.1 Introduction

Let 2(t) = z(t) + V—=1y(t), z(0) = 0, be a complex Brownian motion starting at the origin.
Main purpose of this chapter is to reproduce and extend some results of Pitman-Yor by the
method of Kasahara-Kotani: In particular we discuss the convergence as stochastic processes
of time scaled additive functionals belonging to a little more general class.

First, we describe briefly the main idea of Kasahara-Kotani. In order to study the limit
process as A — oo of additive functionals A*(t), A > 0, given in the form

\ B 1 u(\t)
20 = 370 [ 1z,

where u(t) = e* — 1 and N(}) is some normalizing function, we set
Z(t) =log(z(t) + 1)
and introduce an increasing process

P(e) = 1u((2)7 ().



( Generally, (M) (t) is the usual quadratic variation process of a conformal (local) martingale
M(t) and g~!(t) is the right continuous inverse function of a continuous increasing function
g(t) .) Then, by the time substitution, we have
l t ~A ~A ~2
AfA — AZ7(8) _ 1)er% (g7
AW) = g5 [ SO - e (s)
where Zl\(t) = 12((Z)7' (3*)). Note that 2’\(1?) is a complex Brownian motion for every
A > 0. The limit process of A*(t) can be found if we can obtain the limit process as
XA — oo of the joint continuous processes { A*(7*(t)), Z (t), (t)}. The limit process
of {Zk(t), 72(t) } is given by {b(t), u(t)} where b(t) is a complex Brownian motion and
1(t) = maxog <t Re[b(s)] (¢f. Lemma 3.1 of [6]). The study of convergence for the above

joint processes is therefore reduced to that for
L [fp8) _ 1))
— s) $ db
o ) S = D)
as A — oo. If we represent b(t) as

b() = o(t) + \/_—1/(: 4o (s),

where 4(t) is a Brownian motion on the unit circle T = R/27Z ~ [0, 2x] so that (z(t), 8(¢))
is a Brownian motion on the Riemannian manifold R x T, then, in this study, the er-
godic property of 6(t) plays an important role; indeed, it is a homogenization problem for
(z(t),6(t))-

We would apply this method of Kasahara-Kotani to some problems discussed by Pitman-

Yor, namely to the study of joint limit distribution, as A — oo, of the processes (A4;;*) given

by

100 f(2)
A J
. . — d s
(2 1) AU (t) )\N,J()\) /0 Zg — Ay ?

where ay, - - -, a,, are distinct points on C\{0} and f;, j = 1,---,m, are some Borel functions
on C. If f; = 1, then Tm[A,;*(¢)] is a normalized algebraic total angle wound by z(t) around

a; up to the time e?** — 1. Writing
fila; — a,-e“"/:e) = gij(z,0), (z,0) e R x T,

Pitman-Yor discussed the case when g;; depend only on . Here we consider a more general
case by introducing a notion of functions regularly varying at point a; and also at the point
at infinity. This class of functions was introduced by S. Watanabe in an unpublished note.

In order to apply Kasahara-Kotani’s method to this class of additive functionals, we need

8



an ergodic theorem for Brownian motion (2(t),6(t)) on R x T which we establish in section
2.2 by using the method of eigenfunction expansions.

Finally, we summarize the contents of this chapter. In section 2.2, we consider a class
of diffusion processes on R? x M where M is a compact Riemannian manifold and obtain
an ergodic theorem for them. In section 2.3, we apply the result of section 2.2 to a homoge-
nization problem for Brownian motion (z(t),6(t)) on R x T and thereby describe the limit

process as A — oo of the joint processes
1 /t A
—— | fila—ae z(’))dz(s)} :
{N'()‘) 0 1<i<m

where a € C\{0}, 2(t) = z(t) + v/—1 J; df(s) so that z(t) is a complex Brownian motion,
and f; are taken from the class of regularly varying functions in the sense given by Definition
2.3.1. Here, the asymptotic Knight’s theorem of Pitman-Yor [10] for a class of conformal
martingales also plays an important role. In section 2.4, we obtain the joint limit theorem

for additive functionals of the form (2.1) by applying the results in section 2.3.

2.2 An ergodic theorem for some class of diffusion

processes on compact manifolds

Let M be an m-dimensional compact (connected) C*-Riemannian manifold without bound-
ary and (©;);>0 be a Brownian motion on M (see Ikeda and Watanabe [4], Chapter 5,
section 4). The generator of (©;) is (1/2)A s, where Ay is the Laplace-Beltrami operator

for M. Since M is compact, A has pure point spectrum

and we denote the corresponding normalized eigenfunctions by {¢,}. It is known that the

transition density ¢(¢,8,n) of (©;) has the following expansion:
(23)  q(t,60,n) = Z (8)on(n),

which converges uniformly in (8, 7n) for every ¢ > 0 (see Chavel [1] p.140).
Let (X¢)i>o be an R?-valued diffusion process determined by the stochastic differential

equation

(24) dAXt = O'(Xt) dBt -+ b(Xt) dt)



where o(z) and b(z) are bounded and smooth, o(z) is uniformly non-degenerate and (B;):>o
is a d—dimensional Brownian motion.

We assume that X and © are independent and X, = 0 and ©g = 6, ( 6y € M ) throughout
this section.

Qur main result in this section is as follows:

Theorem 2.2.1 Let h be a Borel measurable function from R? to R and f be a Borel
measurable function from M to R satisfying the following conditions:

(1) |h(z)] < const. |z|* for every x € R? for some a > — min(2,d) ,

(2) fisin LP(M) = LP(M,d) for some p withp > 1 and p > m[(a+ 2), where df is the
volume element of M

(3)  f is null charged 1.e.

/M £(6)dé = o.

Then for every T > 0, it holds that

/ot h(X,)f(Or,) ds

Faw | g, | o

as A — oo.
To prove our theorem, we prepare some estimates for E,|h(X,)| and Ep|f(0O,)|.

Lemma 2.2.1 Suppose that h:R% — R satisfies |h(z)| < const. |z|* for every z € RY,
where o > —d. Then for every z € R? and t > 0,

E.|h(X})| < const.t*/? + const. |2[* 1(4>0)-

Proof. From the assumption of X, we have the following estimate for the transition

density p(t,z,y) of X, :

t. ]z — y|?
(25)  p(t,7,y) < const.t™exp (_SBS__IL_EL) |

2

(See Friedman [3], p.141, Theorem 4.5.)

Then, from the assumption for h(z),

) t.]z —y|?
(2.6) E.|h(X,)] < const.t™¢/? ./Rd exp (——Eﬁf——gi———yl—) ly|* dy

= const. / ( const. |€| )|\/—6+xl°‘ d€.

10



If o > 0, the right hand side (RHS) of (2.6) is bounded by

const. [ exp ( const. "3') Vil d

t. 2
+ const. /R“ exp ( EQE-S——IE—L) |z|* d€

= const.t*/2 4 const. |z|°.

If —d < a <0, the RHS of (2.6) is bounded by

const. t/2 /R" exp ( M) 1€ + 2/ Vt|* d¢

=~

t.
— const o2 / exp< M) €+ 2 VIl° de
¢ +=/VEl<1

+C°n5t'ta/2/+ /ﬁ|>1exP( const. lfl ) €+ z/VH|* d¢

€

< const.t“/z/ |€ 4+ z/Vt|* d¢

[¢+z/ V<1
t. [€]?
+const.t°‘/2/ p (—M) de

le+z/Vil21 2

< const.t*/2,

Q.E.D.

Lemma 2.2.2 Suppose f € LP(M — R df) with some p > 1. Then for every § € M and
t>0,

Ey|f(©4)] < (const. ™™/ 4 const.)]| fl,.

Proof. For a moment, let p > 1. First note that

1/q
Bl©) = [ a0 nlimldn< ([ a6,m7dn) " 111l

where ¢(t,8,n) is the transition density of ©; and 1/¢+ 1/p = 1.

Since we have the uniform estimate
q(t,8,m) < const.t™™?2 (¢t ] 0)

11



(see Chavel 1], p.154 ~ 155), setting 6 > 0 small enough,

i/q —m(g=1)/2 1/q
(/Mq(t,ﬁ,n)"dn) licsy < (const- g ‘q(t,9,n)dn) 1(t<s)

M

= const.t~™/?% 1(¢<s)-

On the other hand, from (2.3) we have

q(t) 6) 77) 1(t>5) S (E e—/\,.t(P“(g)’.Z) (Z C_A"tSOn(U)Z) 1(t>6)

n=0

Hence

1/q
/q(t,ﬁ,n)"dn) 1it>5) < const. V(M)'9,
M

where V(M) = [,, df.
Therefore,

N

Eolf(©0)] < (comst.t™™/% 1.cq) + const. V(M) 9)] £,
< (const.t™™?% 4 const.)||f]l,-
In the case that p = 1, we can prove the lemma similarly by replacing ( [y g(t, 8, 7)? dn)*/®

with sup, q(t,6,7) . Q.E.D.

Proof of Theorem 2.2.1

First we will prove the theorem in the case that f = ¢, for some n > 1. From now on
we write the expectation FEgg,) simply by E.

Set

u/\(m, 9) = [)oo E(:c,e) (h(Xs)‘Pn(GAs)) ds

and

t
A/It/\ = UA(Xta th) + /0 h(‘er)QOn(@/\—‘) ds.



In order to prove that

(2.7) E sup

t
/h(X,)cpn(@A,)ds 0 (A= o),
o<t<T |Jo

it is clearly sufficient to prove that
(2.8) Eo<i<r sup |ua(Xe, Oxe)| — 0 (A — o0)
and

(2.9) E sup lMt’\I — 0 (A — o0).
0<t<T

The convergence (2.8) is proved as follows. By the orthonormality of {¢,} and (2.3), we
see the following identity:

Ep(0n(02:)) = /MQ(/\s,H,n)son(n)dn
= e M () for every 6 € M .

Clearly ¢, (6) is bounded since ¢, is continuous and M is compact and hence we have the

basic estimate
(2.10)  Ep(va(0),)) < const. e AnAs,
By Lemma 2.2.1 and (2.10), we obtain the following estimate for u,:

211)  |ux(z, 8)] /O°° Bolh(X.)|| Eo(i0a(O5.))] ds

IN

< COHSt-/ s§o/2gmAns ds+const.|$lal(a>0)/ e~ A2 ds
0 0

—-af2-1

= const. A + const. |z]* Lias0) A"

Hence

E sup |uy(X:, Ox)| < const. A7 4 const. AV E sup | Xe]* 1(a>0)-
0<t<T 0<t<T

Here

(2.12)  E sup |X¢* < 400
0<t<T

13



holds for @ > 0. Indeed, if & > 1, we have by (2.4) and the martingale inequality that

a

t t
E sup |X;|* = F sup / 0(X,)dB,+/ b(X,)ds
0 0

0<t<T 0<t<T
t a
< const. £ sup /(J(Xs)dBs + const.
o<t<T 1o
T [ 4
< const.E‘/ o(X,)dB,| + const.
0

< const. E|X7|* + const.,

and the finiteness of E|X7|* follows from (2.5). It is easy to see that (2.12) is also valid for
0 < a < 1 since

af2
E sup |X;|* < const. (E sup [X,|2)
0<t<T 0<t<T

by Hélder’s inequality. Thus (2.8) is proved.

We now show (2.9). Fixing A > 0 and setting F, = o {(X|, ©,,); s < t}, we can prove that
M, becomes an (F;)-martingale by a repeated use of Fubini’s theorem. (Note by Lemma
2.2.1 and (2.10) that

E [/000 IE(X,,GM)(h(Xu)SOn(@Au))| du]

= B[ [ |Bx(h(X.)||Bor(ea(@r))] du] < 400 )

Then we have

E sup M| < (E sup |MP? )2 < const. (E| M [?)M/?
0<t<T 0<t<T

T
JRLC STRCIMEE

2) 1/2

< (const. Eluy(X7, @AT)|2 + const. E

by the martingale inequality. Hence it is only necessary to show that
11=E|UA(XT,@AT)‘2—>O as A — oo
and

2

T
L=F (/ h{(X)©n(©)y) ds) — 0 as A — oo.
0

We can easily see that I; — 0 as A — oco. Indeed, (2.11) implies that

14



I; < const. A™*72 4 const. A™** 72 E| X 1|* 1(a>0) + const. AT2E| X 7| 1(a>0)

and the finiteness of E|X7|* 1(a>0) and E|X7]** 1(4>0) follows from (2.5).
Finally we shall prove that I, — 0 as A — oco. By Lemma 2.2.1, (2.10) and Fubini’s

theorem, we have

I

2E [/OTdS/Osdu /I(Xs)h(‘\’u)wn(%)%(@xu)}

= 2 [ds [du B [h(X) B, (1(X,-0))] E [pu(03) B (90(@r0-0)]
Since Lemma 2.2.1 implies that
| [h(X0) Ex, (h(X.-u))]| < B [[A(X)] Bx, (1A(X,-0)])]
< const. (s — u)*?u*? 4 u® 1450
and (2.10) implies that

IE [(’Dn(eAU)E@X“ (SO"(G/\(s—u)))]l < const. e_A"A(’—“),
T s

12 S const. / ds/ due_AnA(S—u)(S _ u)°/2u°/2
0 0

T s
+ const. /0 ds/o du e nAm8)ye 1(a>0)
< const. A7/ 4 const. A7! L(a>0)
—0 (A — 00).

Thus the proof of (2.7) is complete.

Next we will show Theorem 2.2.1 for general f satisfying the conditions (2) and (3). Let
L be the set of all linear combinations of finite number of ¢;, 5, --. We know by (2.7) that
Theorem 2.2.1 holds for f € £. Furthermore, by Lemma 2.2.1 and Lemma 2.2.2 we have
that

E sup
0<t<T

< [ (BN (Bl7©:)1) ds

[ hx) s ds

T ” T
< (const. / s*/2(X\s)™™*? ds + const. / se/? a’s) 1171,
0 0

< (const. \7™/% 4 const.)]| f||,-

Therefore,
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< (o(1) + const. )[Iffl, (A — o0).

E sup /Ot h(X,)f(©,,)ds

0<t<T

To complete the proof we have only to note the following facts: Since M is compact, any
continuous function f on M satisfying the null charged condition (3) is uniformly approxi-
mated by functions of £ (cf. Chavel 1], p.139-140), and continuous functions are dense in
LP(M). Q.E.D.

2.3 Some limit theorem for additive functionals of a

Brownian motion on the cylinder

In this section, we will prove some limit theorem (Theorem 2.3.1) for additive functionals
of a Brownian motion on the cylinder R x T, T = R/27Z ~ [0,27], as an application of
Theorem 2.2.1 in the previous section.

First of all we prepare some notations for conformal martingales. Let z2(t) = z(t) +
v/—1y(t) be a conformal martingale i.e. (z) (t) = (y) (¢) and (z,y) (t) = 0. We denote these
common processes (z) (t) and (y) (¢) by (z) (t). Throughout this paper we always denote
by (z)7' (t) the process obtained by the right continuous inverse function of ¢ — (z) (t). If
(z) (t) — oo (t — 00) a.s., then the time changed process z({z)™" (t)) becomes a complex
Brownian motion by the Knight theorem. We always denote this Brownian motion by Z(%).

If z1(t) = z:1(t) + V=11(t) and 25(t) = z2(t) + V/—11,(t) are conformal martingales,

then we denote by (z1, z3) (t) the matrix of quadratic variation processes

((ﬁl,zz)(t) (-’El,yz)(t))
(y1,22) (8)  {w1,92) (1))

Note that (z,z) (t) = (z2) (¢) (1 0) and

0 1

</0 <I)1(s)dz3’/0' <I>2(s)sz>(t)

_ /otRe(@ﬁbz*)(s)d(z)s((l) (1))+/0tzm((1>1<1>2*)(s)d(z),(2 _01)

(Here ®* represents the complex conjugate of @ .)
Let (S, B(S), ) be a measure space and set F = { A € B(S); u(A4) < +oo}. A family

of random variables M = {M(A); A € F} is called a (real) Gaussian random measure on
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S with mean 0 and variance measure yu if and only if M is a Gaussian system such that
E[M(A)] = 0 and E[M(A)M(B)] = u(A N B) hold for any A, B € F. Furthermore, a
complex Gaussian random measure M on S with mean 0 and variance measure pu is by
definition a family of complex random variables M(A) which can be expressed in the form
M(A) = M;(A)++/—1M;(A) where M; and M, are mutually independent Gaussian random
measures with mean 0 and the same variance measure p.

Throughout this section, we always denote L*(T ~— C,d§/2x) by L?(0,27). Let us

introduce a definition of regularly varying functions of a complex variable:

Definition 2.3.1. A function f(z) defined on 0 < |z — a| < R is called regularly varying
at a(# 0) with order p(> —1/2) if there exist some slowly varying (at co ) function L(}),
c(8) € L%(0,27) and r > (log|a/R|) V 0, which have the following two properties:

1°) There exist some constants € > 0, K > 0, and Ay > 0 such that e < p+ 1/2 and
2T —r[A
/ de/ (VLX) f(a = a?*+VT)| =M da
0 —o0

< K- (sp—=+1/2 locs<) + gptetl/2 1(321))
forall A > Ag and s > 0.
2°) For any s > 0,
2 —rfA - Aad /=T 2 2/
[T de [T 000 o — YT — @) (o) e e
0 —00
— 0 as A — 00.

For a = 0, we substitute the condition » > (log|a/R|) V 0 with the condition r >
(=log R) V0 and a —ae**+V=1¢ with ¢***+V=1¢ ip the above definition.

We call N(A) = ML()) and ¢() the regular normalizing function of f at a and the
asymptotic angular component of f at a, respectively.

Furthermore, we call a function f(z) defined on |z| > R regularly varying at oo with order
p if f(z) = f(1/z) is regularly varying at 0 with order p. The regular normalizing function

of f at oo and the asymptotic angular component of f at co are those of f at 0, respectively.

Remark 2.3.1. The class of functions regularly varying both at a and at oo defined above

contains the original class of functions regularly varying at a defined by Watanabe([12]).

Ezxample 1. For any given domain D C C such that D or D¢ is bounded, the function
f(z) = 1p(2) is regularly varying at a with order 0 for any a € CU {00} \ dD. The regular
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normalizing function of f at a is 1 and the asymptotic angular component of f at a is 1 if
a€ Dand 0if a ¢ D. (Here we consider that co € D when D¢ is bounded.)

Ezample 2. Let g(6) € L?(0,27) and let h(z) be an ordinary regularly varying function at
oo with exponent p(< oo) such that

h(Az)
h(})

<K- (x”_‘l(|z|<1) + m'[’“Lel(lxlzl))

for all A\, where K > 0 and £ > 0 are some constants satisfying ¢ < p + 1/2. Then
f(2)=g(argz_a)‘h(-log )
—a

is regularly varying at a with order p. The regular normalizing function of f at a is h(})

zZ—a

—a

and the asymptotic angular component of f at a is g(6).

When f(z) is regularly varying at co, the asymptotic behavoir of f(a — ae’\“\/‘_le) 1(z>0)
as A — oo for every a # 0 can be described using that of f(e***+V=1¢) 1(z>0):

Proposition 2.3.1 Suppose that a function f(z) defined on |z| > R be regularly varying at
oo with order p. Then for any a € C\ {0}, there exists ' > log(1 + R/|a|) such that the
following two properties hold:

1°) There exist some constants € > 0, K > 0 and Ao > 0 such thate < p+1/2 and

INCTN

< K- (s”““lz Liocsct) + s2H<F1/2 1(321))

2
A$+\/—_19)

(2.13) I, e~ I*dz

for all X > X and s > 0.

2°) For any s > 0,

O

— 0 as A — 00,

2
__f )\1+\/_—-9) c(—9 — a,rg(—a)) - z® C_I?/S dz

where N(X) and c(6) are the regular normalizing function of f at oo and the asymptotic

angular component of f at oo, respectively.
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Proof. By the assumptions, there exists some r > (log R) V 0 which satisfies the following

two properties:

1°) There exist some constants € > 0, K > 0 and Ay > 0 such that e < p+1/2 and

2x +o0
(2.15) / d8 /
] /)

< K- (3P_5+1/2 Lio<s<) + sPretif2 1(321))

2

/\x+\/—_19) 6—17/3 dz

1
fv_(/\—)f(e

for all A > Ay and s > 0.

2°) For any s > 0,

(2.16) /0 48 / :”

— 0 as A — oo.

2

= tVI) _ (=) - z?| e /0 dx

1
mf(

Now denoting max (r, log(|a|? + 2|a|), log(1 + 1/|a|)) by r again, we see that (2.15) and
(2.16) clearly hold for this new r. Therefore we may assume that r > log(|al* + 2|a]) and
r > log(1+41/|al). Set r' = log(1+e"/|a|). We have that ' > log(1+ R/|a|) since r > log R.

In order to change the variables of the integrals I; and I, above, we set

' gt =
O s LRt VAV L

a
Then

=z~ llog]aJ’\|

A b

§' =6 — arg(—aJ*)
and

dz' Adf' = (=2v/=1)z — af)™' - dz A dz = |J*|Pdz A dF,
where

JMz,8) = ‘= (1- czez"‘“”“/_—w)_1

z—a
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Hence
2w _ . — 2
Il = '/0 df R 1()‘.'1.‘—log|aJA|>r’) ' |N()‘) lf(e/\ +\/_19)|
X exp (—(:c - %log|a]kl)2/s) |J*)? dz.

Noting that |J*| > (1+]ale™**)"! and r’ = log(1+€"/|a|), we see that if Az —log|aJ?| > 7/,

then Az > r. So we have

2r + oo
I g/ de/
0 /A

Moreover by the inequality r > log(]al? + 2|a]) it holds that

2
peivn[ o (_(x - §log!aJ*|)2/8) | .

1
mf(

] < (1 - Jale™%)7 < (1= [ale™) < [a] e/,

This implies that

1 A z
(2.17) 3 log |aJ?] < 3
for z > r/A. Therefore,

2r +00 1 2 2

I < -2 r/ d@/ Az+/=18 -z /4sd

L S SRR TVEAS )| € :
which proves (2.13) together with (2.15).

Similarly,
2x + o0 1

218) L < o [T do [ | (e
(218) L < a7 [ d8 || s YR

21
)

On the other hand, by r > log(1 + 1/|al) it holds that

—c(=f 4 argJY) - (z log |aJA|)”|2e_’2/4‘ dr.

|} > (1+ |a|e"*””)_1 > (14 |ale™)™ > |a]~te.

This implies that
1
A
for z > r/). Noting this and (2.17) we have the estimate

log|aJ* > ~z

1
zf — (z — Xlog laJ*|)? L(z>r/n) < const. 27 1(;50)
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for any p > —1/2. Hence we can easily prove that

519 21rd0 +o00
(2.19) /o /r/,\

— 0 as A — o0

2
c(=0)z? — c(—0)(z - %log]a]’\l)” e== 14 gy

by Lebesgue’s convergence theorem and the fact that
JMNz,0) — 1 as A — oo

uniformly in ¢ for any z > 0.

Since arg J* — 0 as A — oo uniformly in 8 for any z > 0, we can also prove that
2r +oo 1 2
(2.20) / df // (z — Xlog laJ*|)?|c(—8) — c(—8 + arg J*)|2e~=" /4
0 rfA
— 0 as A — oo
by Lebesgue’s convergence theorem and the fact that
2
/ le(—=8) — c(—8 + arg J*)|*d§ — 0 as A — oo
0

for fixed z > 0.
Combining (2.18), (2.19), (2.20) and (2.16), we obtain (2.14). Q.E.D.

Let (z,,0;) be a Brownian motion on the cylinder R x T matisfying zo = 0 and 6, = 0

a.s. Clearly
¢
w=o+ V1 [ ds,
0

becomes a complex Brownian motion. Our main theorem in this section is as follows:

Theorem 2.3.1 (1) Suppose that the functions fi, -, f defined on 0 < |z — a| < R are
reqularly varying at a with order py,-- -, pm, respectively. Denote the regular normalizing
function of f; at a and the asymptotic angular component of f; at a by N;(\) and c;(8),
respectively for 1 =1,--- ,m . Then there exists some r > (log|a/R|) V0 and we have

{ My / fila = ae***) 1pg,<-n) dz,
0
N [ 1fila = a) Lona,con ds },

—_ { c—,-/o (—24)" 1(z,<0) dz, +/0 /0“ (ci(8) — ) (—2z4)P" M (1(z,<0)ds, dF),



as A\ — oo in law, whereT = (1/27) [o™ c(8)df and M is a compler Gaussian random measure

on [0,00) x [0,27] with mean 0 and variance measure dt - (df/2m) which is independent of

z(t).

rm (2) Suppose that the functions fi,---, fn defined on |z| > R are regularly varying at co
with order py,- -+, pm, respectively. Denote the reqular normalizing function of f; at co and
the asymptotic angular component of f; at 0o by Ni(A) and ¢;(8), respectively fori=1,---,m
. Then, for every a € C\ {0}, there exists some r > (log(1 + R/|a|)) V0 and we have

{ N,'()\)_l/o f,-(a — ae“‘) l(A$‘>,)dz,,

N.'()‘)_z/o |fila — aeh')|2 10a2,>r) ds }1<e

<m

— { c—'./o'(z,)m Yz,>0)d2zs + /0 /02”(C,‘(9) =) (2s)" M(1(;,>0)ds, df),

IC,‘|2‘/0‘ (m3)2pi 1(z.>0) ds }151'5,"

as A = oo in law, wherec = (1/27) [ ¢(8)df and M is a complez Gaussian random measure

on [0,00) x [0,27] with mean 0 and variance measure dt - (d/2m) which is independent of

z(t).

Proof. We will prove (1) only, because by Proposition 2.3.1, the proof of (2) proceeds
similarly. (Note that

{ /(;. /ozr(c,-(—ﬁ — arg(—a)) — &)(z.)" M(1(z,>0)ds, df) }

1<ti<m

is equivalent in law to

{ [ /02"(0.'(9)—'CT)(zs)P-‘M(l(,,>o)ds,d9)} )

1<i<m
Let {eo = 1,€1, -, e,} be some orthonormal system in L?(0,2) such that
P
ci(f) = Zagk)ekw), af.k) €C (k=0,---,p)
k=0
fori=1,---,m. Define

t
(221) VO = [ 000 lowicmdze  (E=0,---,p)



for some r > (log |a/R|) V 0. Then it holds that

(222) I, = E sup IN()\ / fila = ae***) 15z, <—r) dz,

0<t<T
Zam/ P dVA( )|0—+0 as A — oo.

The proof of (2.22) is as follows. Let ¢(t,6,7) be the transition density of 6(t). Then

2

I, = E sup
0<t<T

[ (M) i = ae*) = G0)(=2.)") Tonescon d

< const. B / N:() 7 fila = ae**) = ci(A8,)(=2.)%[ 1sicry ds
= const. E / |N:(3)7 fila — ae= YT — ¢ (6(X25))(=2.)°] 1az,<cr) ds

2r
= const./ ds/ dd q()\?s,0,6)
0 0

7 M) e — e — o) (e
Hence noting the inequality

q(s,8,7) < const.s™/% 4 const.
which we have seen in the proof of Lemma 2.2.2, we have

T
I, < const./ ds(const. \™'s™! + const. s71/2)
0

27 00
8 / a8 /3 ’Nﬂ'(k)—lfi(a — a1 C.’(e)(—x)”‘r e 1% 4z
0 -7

This last expression clearly tends to 0 as A — oo for some r > (log |a/R|)VO0 by the definition
of regularly varying functions at a and Lebesgue’s convergence theorem.

Similarly we have

(223) Jy = FE sup

f |fila — ae®)? Loz em r)ds_|c'|2/( )gp,d<vx>

0<t<T
— 0 as A — 0.
Actually,
¢ S
Jy = E sup / (N;'(A)—2|fi(a"aeh')|2“|Cz‘|2( )2p') 10z, <-r) ds
o<e<T lJo
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IN

E/ )72 fi(a — ae*)[2 = [ei(A8) (=2, 1sas<mr) ds

t PR
+E sup /0 (1) = TaF) (=2.)% 1as,<ry ds

0<t<T

= J,\(l) + J,\(z).

By Theorem 2.2.1, we have that J,(¥ — 0 as A — co0. As for J,(),

, 1/2
5 < (B [ RO 1A 0 + 1002 <o ds)

1/2
X (E/OT INi(/\)_llf.‘(a — aet)| — ]c,-()\es)l(_xs)p.-l2 1w <o) ds)

by Schwartz’ inequality. The first expectation in the last form is bounded by a constant by
the definition of the regularly varying functions. The second expectation in the last form is

bounded by the expectation

E/OT IN,‘()\)—If,‘(a - ae“') —_ C,‘(/\H,)(—.T,)pir 1(,\I_<_,) dS

which tends to 0 as A — oo as we have seen above in the proof of (2.22).

Therefore if we can prove that the joint processes

{ [eravd(s), [ (e dvid(s),

0

/O.(_ms)zp,- d<V0/\>s , /0'(_%)2;:; d<VkA>’ }E:‘;:

converge to

. 27
{/(— )7 1(z,<0) dz, // )7t M(1(z,<0)ds, df),

‘ ) : A 1<k<p

/0(_235)2’)' 1($.<0) ds, A(—m,)Q"' 1(9::<0) ds }15,'5,”
as A — oo in law, then we can finish the proof of our theorem. This follows at once from
Lemma 2.3.3 and Lemma 2.3.4 below. Q.E.D.

Before stating these lemmas, we introduce the following two general lemmas which have
been obtained in Watanabe [12].

Lemma-W 1 Let M, be a continuous conformal martingale for any A (1 < A < o0)

satisfying the following properties:



(2.24)  E((My)(t))* < K1(2) foranyt >0 and 1 <A < o0,

t 2
(2.25) E (/ |1 (8)|2d {M)) (s)) < Ko(t) foranyt >0 and 1 < ) < o0,
0

(2.26) /I@A )2d (M) (s) — ast — o0 a.s. forany A (1 <A< o0),

where K1(t) and K,(t) are some positive functions independent of A, and ®,(t) (1< A <

o) are some (FM*)-predictable real or complez valued processes.

If
{m, (M), </0 (I)A(s)dMA(s),MA>, /0 |<I>A(s)|2d(m)(s)}

_.»{Moo, </ .o (s) dMoy > /l%(s )P d (M) (s )}

as A — oo in law on C([0,00) — C x R x R* x R), then

{MA,/% )M (s /|<1>A ()7 d MA)()}

{w,/é )dM., /|<I> |dM)()}

as A — oo in law on C([0,00) — C? x R).

Proof. We will prove the lemma assuming that Ay and ®, are real valued, because the

proof of the general case follows at once from this case. Set
t
A(£) =/ ®y(s)dMa(s) (1< A< o).
0

By the condition (2.26) and the Knight theorem, we see that N, ( 1 < A < 0o ) becomes
a Brownian motion. Thus the laws induced by Ny = N,((N,)) form a tight family, which
implies that the family of laws induced by

{ My, Ny, (My), (My,Ny), (Ny) }

is tight. Hence we may choose one of the limit points of the above family which we may

assume to be the law of
{ My, X, (My), (Ms,Noo), (No) },
where

Ny = /0. D (s) dMoo(s)



and X is some continuous process. Then we can conclude that X = N, as follows. We
see from the condition (2.24) that both {M3(t)}x>1 and {(M,)(t)}r>1 are uniformly in-
tegrable for any ¢ > 0. Similarly we see from the condition (2.25) that both {NZ(t)}x>:
and {(N,) (t)}»»>1 are uniformly integrable for any ¢t > 0. Therefore {M,(t)Nx()}s>1 and
{{M), N,) (¢)}x>1 are also uniformly integrable for any t > 0. Consequently, we see that M,

and X are (FM=*)-martingales and that
(X) = (N) = [ 10ea() " d{Moc) (5),

(X, Mao) = (Noo, M) /cb w) ()

from the Skorohod theorem realizing a sequence of random variables converging in law by

an almost sure convergent sequence. From these we have
(X = Noo) = (X)+ (Noo) = 2(X, Neo)

=z/0'|q>()|dM —°/<I> )d (X, M) (s)
= 2/0‘|<1> () d (M) (s —°/|<I> *d (M) (s)

which implies that X = N, a.s. Q.E.D.

Lemma-W 2 Let M, be a continuous conformal martingale such that limgjo, (My) () = 0o
a.s. for every A (1 < A < +00).
If

{ My, (M)} — { My, (M)} as A — 0o
in law on C([0,00) — C x R), then
{ My, (M), My} — { My, (My), Mo}  as A — oo

in law on C([0,00) — C x R x C).

Proof. Let X (t) be a process such that

{ MA(1), (My) (), Ma(t) } — { Moo(t), (Moo} (1), X(2) }
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as A — oo in law and realize this sequence by an almost sure convergent sequence. Since
E((M,\) (t)) = M,(t), we have that X ((My) (t)) = M (t). Hence X(t) = Mo (M) (1)) =
Mo (t). Q.E.D.

Now we state our lemmas which are essential in our proof.

Lemma 2.3.1 Ifc € L*(0,27) and p > —1, then

t t
I, = E sup / c(A8,)(—z,)° 1(,\z,<_.r)d8—5/ (=24)" Y(z,<0) ds
0<t<T 1J0 0
— 0 as A — 0o
for any r > 0.
Proof.

. p
I, < const.E‘/0 Ic(A@,)(—a:,) (1(,\x,<_,)—1(1,<0))' ds

+ E sup
0<t<T

t
/(; (C(Ags) - E(_ms)p l(z,<0)ds

LO 4+ 1,2 say.
By Lemma 2.2.1 and Lemma 2.2.2 we have
E[c(A,)(=2.)? (1pz,<=r) — lizco))| < E[26(28,)(~z.)7]
< 2B|z,|PElc(A6,)| = 2Elz,|* B|c(6(A%s))|
< const. [|c||;s?2(A7 572 + const. ) < +o0.
Then we can see easily that
E |c()\9,)(—m,)” (1(,\_.,5,<_,) - l(x,<0))| —0 as A — oo
for any s > 0 by Lebesgue’s convergence theorem. Since
/OT sP12(A~1s71/2 4 const. ) ds < +o0,

we have that I,() — 0 as A\ — oo using Lebesgue’s convergence theorem again.
On the other hand, it follows from Theorem 2.2.1 that [,(¥ — 0 as A — oo since A§(t)
has the same law as 6()\*t). Q.E.D.
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Lemma 2.3.2 If c¢(# 0) € L'(0,27) and p > —1, then for any A (1 < A < 00) and any
r>0,

t
/ [c(A)|(—24)P 1(pz,<—r) ds —> 0 a.s. ast— oco.
0

Proof. Fix K > 0,t >0, and 1 < A < co. Then for any o > 0 we have

a?t
P [/ lc()ﬂ,)l(—.’l)s)p 1(,\$‘<_,)d8 > K
0

- p [ /0 |e(30(a?5))] (= 2(0%8))° Laga2iyemry ds > K/az}

¢t
= P[/ |c()‘a93)l(—$s)p l(kax.<—r)d5>]\"/a/2+p]
0

This, together with Lemma 2.3.1, gives an inequality
a?t

lim inf P [/ le(A0)|(—24)? 1z c—ryds > K
a— 00 0

ot
> P [|c|/ (—2,)° 1z, <0y ds > 6}
0
for any € > 0. The last expression obviously converges to 1 as ¢ — 0 because zy = 0.

Therefore, noting that the process involved is increasing in ¢, we obtain the lemma. Q.E.D.

Lemma 2.3.3 Let Vi*(t) (k=0,---,p) be as (2.21). Then
{ %Al ka) <%A>) <Vk)‘> }ISkSp

: -2
—»{/ 1(z,<0) 42, // ex(0) M(1(z,<0)ds, df),
0 o Jo

/0 l(z,<0) ds,/o 1z, <0y ds }15k5p

as A — oo in law.

Proof. First note by Lemma 2.3.1 that

t 1 0
<Vk’\’VI>‘> (t) = /()Re(eke,*)()ﬁs) 1(,\1.,(_,)(18(0 1)

¢ 0 -1
A 1) (A0) 1z <o d
+/0 m(ere;")(A,) 10z, <—r) 3(1 0 )

t 1 0
—-»(5“/0 l(x,<0)ds<0 1) for k,l=0,---,p

as A — oo on C([0, 00) — R*) in probability for any ¢ > 0 and, also by Lemma 2.3.2 that
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<ka>(t)—>00 as. ast—oo fork=0,---,p.
Fixt > 0 and € > 0. Since the facts stated above imply that
P [(Vﬁ) (n) < t] —0 as n — oo,
P[/ 1(1,<0)ds<t]—>0 as n — 0o
0

and

P[(Vk’\>(n)<t] —>P[/0n1(r,<0)ds<t] as A — oo

for any n > 0, there exist Ay > 0 and ng > 0 such that
P 0> no] = P[(W*) (no) < ] <&

for all A > Ag. Therefore there exists A; > 0 such that

PN V) () @) > €]

< P [(WXYI (t) > no] + P [sup | (ka\’VIA> |(t) > ¢

t<ng

< 2

for all A > A,. Consequently we have

-1 0 0 ]
e (A (W) o — (o o) kA
as A — oo in probability for any ¢t > 0, from which we obtain that { 1//(?‘, 171\", e 17,7‘ }

converges in law to a (p + 1)-dimensional complex Brownian motion as A — oo by the
‘lsymptotic Knight’s theorem” in Pitman and Yor [10] (p.1008).

On the other hand, we easily see by Lemma-W1 and Lemma-W?2 that the limit law of
{ Vo, (o), Vo } is that of

{/0 1(z,<0) d2s, /0 1(z,<0) ds, /0 1(z,<0) dz, }

Hence we can conclude that the limit law of \7:*(15) (k=1,---,p) can be represented by
the law of

/Ot/o% ex(9) M(ds,d8)  (k=1,---,p).



Thus we have

[V, Vi, (V) Bt

{/ 1(,,<0)dz,, // ]W ds d9 / l(I‘<0)dS}

as A — oo in law. This implies the assertion of the lemma. Q.E.D.

1<k<p

0<<p

Lemma 2.3.4 Let Vi*(t) (k=0,---,p) be as (2.21). If p > —1/2, then
. A o .
) { W, [(eravide), [ (e a(v), )

_){/0 1(x.<0)dzsa /0(_ms)p 1(:.<O)dz.n /(;(_xs)zp l($.<0)ds}

as A — oo n law and
(2.29) { Ve, /'(—m,)ﬂ AV (s), /'(-ms)zpdm*) }
0 0 s
2n
/ / 8) M(1(z,<0yds, d8),

A /2" —2.)? M(1(s,<0)ds, d8),
/0(_ ) i l(z,<0) ds }

fork=1,---,p as A = o0 in law.

Proof. Set

t
Vooo(t) =/0 1(.’1::<0)dzs

and

t 2w
=/o /o ex(6) M (1(z,<0)ds, df).

By Lemma 2.3.1, we have

[[era(n), - [(ap=ame,

— 0 as A — oo

E sup
0<t<T
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and

E sup
0<t<T

fjmra(w), = (e,

— 0 as A — oo

for k=0,1,---,p. On the other hand, Lemma 2.3.3 implies that
(v, (V)Y - = {V>, (BW™) )} asd— oo

in law for each k. Therefore,

{vd, (W), ([(=a0r a(), @), ([ (—ar avd@) }
- (w0, [nrate), (3 0), [emraw),)

_»{ ), [ (e d (v ((1) (1)),/0'(—m,)2”d<Vk°°>,}

as A — oo in law for each k.

Thus if we can prove that the above processes satisfy the conditions (2.24)—(2.26) in

Lemma-W1 | then (2.28) and (2.29) follow from Lemma-W1. It is easy to show that
(2.30) FE <Vk’\> (t)? < const. (/2 + const. t)?, 1<) < o0
for each k. Indeed,

FE <ka> (t)2 = 2E /tds/t lek(/\Hs)lzlek(AHu)lz 1(1 <0) 1(3: <0) du
0 s s u
t t
< 2E/0ds/s lex(38,)[2lex(A6a)[2 du
t t
- 2E/0ds/ lex (8(X%5)) P |ex (8(7\22))|? du

t t
< const. /a’s/ (A2 4 const. ){ A" (u — 5)"Y/2 + const. } du.
0 s

Here the last inequality follows from Lemma 2.2.2. Then we have (2.30).

We can also prove that

/Ot(_xs)zpdo/k,\)s 2

for each k by a similar argument as above using Lemma 2.2.1 and Lemma 2.2.2.

E < const. t?°(t}/? 4 const. t)?, 1<A< o0

Further it has already been shown in Lemma 2.3.2 that
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t
/ (—m,)z"d<Vk"> — 00 (t = oc0) as., 1<A< o
0

L]

and
t t "
/ (—z,)*?d(Vi™), = / (=24)*" 1(z,<0)ds — 00 (t — o0) a.s.
0 0

for each k. Consequently we have completed the proof of the lemma. Q.E.D.

2.4  Application to a limit theorem for “winding-

type” additive functionals

Throughout this section let z(t) = z(t) + vV/=1y(t), 2(0) = 0, be a complex Brownian
motion starting at the origin. Let aj,as,---,a, be given distinct points on C\ {0} and
Qo = 00. For i = 1,---,n,00, let f;, fiz, -+, fim be some regularly varying functions at
a; with order p;1, pi2, -, pim , respectively. (See Definition 3.1.) We denote the regular
normalizing function of f;; at a; by N;;(A) and the asymptotic angular component of f;; at
a; by ci;(f) fori=1,---,njooand y=1,---,m.

The main purpose of this section is to give the joint limit processes, as A — 00, of the
processes { A;;~*, Ai;+* } defined by

1 u(At) fi'(zs)
A,‘ '_'\(t) = J 1D - (zs)dz,
(2‘31) I )\N,J()\) /; 2y — Qy (=)

Ayt (1)

1 ‘U.(At) °°~ Z;
/0 ooy )lD(i-i-)(zs)dZs)

/\NOOJ()\) Zs — Q4

where u(t) = e* — 1, D(:—) is some bounded domain containing a; and D(i+) is some
domain such that D(i+)¢ is bounded and a; € D(i+). As we shall see, a particular choice
of D(i—) and D(i+) is immaterial in the limit theorem.

First, we introduce the notion of K — convergence for stochastic processes:

Definition 2.4.1. Let D; = D;([0, 00) — R?) be the space of all R%-valued right continuous
functions with left limits. A sequence of Dj-valued stochastic processes {X, ()} is said to

be K-convergent to X (t) if there exist a sequence of R? x R-valued stochastic processes
{(Ya(2), 0n(t))} and (Yoo (t), 0oo(?)) such that

1°) Y,(t) (1 <n<o0)and g,(t) (1 < n < o) are all continuous stochastic pro-
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cesses,

2°)  n(t) is non-decreasing a.s., ¢,(0) = 0 and ¢,(t) — oo as

t — oo as. forall 1 <n< oo,
3°) Xa(t) =Ya(er'(t) (1<n<o0),
4°) {(Yn, 0n)} — (Yoo, ©0o) as n — oo in law on C([0,00) — R? x R).

We remark that the main limit theorems by Kasahara and Kotani [6] are in the sense of
K-convergence. If {X,,(¢)} is K-convergent to X (t) as n — 0o and X (?) is non-decreasing
w.p.1, then {X,(t)} is weakly M;-convergent to X (¢). Generally, M;-convergence does not
follow from K-convergence but, if {X,(t)} is K-convergent to X, () as n — oo and ¢}
has no fixed discontinuous point, then {X,(¢)} converges to X (t) as n — oo in the sense
of finite dimensional distributions. This fact is obviously derived from the following real

variable proposition:

Proposition 2.4.1 Let {y,(t)} and {@.(t)} be sequences of continuous functions on [0, c0)
such that @,(t) is non-decreasing and ¢,(t) — oo (t — o0) (n = 1,2,--:). Suppose
Yu(t) = y(t) and p,(t) — @(t) uniformly int on each compact sets as n — oo and ¢(t) —
oo (t — 00).

If y(t) is constant on (@~ (to—), 9~} (to)) for some to € [0,00), then we have

(232)  yale; (b)) — y(e ™ (k)  (n— o0).

Particularly, if o™ (to—) = ¢! (to) then we have (2.32) also.
We omit the proof.

Next, in order to describe the joint limit processes, we introduce a particular system of
n complex Brownian motions and n + 1 complex Gaussian random measures. As in the
preceding section, we always denote by M (t) the time-changed process M({(M)~!(t)) for a
conformal martingale M(t).

Let { = ({1, -+, ¢) be a C"-valued continuous process which has the following properties:
(1) Each { =& + v/ —11; is a complex Brownian motion

starting at the origin fort = 1,-- - n.
(2) Setting
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Qﬁ)=‘ngmﬂﬂﬂ

t
G) = [ Lenordds),
the family {¢i—,- -+, Cne, C14} is mutually independent and Gio=Cog = =0Cny.

An important fact is that a C™-valued process with these properties exists uniquely in
the sense of law. We will explain the structure of ¢ in Remark 3.1 in the last part of this

section.

Furthermore we take n + 1 complex Gaussian random measures My, ---, M, M, with

the following properties:

(3) Each M; is a complex Gaussian random measure on [0, 00) x [0, 27] with mean 0

and variance measure dt - df /27 for 1 =1,---,n, +.
(4) The family {¢, My, -+, M,, M} is mutually independent.

Now define, for : = 1,2,-- -, n,

Zi(t) = Xi(t) + V=1Yi(t) = /t dz,

)
0 2, — Q

7)) = X0+ VIR (1) = 12(2)7 (%)

and
R0 = (27 0%)

t A
= glxlog [A2|a;|2/0 e X (D ds 4 1]

Then our theorem can be stated as follows:

Theorem 2.4.1
— <i<m <m
{Z, 1, A M), A (3 NEED — {6y iy Lo=, L W22
as A — oo in law on C([0,00) — C" x R" x C™" x C™"), where

wit) = max &(s),
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t

(233)  Lo-(t) = T [ (-6 ()
[ [ (0(6) = =6 Mi(d (G- (5), ),

(2.34)  Lyi(t) = m/ot&(s)”“’dcﬁ(S)

b ) = T M (G (), )
and T = (1/27) [§" c(8) df , in general.

As a corollary to Theorem 2.4.1, we can conclude the following:

Theorem 2.4.2
—~ < _ —_ <m
{ Z; ) AU-— ) At]+/\ }Efgsn - { Ci) ‘Cij—(/'l'i l)) E.]+(/. l) iéfén

as A — 0o in the sense of K-convergence.

Proof of theorem 2.4.1
The fact that

{Z0, i} —{G max&(s) ) ash—oo
in law on C([0, c0) — C x R) for each i was obtained by Kasahara and Kotani ([6], Lemma
3.1).
The first important step in our proof is the following transformation:

(zi)~'(2%)
(2.35) A/ fz‘ dz,

—a'

(Z:)~1(2%)
= -)1:/ f(a; — a,-ez‘(’)) dZ(s)
0

t p Y
= / f(a,‘ e a;eAZi (3)) dZ,‘ (S)
0
By this transformation, we have

Ay M) = N,Jl(,\)/(f” Lpioy)(a — aie? ) dZ; (s)

1 t 72 oA
AN mAE) = Noo; () /0 (foos * 1o — a;e?? ) dZ ().
00j
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Fix sufficiently large » > 0 and set

1 t 2 —
A —_ . oAZi (8) — .
F; -7t = N,‘J'()\)»/(; fijlai — aze ( )l(ui)\(,K_.,)dZ, (s)

1 t ~ A —~A
A Ar. — . orEi (3) . )
i) = 305 || feoslai = a5 O) 1,505 dZ (5)
Since
sup |1pa-y(ai — ;e tV=Te) lz<—r) — 0
0<6<2r
and
sup |1pasy(ai — @e*™V18) — 15| — 0

0<o<2n

as A — 00, we can easily deduce that

(2.36) E sup |Aij+ (1 (t)) — Fi;2*(t)]? — 0 as A — oo
0<t<T

and

(2.37) FE sup | <A;J'i>‘(7‘,"\)> - <F,~J-i’\> | — 0 as A — oo
0<t<T ¢ t

by a similar argument as in the proof of Theorem 2.3.1.

Therefore the joint processes

have the same limit law as the joint processes
=2
{Z; , Fii?, <Fij—’\>, Fiji?, (Fij+A>}

1<5<m

1<i<n

We know by Theorem 2.3.1 that the joint limit processes as A — oo of{ /Z\i/\, F; A <F,'J-_"> }
1<j<m

=2
and{ 77, Fyi?, (Fys) }1<_< are { G, Lij—, (Li-) hejem and{ G, Lis, (Lija) higjcm
Sysm
respectively for each ¢, where £;;_ and £;;; are defined by (2.33) and (2.34). Then the laws
of

7 A A A A tsign
{Zi L Ay M(1), (A5 () ) A (132, (Ag(n )>} o
1<58m
A > 0, form a tight family because each component converges in law. Further it is clear from
the above argument that we may assume for any limit point of this family that it is the law

of
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{ G, Aijoy (Aiim), A, (Ais) HED,

where (3, (3, - -, (, are some complex Brownian motions,

t

-Aij—(t) = Ct] ( E( ))pij dC ()

+/ /% (ci;(8) — TH)(=&(s))" Mi(d(Gi-) (s),db),

Asel®) = T [ ()™ dGa(s)

[ 7 (Cs(®) ~ TP B (G} (), 00)

and My, My, My, My, M, -, M, are some complex Gaussian random measures on [0, 00) x
[0, 27] with mean 0 and variance measure dt-df/2m. We fix these (y,- -+, ¢, My, -+, M, My, M,

below. It remains to prove the identity

03) Gi=Gi=- =

the identity

(239) My=My=---=M,:= M,

and the mutual independence of

(240)  Gimy Gooy oy Gy Giay My, My, ooy Mo, My

Firstly we prove the identity (2.38). As a consequence of (2.36) and (2.37), we may
replace D(i+) by D(1+) N D(24+) N --- N D(n+). Therefore we may assume that

D(1+) = D(24) = -- - = D(n+) := D(o0).

Set

u(At)
z+ A /

This is the particular case of A;;4* (t) We remark that

‘ 1D(0°)(Zs) dzs.

(2.41) E sup |W,+ (1)) — Wi (1 ( ))'2 — 0 as A — o0
0<t<T

and

(242) E sup l(W ’\(7'1’\)>t - <Wl+’\(7’1’\)>t| —0 as A — oo

o<i<T
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for any i. To prove (2.41), note that

1z 1
Wk @) = 5 [ ——— Ip(ey(5) 42,
1 2071 (%) 1 z,—a
= X/ - ID(OO)(Z,) . 1 dz,
0 Zy — Qq Zs — a;

= [ 1nealar — @B O ROT AT 42 6),
where
Ri(z,0) = ——ale”‘/'_w/(al —a; — ale”‘/:Te).
Hence

2
E sup WX (1)) = Wi (0 (2)]
0<t<T

T 22N s) T\ 2
< const.E/ Ip(eoy(a1 — are™ )| Ry(A X1, AY: ) — 1} ds.
0

Since 1p(eo)(a1 — a16**V=1)| Ri(z,0)| is bounded in (z,6) € R x T and SUPg<p<2r 1D(c0) (a1 —
a1 VIO R(Az,0) — 1| — 0 as A\ — oo for any z # 0, we can deduce the convergence
(2.41). The proof of (2.42) can be given similarly.

Then the laws of Py, A > 0, of

{/Z\.‘A, Wi (1Y), (WA (n), wal (n?), (W A(71A)>}

1<i<n

form a tight family and we may assume one limit point P,, of { P\} to be the law of

{Ci) <i+1 (Ci+); Cl+) <Cl+) }lSiSn-

Let Py, — P, for some subsequence and write A, as A for the notational simplicity. We can
prove that <V¥/}i"(7',-’\)>t — oo and <W,-+A(T1A)>t — 00 as t — oo by a similar argument as

in the proof of Lemma 2.3.2, and hence we have, by Lemma-W2, that
—A — —
{Zi ) Wi+/\(7—i/\)y Wi A(7-1')‘)) I’V,’.;./\(Tl/\), Wi A(TIA) }ISiSn
- { Ci) Ci+) a:) C1+) 4{1: }15.‘511

as A — oo in law. We may assume by the Skorohod theorem that this convergence is uniform
on each compact interval a.s. Then we see that a is identical to (/1: for: = 1,---,n because
Wi A (r2) = Wi 2 (r12). Thus the identity (2.38) is now proved.

Secondly, we prove the identity (2.39). We can prove similarly to (2.41) and (2.42) that
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2
E sup |A£j+A(71A(t)) - A11‘+A(Tlx(t))| — 0 as A — 00
0<t<T

and

EOSSI:ET|<AiJ+A(TIA)>t - <A11+A(71A)>tl — 0 as A — oo

for any ¢ and j. Let P, be one limit point of the tight family of the laws Py, A > 0, of

1<<m

{Z’A, Ay (1), (Aij+A(TiA)>a At (1Y), <A51+A(71A)> }

1<i<n

We may assume the law of P, to be the law of
{Ci) Aij-l-) <Aij+>) Alj-h <-A]j+> ié{é;n

Let P,, — P, for some subsequence and write A, simply as A. Since we can prove that
<A;J-+(T,"\)>t — oo and <Ai]-+(71")>t — 00 as t — oo by a similar argument as in the proof

of Lemma 2.3.2, and hence by Lemma-W2 we have that
A A7 YR A/ A 7oy 11<5<m
{Z0, A (17), A (1Y), A (), AN (n?) higlzn
i = 11<<m
— { G, A+, Aijsy Asjs, Ayjs 1220

as A — oo in law. We may assume by the Skorohod theorem that this convergence is uniform

on each compact interval a.s. Then we have that

—

(243)  Aalt) = Aou() = = Age)  (G=1,-,m)

—

because A;j;‘\(n“) = Aij+ (1?).
Set

Nos(t) = A (G) ™ ().
The identity (2.43) implies that
(249) Noa(®) = Noa(t) = = Nus)  (G=1,-,m).
On the other hand, note that
Nos) = @5 [ (606" () VO)'™ dGr(s)
[ [ cosl8) = 73) (6G)™ (D) v 0)"™ (s, db)
and
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(W) ( |cm|/ (G+) ™1 () VO) "™ ds.

Since &({Gi4) ™ (t)) VO, i = 1,---,n, are the same reflecting Brownian motion by the identity
(2.38) (See remark 2.4.1 below), we have that

(245)  Nya) ()= Nag) () == WNued (1) (G=1,---,m).
Combining (2.44) and (2.45), we obtain the identity
Niya() = Nojp(t) = - =Nuys(t)  (G=1,---,m).
This clearly shows the identity (2.39).
Finally, we prove the mutual independence of (2.40). Let {eq = 1,5, -, €,} be some

orthonormal system in L?(0,27) such that
p
ci;(0) = Y ai;Per(8), a;PeC  (k=0,---,p)

fori=1,---,n,o0oand 3 =1,---,m. Set

gy = [ .
VM) = /0 O (N 1,y ey 825 (5)

o = [ _
Vs (1) = /0 x O () 1,52y 80 (5):

By (2.22) and (2.36), we have

2
E sup A,-,_ Ti Z a.](k)/ X )i dV,-k_*(s) — 0 as A — oo
0<t<T
and
2
E sup A,-J+ e Za (k)/ X $)P=i dVi M(s)| — 0 as A — oo.
0<t<T

Hence by Lemma 2.3.3, Lemma 2.3.4 and Lemma-W2 we may assume the law of one limit

point of the tight family of the laws of
{Z‘A, Ay (1Y), Ay (7, /.(—ZA(S))'"" AVi-2(s), Vie?, Ve,
0
— 1<3<m; 0<k<p

oy . <3<m; 0<kS
/0()(l (S))pw’ dVik+A(3)’ Vik""\’ I/ik"'/\ }1§i5n ’
A > 0, to be the law of

—

{Cz, =y Aij+, /0.(—&'(3))”"" dVik-(8), Vik—, Vik—,

1<5<m; 0<k<p

1<i<n ’

/0 E(5)7 Vi (s), Vire, Vire }

where
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Vi-(t) = ¢-(1)

Vik— (t)

[ e G)(),d8)  (k=1,,p)

Vio+(t) = G4(1)

27
Varl) = [ [T @ Md () ()d0)  (k=1,--,)
Therefore if we can prove that
{ VT;—: V;k\—) T V/n;—’ Vllz‘l' }OSkSP

is an (n+ 1) (p+ 1)-dimensional Brownian motion, then the mutual independence of (2.40)
follows at once.

To prove this, set

dz,

Zg = Ay

1 A% 2y —
Gik—x(t) = ;\‘/0 €k (arg —a )l(loglz,—a.'/—a,']<—r)

1 A2 Zy — Q dz
A s 2
Gt (t) = X/o ex (arg — )1(1og|z.—a [=ail>r)

1 - a;

By the transformation (2.35), we have
G (A72(Z)7 (0%)) = Vi (1)

This implies that

-1

(246)  (Ga?, G ) ((Ga?) ™ (1) = (Ve V) (Vi) ™ ().

0 0
By (2.27), the right hand side of (2.46) converges to (0 0) in probability as A — oo for
any t > 0if £ # [. On the other hand, since

1(Iog|z,—a.'/—a,'|<—r) * l(log |lzs—aj[=aj|<~r) =0 if ¢ # ,7

for sufficiently large r, we have that

0 0

(247)  (Gu,Gp ) (1) = (0 .

) i i #

for any k,!. Combining (2.46), (2.47) and the obvious relation
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(6w Gy 0= )

for any ¢, k, |, we can conclude by the asymptotic Knight’s theorem in Pitman-Yor [10]
that { G, e, Gor?, Girs? }o<k<p converges in law to an (n+ 1) - (p + 1)-dimensional
Brownian motion. Then noting that G;;A(t) = V,-/;;"(t), we arrive at the needed conclusion.

Now the proof is complete. Q.E.D.

Remark 2.4.1. (due to S.Watanabe) _

The C™-valued process { = ({1, --,(,) can be constructed as follows: We follow the
notions and notations concerning Brownian excursions to [4], Chapter 3, section 4.3. Take
n Poisson point processes of Brownian negative excursions py~,p27,- -, pn~ (t.e. stationary
Poisson point processes on W~ with the characteristic measure n™), a Poisson point process
of Brownian positive excursion p* (i.e. a stationary Poisson point process on W* with the
characteristic measure n* ) and n + 1 one-dimensional Brownian motions i, 2, -+, fn, B+
such that the family (py~,--,p. ", 0%, 51, -+, Bn, B+) is mutually independent. The sum p;
of p;~ and p* is a Poisson point process of Brownian excursions (i.e. a stationary Poisson
point process on W = W~ U W™ with the characteristic measure n = n~ +n* ) and we can

construct a Brownian motion &; from p; as in Chapter 3, section 4.3 of [4],7=1,---,n. Set
mi(t) = Bi ( /0 Lo d3> + B+ ( /Ot L¢e,(5)>0) dS)

and define finally
G(t) = &) + V-1ni(2), i=1--,n

Then it is easy to see that {(i,---,(,} satisfies the conditions (1) and (2) above.
Conversely, suppose we are given a family {1, -+, (.} possessing the properties (1) and
(2). Set

G-t) = [l dils)  (i=1m)

G = [ewndils) (=10

and write

G-(t) := E;_(t)+\/———lni_(t) (i=1,---,n)
(2.48)

Ga(t) = &u(t) +V—Tnie(t) (i=1,---,n)



and

Go(t) =) +V=18() (i=1,---,n)

(2.49)
Galt) = Gou(t) =+ = Gur (1) 1= oy (1) + V=1 B4 (2).
By the assumptions, oy, -+, &, a4, B1, - - -, B, B+ are mutually independent one-dimensional

Brownian motions. By Tanaka’s formula, we have

(250) &EAO=&-(t)—L(t) (i=1,-,n)

and

(251)  &OVO=E&i(®)+LE) (=1,---,n),

where /;(t) is the local time at 0 of one-dimensional Brownian motion &(¢). If we make a
time change ¢ — (&_)7' (¢) for (2.50) and t — (&)~ (t) for (2.51), then &({&-)"" (1)) A
0, 7 = 1,---,n, are mutually independent reflecting Brownian motions on (—o0,0] and
E((&4) () VO, i =1,--- n, are the same reflecting Brownian motion on [0, c0). That is,

from (2.50) and (2.51) we have n + 1 equations

T;(t) = Ol"(t)—(ﬁ,‘(t) (2= l,~--,n)
(2.52)

r+(t) = a4(t) + ¢4(1),

where r;(t) = &((&-) T ()A0, i =1, n, mi (1) = E((E) T (DIVO, i) = L((€-)T (1)),
i=1---,nand ¢,(t) = l;((§i+)_l (t)). These equations give the Skorohod decompositions
of r;(t), 7= 1,---,n,+; in particular,
1 gt
#i(t) = l;lf{)l Z/o Lio<ri(s)<e) dS (i=1,---,n,+).

If p* is the Poisson point process of positive Brownian excursion corresponding to r4 and p;~,
i=1,---,n, are the Poisson point processes of negative Brownian excursions corresponding
tor;, thenpy ™, - -, pn", 0", B1, -, Pn, B+ are mutually independent. Thus we have recovered
this independent family from {(;}1<i<» and hence, the uniqueness in law of {(;}1<i<n is now
obvious.

Set

0<s<t



and

o (t) = (max r+(s)) - (t) = inf{u; r4(u) =t}

0<s<

Then we have the following:

(2.53)  L(7'(t) = da(04(2)) := e(t),

(G 7)) = 47

(2.54)

G+ UTH) = 631
and

(&) (@) = o7 (P+(a4(2))) ( =¢7'(e®)) )
(2.55)

(Ca) (1T (1) = o4(t) ( #¢3(e(t) ).

These properties are easily deduced by our way of construction of {{;(t) }1<i<n , cf.[4]. The
structure of the process ¢t — e(t) is well known: It is the inverse of the Dwass’s extremal
process (cf.[2]), in particular, for fixed ¢t > 0, e(t) has the exponential distribution with mean
t.

Putting together (2.48), (2.49), (2.52), (2.54) and (2.55), and noting that r;(¢;'(¢)) =
0 (i=1,---,n,+)and r,(04(t)) =t, we can express (;x(I7'(t)) and G2 (u7'(2)) as follows:

G-(7') = t+V-1G(1)

(2.56)
G7) = —t+ VIO
and
. G-(i7' (1) = e(t) + VI Cie(t))
GeliT (1) = 1= e(t) + VoI Balo4(1)),
where



Note that Cy,---,C,, Cy are mutually independent Cauchy processes in (2.56). Note also
that Cy,--+,C,, 4, B4 are mutually independent in (2.57).
These processes appear as components of limit process of windings of 2(¢): Theorem 2.4.2
implies that
{ Wi, Wi hcicn — { G=(u7), G (1) hicicn

as A — oo in the sense of K-convergence, where
1 ru(re) 1 ]
Wit (t) = X/o - 1pgiz)(2,) dz, (i=1,---,n).

z, — a
Taking D(i+) = D(i—)¢, the process Im[W;_*(t) + W;.*(¢)] is a normalized algebraic total

angle wound by z(t) around a; up to the time u(At) = ¢** — 1. Then the imaginary parts of
(2.57) clearly show that the primary description by Pitman and Yor([8]) of the asymptotic
joint distribution of windings of z.

In addition, using above analysis, we give an another description of the joint limit process

of windings of z; below. Let g(z) be a bounded function such that

I la()lal m(dz) < o0

for some £ > 0, where m(dz) denotes the Lebesgue integral. Set

7=5- [ la(=)m(d2)

and

1 ru(rt)
T 1) = X/0 g(2,) ds.

Then, by Kasahara-Kotani’s result (see [6]), we have

—
(258)  {Z, T%*) hicicn — { G, 20L(07") hicicn = { G, 20 € }i<icn

as A — oo in the sense of K-convergence. Combining (2.58) and Theorem 2.4.1, we have

{ W@, W (TH ™) hgisn — { G071 (/(29)), G+(571(/(29))) higica
as A — oo in the sense of K-convergence if g(z) > 0. By (2.56), we can express this last

limit process as
G-(7'(/(29)) = t/(29) + V=1CL(t/(29))

G711/ (29))) = —t/(29) + V=1C4(t/(29)).

This is one of natural (symmetric) descriptions for the joint limit process of windings of 2(t)

in the compact Riemannian surface C U {co}.
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Chapter 3

An Ergodic Theorem Related to
Some Limit Theorems for Additive

Functionals of Complex Brownian

Motion

3.1 Introduction

Let z(t) = z(t) + V=1y(#), 2(0) = 0, be a complex Brownian motion starting at the origin.
In the previous chapter, we proved an ergodic theorem for diffusion processes (X,, ;) on
R* x M where M is a compact Riemannian manifold, and then using it and Kasahara-
Kotani’s method, obtained scaling limit processes for some class of “winding-type” additive
functionals of z(t), which is an extention of the results of F. Spitzer [11], J. Pitman and
M. Yor [9], [10].

The aim of this chapter is to prove another ergodic theorem for (X (¢), ©(t)) using a similar
method in Chapter 1, and as its applications, to extend naturally the class of functionals for

which the result of Kasahara-Kotani and that of Messulam-Yor hold.

For example, it is shown in [6] that if f:C — R! is a bounded Borel function such that
/C [f(2)]]z]° m(dz) < 00 for some € > 0,

then

uw(VXt)
)\_1/2/0 f(z(s)) ds
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converges as A — oo in the sense of finite dimensional distributions, where m(dz) denotes
the Lebesgue measure and u(t) = ¢** — 1. In this chapter we will show the same convergence
for f € LY(C)NLP(C) (1< p< ).

For another example, it is shown in [7] and [10] that if hy,-- -, h,, k1, -, k,, are bounded
Borel functions from C to R' such that h;, k; € L?(C) (i =1,---,n), then

(ogt) ™12 [ {hi(e(s)) dals) + K(x() dy(9)}  (i=1,++,m)

converge jointly in distribution as ¢t — co. In this chapter we will show that if f;,---| f, are
Borel functions from C to C such that f,---, f, € L*(C) N LP(C) (2 < p < o), then

u(V/At
3 [ ) ) =10 m)

converge jointly as A — oo in the sense of finite dimensional distributions, where u(t) =
e — 1.

Before closing this section, we explain the contents of this chapter. In section 3.2 we
consider a class of diffusion processes on R x M where M is a compact Riemannian manifold
and state our ergodic theorem for them. As corollaries to this theorem, we obtain some
ergodic theorems for Brownian motion on R' x [0,27]. Then we give, as applications of
these corollaries, some limit theorems for additive functionals of z(¢), e.g., occupation times,
square integrable martingale additive functionals and occupation times in the null charged
case. In section 3.3 we prove the main theorem stated in section 3.2 by using the method of

eigenfunction expansions.

3.2 An ergodic theorem for some class of diffusion
processes on compact manifolds and its applica-

tions

Let M be an m-dimensional compact (connected) C*°-Riemannian manifold without bound-
ary and (©;)¢>0 be the Brownian motion on M (see Ikeda and Watanabe [4], Chapter 5,
section 4).

Let (X)e>0 be an R4-valued diffusion process determined by the stochastic differential

equation
dXt = O'(Xt) dBt + b(Xt) dt,
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where o(z) and b(z) are bounded and smooth, o(z) is uniformly non-degenerate and (B,):>0
is a d-dimensional Brownian motion. We assume that X and O, are independent, Xy = 0
and ©g = 8, (6 € M). In the following, we consider L,-spaces LP(R?), LP(M), L?(G)
where R? and M are endowed with Lebesgue measure dz and the Riemannian volume df,
respectively and G := R? x M is endowed with the product measure. The norms are
denoted by || |lprd), || s || lpca), respectively, to distinguish the spaces. Then our

main theorem is as follows:

Theorem 3.2.1 Let g(z,68) be a Borel measurable function from G to R' satisfying the
following conditions:

(1) g(z,0) € L'(G)  for some r with 1 <r < oo and r > max{d/2, m/2},

2) gz, l-ane™ ! € L2(RY)  for some p and B > 0 withr < p < o0 and p >
/(2 —m/r),

(3)  For almost all z € R, g(z,8) is null charged on M i.e. [y, g(z,0)dd =0 .

Then for every T > 0 and any N > 0, it holds that

¢
/ g(X#,,@x,)ds] — 0
0

sup 1% Eo ) { sup
0<p<NA 0<t<T

as A — 00.

Proof will be given in section 2.

Remark 3.2.1. The choice of # and p in Theorem 3.2.1 is not essential; The assumption
(2) is a sufficient condition for the existence of the expectation Egg,) [fol (X5, ©n4) ds]. In
the case that r < (d + m)/2 the assumption (1) does not guarantee the existence of this
expectation, while in the case that » > (d + m)/2 the condition (2) follows from (1) with

p=r.

Corollary 1 In the particular case of d = 1 and M = R'/27Z being the 1-dimensional circle
with radius 1, if g(z,0) € L*(G), g(z,8)e Pkl € L?(G) for somep and > 0 with1 < p < o
and g(z,0) is null charged on M in the sense that [y, g(z,0)df = 0 for a.a.xz € R!, then for
every T > 0 and any N > 0, it holds that

t
[) Q(X,m eAs) ds

sup /11 E0,60) [ sup ] — 0
0<u<NA 0<t<T

as A — 00 .
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Proof. Apply Theorem 3.2.1 with r = d = m = 1. (Note that ||g(z,")||iane " <
const. ||g(z, -)|lpane P! € LP(R").) Q.E.D.

Corollary 2 Let g(z,8) be a Borel measurable function from G = R% x M to R! such that
g € L™(G) for some r with (d+m)/2 < r < oo . If g(z,8) is null charged on M for a.a.
z € R?, then for every T > 0 and N > 0, it holds that

t
sup  u*" Eg 60 [ sup / g(){ps)@)‘s)ds] — 0
0<u<NA o<e<t Yo
as A — o0 .
Proof. Apply Theorem 3.2.1 with r = p. Q.E.D.

Let z(t) = z(¢) + v—1y(t), 2(0) = 0, be a complex Brownian motion starting at the
origin. As applications of these ergodic theorems above, we give some limit theorems for

additive functionals of z(t) which have been discussed by many authors.
Application 1. (Occupation time). Let f: C +— C be a function such that
(3.1) fel’(C)NnI?(C) forsome 1< p< oo.

Consider the following additive functional of z(t):

w(v/Xt)
AR =2 [T (s s,
where u(t) = e¢* — 1. The study of the limit process of A*(t) as A — oo can be reduced
to that of a homogenization problem for a Brownian motion on the cylinder G = R' x T,
T = R'/2rZ =~ [0,27] as follows: This method is due to Kasahara and Kotani [6]. Fix
a € C\ {0} and set

Z(t) = X(t) + V=IY(t) = /0' %1__

)—a

dz(s),

Z@)=X@)+vV-1Y() = 2((2)7 (t)),
20 = X)) + V=17 ) = A2 (0

and
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() = 3P ((2) 7 ().

S5 . . . .
Note that Z (t) is a complex Brownian motion for every A > 0 by the Knight theorem. (
Generally, (M) (t) is the usual quadratic variation process of a conformal (local) martingale
M (t) and h~1(t) is the right continuous inverse function of a continuous increasing function

h(t). ) Then, by the time substitution, we have that
(2710w
AMTME)) = /\_1/ fla—ae?®))ds
0

At 5 <
= /\"1/ f(a — ae?)|a|?e2X(®) ds
0

- /0 g(X(Ns), P (Ns)) ds,

where g(z,6) = |a|2f(a — ae**V"19)e2 | Set

= ‘)7r/ f(z) m(dz) = ;/Gg(x,e) dzdf.

Here m(dz) denotes the Lebesgue measure. We shall now prove that
~ ) -

as A — oo in law on C([0,00) + C?), where ((t) = £(t) + vV/=17(t) is a complex Brow-
nian motion and [(t,£) is the local time at 0 of £ Indeed, since g(z,6) € L'(G) and
g9(z,8)e~20-1Plel ¢ [?(G) by the assumption (3.1), setting g(z) = (1/27) 2" g(z,6) db
(e LY(R")), we have, using Corollary 1, that

(3.3) E sup_ VAN (¢ \/—/ \/_ (s))ds
oquT \/_/ X(xs), Y (As))ds| — 0

as A\ — oo. Moreover it is easy to see that if g(z) € L}(R') and £(t) is a 1-dimensional

Brownian motion, then

sup \/X/Otg(\/_)\_ﬁ(s)) ds — 21(t,§) /;o:o g(z)dz] — 0 a.s.

0<t<T

as A — oo (see [6]). Thus noting that f = [*_g(z)dz, we obtain (3.2).
On the other hand, the limit process of { 2'\, ™ } as A — oo in law on C([0, 00)
C x R') is given by { {, pu } where u(t) = maxoc,<¢ &(s) ([6], Lemma 3.1). Therefore we

can conclude that
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u\/Xt _
G4y VARO =X [T f(a(0) ds — 217 (0,07

as A — 0o 1n the sense of finite dimensional distributions. (This follows from the fact that

p~1(t) has no fixed discontinuous point. For example, c¢f. Chapter 2, Proposition 2.4.1.

Remark 3.2.2. In [6], Kasahara-Kotani showed (3.3) by proving that if g € L}(G)NLP(G)

for some 1 < p < oo, then

1

1
SE E;Lg(z,ﬁ)dzdﬁ

as t — o0o. Using this, they obtained the limit theorem (3.2) for bounded functions f

2 2

[ (X (), 7 () ds| —

0

satistying [o|f(2)]|z] m(dz) < oo for some € > 0. Thus the result of Application 1 is an

extension of their result to unbounded functions.

Application 2. (Square integrable martingale additive functionals). Let f;:C — C, 1 =

1,---,n, be functions such that

(3.5) fi(z) € L*(C) N L*(C) for some 2 < p < o0

for i =1,---,n. Consider the following additive functionals of z(t):
u(VAAt) '
AA0 =27 [T A dals) (i=1,0,m),
0

where u(t) = e — 1. Here, it should be noted that these stochastic integrals can be defined
because f; € LP(C) (p > 2). Define Z(t), Z(t), Z'\(t) and 7*(t) as in Application 1. Then

by the same transformation, we have that

ANPO) = [ (R0, 702" (s),

where g;(z,0) = —afi(a — ae**V=10)e=tV=18 s =1 .. p,

Let ((t) = £(t)+v/—1n(t) be a complex Brownian motion, I(t, £) be the local time at 0 of £
and N be a complex Gaussian random measure on [0, co) x C with mean 0 and variance mea-
sure dt - m(dz)/2m which is independent of . (Generally, for measurable space (.S, B(S), u)
and F = {A € B(S); u(A) < +oo}, a family of random variables A = {M(A); A € F}
is called a Gaussian random measure on S with mean 0 and variance measure p if M is a
Gaussian system such that E[M(A)] = 0 and E[M(A)M(B)] = u(ANB) for any A,B € F.
Furthermore, a complex Gaussian random measure M on S with mean 0 and variance mea-
sure u is by definition a family of complex random variables M (A) which can be expressed
in the form M(A) = My(A) + /=1 M,(A) where M; and M, are mutually independent

Gaussian random measures with mean 0 and variance measure p. ) Now we shall prove that
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(36) {2, MAA() }lsisn__,{g, /02'(""/Cf,-(z)fv(ds,dz)}

1<ikn

as A — oo in law on C([0, o) +— C?). By the same arguments as in Application 1, we have

from (3.6) that

1<i<n
as A — oo in the sense of finite dimensional distributions, where p(t) = maxo<,<: &(s).

For the proof of (3.6), let {e;, --,e,} be an orthonormal system in L*(G) (G =
R! x [0,27]) obtained by Schmidt’s method from {g;,---,g.}. Since g;(z,8) € L*(G) and
gi(z,8)e~ 2Pzl ¢ [P(G) by the assumption (3.5), each e, is so. Set

V() = A4 /Ot ex(X(2s), Y(0))dZ (s)  (k=1,---,7).

Then

<I/J-’\’Vk’\>t — A1/2AtRe(6J€k*)(Y(A5))?(As))ds ((1) fl))

+ 212 /OtIm(eJ-ek')(:\?(/\s),?(As))ds <(1) —01) .

Here e,* represents the complex conjugate of e, .
(Generally, if 21(t) = z1(t) + V—1y1(¢) and z3(t) = 24(¢) + V/—1y3(t) are conformal martin-

gales with the same filtration, then we denote by (2, ), the matrix of quadratic variation
(z1,22) (¢) (ml,f'h)(t)) )

Hence just as in Application 1, we have by Corollary 1 that

—) 1 0 00
<V3‘A’ka>t‘25""l(t’X)(0 1) _><0 0)

processes (

(3.8) sup
0<t<T

in probability as A — co for j,k=1,---,7.
Moreover, it holds that

(.2
t

as A — oo for k= 1,---,r. Indeed, thanks to Corollary 2 (note that ey is not in L}(G) but
in L?(G) ), we have that

(3.9) E sup
0<t<T

= F sup
0<t<T

o fosmsone(L )= ()

¢ —

A /Ot r(X (1), P 0s)) ds = W [2(X (1s)) ds

0

_)0

E sup
0<t<T
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.‘

as A = oo for k =1,---,n, where e;(z) = (1/27) [;" ex(z,6) df. On the other hand, for any

continuous function ¢ on R! with compact support, we know that

t
E sup A1/4/ e(X(As))ds|] — 0  as A — oo,
0<t<T 0
Then noting that ex(z) € L?*(R'), by the inequality
t -~
E sup )\1/4/ gr(X(As))ds| < A1/4/ E|er(X (Xs))| ds
0<t<T 0 0

T
< const. A}/ /0 (Xs)~1/4 ds |[ells = const. &l

which is obtained from Lemma 3.3.1 in section 2 below, we can conclude that

t o~
E sup )\1/4/ Ze(X(Xs))ds| — 0 as A — oo
0<t<T 0
for k = 1,---,n because continuous functions with compact support are dense in L%(R').

Thus (3.9) is proved.
From (3.8), (3.9) and the “asymptotic Knight’s theorem” in Pitman-Yor [10], we obtain
that
a2 2AC,6) ex(z,6)
{ Z 3 ka }lskST — { / / _ae$+\/——9 N(ds,d-’l’de) }
1<k<r
as A — oo in law. (Note that | — ae**V=1|2 dzdf = m(dz). )
This implies that '
ZA 1[4 4 A0, _ 2'(5)/ gi(z, )
{ Z ] A A: (T ) }15!<n { / G _ael'+\/__e N(ds,d.’lldg) l<i<n

as A — oo in law. Thus we arrive at the assertion (3.6).

Remark 3.2.3. Messulam and Yor [7] proved that if A and k are in L?(C — R') and
bounded, then

Mt b k) = (logt) [ 10 da(s) + k(=(5)) dy(s))

converges in distribution as ¢ — oco. (See also [10], section 6.) This follows immediately
from the result of Application 2. Indeed, the result (3.7) implies that if A and k are in
L*(C +~ R') and in LP(C +— R') for some 2 < p < oo, then

2V

AT {h(a(s)) da(s) + k(=(5)) dy(s))
. /02'(’"1“)’“ JLARGIN:(ds, dz) + k(z) No(ds, d2))
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as A — oo in the sense of finite dimensional distributions, where N; = Re(N) and N, =
Im(N). Taking t =1 and X = ((1/2)logT)!/?, we see that

2l(a,¢)
M(T; h, k) —>/ /{h(z)Nl(ds,dz)+1c(z)N2(ds,dz)}
0 C
as T' — oo in distribution, where ¢ = p~*(1) = inf{y; £(u) = 1}.

Application 3. (Occupation time; null charged case). In [6], Kasahara-Kotani showed that
if f:C — R! is a bounded function in L'(C) such that

J @Izl m(dz) < oo
for some € > 2 and [ f(z) m(dz) = 0, then

u(VAt
At [T pats)) ds — BUN0,0)

as A — oo in the sense of finite dimensional distributions, where
u(t) = e* — 1,
£y ==/ [ [ loglz = 2| f(2)£(=') m(dz)m(d"),

B(t) is a 1-dimensional Brownian motion, {(t, §) is the local time at 0 of a Brownian motion
€(t) which is independent of B and u(t) = maxo<<¢ £(s). This result is closely connected to
that of Application 2. In fact, in a similar way as Application 2, we can extend this result
to a function f:C +— R! such that

feLic)nL*C),

/IA‘4|21 |f(2)] log |z| m(dz) < oo,

CREEICORES
and

/C f(z)m(dz) = 0.

We explain this briefly below.

By the same argument as in Application 1, it is sufficient to show that
— C —~
(10) { X, 00 [g(R(1s), 70D ds | — (& BUNIE) )

54



as A — oo in law on C([0,00) — R?), where (X(t),Y(t)) is a Brownian motion on G =
R' x [0, 27], ’)?\(t) = A"12X(At) and

9(2,9) = [a]*f(a — ac™™V ) *  (a€ C\ {0}).

Set
loll = | la| [ otz ) ds|
5= —1—/ 9(z,8) dzdd,
0,(z) = / / (u, 8) dudf
and

Oy(z) = /_oo ©q(y) dy.
From the assumptions for f(z), we have that g € L'(G) N L*(G), |lg]lx < oo and g = 0.

Also it is easy to see that

log(2)] < llglls

and

|z - pg(a)] < llgllx-
Indeed, pg(z) = — [ [&" 9(u, 6) dudf since § = 0, and hence

o og(a)l <lal [ I/ u9d9du</ |u|/ o(u, 8) d8

Moreover, using these estimates, we have that

61 e = ([liet [ leeras)

1 1/p
(ol [ do+ lalla [ 1o17 dz)

< const. ||g]|1 + const. ||g]|x (1<p<o0)

du < ||gllx-

IN

and
(312)  [8,(2)] < |uo,(w] . / / (u, 8) dbdu
x 2r
< 2ol + /_ | [ g(u,8) d8 du
< 3lgllx-
Define
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1
Lo(z,6) = —glog |eV=10 — ¢lel|?

and

Ty(z,6) = == 8,(a) + (To * 9)(z,).

Then it holds that
(3.13) Ty € L*(G) (1 <p< ),
(3.14) T, =09Ty/0z € L*(Q), Iy = 8Ty/98 € LP(QG) (0<p<?2)

and ATg = —2g for any suffisiently smooth function g. (See [6].) We deduce from (3.12)
and (3.13) that

(3.15)  |Tg| < const.||g]|2 + const.||g||x

and from (3.11) and (3.14) that

BI‘g » 6Fg »
(316) ST E€IXG), Sy €l’(G)  (1<p<oo).
Then we can put
tolg = > tor g 5
M(2) _/0 S2(X(s), ¥ (s))dX (s +/ 7 ())d? (s).

( Generally, if F € LP(G) for some p with 1 < p < oo, then Ep [y F(X(s),Y(s))ds <
const. || F||, < oo, ¢f. Lemma 3.3.1 and Lemma 3.3.2 in section 2 below. )

If g is a sufficiently smooth function, Itd’s formula gives an identity

(3.17) /Otg(i(s),?(s))ds = Tg(0,0) = Tg(R(t), V(£)) + M(t)  as.

For a non-smooth g, by the method of approximation we see that (3.17) is still valid. Since
T'g is bounded by (3.15), we can consider M*(t) = A~"Y/*M(Xt) in place of

it | “o(R(0s), T(Ns)) ds.

The fact (3.16) allows us to apply Corollary 1 for <]Wk>t = A2 [ER(X(Xs), Y (Xs)) ds
where h(z,0) = (0Tg/dz)? + (8T g/86)?, and Corollary 2 for
YA 1/ Ty < %
<M X >t A /0 SR (s), 7 (2s)) ds

and
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~

AP\ /e ‘?E’?A >
<M,Y >t A /069(,\( $), 7 (As)) ds.

Then, as in Application 2, we arrive at the conclusion that
=X 5 -
{X ’ Y ’ M/\ }_){ga 1, B(Ql(ag)h)}

as A — oo in law, where (£(t), n(t), B(t)) is a 3-dimensional Brownian motion, {(¢, ) is the
local time at 0 of £ and h = 5= Jg h{(z,0) dzdf. The assertion (1.10) now follows if we notice
that (f) = 2h.

The equality (f) = 2h can be seen as follows. If g is a sufficiently smooth function, noting
that Al'g = —2¢g , we have

= 1 oTg : dl'g ? 2
(3.18) 2h= ;/G [(-%) + (—%) dzdf = ;/Gg(:z,G)I‘g(m,H) dzdf

by the integration by parts. For non-smooth g, by the method of approximation we see that

(3.18) is still valid. On the other hand, using the fact that § = 0 and ||g||x < oo, we have

Py4(z) = [ypg(y)]Z, — 27 /; y3(y) dy = const. + 2 /x (z —y)g(y) dy,

=00

1 2«

where §(y) = 5= f5" 9(y, 0) df. Also we have

Poxg(a,0) = [ To(e = 4,6 = ¥)a(y, ¥) dydy
L[ [P o [oVTT6O=9) _ ==y
= _:/r—/x /0 log |e — e - g(y, ¥) dydy
1 T 27
—;/ / log e/ 1= — e¥==| . g(y, ¥) dydy
—o0 JO
oo 2w
= —l/ / (log |ev=V"TY = mVTTE| y) 9(y, ) dydy
mJz 0
l x 2r z \/_—19 \/‘:—11/’
- [-oofo (log le** — e | — x) 9(y, ¥) dydy
1 foo f2= — — e
- _;/ / log [e*+Y=T — V71| g(y, v) dydy + 2/ y3(y) dy
T 0 z

1 x 2r
__/ / log [e¥+V7T8  r+V=TH] L g(y ) dydip + 2;,;/ ily) dy
M J—~o0 JO

[e o]

1 x
= - /Glog Ie”\/:ﬂ’ - €y+\/——l¢| - g(y, ¥) dydy + 2/ (z — y)g(y)dy + const. .

Then recalling the definition of T'g(z,§) we have
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1
(3.19) Tg(z,60) = —= /GIOg |ex+V=10 — e +VTIV| L g(y, ) dydip + const.

Combining (3.18) and (3.19) and using § = 0 again, we obtain

Remark 3.2.4. In Theorem 2.1 of [6] , it is proved that if g € L}(G) N L?(G) for some p
with 2 < p < 00, ||g]lx < +o0 and g = 0, then (3.10) holds. The above proof shows that we
can refine Theorem 2.1 of [6] by weakening the condition g € LY(G) N LP(G) (2 < p < o)
to the condition g € L}(G) N LP(G) (2 < p < 00). (It should be noted that if p > 2, then
(8Tg/dz) and (8T g/dB) are bounded, while in case that p = 2, we have only (3.16).)

3.3 The proof of Theorem 3.2.1

For the proof of Theorem 3.2.1, first note that the generator of O, is (1/2)A s, where Ay,

is the Laplace-Beltrami operator for M. Since M is compact, As has pure point spectrum
0=Xg> =M > =Xy >---

and we denote the corresponding normalized eigenfunctions by {¢,}. It is known that the
transition density ¢(t,8,7n) of ©; has the following expansion:

[o o]

(3.20)  q(t,6,n) =Y e 0, (8)@n(n),

n=0
which converges uniformly in (8, n) for every t > 0 (see Chavel [1], p.140).

Before proving our theorem, we prepare some estimates for expectations of the functionals
of X, and ©,.

Lemma 3.3.1 Suppose that h: R? — R! satisfies the condition:
h(z)e Pl € [P(RY) for some 1 <p<ooand $20.
Then for every z € R? and t > 0,

E.|h(X})] < const. 14/ gconst-Bt+8lel | )|

where H(z) = h(z)e Al*l .
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Proof. From the assumption for X;, we have the following estimate for the transition

density p(t, z,y) of X, :

const. |z — y|?
2t ’

(3.21)  p(t, z,y) < const.t™?exp (
(See Friedman [3], p.141, Theorem 4.5.)
Then, by the assumption for A(z) and Hélder’s inequality,

t.]z — y|?
E.|h(Xy)] < const.t'd/Q/Rdexp (—S—%SQI:—‘U') |H (y)|e?M dy

const. |£]?

< const. /Rdexp< —————+ﬁ|\/ffl+ﬂ|x|> |H(ViE + z)| d¢

2

) i/q
< const. & ( [ sexp (_const. |e|22— 28V q) dg)

X (/R,,IH(\/?Hz)I"d&)l/p,

where 1/p+1/g = 1.
The integral in the second factor of the last expression is bounded by

cost, 160 xp (£ Z 20V g

2
< const. geonst. B2t /0°° |§|d—l exp (_const. (€] —4const_ﬂ\/2)2 q) el
< const. e“““’ﬂzt,
and the third factor is equal to t=¢/%||H]|,. Q.E.D.

Lemma 3.3.2 Suppose that f € L7(M,df) with some 1 < r < co. Then for every § > 0

there exist positive constants C and Cs such that
Eslf(9.)] < Ct™ 1o fllr + Cs 1ol flls

for every 8 € M andt > 0.
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Proof. If § > 0, we have from (3.20) that

oo 12 / o 1/2
9(t,0,1) 155y < (Ze‘*"twn(ﬁf) (Z " oa(n) ) 1(t>5)
n=0

= q(é, 9,9)""’q(5, n,m)'? < supg(6,6,6) = Cs.
9
On the other hand, the uniform estimate
q(t,8,m) < const.t™™/2 (t10)

holds. (see Chavel [1], p.154 ~ 155). Then noting that [,,¢(¢t,6,7)dn=1and f € L"(M) C
LY(M), we have that

Blf@) = [ ot,6,n)lf(m)]dn

= [ a6l dn ez + [ alt, 6,01 f ()l dn 1oy
1/q
< (/Mq(t,é,n)qdn) FIl> Le<sy + Csll flli Leess)

1/q
< (/M(COHSt-t_m(q_lwf](t,9, n) d’?) WS- Le<sy + Csll flh 1ee>6)

= const.t™™||f||, Lie<o) + Csll fll1 Lies)

by Hoélder’s inequality, where 1/r + 1/g = 1. (In the case that r = 1, the above estimate is
still valid by replacing (f,, q(¢,8,n)? dn)l/q with sup, ¢(t,6,7). ) Q.E.D.

Now we are ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. We shall first prove the special case that g(z,§) is of the form

h(z)p,(f) and reduce the general case to this special case by approximations.

1°)  The case that g(z,8) = h(z)p,(8) for some n > 1 where h(z) € L(R?) for some r
with 1 <r < oo andr > d/2.

In this case, as seen by the proof below, the conditions r < oo, r > m/2 and (2) are not
necessary. Moreover, the convergence is uniform in pu.

From now on we write the expectation Egg,) simply by E. Set
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wir(2,0) = 1% [ B [M(X0)n(©1,)] ds
and
M = (X, ©20) + 147 [ h(X,)00(02,) ds.
In order to show that

(3.22) u¥¥E sup
0<t<T

—s 0

/Ot h'(Xus)(Pn(eAs) dS

as A — oo uniformly in g, it is clearly sufficient to prove that

(3.23) E sup |up(Xu, Ox)| — 0
0<t<T

and

(3.24) E sup |M#| —0
0<t<T

as A — oo uniformly in pu.
The convergence (3.23) is proved as follows. By the orthonormality of {¢x} and (3.20),
it holds that

(3.25)  Eplpa(Ox)] = /M q(Xs,8,n)on(n) dn = e™*"* 0, (8) for every § € M.

By Lemma 3.3.1 and (3.25), we obtain the estimate for u,,:

(326) fua(@0) < u [7 B h(X,)] 1B [on(©2)]] ds
< const. ptf2 [ (us) e ds i (6)
= const. XYY, (8)].

Hence

E sup |uua(Xue Ol < const. A1 E sup |£n(Oae)]-
0<t<T 0<t<T

Because of the boundedness of ¢, (note that ¢, is continuous and M is compact), it holds
that Esupgcicr [9n(Oae)| < const. .
Therefore,

(3.27)  E sup |uun(Xue, Ore)] < const. XY= — 0
0<t<T
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as A — oo uniformly in p.

We now prove (3.24). Fixing A, u and setting F, = o {(X,,, ©,,); s < t}, we can see that
M#** is an (F,)-martingale by a repeated use of Fubini’s theorem. (Note by Lemma 3.3.1
and (3.25) that

E Uooo |E(then) (h(Xﬂu)‘P"(@""))l du]

= P [/0 IEX#'(h(Xw))I | Eoy (9n(©Oau))] du] < 4oo. )
Then we have that

E sup |M*| < (E sup |M#?)M? < const. (E|Mp#*|?)H/?
0<t<T 0<t<T

. T
“d/zr/o h(Xm)‘Pn(@»\s)ds

< (const. Elup(X,7,0,7)]° + const. E )
by the martingale inequality. Hence it is sufficient to show that

(328) ]1 = EIU#A(X‘,T, @,\T)li2 —_— 0

and

T 2
(3.29) fz=ud”E(/ h(xy,)eon(ewdS) -0
0

as A — oo uniformly in . We can easily deduce (3.28) from (3.26) in a similar way as
the proof of (3.23). (3.29) can be proved as follows. By Lemma 3.3.1, (3.25) and Fubini’s

theorem, we have that

d T s
L = %E [ /0 ds /0 duh(X,“)h(X,w)zp,,(eA,)go,,(@Au)‘

= oudlr /onS /0 du E[h(X) Ex, [M(Xu(—0)]

X B [‘Pn(eXU)E@Au[‘Pn(el(s—u))]] .

Lemma 3.3.1 implies that

|2 [A(X ) Exyu [ X ue-)]]| € B[IA(X )] - Ex,,

h(Xu(s—u))

]

—df2r )—d/2r

< const. (u(s - u)) (pu
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and (3.25) implies that
(330) | B [on(@1a) oy (9n(Or-w))]| < e Elpn(02)P
< const. e A"~
Hence
T s " d
I, < const. / ds/ du e nAmv) (g — )8/ =d/2r
o Jo
< const. \Y#~! 4 const. PR e —

as A — oo uniformly in p. This completes the proof of (3.22).

2°) General case.
Since X; and ©, are mutually independent, by Lemma 3.3.1 and Lemma 3.3.2, we have
for fixed 6 > 0, that

Elg(Xut, ©)| Lessy < const. Ellg(Xye, )|lian) Liess) < const. Ef|g(Xoe, )lran
< const. (ut) ™™ |gll.q).
Similarly, using the assumption (2), we have by Lemma 3.3.1 and Lemma 3.3.2 that
E|g(Xut, 0] 1ucs) < const. t ™™ Ellg(Xot, Mleiany Lo
< const. t™™/% (ut) et ut | gz, ), ane |

p(RY)

= const. ’u_d/ZPt_m/Z’_d/QPe?Onst.pt

Putting these estimates together, we obtain that

t T 1 AT
A g(Xps,eks) ds S'/O Elg(Xpu@z\a)IdS: 3\‘[} E|9(X/.ts/h®s)|ds

E sup
0<t<T

1 f¢ 1 AT
= -XV/O EIg(X#’/A’e5)ldS+X/J Elg(X‘“/A’@s)lds

—d/2p
S const. —/ ( ) _mlzT—dlzpeConst.p3/A dS
—df2r
+ const. —-/ ( ) ds ||gllrc)
< const. uTU% 2Pt geonstw/X 4 —df2r (Const. + const. )\dlzr_l) l9llr(c)-
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Here for the existence of the above integrals by s, the conditions r > d/2, r > m/2 and
p > d/(2 — m/r) are needed.
Therefore, using the condition that p > r, we have

(3.31) sup u” E sup

t
/ (X, ©1,) ds
0<u<NA 0<t<T 1/o

< const. NO/2r—d[2pgeonst-N ydf2r=1 4 (const. + const. Adlz'_l) lall-e
= o(1) + (const. +o(1)) llgll-ay (A — o0).
Now define

L :={f; f is a finite linear combination of ¢y, ¢,,-- -}

A :={hf; h € L'(R?), h(z)e~P*l € LP(R?) and f € L}

A’ :={g; g is a finite linear combination of functions of A}

B = {hf; he I(RY), h(z)efHl € IP(RA), f € L(M) s.t. [y, f(6)d6 = 0}

B’ :={g; g is a finite linear combination of functions of B}

S :={g; g is a Borel measurable function from G to R' s.t. g € L"(G),
llg(z, l-anye™ Pl € LP(R?) and [, g(z,6)dd = 0 for a.a. = € R} .

Every f € L"(M) satisfying [, f(8)df = 0 canbe || ||,(ar)-approximated by f’ € £, because
any continuous function 1 on M satisfying [, ¥(6)df = 0 is uniformly approximated by
functions of £ since M is compact (cf. Chavel [1], p.139-140), and continuous functions are
dense in L"(M) (1 < r < o). Hence every hf € B can be
Il |l-cc)-approximated by Af' € A. On the other hand, every ¢ € S can be || ||,(c)
approximated by ¢’ € B'. Therefore, every g € S can be || ||,(g)-approximated by g’ € A’
Consequently, noting that by (3.22) Theorem 3.2.1 holds for every hf € A (and so for
every ¢’ € A' ), we complete the proof by an approximation argument using (3.31). Q.E.D.
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Chapter 4

On Some Ergodic Theorems for a

Brownian Motion on a Compact
Manifold and an Ornstein-Uhlenbeck

Process

4.1 Introduction

Let M be an m-dimensional compact (connected) C*°-Riemannian manifold without bound-
ary. We consider a diffusion process (X;,©;) on G = R? x M, where (0;);>0 is the Brownian
motion on M (i.e., the generator of O, is %AM, where Ay is the Laplace-Beltrami opera-

tor for M, see Tkeda and Watanabe [4], chapter 5, section 4) and (X,):>o is an R%-valued

diffusion process with the generator L;

1 & > f of
2 Z= aa:i@mf'(x)—*_?_':b( )(92:'( 2),

d

where a/(z) = > _ o}, )fori,j=1,---,d. We assume that o(z) = (csi(z)) € R* x R?
k=1

and b(z) = (bi( )) € R? are bounded and smooth and o(z) is uniformly non-degenerate.

Moreover we assume that X; and ©; are independent and Xy =0and ©y =6y (8 € M ). In
the following, we consider L,-spaces LP(R%), L?(M), L?(G) where R? and M are endowed

with Lebesgue measure dz and the Riemannian volume df, respectively and G is endowed
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with the product measure dzdf. The norms are denoted by || |l gey, | llpcany, 1| ooy,
respectively, to distinguish the spaces.

In Chapter 2 we proved, using the method of eigenfunction expantions, the following
ergodic theorem to obtain some limit theorems for additive functionals of 2-dimensional

Brownian motion.
Theorem 4.1.1 Let F(z,0) be a Borel measurable function from G to R' satisfying the
following conditions:
(A1) For almost all z € R?, F(z,0) is null charged on M i.e., f,, F(z,0)d§ =0,
(A2) F(z,0) € L'(G) for some r with 1 <r < oo and r > max{d/2, m/2},

(A3)  ||F(2, Ml:ane~ Pl € LP(R?) for some p and B > 0 withr < p < oo and
p>d/(2—-m/r).

Then for every T > 0, 1t holds that

t
/ F(X,..,O,)ds
0

sup ,U.dler(o,go) [ sup ] — 0
0<u<A 0<t<T

as A — 00.

Here E(g,) denotes the expectation specifying the starting point of (X, ©,).
On the other hand, in Chapter 1 we also proved the following ergodic theorem to obtain
some limit theorems for “winding-type” additive functionals of a 2-dimensional Brownian

motion.

Theorem 4.1.2 Let h be a Borel measurable function from R? to R and f be a Borel

measurable function from M to R satisfying the following conditions:
(B1) f is null charged on M; i.e., f, f(6)df = 0,
(B2) fisin L™ (M) for some r with 1 < r < oo,
(B3) For every z € R?, |h(z)| < conmst.|z|® for some « with a > —d and o > m/r — 2.

Then for every T' > 0, it holds that

[ X F@s)ds

Fom Li‘t‘?T ] -
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as A — oo.

Our first purpose of this paper is to extend Theorem 4.1.2 as Theorem 4.1.1. That is, we

will prove the following Theorem 4.1.3 in section 4.2.

Theorem 4.1.3 Let F(z,0) be a Borel measurable function from G to R' satisfying the
following conditions:
(C1) For almost all z € R?, F(z,6) is null charged on M,

(C2) For almost all z € R?, F(z,6) € L'(M) for some r with 1 < r < oo and r > d/2,

(C3)  For every z € RY, ||F(z, )|l.ary < comst.|z|® for some a with o > —d and
a>mfr—2.

Then for every T > 0, it holds that

t
/ F(X,,0,,)ds
0

E0.60) [ sup ] — 0
0<t<T

as A — oo.

Our second purpose of this paper is to show that these theorems are also valid in the case
that M is R™ which is endowed with the normal distribution v(df) = (27) ™™/ exp(—|6}?/2)d8
instead of df and (©);»0 is an Ornstein-Uhlenbeck process; i.e., (©);>0 is a R™-valued dif-

fusion process with generator A;

A1) = 3. 550 - o' 2 ),

=1 =1

We will prove this in section 4.3. In this case, the argument becomes subtler than in the

case of Brownian motions on compact manifolds, because Ey sup |¢,(0;)] — oo as T' — oo
0<t<T

where ¢,, n = 1,2,---, are the Hermite polynomials, which are the eigenfunctions of A.

4.2 The proof of Theorem 4.1.3

First of all, we will recall that the generator %AM of ©; has pure point spectrum
(41) 0:)\0>—)\12—'A22,
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since M is compact. We denote the corresponding normalized eigenfunctions by {¢,}. Tt is

known that the transition density ¢(¢,8,7n) of ©, has the following expansion:

(4.2) q(t,6,7n Z e . (8)en(n),

which converges unlformly in (8,n) for every t > 0 by Mercer’s theorem (see Chavel [1]
p.140).

We will also recall that X is determined by the stochastic differential equation:
(43) dXt = O'(Xt) dBt + b(Xt) dt,

where (B;)¢>0 is a d-dimensional Brownian motion (see Ikeda and Watanabe [4], Chapter 4,
section 6).

Before proving our theorem, we prepare some estimates for expectations of the functionals
of X, and ©,.

Lemma 4.2.1 Suppose that h : R* — R! satisfies the condition:
h(z)e~Pll € LP(RY) for some 1 < p<oo and B> 0.
Then for every z € R? and t > 0,
EL|h(X0)] < const. =4/ econs #4450 ]

where g(z) = h(z)e™Pll,

Proof. From the assumption for X;, we have the following estimate for the transition
density p(t,z,y) of X, :

t.|z —y|?
(4.4) p(t, z,y) < const.t™2exp (——M) :

2t
(See Friedman [3], p.141, Theorem 4.5.)

Then, by the assumption for h(z) and Holder’s inequality,

- const. |z — y|?
EL|h(X:)] < const.t™¢/? /R,d exp (____%Z_EL) l9(y)|e?¥dy

< const. /R“ exp( const. |§i + BIVtE| +,5|m|) lg(Vt€ + z)|d¢

1/q
= const. el (/R" exp (—COnSt' Iflgo— Qﬂ\/zlflq) df)

“

< ([ latie +ayrae)
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where 1/p+1/¢ = 1.
The integral in the first factor of the last expression is bounded by

const. Aoo Igld—l exp (—COHSt. |6122_ 2,3\/{|£|q) dIEI

o t. (|€] — t. BV/t)?
S COHSt.GCOHSt'BZt/O Ifld_l exp (_COI’IS (lgl 2COIIS ,6\/-) q) dl&'

const. B3¢
< const.e ,

and the second factor is equal to t=4/%||g||, . Q.E.D.

Lemma 4.2.2 Suppose that f € L"(M, df) with some 1 < r < co. Then, for every § > 0

there exist positive constants C and Cs such that

Eol f(@)] < Ct™™ 1< I fll- + Cs sy || Flln

for every 8 € M and t > 0.

Proof. From (4.2) we have that

0 12 / o 1/2
o(t,8,1) Lss) < (Ze-*nf%(e)z) (ze-*"‘%(w) Less)

n=0 n=0

o0 12 / o 1/2
< (Zemoer] (S
= 4(5,6,6)"%q(6,n,n)"/?
< Sl;pq(é,@ﬁ)ECa.
On the other hand, the uniform estimate

(4.5) q(t,8,n) < const.t™™/% (¢t | 0)

holds. (see Chavel [1], p.154 ~ 155). Then noting that [y, q(¢,8,7)dn=1and f € L"(M) C
L'(M), we have that

Blf©) = [ at,6,0)lf(ldn

= /M (I(t,e,ﬁ)lf(ﬁ)w’?l(tgs)+/M q(t, 6, MIf()]dn 1ess)
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1/q
< (/M q(¢, 8, 77)%177) 1 £1l- Le<sy + Csllflls iess

. 1/q
< (/M(const.t'm(q_l)/“‘](t,9, 77)d77) Wfll- Lee<sy + Cs | fllh 1iess)

= const. t_’"/zrllf”r Liecsy + Collfllh 1iess)

by Hoélder’s inequality, where 1/r + 1/q = 1. (In the case that r = 1, the above estimate is
still valid by replacing (f,, ¢(t, 6, 77)qdn)1/q with sup, ¢(¢,6,7).) Q.E.D.

Proof of Theorem 4.1.8. The proof of this theorem is very similar to the proof of Theorem
4.1.1 (c¢f. Chapter 2). We shall first prove the special case that F(z,6) is of the form

h{(z)p.(8) and reduce the general case to this special case by approximations.

1°) The case that F(z,0) = h(z)pn(8) for some n > 1, where h(z)e~1l € LP(R?) for
some p with 1 < p < oo and p > d/2.

From now on we write the expectation g4,y simply by E. Set
u(2,0) = [ Bomlh(X.)on(01,))ds
and
M = us(X, 03 + [ h(X.)pn(O1,)ds.
In order to show that

(4.6) E sup
0<t<T

...__>0

| B en(@1)ds

0

as A — 00, it is clearly sufficient to prove that

(4.7) E sup [uy(X¢,©x)| — 0
0<t<T

and

(4.8) E sup |M}| —0
0<t<T

as A — oo.

The convergence (4.7) is proved as follows. By the orthonormality of {¢;} and (4.2), it
holds that

(49)  Eilpn(@2)]= [ a(3s,8,n)pa(n)dn = e ,(0)
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for every § € M. By Lemma 4.2.1 and (4.9), we obtain the estimate for u,:

(410) (@0 < [ Bulh(X)|[Ealpn(©2)]lds
< const, el /Oo sTAlPpgeonst-sg=Ands 4o, (6)]
0

< const. ell(A, X\ — const. )41, (8)],
for sufficiently large A. Hence

(4.11)  E sup |ur(X¢, On)l

0<t<T

< const. (A, A — const. )d/zp—lEoiltl?T (len(©20)]) EoiltlgT exp(| X:])-

: T

Here henn

(4.12) E sup exp(|X¢]) < o
0<t<T

holds. To prove this, set

d ¢

d et , ‘
M;(t,a,a') = exp (aZ/ oi(X,)dB! —ad' ) a;(X,)zds) :
7=170

7=170

Since the quadratic process
d . . d .
(aZ/ o (X,)dBl), = a® Z/ o} (X.)%ds < const.t,
1=1 0 1=1 0
M (t,a,a?/2) is a continuous exponential martingale for any a € R! (see Ikeda and Watanabe

[3], p-154). Hence

E sup M;(t,a,a®/4) = FE sup M(t,a/2,d*/8)?
0<t<T 0<t<T

< 4EM(T,a/2,a*/8)?
= 4EM,(T,a,ad?/4)

by the martingale inequality. Therefore noting that the coefficients o(z) and b(z) of the

stochastic differential equation (4.3) are bounded, for any @ € R' and each i we have

E sup exp(aX!) < const. E sup M;(t,a,a?/4)
0<t<T 0<t<T

< const. EM;(T, a, a®/4)
< const. Eexp(aX})
< const. Eexp(laX7]).
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From this we have

E sup exp(a|X}]) < E sup exp(aX})+ E sup exp(—aX})
0<t<T 0<¢<T 0<t<T

< const. Eexp(laX7|)

and hence

d

E sup exp(|X¢|]) < E sup exp( Z]Xl )<Y E Sup exp(d- | X;|)
0<t<T 0<e<T P o1 o<t

< const. Eexp(d- | X7|).

Since Lemma 4.2.1 implies that the last expectation is bounded, we have (4.12).
On the other hand, because of the boundedness of ¢, (note that ¢, is continuous and
M is compact), it holds that

(4.13) FE sup. |00 (©x¢)] < const.
0<t<

Combining (4.11), (4.12) and (4.13), we have

(4.14)  E sup |ua(Xe,Ox)| < const. (A A — const. )**71E sup |p,(0y)]
0<t<T 0<t<T

— 0 (A — o0).
That is, (4.7) holds.
We now prove (4.8). Fixing A and setting F; = o{(X,,0,,);s < t}, we can see that

M} is an (F;)-martingale by a repeated use of Fubini’s theorem and the Markov property
of (X, 0;). (Note by Lemma 4.2.1 and (4.9) that

B[ [ |Boruor(h(Xu)pa(@3))] du]

- F [/0“’ | Ex, (X)) | Eoy, (0(@xa)] du] < +00)

Then we have

E sup |M} < (E sup. | M} )2 < const. (E|M3?)M?
o<t

0<t<T

T
[ B en(@2,)ds

2) 1/2

< (const. Eluy(X7, Oxr)|? + const. E

by the martingale inequality. Hence it is sufficient to show that
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(415) Il = EIUA(XT,G,\T)IZ — 0

and

(4.16) L=E (/OT h(Xs)tpn(@As)ds)2 0

as A — oo. We can easily deduce (4.15) from (4.10) in a similar way as the proof of (4.7).
(4.16) can be proved as follows. By Lemma 4.2.1, (4.9), Markov property and Fubini’s

theorem, we have that

I

28 [ [as ’duh(X,)h(x,,)mex,)%(eh)}

T . rs
2 /O -ds /0 du E[h(X,)Ex,[h(X,-)]]
x E [‘Pn(eln)EOxu[@"(@f\(s—“))]] :
Lemma 4.2.1 implies that

|E[p(X)Ex [A(X.)])| < E[AX)] - Bx, (X))
< comst. (5 — u) /P econst-(smw)y =d[2p geonst.u
and (4.9) implies that
(@171 |Blou(Ox) Boy, [pn(@rmn)]]| € e Blpn(@)F
< const. e7AnAsmw),

Hence

I, < const. /OT ds /0’ du = M5 (g ) =412 geonst. (s=u) =d[2pconst. u

< const. (A A —const. )¥*7 0 (A — o0).
This completes the proof of (4.6).
2°) General case.

For fixed r and « in the conditions (C2) and (C3), there exists some p € [1, 00) such that
d/2 < p <rand ap > —d. We fix one of such p. Then it holds that F(z,8)e”l*l € L?(G).
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Indeed,

£ 8)eg, = 1 Mocar ™
< eonst P (2, Meany ™|
< const. “lz|"e—|xl A(RY) < oo.

In another words, F(z,8) € L?(G, e ?*ldzdf). We denote the norm of this space by || ||p .
Since X; and ©; are mutually independent, by Lemma 4.2.1 and Lemma 4.2.2, we have,
for fixed 6 > 0, that

E|F(X:, 0:)| 1oessy < const. E||F (X, )|liary < const. E||F(Xe,-)|lpar)
< const.t™4/%Peonst Y| P .

Similarly we have by Lemma 2.1 and Lemma 2.2 that

E|F(X:,05)| 1ucsy < comst. ()™ E||F (X, Mloian

IN

const. (At)™™* E| X |

IN

const.(/\t)""/z't‘dlz/ el 12z dg
Rd

—m/[2r —|¢P a
= const. (A)~™/2 /Rde €712 /ze|ode

= const. (M)"™/2rgel? /Rd e~ 12|g|age

— const. )\—m/Zrt-m/2r+a[2.

In deriving the third inequality in the above we used (4.4).

Putting these estimates together, we obtain

t
/ F(X,,05,)ds

0

E sup

T
< / E|F(X.,05,)|ds
0<t<T 0

5/2 T
- / EIF(X,,@AS)]ds+// E|F(X.,0),)|ds
0 s/
812
< COHSt.)\_m/2T/ s—-m/2r+c«/2d.S
0

T
+ const. / sT4Peconst-< s || F|lp
8/

< const. AT/ 4 (const. + const. A¥?P7Y)|| F||p.
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Hence

(4.18) E sup
0<t<T

/OtF(X,,G)A,)ds < o(1) + (const. + o())||F |5

as A — 00.

Now define
L :={f; f is a finite linear combination of ¢, ¢z, -}
A :={hf; h(z)e ¥l € LP(R?) and f € L}
A" = {F; F is a finite linear combination of functions of A}
B = {hf; h(z)e € IP(RY), f € L(M) and [y, (9)d6 = 0}
B ={F;Fisa f‘irllite linear combination of functions of B}
S :={F; F(z,0)e” ¥ € L*(G) and [, F(z,0)dd = 0 for a.a. z € R%}.

Every f € LP(M) satisfying [,, f(8)df = 0 can be || || (ar)-approximated by f’ € L, because
any continuous function 1 on M satisfying [,, ¥(6)df = 0 is uniformly approximated by
functions of £ since M is compact (c¢f. Chavel [1], p.139-140), and continuous functions are
densein LP(M). Hence every h-f € B can be || | p-approximated by h-f' € A. On the other
hand, every F € S can be | ||p-approximated by F' € B’; Note that S C LP(G, e ?*ldzdf)
and B’ C L?(G,e ?ldzdf). Therefore, every F € S can be || ||p-approximated by F' € A’.

Consequently, noting that by (4.6) Theorem 4.1.3 holds for every hf € A (and so for
every F' € A'), we complete the proof by an approximation argument using (4.18). Q.E.D.

4.3 Extention to the Ornstein-Uhlenbeck process

In this section, we shall show that Theorem 4.1.1 and Theorem 4.1.3 (and so Theorem 4.1.2)

can be proved in the case that M = R™ and (©,) is an Ornstein-Uhlenbeck process:
0= (tha @?) e aezn))
d@t - —@tdt + \/§dBt,

where B, 1s an m-dimensional Brownian motion. Here, of course, in the statement of the
theorems, we take the normal distribution N(d§) = (27)~™/2 exp(—|6|?/2)df on R™ instead
of df.
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For the proof, note first that the generator of ©, has also pure point spectrum (4.1). The

corresponding eigenfunctions {¢,} are of the form;
oa(8) = Hy (8')Hy, (6%) - - H, (67)

for some non-negative integers ki, ks, - -, k,, where Hy (6') is the normalized Hermite poly-
nomial of degree k; and § = (6',6%,---,6™).
The transition density ¢(¢, 6, n) of ©; is given by

=1

= fla- e (G- LI,

2 2(1 —e2)

Since R™ is not compact, the necessary changes for this case in the course of the proof
appear where we have used the compactness of M. What we have to check are the following
points in the proof of Theorem 3 ( since the proof of Theorem 1, Theorem 2 and Theorem

3 are very similar, these points are the same as in the case of Theorem 1 and Theorem 2):

(1) The assertion of Lemma 4.2.2.

(2) A°E sup |pn(©x)] =0 as A — oo foranye>0 in (4.14).
0<t<T |

(3) E|en(0x)]? < const. in (4.15) and (4.17).

(4) For 1 < r < oo, L is dense in L"(R™, N(df)) where L is the set of all linear

combinations of finite number of ¢, o, - - -.

Firstly we consider (1). We see from the expression (4.19) that ¢(¢, 8, 7) 1(¢>5) is bounded
and that ¢(¢,8,n) satisfies the uniform estimate

q(t,6,n) < const. t~™/2 I/ (t10)

instead of (4.5), and hence Lemma 4.2.2 is also valid for the Ornstein-Uhlenbeck process O,
if we substitute t=™/2rlfl’/2r for t=m/2r and N (df) for df, respectively. Since we used Lemma
4.2.2 only in the case that § = 0 to prove (4.18) in the proof of Theorem 3, (4.18) is also
valid for the Ornstein-Uhlenbeck process ©;.

Secondly we consider (3). The proof of (3) is easy. Indeed, since

Elpn(0x)]* = [] ElHL (O3]

=1
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(4.20)  Hi(8') < const. {1+ (6")%} (i=1,---,m),
it is sufficient to show that
(4.21)  E|©},|* < const. forany k € N
But this is obvious because
E|O%,|F = (1 — e~ / Z |6]ke= 7" 20" N (dB) < const.

Thirdly we consider (2). It should be noted that (4.13) does not hold for the Ornstein-
Uhlenbeck process ©;. Indeed, it is known that E'supyc;cr |@x] — 00 as A — oo (see e.g.
Friedman [2], chapter 8, sectlon 1) But the assertion of (2) holds, which implies (4.14). The
proof of (2) is as follows. By the inequality

E sup_ len(Oae)] < HE sup |Hy,(©4,)]

0<t< =1 0Le<T
and (4.20), it is sufficient to show that
A"°E sup @4, — 0
0<t<T

as A — oo for any € > 0 and every £ € N. This follows from Lemma 4.3.1 below.

Lemma 4.3.1 Suppose (©;)i>0 is a 1-dimensional Ornstein-Uhlenbeck process, i.e., an R' -

valued process satisfying the stochastic differential equation
dO; = V2dB, — ©,dt, Qg =0,

where By is a 1-dimensional Brownian motion. Then for any k € N and any e > 0, it holds
that

Ey sup |9 = o(T*) (T — o0).
0<t<T

Proof. Fix € > 0 and let n € N be an even number such that n > 1/e. Since |z|" €
C*(R'), by 1td’s formula we have that

t
o™ = \/§nk/0 10" 15gn(0,) dB,

t
+ / (nk(nk = 1)|0,"*~? = nk|©,]"*) ds
0
= .[1 + .[2.
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By Jensen’s inequality and the moment inequality, we have

T
n2k? / o, I2nk—-2ds
0

2 2
(E sup IIII) < E ( sup |[1|) <8F
0<t<T 0<t<T

T
< 8n2k2/ E|0O,|™*=2ds.
0
As for I, we have

T T
E sup || < nk(nk — 1)/ E|O,|"*2ds + nk/ E|O,|**ds.
0 0

0<t<T

Combining these estimates and (4.21), we obtain that

E sup |©,** < (const.T)"/? + const.T.
0<E<T

On the other hand, by Jensen’s inequality, we conclude that

(E' sup |@,|k) <FE ( sup |®t|k) = E sup |O/]™.
0<t<T 0<t<T 0<t<T

Hence we have that

T~E sup |0,/ < T *(const.T/?+ const.T)"/"
0<¢<T

= (const. T2~ 4 const. T17"¢)!/»
—0 (T — o0).

Q.E.D.

Remark 4.3.1. By a similar argument as in Lemma 4.3.1, we can see that

(4.22) E sup |®,] <log(1+ const.T"? 4+ const. T).
0<t<T

Indeed, since Elexp(©;)] < const. and E[|© exp(O;)] < const. , applying Itd’s formula to

exp(z), we have that

exp (E sup |®t|) <FE ( sup exp(@t)) < 1+ const. T? + const. T,

0<t<T 0<t<T

which implies (4.22).

Finally we consider (4). This fact is proved as the following lemma due to I.Siegal ( I

learned this from professor K.It6 ).

78



Lemma 4.3.2 Let P be the set of all polynomials of R™. If a probability measure u on
R™ satisfies that [pm exp(£]6*Nu(df) < oo, i = 1,---,m, for any € > 0, then P is dense in
Lr = [P(R™, u(df)) for every 1 < p < oco.

Proof. Firstly we consider the case that 1 < p < co. Since P is a vector subspace of L2,

its || ||-closure in L%

P, written C, is a closed linear subspace of L? . It suffices to prove

that C = L% . Suppose that this were not true. Since 1 < p < co, we can find a non-zero
element y(8) € LE (1/p + 1/g = 1) satisfying

(4.23) /Rm y(8) £(8)(df) = 0 for any f € C

by using the Hahn-Banach theorem and noting that L2 is dual to L . Since exp(|¢6*|) € L?,
i=1,---,m, for any £ € R' by the assumption, we obtain that [pm |y(9)] exp(]£8])u(d8) <

@2) Y [ WOl aE) <o (=1, ,m)

Observe that

0o — 1)k
@) [ e eu) = 35 s+ g0mut

=1

>

]
e

Here the first equality in the above was derived from (4.24); the last equality was derived
from (4.23) and the fact that (&0 4+ 4+ £,6™)* € P C C. Since y € L% C L}, , y(8)u(dh) is
a signed measure of bounded variation on R™ whose Fourier transform vanishes identically
by (4.25). Hence y(8)u(df) = 0 a.e.(u). This implies y = 0 a.e. in contradictio with our
assumption y # 0.

Secondly we prove that P is dense in L, . Every f € L) can be || ||;-approximated by
freLllnl? (c L) and f can be || ||-approximated (and so || ||;-approximated) by

f" € P as seen above. Q.E.D.
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