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Chapter 1 

Introduction 

Let Zt, Zo = 0, be a complex Brownian motion starting at the origin. Many works have been 

done on the limit theorems for addit.ive functionals of Zt. The main purpose of this paper 

is to present some extentions of the old results and related theorems. \Vell-known classical 

results are due to G. Kallianpur and H. Robbins [5] for occupation times and to F. Spitzer 

[11] for winding number of Zt around a given non-zero point: Since Zt is neighborhood 

recurrent, for any open domain D in C, the random occupation time of D by Zt before time 

t, J~ ID(zs) ds, has limit 00 almost surely as t ~ 00. Then Kallianpur-Robbins showed that 

if 0 < area(D) < 00, then 

(1.1) _lIlt ID(zs) ds ~ _1 area{D) H (t ~ 00), 
ogt Jo 211' 

where H is a random variable wit.h the standard exponential distribution and ~ indicates 

convergence in distribution. On the other hand, since Zt does not hit points, we can define a 

winding process 8 a (t), the continuous total angle wound by Zt around the point a E C\{O} 

up to time t. More precisely, we define X a (t) and 8 a (t) by 

(I. ?) it ~ = log (Zt - a) 11 - := Xa(t) + v -I8a(t). 
o Zs - a -a 

Then Spitzer showed that 

( 1.3) (t ~ 00), 

where C is a random variable with the standard Cauchy distribution. 

Y. Kasahara and S. Kotani [6] generalized these classical results from the standpoint of 

the convergence as stochastic processes: In the following, we denote the local time at 0 of 

one-dimensional Brownian motion ~(t) by l(t, 0, 0, the maximum process maxo~s9 ~(s) of ~ 

by f-l( t,~) and the Legesgue measure on C by m( dz). Set 
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it ds 
r(t) = 1 12 ' o ZJ - a 

Since r(t) = (Xa)t = (0a)t (Generally, (M)t is the usual quadratic variation process of a 

conformal (local) martingale .M(t) ) , it is clear from the Knight theorem that 

( 1.4) 
L 

--; ~(t) + yC1 r](t) (,\ --+ (0), 

where ~(t) and r](t) are mutually independent one-dimensional Brownian motions and ~ 
indicates convergence in law on the continuous path-space. Kasahara-Kotani showed that if 

J is a bounded function from C to C satisfying Ie IJ(z)llzle m(dz) < 00 for some £ > 0 , 

then it hold that 

( 1.5) (,\ -+ (0) 

and 

( 1.6) 

jointly with (1.4), where 1 = (1/21f) Ie J(z) m(dz). Denoting the right continuous time 

inverse fJ.-l(t,~) by (J(t,~), We obtain from (1.5) and (1.6) that 

(1.7) (,\ --+ (0) 

and from (1.4) and (1.6) that 

(1.8) ('\--+00), 

where ~ indicates convergence in the sense of finite dimensional distributions. Note that 

(J(t,~) = inf{u;~(u) = t}. Now we can understand (1.1) and (1.3) as the section at t = 1 

of (1.7) and (1.8), respectively. Indeed, 1((J(t, ~), O,~) has the exponential distribution with 

mean t for fixed t > 0 and r]((J(t,~)) is a Cauchy process. 

Kasahara-Kotani [6] discussed also the case that 1 = O. In this case, the study is 

intimately related by Ito's formula to the study of an additive functional of Zt given in the 

form 

(1.9) 
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for some function F. P. Messulam and M. Yor [7] discussed (1.9) itself when F is bounded 

with compact support. The limit law of (1.9) as ). -;. 00 is B(2l(t, 0, OF), where B(t) is a 

complex Brownian motion independent of (. 

On the other hand, J. Pitman and M. Yor [8]'[9] gave another extention of Spitzer's law 

(1.3): Let a1,"',an be given distinct points on C\{O}. We write the processes X aj and 

ea ; given in (1.2) corresponding to ai simply by Xi and e i , respectively. Then Pitman-Yor 

showed that 

(1.10) { l~ej(t), l(t, 0, Xi)} ~ 
og t l~i~n 

(t - (0), 

where for each i the triple (T-Vi' T-V+, A) is equivalent in law to 

(1.11) 

and the n + 1 random variables T-V1,"', Wn , T-V+ are mutually conditionally independent 

given A. Here ((t) and 17(t) are mutially independent one-dimensional Brownian motions 

and a(l) = inf{u;((u) = I}. The T-V1,"', T-Vn are individual components for each point 

ai, attributable to small windings about ai, and the ~V+ is a component in common to all 

points, attributable to big windings made when Zt is far from all points. 

We can investigate their result (1.10)-(1.11) from the viewpoint of (1.4)-(1.6). The facts 

(1.4)-(1.6) are that 

.!. 1 T j- I p"lt) dzs 
(i(t) + H17i(i) 

). 0 Zs - aj 

(1.12) 
1 T j-

1(A 2t) L 
(,\-00) ""i1 J(zs)ds 

---+ 2l(t, 0, ei) 7 

2\ log (Ti-1().2t) -1) p(t, (;) 

for each i, where T;(t) = J~ \zs - ai\-2 ds and ((i, 17i) is a two-dimensional Brownian motion. 

If we consider these processes jointly for i = 1,,", n, then the Brownian motions ( = 
(6"" ,(n) and 17 = (171,"', 17n) have the following structure: 

(1.13) (i(t) c¥i (fot l({;(s)<O) dS) + c¥+ (fot l({;(s»O) dS) 

( 1.14 ) 17i ( t ) 
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where (Xl,"', (Xn, (X+, (31,"', (3n, (3+ are n + 2 mutually independent I-dimensional Brownian 

motions. 1 Then as a corollary to (1.12), we have 

(.d. 
----+ 

as A --+ 00, where O"i(t) = inf{u;~i(u) = t}. Thus we can understand Pitman-Yor's result 

(1.10)-(1.11) as the section at t = 1 of the above convergence. These facts were pointed out 

and proved by S. Watanabe in an unpublished note [12]. 

Pitman-Yor [10] extended their results (1.10)-(1.11) to the case of 

(1.15) {~r Ii (ev'-l0 i (J») d8 i(S)} , 
log t fa l~i~n 

where it" .. , In are bounded Borel functions on C. In this case, another Brownian motions 

(or Gaussian random measures) independent of (~, 7]) appear in the limit process. Can we 

reproduce and extend also this result in the context of Kasahara-Kotani-Watanahe? 

In Chapter 2, we execute this program above: We extend (1.12) to additive functionals 

of Zt given in the form 

(1.16) • IJ' d 1 IaT :-
1
(>h) f· ·(z ) 

ANij (>.) a z. - ai 
z. 

1 Ia T :-
1
(A

2
t) 

= • I·· (a - a.eXi(JHv'-l0.(J») d( X'(s) + q 8(s)) AN
ij 

(A) a I) 1 1 .' I V-I" 

where Nij (>.) are some normalizing functions. We call the above additive functionals "winding­

type". The case that lij = 1 corresponds to windings, and the case that lij(ai - aie x +v'-l9) 

depends only on e corresponds to (1.15). We do not assume that each Ii) is bounded, but 

we treat, roughly speaking, the case that the asymptotic behaviour of Ii) (ai - aieAx+v'-l9) 

as A --+ 00 is IxIPijCij(e) where Pij > -1/2 and Ci) E L2(0, 211-). 

In our proof of the limit theorem, an ergodic theorem such that 

lThe processes such as (1.13) exist uniquely in the sense of law. Indeed, since by Tanaka's formula we 

can express the processes in the right hand side of (1.13) as 

{ 

Cii (J~ 1(~.(s)<O) dS) = Ti (J~ 1(~.(s)<O) dS) + I(t, 0, e;) 

Ci+ (J~ l(~.(s»O) dS) = T+ (J~ l(~.(s»O) dS) -1(t,O,ei)' 

where Tl, ... , Tn, T + are mutually independent reflecting Brownian motions, using these Skorohod equations 

and the excursion theory, we can construct (ei h~i~n satisfying (1.13) by the Poisson point process p+ of 

positive Brownian excursion corresponding to T + and the Poisson point processes pi , i = 1,···, n, of negative 

Brownian excursions corresponding to Ti. We can also see from this construction that 1(J.L- 1 (t, ed, 0, ei), 

i = 1,···,n, are identical to 1(0'+(t),0,1'+) where O'+(t) = inf{u;T+(u) = t}. See remark 2.4.1 in the last 

part of Chapter 2, section 2.4. 
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(A ~ (0), 

where Ci} = (1/21f) J~7r Ci}(e) de, plays an essential role. We prove this ergodic theorem for a 

class of diffusion processes (X(t), 8(t)) on Rd x AI where M is a compact Coo-Riemannian 

manifold. 

In Chapter 3, we prove another ergodic theorem for (X(t), 8(t)) on Rd x M such that 

(LIS) N(A)E sup I r g(X(As),8Ps))ds- rtg(XPs))dsl_o 
09~T 10 10 

where g: Rd x M t-+ Rl is a function satisfying some conditions for integrability, g(x) = 

(1/21f) J027r g(x, e) de and N(A) is some normalizing function corresponding to g. Using this 

ergodic theorem, we extend naturally the class of functionals in the limit theorems for (1.5) 

and (1.9). More precisely, we prove the convergence (l.5) for f E Ll(C)nLP(C) (1 < p:::; (0) 

and the convergence of (l.9) for F E L2(C) n LP(C) (2 < p:::; (0). 

In Chapter 4, we extend the ergodic theorem (1.17) to a similar form as (l.IS). Moreover, 

we show that these ergodic theorems are also valid in the case that Al is R m which is endowed 

with the normal distribution v(de) instead of de and 8 t is an Ornstein-Uhlenbeck process. 
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Chapter 2 

On Limit Theorems Related to a 

Class of "Winding-Type" Additive 

Functionals of Complex Brownian 

Motion 

2.1 Introduction 

Let z(t) = x(t) + yCT y(t), z(o) = 0, be a complex Brownian motion starting at the origin. 

Main purpose of this chapter is to reproduce and extend some results of Pitman-Yor by the 

method of Kasahara-Kotani: In particular we discuss the convergence as stochastic processes 

of time scaled additive functionals belonging to a little more general class. 

First, we describe briefly the main idea of Kasahara-Kotani. In order to study the limit 

process as A -+ ()() of additive functionals AA(t), A > 0, given in the form 

1 r(At) 

AA(t) = AN(A) Jo J(zs)dzs 

where u(t) = e2t 
- 1 and N(A) is some normalizing function, we set 

Z(t) = log(z(t) + 1) 

and introduce an increasing process 
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( Generally, (M) (t) is the usual quadratic variation process of a conformal (local) martingale 

M(t) and g-l(t) is the right continuous inverse function of a continuous increasing function 

g(t) .) Then, by the time substitution, we have 

A>'(r>'(t)) = _1_ rt f(e>'z\,) _ l)e>,z\')dZ>'(s) 
N(>.) Jo 

where Z>'(t) = tZ((Z)-1 (>,2t)). Note that Z>'(t) is a complex Brownian motion for every 

A > O. The limit process of A>'(t) can be found if we can obtain the limit process as 

A ----t 00 of the joint continuous processes {A>'(r>'(t)), Z>'(t), r>'(t)}. The limit process 
~>. 

of {Z (t), r>'(t)} is given by {b(t), p(t)} where b(t) is a complex Brownian motion and 

p(t) = maxO~s9ne[b(s)] (cf. Lemma 3.1 of [6]). The study of convergence for the above 

joint processes is therefore reduced to that for 

_1_ r f( e>'b(·) - 1 )e>'b(')db( s) 
N(A) Jo 

as A ----t 00. If we represent b(t) as 

b(t) = x(t) + v'=1lat 

de(s), 

where B(t) is a Brownian motion on the unit circle T = R/21TZ ::::: [0, 21T) so that (x(t), e(t)) 

is a Brownian motion on the Riemannian manifold R x T, then, in this study, the er­

godic property of B(t) plays an important role; indeed, it is a homogenization problem for 

(x(t), B(t)). 

We would apply this method of Kasahara-Kotani to some problems discussed by Pitman­

Yor, namely to the study of joint limit distribution, as A ----t 00, of the processes (Ai/) given 

by 

where al,"', an are distinct points on C\{O} and fJ' j = 1"", m, are some Borel functions 

on C. If fJ = 1, then Im[Ai/(t)] is a normalized algebraic total angle wound by z(t) around 

ai up to the time e2>.t - 1. Writing 

f ·(a· - a·ex+A9) - g' ·(x B) J I I - IJ , , (x,B)ERxT, 

Pitman-Yor discussed the case when gij depend only on B. Here we consider a more general 

case by introducing a notion of functions regularly varying at point ai and also at the point 

at infinity. This class of functions was introduced by S. Watanabe in an unpublished note. 

In order to apply Kasahara-Kotani's method to this class of additive functionals, we need 
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an ergodic theorem for Brownian motion (x{t), B{t)) on R x T which we establish in section 

2.2 by using the method of eigenfunction expansions. 

Finally, we summarize the contents of this chapter. In section 2.2, we consider a class 

of diffusion processes on Rd x M where AI is a compact Riemannian manifold and obtain 

an ergodic theorem for them. In section 2.3, we apply the result of section 2.2 to a homoge­

nization problem for Brownian motion (x{t), B(t)) on R x T and thereby describe the limit 

process as ). -+ 00 of the joint processes 

{
_l_ rt Ji(a _ aeAZ(5))dZ(S)} , 
Ni(A) Jo l~i~m 

where a E C\{O}, z(t) = x(t) + J=T J~ dB(s) so that z{t) is a complex Brownian motion, 

and Ji are taken from the class of regularly varying functions in the sense given by Definition 

2.3.1. Here, the asymptotic Knight's theorem of Pitman-Yor [10] for a class of conformal 

martingales also plays an important role. In section 2.4, we obtain the joint limit theorem 

for additive functionals of the form (2.1) by applying the results in section 2.3. 

2.2 An ergodic theorem for some class of diffusion 

processes on compact manifolds 

Let M be an m-dimensional compact (connected) COO-Riemannian manifold without bound­

ary and (8dt~0 be a Brownian motion on AI (see Ikeda and Watanabe [4], Chapter 5, 

section 4). The generator of (8 t ) is {1/2)~M' where ~M is the Laplace-Beltrami operator 

for M. Since M is compact, ~M has pure point spectrum 

and we denote the corresponding normalized eigenfunctions by {'Pn}. It is known that the 

transition density q(t, B, 17) of (8 t ) has the following expansion: 

00 

(2.3) q(t, B, 17) = L e-Ant 'Pn(B)'Pn(17), 
n=O 

which converges uniformly in (B, 17) for every t > 0 (see Chavel [1] p.140). 

Let (Xtk~o be an Rd-valued diffusion process determined by the stochastic differential 

equation 
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where a(x) and b(x) are bounded and smoot.h, a(x) is uniformly non-degenerate and (Bt)t'~o 

is a d-dimensional Brownian mot.ion. 

We assume that X and 8 are independent and Xo = 0 and 80 = eo ( eo E .M ) throughout 

this section. 

Our main result in this section is as follows: 

Theorem 2.2.1 Let h be a Borel measurable function from Rd to Rl and f be a Borel 

measurable function from M to R 1 satisfying the following conditions: 

(1) Ih(x)1 ~ const.lxla for every x E Rd for some CY > - min(2, d) , 

(2) f is in LPUv!) = LP(Al, de) for some p with p ;::: 1 and p > mj(CY + 2), where de is the 

volume element of M , 

(3) f is null charged i.e. 

iM f(e) de = o. 
Then for every T > 0, it holds that 

E(o,eo) [sup I rt h(X$)f(8}.$) dsll- 0 
09~T Jo 

as ). -7 00. 

To prove our theorem, we prepare some estimates for Exlh(Xt)1 and Eelf(8t)l. 

Lemma 2.2.1 Suppose that h: Rd ....... Rl satisfies Ih(x)1 ~ const..lxla for every x E R d, 

where CY > -d. Then for every x E R d and t > 0, 

Proof. From the assumption of Xt, we have the following estimate for the transition 

density p(t, x, y) of X t : 

-d/2 (canst. Ix - Y12) (2.5) p(t, x, y) ~ canst. t exp - 2t . 

(See Friedman [3]' p.141, Theorem 4.5.) 

Then, from the assumption for h( x), 

(2.6) Exlh(Xt)1 < canst. C d/2 r exp (_ canst. Ix - Y12) Iyla dy 
- JRd 2t 

r (canst. 1~12) I r; I canst. JR
d 

exp - 2 v t ~ + x a d( 
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If a > 0, the right hand side (RHS) of (2.6) is bounded by 

r (const.I~12) r; a canst. JR
d 

exp - 2 (v t I~I) d~ 

r (const.I~12) + canst. JR
d 

exp - 2 Ixla d~ 

canst. t a
/
2 + canst. Ix la. 

If -d < a :::; 0, the RHS of (2.6) is bounded by 

/ r (const.I~12) r; canst. ta 2 JR
d 

exp - 2 I~ + x/vtla d~ 

const.ta 
2 exp - I~+x/vtlad~ / 1 ( const.I~12) r; 

IHx/VtI<l 2 

+const.ta 
2 exp - I~+ x/vtlad~ / 1 ( canst. 1~12) r; 

It+x/Vtl~l 2 

+ canst. t a 2 exp - d~ / 1 ( canst. 1~12) 
It+x/Vtl~l 2 

< const. ta
/

2
• 

Q.E.D. 

Lemma 2.2.2 Suppose f E LP(M ~ Rl, de) with some p 2: 1. Then for every e E AI and 

t > 0, 

Proof. For a moment, let p > 1. First note that 

where q(t, e, 17) is the transition density of 8 t and l/q + l/p = 1. 

Since we have the uniform estimate 

q(t, e, 17) :::; canst. C m
/

2 (t J 0) 
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(see Chavel [1], p.I54 rv 155), setting 0 > 0 small enough, 

(1M q(t,e,1])qd1]r/
q 

I(t<o) < (const·lft-m(Q-n/2q(t,e,1])d1]r/Q I(t<o) 

canst. C m
/
2p I(t<o). 

On the other hand, from (2.3) we have 

(
00 )1/2 (00 )1/2 < fa e-.\n° ipn (e)2 ,~ e-.\n° ipn (1])2 

= q(o, e,e)1/2q(O, 1],1])1/2 

< canst. 

Hence 

(1M q(t, e, 1])Q d1]) l/Q I(t>o) ~ canst. V(M)l/Q, 

where V(M) = JM de. 

Therefore, 

Eelf(8t )1 < (canst. C m/2p I(t<o) + canst. V(M)l/Q)lIfllp 

< (canst. c m
/

2
p + canst. ) IIfll p , 

In the case that p = 1, we can prove the lemma similarly by replacing (f1\1 q(t, e, 1])Q d1])l/Q 

with sUP1) q(t, e, 1]) . Q.E.D. 

Proof of Theorem 2.2.1 

First we will prove the theorem in the case that f = ipn for some n ~ 1. From now on 

we write the expectation E(o,eo) simply by E. 

Set 

and 
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In order to prove that 

(2.7) 

it is clearly sufficient to prove that 

(2.8) 

and 

(2.9) E sup 1M/I ~ 0 
°9::;T 

The convergence (2.8) is proved as follows. By the orthonormality of {<pd and (2.3), we 

see the following identity: 

for every B E .M . 

Clearly i.pn(B) is bounded since ZPn is continuous and M is compact and hence we have the 

basic estimate 

By Lemma 2.2.1 and (2.10), we obtain the following estimate for uA: 

Hence 

Here 

< const.lo
co 

so./2e-A nAS ds + const.l x lo. l(o.>O) loCO e- AnAS ds 

_ const.). -0./2-1 + const.lx 10. 1(0.>0) ). -1. 

E sup luA(Xt , eAt)1 :::; const. ). -0./2-1 + const. ).-1 E sup IXti o. 
1(0.>0). 

09::;T 0::; t::; T 

(2.12) E sup IXti o. < +00 
°9::;T 
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holds for (Y > o. Indeed, if (Y > 1, we have by (2.4) and the martingale inequality that 

E sup IXti a 

0::; t::; T 

< const. E sup / ft ()(X .. ) dB .. /
a 

+ const. 
09::;T io 

< const.ElloT ()(X .. )dBsla +const. 

< const. EIXTla + const., 

and the finiteness of EIXTla follows from (2.5). It is easy to see that (2.12) is also valid for 

o < (Y ::; 1 since 

by Holder's inequality. Thus (2.8) is proved. 

We now show (2.9). Fixing). > 0 and setting F t = (){(X .. , 8" .. ); s ::; t}, we can prove that 

M/ becomes an (Ft)-martingale by a repeated use of Fubini's theorem. (Note by Lemma 

2.2.1 and (2.10) that 

E [100 

IE(x,,0>..) (h(Xu)'Pn(8"u)) I dU] 

= E [loOO lEx, (h(Xu))1 IE0>., ('Pn(8"u)) I dU] < +00 .) 

Then we have 

E sup 1M/I::; (E sup 11\1/12)1/2::; const. (EIMT "1 2
)1/2 

09::;T 09::;T 

by the martingale inequality. Hence it is only necessary to show that 

as ). -+ 00 

and 

I, = E (J,T h(X,)l'n(El,,) dS) 2 ~ 0 as ). -+ 00. 

We can easily see that II -+ 0 as ,\ -+ 00. Indeed, (2.11) implies that 
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II ~ const. A -0-2 + const. A -0/2-2 EIX Tlo 1(0)0) + const. A -2 EIXTI20 1(0)0) 

and the finiteness of EIXTlo 1(0)0) and EIXTI20 1(0)0) follows from (2.5). 

Finally we shall prove that 12 --+ 0 as A --+ 00. By Lemma 2.2.1, (2.10) and Fubini's 

theorem, we have 

12 = 2E [IoTds losdu h(Xs)h(Xu)<Pn(8>.s)<Pn(8>.u)] 

210
T

ds losdu E [h(Xu)Exu (h(Xs- u))] E [<Pn(8).u)E0AU (<Pn(8>.(s-u)))] . 

Since Lemma 2.2.1 implies that 

and (2.10) implies that 

IE [<Pn(8).u)E0Au (<Pn(8>.(s-u)))] I ~ const. e->'n>'(S-U), 

12 < const.IoTds losdue->.n>.(s-u)(s - u)0/2uo/2 

+ const.IoTds losdu e->'n>'(S-U)uo 1(0)0) 

< const. A -0/2-1 + const. A-I 1(0)0) 

---+ 0 (A --+ 00). 

Thus the proof of (2.7) is complete. 

N ext we will show Theorem 2.2.1 for general f satisfying the conditions (2) and (3). Let 

.c be the set of all linear combinations of finite number of <PI, <P2, . ". We know by (2.7) that 

Theorem 2.2.1 holds for f E.c. Furthermore, by Lemma 2.2.1 and Lemma 2.2.2 we have 

that 

Therefore, 

< (const.Io
T 

sO/2( AS )-m/2p ds + const.Io
T 

so/2 dS) Ilfllp 

< (const. A -m/2p + const. ) Ilf lip' 
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E sup / ft h(X.)f(8)..)ds/:::; (0(1) +const.)llfllp 
a9~T fa 

To complete the proof we have only to note the following facts: Since AI is compact, any 

continuous function f on M satisfying the null charged condition (3) is uniformly approxi­

mated by functions of.c (cf. Chavel [1], p.139-140), and continuous functions are dense in 

LP(M). Q.E.D. 

2.3 Some limit theorem for additive functionals of a 

Brownian motion on the cylinder 

In this section, we will prove some limit theorem (Theorem 2.3.1) for additive functionals 

of a Brownian motion on the cylinder R x T, T = R/21rZ ~ [O,21r], as an application of 

Theorem 2.2.1 in the previous section. 

First of all we prepare some notations for conformal martingales. Let z(t) = x(t) + 
J=T y(t) be a conformal martingale i.e. (x) (t) = (y) (t) and (x, y) (t) = o. We denote these 

common processes (x) (t) and (y) (t) by (z) (t). Throughout this paper we always denote 

by (Z)-l (t) the process obtained by the right continuous inverse function of t I-l- (z) (t). If 

(z) (t) --+ 00 (t --+ (0) a.s., then the time changed process Z((Z)-l (t)) becomes a complex 

Brownian motion by the Knight theorem. We always denote this Brownian motion by z(t). 

If Zl(t) = Xl(t) + V=I Yl(t) and Z2(t) = X2(t) + J=T Y2(t) are conformal martingales, 

then we denote by (Zl, Z2) (t) the matrix of quadratic variation processes 

(
(x 1, X 2) (t) (x 1, Y2) (t)) . 

(Yl,X2) (i) (Yl,Y2)(t) 

Note that (z, z) (t) = (z) (t) (~ ~) and 

(l <pds) dz., l <P2(S) dZ.) (t) 

= 1tne(<Pl<P2*)(s)d(z). (~ ~) + 1tIm(iJlliJl2*)(s)d(z). (~ ~1). 

(Here <p* represents the complex conjugate of <P .) 

Let (5,8(5), p) be a measure space and set F = { A E 8(5); p{A) < +oo}. A family 

of random variables A1 = {M{A); A E F} is called a (real) Gaussian random measure on 
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S with mean 0 and variance measure p. if and only if AI is a Gaussian system such that 

E[M(A)] = 0 and E[M(A)M(B)] = p.(A n B) hold for any A, BET. Furthermore, a 

complex Gaussian random measure AI on S with mean 0 and variance measure p. is by 

definition a family of complex random variables M(A) which can be expressed in the form 

M(A) = Ml(A)+H M2(A) where AIl and M2 are mutually independent Gaussian random 

measures with mean 0 and the same variance measure p.. 

Throughout this section, we always denote L2(T r-+ C, dB/21f) by L2(0, 21f). Let us 

introduce a definition of regularly varying functions of a complex variable: 

Definition 2.3.1. A function J(z) defined on 0 < Iz - al < R is called regularly varying 

at a( # 0) with order p( > -1/2) if there exist some slowly varying (at 00 ) function L( >'), 

c(B) E L2(0, 21f) and r > (log la/ RI) V 0, which have the following two properties: 

1°) There exist some constants c ~ 0, ]( > 0, and >'0 > 0 such that c < p + 1/2 and 

for all >. ~ >'0 and s > o. 

2°) For any s > 0, 

---+ 0 as >. ~ 00. 

For a = 0, we substitute the condition r > (log la/ RI) V 0 with the condition r > 
(-log R) V 0 and a _ae Ax+H9 with e>.x+H9 in the above definition. 

We call N(>.) = >,P L(>.) and c(B) the regular normalizing function of J at a and the 

asymptotic angular component of J at a, respectively. 

Furthermore, we call a function J(z) defined on Izl > R regularly varying at 00 with order 

p if J(z) = J(1/z) is regularly varying at 0 with order p. The regular normalizing function 

of J at 00 and the asymptotic angular component of J at 00 are those of J at 0, respectively. 

Remark 2.3.1. The class of functions regularly varying both at a a,nd at 00 defined above 

contains the original class of functions regularly varying at a defined by Watanabe([12]). 

Example 1. For any given domain DeC such that D or DC is bounded, the function 

J(z) = 1D(Z) is regularly varying at a with order 0 for any a E C U {(X)} \ EJD. The regular 
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normalizing function of J at a is 1 and the asymptotic angular component of J at a is 1 if 

a E D and 0 if a ¢ D. (Here we consider that 00 E D when DC is bounded.) 

Example 2. Let g(e) E L2(0,27r) and let h(x) be an ordinary regularly varying function at 

00 with exponent p( < 00) such that 

[
h(>.X) [ }' ( P-~1 p+~ ) h(A) ::; \.. x (lxl<l) + x l(1xl~1) 

for all >., where f{ > 0 and c ~ 0 are some constants satisfying c < p + 1/2. Then 

J( z) = g ( arg z -=-a a) . h (-log 1 z -=-a a I) 
is regularly varying at a with order p. The regular normalizing function of J at a is h(>.) 

and the asymptotic angular component of J at a is g(e). 

When J(z) is regularly varying at 00, the asymptotic behavoir of J(a - ae>'x+F-T9) l(x>o) 

as A -+ 00 for every a =1= 0 can be described using that of J( e>.x+F-T9) l(x>o): 

Proposition 2.3.1 Suppose that a function J(z) defined on Izl > R be regularly varying at 

00 with order p. Then for any a E C \ {O}, there exists r' > log(1 + R/lal) such that the 

following two properties hold: 

1°) There exist some constants c ~ 0, f{ > 0 and Ao > 0 such that c < p + 1/2 and 

11 := r27r 
de 1+00 

[-I-J(a _ ae>'x+v=T9) [2 e-x2/$dx 
Jo r'l>. N(>.) 

(2.13) 

for all A ~ Ao and s > o. 

2°) For any s > 0, 

(2.14) 12 := r27r 
de 1+00 

[-I-J(a - ae>.x+v=T9) - c( -e - arg( -a)) . xp[2 e-x2/$ dx 
Jo r'l>. N(>.) 

~O as A -+ 00, 

where N(>.) and c(e) are the regular normalizing function of J at 00 and the asymptotic 

angular component of J at 00, respectively. 
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Proof. By the assumptions, there exists some r > (log R) V 0 which satisfies the following 

two properties: 

1°) There exist some constants c 2: 0, J{ > 0 and '\0 > 0 such that c < p + 1/2 and 

(2.15) r27C 
de 1+00 

1_1_f( e>.x+AfJ) 12 e-x1 /$ dx 
io r/>. N(,\) 

for all ,\ 2: '\0 and s > O. 

2°) For any s > 0, 

(2.16) r27r 
de roo 1-1-f(e>.x+AfJ) _ c(-e). Xpl2 e-x1 /$ dx 

io ir/>. N('\) 

~ 0 as ,\ ~ 00. 

Now denoting max (r, log(lal2 + 21al)' log(l + lila!)) by r again, we see that (2.15) and 

(2.16) clearly hold for this new r. Therefore we may assume that r 2: log(lal2 + 21a!) and 

r 2: log(l + lila!). Set r' = log(l + er Ilal). We have that r' > log(l + Rlla!) since r > log R. 

In order to change the variables of the integrals II and 12 above, we set 

Then 

and 

where 

1 
x' = x - >: log laJ>'1, 

e' = e - arg( -aJ>') 

J>'(x, e) = _z_ = (1 _ ae->'X-AfJ)-I. 
z-a 
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Hence 

11 l27rd() JR l(Ax-loglaP'I>T') ·IN(A)-1 f(e~x+v'-T9)12 

x exp (-(x - ~ log laJ~1)2 IS) IJ~12 dx. 

Noting that IJ~I ~ (1 + lale-~xt1 and r' = 10g(1 + eT Ilal), we see that if AX -log laPI > r/, 
then AX > r. So we have 

II ~ r
27r 

d()l+
oo 1_1_f(e~X+v'-T9)12 exp (-(X - .!..loglaJ~1)2Is) 1J~12dx. 

Jo T/~ N(A) A 

Moreover by the inequality r ~ log(lal2 + 21al) it holds that 

This implies that 

(2.17) 

for X > rIA. Therefore, 

II ~ lal-2eT r
27r 

d() 1+00 

1_1_f (e Ax+v'-T9)1
2 

e-x1 /4
& dx 

Jo T/~ N(A) 

which proves (2.13) together with (2.15). 

Similarly, 

(2.18) 12 ~ lal-2eT r
27r 

d() r+001_1_f(e~x+v'-T9) 
Jo Jr/~ N(,\) 

-c( -() + arg J~) . (X - ± log laJ~I)p12 e-x1 /4& dx. 

On the other hand, by r ~ 10g(1 + 1/1al) it holds that 

This implies that 

1 >: log laJ~1 > -x 

for x > rIA. Noting this and (2.17) we have the estimate 

Ixp - (x - ~ log laJ~l)pI1(x>r/~) ~ const. xP l(x>o) 
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for any P > -1/2. Hence we can easily prove that 

(2.19) fo27r dB 1;>..00 Ic(-B)x P - c(-B)(x - ±logl aJ>"l)pI
2 

e-x1
/
4'dx 

---+ 0 as ,\ -+ 00 

by Lebesgue's convergence theorem and the fact that 

as ,\ -+ 00 

uniformly in B for any x > O. 

Since arg J>" ---+ 0 as ,\ -+ 00 uniformly in B for any x > 0, we can also prove that 

(2.20) 

---+ 0 

by Lebesgue's convergence theorem and the fact that 

fo27r jc( -B) - c( -B + arg J>" W dB ---+ 0 

for fixed x > O. 

Combining (2.18), (2.19), (2.20) and (2.16), we obtain (2.14). Q.E.D. 

Let (Xt, Bt) be a Brownian motion on the cylinder R x T matisfying Xo = 0 and Bo = 0 

a.s. Clearly 

Zt = Xt + H lot dB, 

becomes a complex Brownian motion. Our main theorem in this section is as follows: 

Theorem 2.3.1 (1) Suppose that the functions fl,"', fm defined on 0 < Iz - al < Rare 

regularly varying at a with order PI,' .. ,Pm, respectively. Denote the regular normalizing 

function of fi at a and the asymptotic angular component of fi at a by Ni('\) and ci(B), 

respectively for i = 1, ... ,m . Then there exists some r > (log la/ RI) V 0 and we have 

{ Ni(,\)-l 10' fi(a - ae>"z.) 1px.<-r) dz., 

Ni(,\t 2 r IIi(a - ae>"z·W 1px.<-r) ds} . Jo l:::;l:::;m 
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as ,\ -+ 00 in law, where c = (1/21r) J~7I" c( B)dB and Ai is a complex Gaussian random measure 

on [0, (0) x [0,21r] with mean 0 and variance meaSU1'e dt . (dB/21r) which is independent of 

z( t). 

rm (2) Suppose that the functions fI,' .. ,fm defined on Izi > R are regularly varying at 00 

with order PI, ... ,Pm, respectively. Denote the regular normalizing function of Ii at 00 and 

the asymptotic angular component of Ii at 00 by Ni(,\) and c;(B), respectively for i = 1"" ,m 

Then, for every a E C \ {O}, there exists some l' > (log( 1 + R/lal)) V a and we have 

{ Ni(,\)-I fa" li(a - ae AZ
.) I(Ax,>r) dz j, 

N i (,\)-2 r Ifi(a - ae Az·)1 2 1(Ax.>T) ds} . Jo I~I~m 

~ {Ci fo'(Xj)Pi l(x.>o)dz j + fo' fo2

71"(ci (B) - ci)(x j )PiAJ(I(x.>o)ds, dB), 

Icd 2 r (X j)2Pi l(x.>o) dS} . Jo I~J~m 

as ,\ -+ 00 in law, where c = (1/21r) J0271" c( B)dB and Ai is a complex Gaussian random measure 

on [0,(0) x [0,21r] with mean 0 and variance measure dt . (dB /21r) which is independent of 

z(t) . 

Proof. We will prove (1) only, because by Proposition 2.3.1, the proof of (2) proceeds 

similarly. (Note that 

{ r r
2

71"(Ci(_B - arg(-a)) - ci)(Xj)Pi M(I(x.>o)ds, dB) } 
Jo Jo l~i~m 

is equivalent in law to 

Let {eo = 1, el,"', ep } be some orthonormal system in L2(0, 21r) such that 

(k=O,···,p) 

for i = 1", . ,m. Define 

(k = 0"" ,p) 
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for some r > (log la/ R/) V o. Then it holds that 

(2.22) h = E sup INi(A)-l rt !i(a - ae AZ
,) l(Ax,<-r) dz. 

o::;t:5T Jo 

as ,\ -+ 00. 

The proof of (2.22) is as follows. Let q(t, e, 1]) be the transition density of e(t). Then 

h = E sup I rt 
(Ni(A)-l J;(a - ae AZ

,) - ci(Ae.)( -X.)Pi) l(Ax,<-r) dz.1
2 

o::;t:5T Jo 

< const. E loT INi(A)-l !i(a - ae AZ
,) - Ci(A0.)( -x.)pf l(Ax,<-r) ds 

const. E loT INi(A)-l !i( a - ae Ax
,+V-f8(A2.») - Ci(0(,\2 s))( -x.)pf l(Ax.<-r) ds 

rT r27r 
const.

Jo 
ds

Jo 
dO q(A2s, 0,0) 

x roo INi (At 1 !i(a - ae Ax+V-f8) - Ci(O)( _x)piI
2 

_1_e-x2
/ 2• dx. 

J-r/A vl2~s 

Hence noting the inequality 

q(s, 0, 1]) ~ const. S-1/2 + const. 

which we have seen in the proof of Lemma 2.2.2, we have 

h ~ const.lo
T 

ds( const. ,\ -1 S-l + const. S-1/2) 

This last expression clearly tends to ° as ,\ -+ 00 for some r > (log la/ R/)VO by the definition 

of regularly varying functions at a and Lebesgue's convergence theorem. 

Similarly we have 

~ 0 as ,\ -+ 00. 

Actually, 
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< E loT INiP)-2Ifi(a - ae AZ ')1 2 - icipe.W( -X.)2Pi I1(Ax,<_T) ds 

+ E SUp It (icipesW -lcd2) (_x.)2Pi 1(AX,<-T) ds l 
o9:5T Jo 

By Theorem 2.2.1, we have that J A (2) --+ a as ,\ --+ 00. As for J A (1), 

by Schwartz' inequality. The first expectation in the last form is bounded by a constant by 

the definition of the regularly varying functions. The second expectation in the last form is 

bounded by the expectation 

which tends to a as ,\ --+ 00 as we have seen above in the proof of (2.22). 

Therefore if we can prove that the joint processes 

{ l (-X.)Pi dVOA(s), 10'( -X.)Pi dVk A( s), 

l(-x.)2Pid(VOA)., l(-X.)2Pid(VkA). }~~;:~ 

converge to 

{ l (-X.)Pi 1(x,<o) dzs, l1027r ek(e)( -xsYi M(1(x,<o)ds, de), 

r (-x s)2Pi 1(x,<o) ds, r (-x s)2Pi 1(x,<o) ds }l:5
k

:5P 
Jo Jo l:5t:5m 

as ,\ --+ 00 in law, then we can finish the proof of our theorem. This follows at once from 

Lemma 2.3.3 and Lemma 2.3.4 below. Q.E.D. 

Before stating these lemmas, we introduce the following two general lemmas which have 

been obtained in Watanabe [12). 

Lemma-W 1 Let MA be a continuous conformal martingale for any'\ (1 < ,\ < (0) 

satisfying the following properties: 
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for any t > 0 and 1 :S A < 00, 

(2.25) E (lot 1<I>>.(sWd(1l1>.) (s)) 2 :S ](2(t) for any t > 0 and 1 :S A < 00, 

(2.26) lot 1<I>>.(sWd(M>.) (s) - 00 as t --+ 00 a.s. for any A (1:S A :S 00), 

where ](l(t) and ](2(t) are some positive functions independent of A, and <I>>.(t) (1:S A :S 

00) are some (F tM). )-predictable real or complex valued processes. 

If 

{ M>., (M>.) , (10° iP>.(s) dllI>.(s), M>.), Io"liP>.(sW d (llI>.) (s) } 

- { 1l100 , (Moo), (10" iPoo(s) dMoo(s), Moo) , 1o°1<I>00(s)12 d (Moo) (s) } 

as A --+ 00 in law on C([O, 00) 1-+ C x R X R4 X R), then 

{M>.' 10· <I>>.(s)dM>.(s), 10° 1<I>>.(s)12d(M>.)(s) } 

- { Moo, 10° <I>oo(s) d1l100(s), 1o°I<I>oo(sW d (Moo) (s) } 

as A --+ 00 in law on C([O, 00) 1-+ C 2 
X R). 

Proof. We will prove the lemma assuming that M>. and <I>>. are real valued, because the 

proof of the general case follows at once from this case. Set 

(1 :S A :S 00). 

By the condition (2.26) and the Knight theorem, we see that N;. ( 1 :S A :S 00 ) becomes 

a Brownian motion. Thus the laws induced by N>. = N;.((N>.)) form a tight family, which 

implies that the family of laws induced by 

is tight. Hence we may choose one of the limit point.s of the above family which we may 

assume to be the law of 

where 
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and X is some continuous process. Then we can conclude that X = Noo as follows. We 

see from the condition (2.24) that both {AIr(t)}'\~l and {(M,\) (t)h~l are uniformly in­

tegrable for any t > O. Similarly we see from the condition (2.25) that both {Nf(t)h~l 

and {(N,\) (t)h~l are uniformly integrable for any t > O. Therefore {M,\(t)N,\(t)h~l and 

{(M,\, N,\) (t)h>l are also uniformly integrable for any t > O. Consequently, we see that Moo 

and X are (FMeo,X)-martingales and that 

(X) = (Noo ) = 1o'1<1>00(s)12 d (Afoo) (s), 

(X, Moo) = (Noo , Afoo) = .( <1>oo(s) d (Moo) (s) 

from the Skorohod theorem realizing a sequence of random variables converging in law by 

an almost sure convergent sequence. From these we have 

(X) + (Noo ) - 2 (X, Noo ) 

2 fo'l<1>oo(sW d (Afoo) (s) - 2 fo' <1>oo(s) d (X, Moo) (s) 

21o'1<1>00(s)12 d (Moo) (s) - 21o'1<1>00(s)12 d (11100) (s) 

o a.s., 

which implies that X = N 00 a.s. Q.E.D. 

Lemma-W 2 Let M,\ be a continuous conformal martingale such that limqoo (M,\) (t) = 00 
a.s. for every). (1::::;).::::; +00). 

If 

as ). ~ 00 

in law on C([O, 00) ~ C x R), then 

as ). ~ 00 

in law on C([O, 00) ~ C x R x C). 

Proof. Let X(t) be a process such that 
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as ). ~ 00 in law and realize this sequence by an almost sure convergent sequence. Since 

M;.( (M>.) (t)) = M>.(t), we have that X( (Moo) (t)) = Moo(t). Hence X(t) = Moo ( (Moo) -1 (t)) = 

Moo(t). Q.E.D. 

N ow we state our lemmas which are essential in our proof. 

Lemma 2.3.1 If c E L1(0, 211") and p > -1, then 

I>. = E sup I t c()'B.)( -x.)P l(>.x,<-r) ds - c ft (-x.)P l(x,<o) dsl 
09~T Jo Jo 

---+ 0 as ). ~ 00 

for any r 2: o. 

Proof· 

I>. < const. E loT Ic(>.B.)( -x.)P (l(>.x,<-r) - l(x,<o») I ds 

+ E sup I t (c(>.B.) - c( -x.)P l(x,<O)dsl 
09~T Jo 

By Lemma 2.2.1 and Lemma 2.2.2 we have 

Elc().B.)(-x.)P (l(>.x,<-r) -l(x,<o»)I:s; EI2c()'B.)(-x.)PI 

:s; 2Elx.IP EIc()'B.) I = 2Elx.IP Elc(B().2S))1 

Then we can see easily that 

for any s > 0 by Lebesgue's convergence theorem. Since 

loT Sp/2(>. -1 s-1/2 + const. ) ds < +00, 

as).~oo 

we have that 1>, (1) ~ 0 as ). ~ 00 using Lebesgue's convergence theorem again. 

On the other hand, it follows from Theorem 2.2.1 that 1>,(2) ~ 0 as ). ~ 00 since )'B(t) 

has the same law as B(>.2t). Q.E.D. 
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Lemma 2.3.2 If c(~ 0) E L1(0, 21f) and p > -1, then for any'\ (1 ~ ,\ < (0) and any 

r ~ 0, 

a.s. as t - 00. 

Proof. Fix I< > 0, t > 0, and 1 ~ ,\ < 00. Then for any a > 0 we have 

p [fo
o2t 

Ic('\(1,,)I( -x.)P Ipx.<-r) ds > I<j 

p [fot
jc('\e(a2 s))I(-x(a2 s))Pl(h(02.)<_r)dS > I< j a 2

] 

p [lot Ic(,\ae.)I( -x,,)P Ipox.<-r) ds > I< ja2+P] 

This, together with Lemma 2.3.1, gives an inequality 

10.:!o inf P [lo°2
t 
jc('\e,,)I( -x,,)p Ipx .<-r) ds > I<j 

~ p[rcr lo
t
(-x,,)Pl(x.<O)ds>c:] 

for any c: > O. The last expression obviously converges to 1 as c: - 0 because xo = O. 

Therefore, noting that the process involved is increasing in t, we obtain the lemma. Q.E.D. 

Lemma 2.3.3 Let V/,(t) (k = 0, .. · ,p) be as (2.21). Then 

{ Vo\ V/', (Vo~), (Vk~) h::;k~p 

---> { io'l(x.<O) dz", 10'10
2

"" ek(e) l\1(l(x.<o)ds, dB), 

r l(x.<o) ds, r l(x.<o) ds } l<k< Jo Jo _ -p 

as ,\ - 00 in law. 

Proof. First note by Lemma 2.3.1 that 

(Vk \ V/~) (t) = fat Re(eken(,\e.) l(~x.<-r) ds (~ ~) 

+ fat Im(ekel*)('\B,,) 1(~x.<-r) ds (~ ~1) 

---> Okl fat l(x.<o) ds (~ ~ ) fork,I=O,· .. ,p 

as ,\ - 00 on C([O, (0) 1-+ R4) in probability for any t > 0 and, also by Lemma 2.3.2 that 
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a.s. as t ---+ 00 for k = 0, ... , p. 

Fix t > 0 and e > o. Since the fads stated above imply that 

P [(V/') (n) < t] ---+ 0 as n ---+ 00, 

P [fan 1(.1',<0) ds < t] ---+ 0 as n ---+ 00 

and 

for any n > 0, there exist AO > 0 and no > 0 such that 

for all A ~ Ao. Therefore there exists Al > 0 such that 

P [I (V/" VIA) ((VkA)-1 (t)) > e) 

< P [(Vk A) -1 (t) > no] + P [~;~ 1 (Vk>-' VIA) I(t) > e] 
< 2e 

for all A ~ AI. Consequently we have 

if k =1= l 

- -
as A ---+ 00 in probability for any t > 0, from which we obtain that { Vo>., lit>"···, Vp>' } 

converges in law to a (p + I)-dimensional complex Brownian motion as A ---+ 00 by the 

'!symptotic Knight's theorem" in Pitman and Yor [10] (p.l008). 

On the other hand, we easily see by Lemma-WI and Lemma-W2 that the limit law of 

{ Vo>., (VOA) , Q } is that of 

{ 10"1(.1',<0) dZ$' fa· 1(.1',<0) ds, 10"1(:0) dZ$ }. 

Hence we can conclude that the limit law of Q(t) ( k = 1,··· ,p ) can be represented by 

the law of 

t f27r 
Jo Jo ek(e) M(ds, de) (k = 1,···,p). 
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Thus we have 

{ 0 1;'; A (VA) }19~p 
0, k, J O~j~p 

as ). -+ 00 in law. This implies the assertion of the lemma. 

Lemma 2.3.4 Let Vk A(t) (k = 0, ... ,p) be as {2.21}. If p > -1/2, then 

(2.28) {Vo\ 1o'(-xs)PdVoA(s), 1o'(-xs)2Pd(VoA)s} 

as ). -+ 00 in law and 

(2.29) {VkA, fo'(-xs)PdVkA(S), fo'(-xs)2Pd(VkA)s} 

-t { 10" fo27r ek(e) .M(l(x,<o)ds, de), 

10' 1027r ek(e)( -xs)P M(l(x,<o)ds, de), 

10' (_X.)2 p l(x,<o) ds } 

for k = 1, ... ,p as ). -+ 00 in law. 

Proof. Set 

VOOO(t) = fot 1(x,<o) dz. 

and 

By Lemma 2.3.1, we have 
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and 

~O as'\-+oo 

for k = 0, 1, ... ,p. On the other hand, Lemma 2.3.3 implies that 

in law for each k. Therefore, 

{V/, (VkA) , (fo°(-x.)PdVkA(S), VkA(S)) , (l(-x.)PdVkA(S)) } 

{ Vk \ (Vk A), l ( - x.)P d ( 11k A). (~ ~), l ( - x.) 2p d (Vk A). } 

~ { Vk
oo

, (VkOO) , l(-x.)Pd(Vk
OO ). (~ ~), fo°(-x.)2Pd(VkOO). } 

as ,\ -+ 00 in law for each k. 

Thus if we can prove that the above processes satisfy the conditions (2.24)-(2.26) in 

Lemma-WI, then (2.28) and (2.29) follow from Lemma-WI. It is easy to show that 

(2.30) E (Vk A) (t)2 :::; canst. (t l
/
2 + canst. t)2, 1 :::; ,\ < 00. 

for each k. Indeed, 

E (Vk A) (t)2 = 2E fotds it lekP8.WlekP8uW l(x,<o) l(x u <o) du 

< 2E fotds it lekP8.WlekP8uW du 

2E Iotds J.t lek(8p2s)Wiek(8P2 u))12 du 

< const.lotds I t
(,\-ls-1/2 + canst. ){,\-l(U - S)-1/2 + canst.} duo 

Here the last inequality follows from Lemma 2.2.2. Then we have (2.30). 

We can also prove that 

Eliot (_X.)2 p d (Vk A) .12 :::; canst. t2p(t l/2 + canst. t)2, 

for each k by a similar argument as a.bove using Lemma 2.2.1 and Lemma 2.2.2. 

Further it has already been shown in Lemma 2.3.2 that 
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(t -+ 00) a.s., 

and 

(t-+OO) a.s. 

for each k. Consequently we have completed the proof of the lemma. Q.E.D. 

2.4 Application to a limit theorem for "winding-

type" additive functionals 

Throughout this section let z(t) = x(t) + J=T y(t), z(o) = 0, be a complex Brownian 

motion starting at the origin. Let aI, a2,···, an be given distinct points on C \ {a} and 

aoo = 00. For i = 1,···, n, 00, let IiI, Ii2' ... ,lim be some regularly varying functions at 

ai with order Pil, Pi2,···, Pim ,respectively. (See Definition 3.1.) We denote the regular 

normalizing function of Iij at ai by Nil (,\) and the asymptotic angular component of Iij at 

ai by ci)(B) for i = 1,··· ,n,oo and j = 1,·· .,'m. 
The main purpose of this section is to give the joint limit processes, as ,\ -+ 00, of the 

processes { AiJ-'\' A ij+'\ } defined by 

(2.31) 

where u(t) = e2t 
- 1, D(i-) is some bounded domain containing ai and D(i+) is some 

domain such that D( i+)c is bounded and ai ¢ D( i+). As we shall see, a particular choice 

of D( i-) and D( i+) is immaterial in the limit theorem. 

First, we introduce the notion of ]( - convergence for stochastic processes: 

Definition 2.4.1. Let DI = DI([O, 00) I-t R d
) be the space of all ad-valued right continuous 

functions with left limits. A sequence of Drvalued stochastic processes {Xn(t)} is said to 

be K-convergent to Xoo(t) if there exist a sequence of Rd x R-valued stochastic processes 

{(Y,l(t), <Pn(t))} and (Yoo(t), <Poo(t)) such that 

1°) Yn(t) (1 ~ n ~ 00) and <Pn(t) (1 ~ n ~ 00) are all continuous stochastic prcr 
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cesses, 

2°) <Pn{t) is non-decreasing a.s., <p,,(0) = 0 and <Pn{t) -;. 00 as 

t -;. 00 a.s. for all 1 ~ n ~ 00, 

(1~n~oo), 

We remark that the main limit theorems by Kasahara and Kotani [6] are in the sense of 

K-convergence. If {Xn{t)} is K-convergent to Xoo(t) as n -;. 00 and Xoo(t) is non-decreasing 

w.p.l, then {Xn(t)} is weakly Afl-convergent to Xoo(t). Generally, Afrconvergence does not 

follow from K-convergence but, if {Xn(t)} is K-convergent to Xoo(t) as n -;. 00 and <p~l 

has no fixed discontinuous point, then {X,,(t)} converges to Xoo(t) as n -;. 00 in the sense 

of finite dimensional distributions. This fact is obviously derived from the following real 

variable proposition: 

Proposition 2.4.1 Let {y,,(t)} and {<p,,(t)} be sequences of continuous functions on [0,00) 

such that <p,,(t) is non-decreasing and <Pn(t) -;. 00 (t -;. 00) (n = 1,2,·· .). Suppose 

Yn(t) -;. y(t) and <Pn(t) -;. <p(t) uniformly in t on each compact sets as n -;. 00 and <p(t) -;. 

00 (t -;. 00). 

Ify{t) is constant on (<p-l(t o-), <p-l(tO)) for some to E [0,00), then we have 

(n -;. 00). 

Particularly, if <p-l(to-) = <p-l(to) then we have (2.32) also. 

We omit the proof. 

N ext, in order to describe the joint limit processes, we introduce a particular system of 

n complex Brownian motions and n + 1 complex Gaussian random measures. As in the 

preceding section, we always denote by M(t) the time-changed process M( (M) -1 (t)) for a 

conformal martingale M(t). 

Let (= ((1,···, (n) be a e"-valued continuous process which has the following properties: 

(1) Each (i = f,i + V-117i is a complex Brownian motion 

starting at the origin for i = 1, ... , n. 

(2) Setting 
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(i-(t) lot l(ti(')<O) d(i(S) 

(i+(t) = lot l(ti(.»o)d(i(s), 

the family {G-,"" C=, G:} is mutually independent and G: = G;: = ... = fn:;. 

An important fact is that a en-valued process with these properties exists uniquely in 

the sense of law. We will explain the structure of ( in Remark 3.1 in the last part of this 

section. 

Furthermore we take 71, + 1 complex Gaussian random measures A1},"', A1n , M+ with 

the following properties: 

(3) Each Mi is a complex Gaussian random measure on [0, (0) x [0,27r] with mean ° 
and variance measure dt . de /27r for i = 1", . ,71" +. 

(4) The family {(, MI,"', M n , M+} is mutually independent. 

Now define, for i = 1,2, ... ,71" 

and 

Zi(t) = Xi(t) + v=IY;(t) = fot dz. , 
Jo z. - ai 

->. - >. r1->' 1 } 2 
Zi (t) = Xi (t) + v-I Y; (t) = ):Zi((Zi)- (,\ t)) 

Then our theorem can be stated as follows: 

Theorem 2.4.1 

as ,\ ---+ 00 in law on C([O, (0) ---+ en x R n x emn x emn ), where 

J1. ( t) = max f ( S ) , o::;s::;t" 
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Cooj lot ~i(S)POOJ d(i+(s) 

+ fat fa21< (cooJ (e) - CooJ )~i(S )POOJ M+ (d ((i+) (s), de) 

and c = (1/21[") f;1< c(e) de , in general. 

As a corollary to Theorem 2.4.1, we can conclude the following: 

Theorem 2.4.2 

{ ZA A A A A }l<j<m {( r (-1) r (-1) }l<J<m 
i, ij-, ij+ l~i~n - i, 1..-iJ- Pi ,1..-iJ+ Pi l~i~n 

as A ~ 00 in the sense of K-convergence. 

Proof of theorem 2.4.1 

The fact that 

-A A 
{ Zi ,Ti } - { (i, max ~i (s) } 

O~$~' 
aSA~OO 

in law on C([O, 00) 1-+ C x R) for each i was obtained by Kasahara and Kotani ([6], Lemma 

3.1). 

The first important step in our proof is the following transforma.tion: 

11(Zi}-1(A
2

t) J(z$) 
(2.35) - dz s A 0 Z$ - ai 

rt ~'\-A 
Jo J(ai - ai eAZi ($») dZi (s). 

By this transformation, we have 
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Fix sufficiently large r > 0 and set 

Since 

and 

1 1t f. ·(t"l· - a·eAZ; \.5») 1 _ \() ) dZ A(S) 
() 

'J .• , ' ( \ v /\ .5 < -r , N··'\ 0 A_". 
'J 

1 rt f .(a. _ a.e AZ'/(.5») 1 _ \() ) d-Z·A(s) 
Nooj(,\) io OOJ" (Ax;"\ • >r , . 

sup I1D(i-)(ai - aieAx+..;::T9) - l(Ax<-r)1 ---;. 0 
0$9:971" 

as ,\ -+ 00, we can easily deduce that 

(2.36) as ,\ -+ 00 

and 

(2.37) 

by a similar argument as in the proof of Theorem 2.3.1. 

Therefore the joint processes 

{
-A A( A ( A A)) A( A) A A }l$j$m Zi ,Aij- Ti), Aij- (Ti ,Aj+ Ti ,(Aij+ (Ti)) . 

l$'$n 

have the same limit law as the joint processes 

We know by Theorem 2.3.1 that the joint limit processes as ,\ -+ 00 of { -Z/, Fij- A, (Fij- A)} . 
l<J<m 

and { Z;A, Fij+ \ (FiJ+ A)} . are { (i, Lij-, (Lij-) }1<J<m and { (i, Lij+, (Lij+) }l<J'<m - -
1< <m - - - -_J_ 

respectively for each i, where LiJ- and LiJ+ are defined by (2.33) and (2.34). Then the laws 

of 

,\ > 0, form a tight family because each component converges in law. Further it is clear from 

the above argument that we may assume for any limit point of this family that it is the law 

of 
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where (1, (2,' . " (n are some complex Brownian motions, 

Aij-(t) = Ci) fo\-~i(S))Pij d(i_(S) 

+ fot fo
27r

(Ci)(B) - Ci))(-~i(S))Pij Afi(d((i-) (s),dB), 

Aij+(t) COO) 1t ~i(S)POOj d(i+(S) 

+ 1t 127r

(COO)(e) - Coo))~i(S)POOJ AJi(d((i+) (s), de) 

and M 1 , A12 ,' •. ,Mn , £1 1, i1 2 , .• " A~fn are some complex Gaussian random measures on [0, (0) x 

[0, 27r] with mean ° and variance measure dt·dB/27r. We fix these (1,"', (n, A11,"', Mn, £1 1 , •.• , Mn 

below. It remains to prove the identity 

- -(2.38) (1+ = (2+ = ... = (n+, 

the identity 

and the mutual independence of 

Firstly we prove the identity (2.38). As a consequence of (2.36) and (2.37), we may 

replace D(i+) by D(l+) n D(2+) n··· n D(n+). Therefore we may assume that 

D(l+) = D(2+) = ... = D(n+) := D(oo). 

Set 

This is the particular case of A i)+ A(t). We remark that 

as ,\ -+ 00 

and 

(2.42) 
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where 

Hence 

,xz () -" -" 2 i T -~ " 
:::; const. E 0 ID(oo)(al - ale 1 • )IRi(AXl ,AYl ) - 11 ds. 

Since ID(oo)(al - al ex+..;=T8)I Ri(x , e)1 is bounded in (x, e) E R x T and sUPo~89'11" ID(oo)(al -

ale,Xx+..;=T8)IRi(,\x, e) - 11 ---+ 0 as A - 00 for any x =f 0, we can deduce the convergence 

(2.41). The proof of (2.42) can be given similarly. 

Then the laws of P,X, A > 0, of 

form a tight family and we may assume one limit point P 00 of {P,X} to be the law of 

Let P,X" - Poo for some subsequence and write Av as A for the notational simplicity. We can 

prove that (Wa'x (r/) ) t - 00 and (H'i+'x (r/) ) t - 00 as t - 00 by a similar argument as 

in the proof of Lemma 2.3.2, and hence we have, by Lemma-W2, that 

{ Z/, Wi+ ,X (ri'x), Wi+T(ri'x), ~Vi+ 'x(r/), Wi+-rrrl'x) h~i~n 

as ,\ - 00 in law. We may assume by the Skorohod theorem that this convergence is uniform - -on each compact interval a.s. Then we see that (i+ is identical to (1+ for i = 1,·· . ,n because - -Wi+"(rj") = Hri+"(rl"). Thus the identity (2.38) is now proved. 

Secondly, we prove the identity (2.39). We can prove similarly to (2.41) and (2.42) that 
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and 

for any i and j. Let P 00 be one limit point of the tight family of the laws P>.., ). > 0, of 

{ 
_>.. >.. >.. ( >.. >..) >.. >.. }l<J<m Zi , Aij+ (ri), Aj+ (ri ) , Aij+ (r1 ), (AiJ+ >"(r/)) -.-

l~.~n 

We may assume the law of P 00 to be the law of 

Let P>"v ---. P 00 for some subsequence and write \, simply as ).. Since we can prove that 

(Aij+ (r/)) t ---. 00 and (Aij+ (r1 >..) ) t -+ 00 as t ---. 00 by a similar argument as in the proof 

of Lemma 2.3.2, and hence by Lemma-W2 we have that 

as ). ---. 00 in law. We may assume by the Skorohod theorem that this convergence is uniform 

on each compact interval a.s. Then we have that 

(j = 1,··· ,m) 

- -because Aj+ >..( ri>") = Aij+ >..( r/). 

Set 

The identity (2.43) implies that 

(j = 1,···, m). 

On the other hand, note that 

and 
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(Nij+) (t) = ICOOjI2!at (~i(((i+)-l (S)) V 0)2Pooj ds. 

Since ~i( ((i+)-1 (t)) VO, i = 1,· .. , n, are the same reflecting Brownian motion by the identity 

(2.38) (See remark 2.4.1 below), we have that 

(j=l,···,m). 

Combining (2.44) and (2.45), we obtain the identity 

(j=l,···,m). 

This clearly shows the identity (2.39). 

Finally, we prove the mutual independence of (2.40). Let {eo = 1, el,···, ep } be some 

orthonormal system in L2(0, 27r) such that 
p 

Cij(e) = L CYi/k)ek(e), cy"(k) E C 
'J (k=O,···,p) 

k=O 

for i = 1, ... , n, 00 and j = 1,··· , m. Set 

By (2.22) and (2.36), we have 

aSA-+oo 

and 

E sup IAJ+ oX(r/(t)) - t CY oo/
k) t X/(s)Pooj dVik+ \S)1

2 
---.0 

09~T k=O 10 
as A -+ 00. 

Hence by Lemma 2.3.3, Lemma 2.3.4 and Lemma-W2 we may assume the law of one limit 

point of the tight family of the laws of 

{
-oX oX oX oX oX r - oX "" oX oX-
Zi , Aj- (ri ), Aij+ (ri ), 10 (-Xi (s))P']dVik- (s), Vik- , Vik-A, 

la
" -oX ))" oX) oX -oX }1::5J~m; O::5k~p (Xi (s POOl dVik+ (s , Vik+ , Vik+" , 

o l~'~n 

A > 0, to be the law of 

{(i, Aij-, Aij+, l(-~i(S))PijdVik-(S), Vik-, V-;;-, 

la
" - }1~j~m; 09~p 

O 
~i(S)pooj dVik+{S), Vik+, Vik+" , 

1~.~n 

where 
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(k = 1,· .. , p) 

(k=I,···,p). 

Therefore if we can prove that 

is an (n+ 1)· (p+ I)-dimensional Brownian motion, then the mutual independence of (2.40) 

follows at once. 

To prove this, set 

lla),2 t 
( z. - a j ) 

'\ ek arg 
/\ 0 -aj 

By the transformation (2.35), we have 

This implies that 

dz. 
l(loglz,-ai/-a il<-T) -­

z. - aj 

By (2.27), the right hand side of (2.46) converges to (~ ~) in probability as ). - 00 for 

any t > 0 if k =f:. t. On the other hand, since 

if i =f:. j 

for sufficiently large r, we have that 

if i =f:. j 

for any k, t. Combining (2.46), (2.47) and the obvious relation 
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( >. >.) _ (0 0) Glk+ , Gil - (t) = 0 0 

for any i, k, i, we can conclude by the asymptotic Knight's theorem in Pitman-Yor [10] 

that { G lk - >., ..• , G-:::- >., G lk+ >. }o~k~p converges in law to an (n + 1) . (p + 1 )-dimensional - -Brownian motion. Then noting that Gik±>'(t) = Vik±>'(t), we arrive at the needed conclusion. 

Now the proof is complete. Q.E.D. 

Remark 2.4.1. (due to S. Watanabe) 

The en-valued process ( = ((1,"', (n) can be constructed as follows: We follow the 

notions and notations concerning Brownian excursions to [4], Chapter 3, section 4.3. Take 

n Poisson point processes of Brownian negat.i ve excursions PI -, P2 - , ... , Pn - (i. e. stationary 

Poisson point processes on W- with the characteristic measure 11-), a Poisson point process 

of Brownian positive excursion p+ (i. e. a stat.ionary Poisson point process on W+ with the 

characteristic measure 11+ ) and n + lone-dimensional Brownian motions /31, /32, ... , /3n, /3+ 

such that the family (PI -, ... , Pn -, p+, /31, ... , /3n, /3+) is mutually independent. The sum Pi 

of Pi - and p+ is a Poisson point process of Brownian excursions (i. e. a stationary Poisson 

point process on W = W- U W+ with the characteristic measure 11 = 11- + 11+ ) and we can 

construct a Brownian motion ~i from Pi as in Chapter 3, section 4.3 of [4], i = 1" .. , n. Set 

7]i(t) = /3i (lot 1(ej(,s)<O) dS) + /3+ (lot I(U,s»o) dS) 

and define finally 

i = 1"", n. 

Then it is easy to see that {(1,' .. , (n} satisfies the condit.ions (1) and (2) above. 

Conversely, suppose we are given a family {(l,"', (n} possessing the properties (1) and 

(2). Set 

(i-(t) lot 1(ej(,s)<O) d(i(S) (i = 1,,, ·,n) 

(i+(t) fat l(t;(,s»o) d((s) (i = 1,···,n) 

and write 

(i-(t) .- ~i-(t) + H7]i-(t) (i = 1,,, ·,n) 
(2.48) 

(i+(t) '- ~i+(t) + H7]i+(t) (i=l, .. ·,n) 
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and 

(i=I,"',n) 
(2.49) 

By the assumptions, aI, ... , an, 0:'+, /31, ... , /3n, /3+ are mu tually independent one-dimensional 

Brownian motions. By Tanaka's formula, we have 

(2.50) ei(t) 1\ 0 = ei-(t) -li(t) (i=I,"',n) 

and 

(i = 1 ... n) , , , 

where li(t) is the local time at 0 of one-dimensional Brownian motion ei(t). If we make a 

time change t 1-1- (ei_)-l (t) for (2.50) and t 1-1- (ei+)-l (t) for (2.51)' then ei((ei_)-l (t)) 1\ 

0, i = 1"", n, are mutually independent reflecting Brownian motions on (-00,0] and 

ei((ei+)-l (t)) V 0, i = 1"", n, are the same reflecting Brownian motion on [0,00). That is, 

from (2.50) and (2.51) we have n + 1 equations 

ri(t) (i= 1,"',n) 
(2.52) 

where ri(t) = ei((ei_)-l (t))I\O, i = 1"", n, r +(t) = ei((ei+)-l (t))VO, <Pi(t) = li((ei_)-l (t)), 

i = 1"", nand <p+(t) = li((ei+)-l (t)). These equations give the Skorohod decompositions 

of ri(t), i = 1" .. , n, +j in particular, 

(i=I, .. ·,n,+). 

If p+ is the Poisson point process of positive Brownian excursion corresponding to r + and Pi -, 

i = I, ... ,n, are the Poisson point processes of negative Brownian excursions corresponding 

to 1'i, then Pl-, ... ,Pn -, p+, /3b ... ,/3n, /3+ are mutually independent. Thus we have recovered 

this independent family from {(ih:5 i :5n and hence, the uniqueness in law of {(;}l:5i:5n is now 

obvious. 

Set 

(i= 1, .. ·,n) 
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and 

Then we have the following: 

(2.54) 

and 

(2.55) 

These properties are easily deduced by our way of construction of {(i(t) h<i<n , cj.[4]. The 

structure of the process t t-+ e(t) is well known: It is the inverse of the Dwass's extremal 

process (cj.[2]), in particular, for fixed t > 0, e(t) has the exponential distribution with mean 

t. 

Putting together (2.48), (2.49), (2.52), (2.54) and (2.55), and noting that ri(¢i 1 (t)) = 
o (i = 1,"', n, +) and r +(a+(t)) == t, we can express (i±(l;l(t)) and (i±(p;l(t)) as follows: 



Note that CI ,"', Cn , C+ are mutually independent Cauchy processes in (2.56). Note also 

that C I ,"', Cn , T" +, /3+ are mutually independent in (2 .. 57). 

These processes appear as components of limit process of windings of z(t): Theorem 2.4.2 

implies that 

{ W i- >-, W i+ A h~i~71 -- { (i_(f-li l
), (i+(f-li 1

) h~i~71 

as ,\ -+ 00 in the sense of K-convergence, where 

1 ruCAt ) 1 
Wi± A(t) = >: Jo Z$ _ ai 1DCi±)(Z$) dZ$ (i = 1"", n). 

Taking D(i+) = D(i-)C, the process Im[lVi- A(t) + W i+ A(t)] is a normalized algebraic total 

angle wound by z(t) around ai up to the time u(,\t) = e2At - 1. Then the imaginary parts of 

(2.57) clearly show that the primary description by Pitman and Yor([8]) of the asymptotic 

joint distribution of windings of Zt. 

In addition, using above analysis, we give an another description of the joint limit process 

of windings of Zt below. Let g(z) be a bounded function such that 

ic Ig(z)llzl~ m(dz) < 00 

for some c: > 0, where m(dz) denotes the Lebesgue integral. Set 

and 

9 = ~ r Ig(z)1 m(dz) 
21[' Jc 

1 r(At) 
TA(t) = >: J

o 
g(zs) ds. 

Then, by Kasahara-Kotani's result (see [6]), we have 

-A 
(2.58) { Zi , TA(Ti A

) h~i~71 -- { (i, 2gqf-li 1
) h~i~71 = { (i, 2g e h~i~n 

as ,\ -+ 00 in the sense of K-convergence. Combining (2.58) and Theorem 2.4.1, we have 

as ,\ -+ 00 in the sense of K-convergence if g(z) > O. By (2.56), we can express this last 

limit process as 

This is one of natural (symmetric) descriptions for the joint limit process of windings of z(t) 

in the compact Riemannian surface C U { 00 }. 
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Chapter 3 

An Ergodic Theorem Related to 

Some Limit Theorems for Additive 

Functionals of Complex Brownian 

Motion 

3.1 Introduction 

Let z(t) = x(t) + H y(t), z(o) = 0, be a complex Brownian motion starting at the origin. 

In the previous chapter, we proved an ergodic theorem for diffusion processes (X t ,8t ) on 

R d X M where M is a compact Riemannian manifold, and then using it and Kasahara­

Kotani's method, obtained scaling limit processes for some class of "winding-type" additive 

functionals of z(t), which is an extention of the results of F. Spitzer [11], J. Pitman and 

M. Yor [9], [10]. 

The aim of this chapter is to prove another ergodic theorem for (X(t), 8(t)) using a similar 

method in Chapter 1, and as its applicat.ions, to extend naturally the class of functionals for 

which the result of Kasahara-Kotani and that of Messula.m-Yor hold. 

For example, it is shown in [6] that if f: C ~ R 1 is a bounded Borel function such that 

fc If(z)llzl~ m(dz) < 00 for some c > 0, 

then 

r(fit) 
)..-1/2 Jo J{z(s)) ds 
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converges as ), - 00 in the sense of finite dimensional distributions, where m( dz) denotes 

the Lebesgue measure and u(t) = e2t -1. In this chapter we will show the same convergence 

for i E L1(C) n LP(C) (1 < p ~ 00). 

For another example, it is shown in [7) and [10) that if hI,"', hn , k1 ,···, kn are bounded 

Borel functions from C to rr1 such that hi, ki E L2(C) (i = 1,···, n), then 

converge jointly in distribution as t - 00. In this chapter we will show that if iI, ... , in are 

Borel functions from C to C such that i1,"" in E L2(C) n LP(C) (2 < p ~ 00), then 

fU( ...fit) 
),-1/4 Jo ii(Z(S)) dz(s) (i= 1,.·.,n) 

converge jointly as ), - 00 in the sense of finite dimensional distributions, where u(t) 

e2t - l. 

Before closing this section, we explain the contents of this chapter. In section 3.2 we 

consider a class of diffusion processes on rrd x A1 where Al is a compact Riemannian manifold 

and state our ergodic theorem for them. As corollaries to this theorem, we obtain some 

ergodic theorems for Brownian mot.ion on rr1 x [0, 27r). Then we give, as applications of 

these corollaries, some limit theorems for additive functionals of z(t), e.g., occupation times, 

square integrable martingale additive functionals and occupation times in the null charged 

case. In section 3.3 we prove the main theorem stated in section 3.2 by using the method of 

eigenfunction expansions. 

3.2 An ergodic theorem for some class of diffusion 

processes on compact manifolds and its applica­

tions 

Let M be an m-dimensional compact (connected) Coo-Riemannian manifold without bound­

ary and (etk~:o be the Brownian motion on lv! (see Ikeda and Watanabe [4), Chapter 5, 

section 4). 

Let (Xdt~o be an rrd-va.lued diffusion process determined by the stochastic differential 

equation 
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where O"(x) and b(x) are bounded and smooth, O"(x) is uniformly non-degenerate and (Bt)t'~o 

is a d-dimensional Brownian motion. We assume that X t and 8 t are independent, Xo = 0 

and 8 0 = eo (eo E At). In the following, we consider Lp-spaces LP(ad), LP(M), LP(G) 

where Rd and M are endowed with Lebesgue measure dx and the Riemannian volume de, 

respectively and G := ad x 111 is endowed with the product measure. The norms are 

denoted by II IIp(Rd), II IIp(M), II IIp(G), respectively, to distinguish the spaces. Then our 

main theorem is as follows: 

Theorem 3.2.1 Let g(x, e) be a Borel measurable function from G to R 1 satisfying the 

following conditions: 

(1) g(x, e) E LT(G) for some r with 1 :::; r < 00 and r > max{ d/2, m/2}, 

(2) Ilg(x, ·)llr(M)e-.Blxl E LP(Rd
) for some p and j3 2 0 with r :::; p :::; 00 and p > 

d/(2 - m/r), 

(3) For almost all x E R d, g(x, e) is null charged on AI i.e. fM g(x, e)de = 0 . 

Then for every T > 0 and any N > 0, it holds that 

sup f..Ld/2T E(O,90) [sup I rt g(X!-'$' 8.\$) dsl] ~ 0 
O'5,!-''5,N.\ 09'5,T Jo 

as .x -l- 00. 

Proof will be given in section 2. 

Remark 3.2.1. The choice of j3 and p in Theorem 3.2.1 is not essential; The assumption 

(2) is a sufficient condition for the existence of the expectation E(O,90) [f~ g(X!-'$' 8.\$) ds]. In 

the case that r :::; (d + m) /2 the assumption (1) does not guarantee the existence of this 

expectation, while in the case that l' > (d + m)/2 the condition (2) follows from (1) with 

p = r. 

Corollary 1 In the particv.lar case of d = 1 and 111 = a l /27rZ being the I-dimensional circle 

with radius 1, if g(x, e) E Ll(G), g(x, e)e-.BI:1·1 E LP(G) for some p and j3 2 0 with 1 < p :::; 00 

and g(x, e) is null charged on 111 in the sense that fM g(x, e) de = 0 for a.a.x E Rl, then for 

every T > 0 and any N > 0, it holds that 

sup ViiE(o,90) [sup I r g(X"$' 8.\$) dsl]---+ 0 
O'5,!-''5,N.\ 09'5,T Jo 

as .x -l- 00 . 
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Proof. Apply Theorem 3.2.1 with r = d = m = 1. (Note that IIg(x, ·)1I1(M)e-.Blxl :s; 
const.llg(x, ·)llp(M)e-.Blxl E LP(R1 

).) Q.E.D. 

Corollary 2 Let g(x, e) be a Borel measurable function from G = R d X M to Rl such that 

9 E LT(G) for some r with (d + m)/2 < l' < 00 . If g(x, e) is null charged on M for a.a. 

x E R d
, then for every T > 0 and N > 0, it holds that 

sup "i/2r E(o,oo) [sup I t g(XJlJ) 8 A$) dsl]--t 0 
O~Jl~NA 09~T io 

as A ---t 00 . 

Proof. Apply Theorem 3.2.1 with r = p. Q.E.D. 

Let z(t) = x(t) + J=T y(t), z{O) = 0, be a complex Brownian motion starting at the 

origin. As applications of these ergodic theorems above, we give some limit theorems for 

additive functionals of z(t) which have been discussed by many authors. 

Application 1. (Occupation time). Let f: C 1-+ C be a function such that 

(3.1 ) for some 1 < p :s; 00. 

Consider the following additive functional of z(t): 

rU(vAt) 
AA(t) = A-I io J(z(s)) ds, 

where u(t) = e2t 
- 1. The study of the limit process of AA(t) as A ---t 00 can be reduced 

to that of a homogenization problem for a Brownian motion on the cylinder G = Rl X T, 

T = Rl /27rZ ~ [0,27r] as follows: This method is due to Kasahara and Kotani [6]. Fix 

a E C \ {O} and set 

and 

i
t 1 

Z(t) = X(t) + yCTY(t) = ( ) dz(s), ° z s - a 

Z(t) = X(t) + yCTY(t) = Z((Z)-1 (t)), 

ZA(t) = XA(t) + yCTyA(t) = A- 1/ 2Z(,\.t) 
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Note that Z'\t) is a complex Brownian motion for every). > 0 by the Knight theorem, 

Generally, (M) (t) is the usual quadratic variation process of a conformal (local) martingale 

M(t) and h-1(t) is the right continuous inverse function of a continuous increasing function 

h(t). ) Then, by the time substitution, we have that 

(Z)-I(>.t) 
A>'(r>'(t)) = ,\-1 fo J(a - aeZ($»)ds 

,\-1 fo>.t J(a - aeZ($»)laI 2e2X($) ds 

- fot g(X(,\s), Y().s)) ds, 

where g(x, B) = lal2 J(a - aex +V-TB)e2X 
• Set 

- 1 1 1 i J = - J(z) m(dz) = - g(x, B) dxdB. 
211" c 211" G 

Here m(dz) denotes the Lebesgue measure. We shall now prove that 

as ). -+ 00 in law on C([O, (0) 1-+ C2
), where ((t) = ~(t) + yCT rJ(t) is a complex Brow­

nian motion and l(t,O is the local time at 0 of~. Indeed, since g(x,B) E L1(G) and 

g(x,B)e-2(1-1/p )lxl E LP(G) by the assumption (3.1), setting g(x) = (1/211")J;7r g(x, B) dB 

(E Ll(R1)), we have, using Coronary 1, that 

(3.3) E o~~l~T I v'>:A>' (r>' (t)) - v'>: lot g(v'>:X>'(s)) dsl 

= E sup Iv'>: r\g - g)(X(,\s), Y('\s)) dsl---t 0 
09:::;T Jo 

as ). -+ 00. Moreover it is easy to see that if g(x) E L1(R1) and ~(t) is a I-dimensional 

Brownian motion, then 

sup Iv'>: rt g(v'>:~(s))ds - 21(t,~)lOO g(x)dxl---t 0 a.s. 
O<t<T Jo -00 

as ). -+ 00 (see [6]). Thus noting that J = J~oo g(x) dx, we obtain (3.2). 

On the other hand, the limit process of { Z>., r>' } as ). -+ 00 in law on C([O, (0) 1-+ 

ex Rl) is given by { (, p} where p(t) = maXo<$<t~(s) ([6]' Lemma 3.1). Therefore we 

can conclude that 
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as A ---+ 00 in the sense of finite dimensional distributions. (This follows from the fact that 

J-l-1(t) has no fixed discontinuous point. For example, cf. Chapter 2., Proposition 2.4.1. 

Remark 3.2.2. In [6]' Kasahara-Kotani showed (3.3) by proving that if 9 E L1 (G) n LP( G) 

for some 1 < p ::; 00, then 

lEllotg(X(s),Y(s))dsI2 ---+ 12~lag{x,e)dxdeI2 
as t ---+ 00. Using this, they obtained the limit theorem (3.2) for bounded functions f 
satisfying Ie If(z)llzl~ m(dz) < 00 for some c > O. Thus the result of Application 1 is an 

extension of their result to unbounded functions. 

Application 2. (Square integrable martingale additive functionals). Let f;: C t--> C, i = 

1, ... ,n, be functions such that 

(3.5) for some 2 < p ::; 00 

for i = 1" .. ,n. Consider the following additive functionals of z(t): 

r("fit) -

A/(t) = A-1/2 Jo fi(Z(s))dz(s) (i = 1 ... n) , , , 

where u(t) = e2t - 1. Here, it should be noted that these stochastic integrals can be defined 

because fi E LP(C) (p > 2). Define Z(t), Z(t), Z>'(t) and r>'(t) as in Application 1. Then 

by the same transformation, we have that 

Ai>'(r>'(t)) = lot g;(.X(AS), Y(As))dZ>'(s), 

where g-(x e) = -af-(a - aex+A9)ex+A9 i = 1 ... n , " , ". 
Let ((t) = ~(t)+.;=T 17(t) be a complex Brownian motion, l(t,~) be the local time at 0 of ~ 

and N be a complex Gaussian random measure on [0,(0) x C with mean 0 and variance mea­

sure dt . m(dz)/27r which is independent of (. (Generally, for measurable space (5,8(5), J-l) 

and F = {A E 8(5); J-l(A) < +oo}, a family of random variahles AI = {AI(A); A E F} 

is called a Gaussian random measure on 5 with mean 0 and variance measure J-l if M is a 

Gaussian system such that E[M(A)] = 0 and E[A1(A)M(B)] = p(A n B) for any A, B E F. 

Furthermore, a complex Gaussian random measure !vI on 5 with mean 0 and variance mea­

sure p is by definition a family of complex random variables M(A) which can be expressed 

in the form M(A) = .M1 (A) + .;=T A12(A) where Af1 and M2 are mutually independent 

Gaussian random measures wit.h mean 0 and variance measure p. ) Now we shall prove that. 
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(3.6) ~,\ 1/4 ,\ ,\ { la 21C',Ol } { Z ,). Ai (r ) h~i~n ~ (, fi(Z) N(ds, dz) 
o C l~i~n 

as ). ---t 00 in law on C([O, 00) I---t C 2
). By the same arguments as in Application 1, we have 

from (3.6) that 

(3.7) {).-1/4 fi(Z(S)) dz(s)h~i~n ~ fi(Z)N(ds,dz) lauC~t) {la21(1'-1(-),o h } 
o 0 C l~i~n 

as ). ---t 00 in the sense of finite dimensional distributions, where J1(t) = maXo~.s9 ~(s). 

For the proof of (3.6), let {e1,"', er } be an orthonormal system in L2( G) (G 

R1 X [0,21f]) obtained by Schmidt's method from {gl,"', gn}. Since gi(X, e) E L2(G) and 

gi(X, e)e-Cl-2/p)lxl E LP(G) by the assumption (3.5), each ek is so. Set 

(k = 1,,'" r). 

Then 

/ rt - ~ (1 0) 
).1 2 io ne(eJek *)(X().s), Y()'s)) ds 0 1 

Here ek" represents the complex conjugate of ek . 

(Generally, if Zl(t) = X1(t) + J=I Y1(t) and Z2(t) = X2(t) + J=I Y2(t) are conformal martin­

gales with the same filtration, then we denote by (Zl' Z2)t the matrix of quadratic variation 

(
(x b X 2) (t) (x 1, Y2) (t) ) ) 

processes . 
(Y1, X2) (t) (Y1, Y2) (t) 

Hence just as in Application 1, we have by Corollary 1 that 

in probability as ). ---t 00 for j, k = 1" .. , r . 

Moreover, it holds that 

(3.9) E sup /IVk\z>..) / = E sup 1).1/4 rt ek(X().s),Y().s))ds (1 01)1 ~ (00 00) 
09~T \ t 09~T io 0 

as ). ---t 00 for k = 1, ... ,r. Indeed, thanks to Corolla.ry 2 (note that ek is not in L1 (G) but 

in L2( G) ), we have that 

E sup 1).1/4 rt ek(X().s), Y()'s)) ds - ).1/4 t ek(X().s)) dsl ~ 0 
09~T io io 

52 



as ,\ ~ 00 for k = 1,"', n, where edx) = (1/21T) J~7r edx, e) de. On the other hand, for any 

continuous function <p on R 1 with compact support, we know that 

E sup 1)...1/4 rt <p(X(,\s)) dsl ~ 0 
09~T Jo 

as )... ~ 00. 

Then noting that ek(x) E L2(R1), by the inequality 

E sup 1)...1/4 rt ek(X()...s)) dsl ~ )...1/4 rT Ejek(X()...S)) 1 ds 
09~T Jo Jo 

~ const. )...1/4 loT (>"S)-1/4 ds lIeklb = const.ll ekll2 

which is obtained from Lemma 3.3.1 in section 2 below, we can conclude that 

E sup 1)...1/4 rt ek(X(>..s)) dsl ~ 0 
09~T Jo 

for k = 1"", n because continuous functions with compact support are dense in L2(R1). 

Thus (3.9) is proved. 

From (3.8), (3.9) and the "asymptotic Knight's theorem" in Pitman-Yor [10]' we obtain 

that 

~.A.A {121C,0j ek(X,e) } { Z ,Vk h<k<r ~ (, .,r-:Ie N(ds, dxde) 
- - 0 G -ae X + -1 

as )... ~ 00 in law. (Note that 1- aex+v-teI2 dxde = m(dz). ) 

This implies that 

19~r 

~.A 1/4 .A .A {r 21(.,0 r 9i(X, e) } 
{ Z ,)... Ai (T ) h~i~n ~ (, Jo JG -aex+.,r-:Ie N(ds, dxd8) .' 

l~.~n 

as )... ~ 00 in law. Thus we arrive at the assertion (3.6). 

Remark 3.2.3. Messulam and Yor [7] proved that if hand k are in L2(C ~ R1) and 

bounded, then 

M(t; h, k) = - r {h(z(s)) dx(s) + k(z{s)) dy{s)} ( 
2 ) 1/2 t 

log t Jo 

converges in distribution as t ~ 00. (See also [10]' section 6.) This follows immediately 

from the result of Application 2. Indeed, the result (3.7) implies that if hand k are in 

L2(C ~ R1) and in LP(C ~ R1) for some 2 < P ~ 00, then 

eh !II_1 

)...-1/410 {h(z(s)) dx{s) + k(z(s)) dy(s)} 
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as ,\ -+ 00 in the sense of finite dimensional distributions, where Nl = Re(N) and N2 = 

Tm(N). Taking t = 1 and ,\ = ((1/2)logT)1/2, we see that 

r21(q,€) r 
M(T;h,k) -+ io ie{h(z)N1 (ds,dz) + k(z)N2 (ds,dz)} 

as T -+ 00 in distribution, where (J = p-l(1) = inf{u; ~(u) = 1}. 

Application 3. (Occupation time; null charged case). In [6]' Kasahara-Kotani showed that 

if f: C I---t R1 is a bounded function in L1(C) such that 

fe IJ(z)llzl~ m(dz) < 00 

for some c > 2 and Ie J(z) m(dz) = 0, then 

rCfit) 
,\-1/4 io J(z(s)) ds -+ B((f) l(p-1(t),~))) 

as ,\ -+ 00 in the sense of finite dimensional distributions, where 

u(t) = e2t 
- 1, 

(f) = -(2/,rr2
) fe fe log Iz - z'l J(z)J(z') m(dz)m(dz'), 

B(t) is a 1-dimensional Brownian motion, l(t, 0 is the local time at 0 of a Brownian motion 

~(t) which is independent of Band p(t) = ma')co~J:9 ~(s). This result is closely connected to 

that of Application 2. In fact, in a similar way as Application 2, we can extend this result 

to a function J: C I---t R 1 such that 

J E Ll(C) n L2(C), 

r IJ(z)llog Izl m(dz) < 00, 
ilzl~l 

fe IJ(zWl z 1

2 
m(dz) < 00 

and 

fe J(z) m(dz) = O. 

We explain this briefly below. 

By the same argument as in Application 1, it is sufficient to show that 
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as ,\ - 00 in law on C([O,oo) - R2), where (X(t), Y(t)) is a Brownian motion on G = 
-). -

R1 X [0,211-]' X (t) = ,\-1/2 X(,\t) and 

Set 

and 

Ilgl/K = [: Ix l l10
2

?r g(x, B) dBI dx, 

9 = ~ [ g(x, B) dxdB, 
27r la 

I
x [2?r 

ipg(x)= -oolo g(u,B)dudB 

<Pg(x) = [Xoo ipg(Y) dy. 

(aEC\{O}). 

From the assumptions for J(z), we have that 9 E L1(G) n L2(G), IlgilK < 00 and 9 = o. 
Also it is easy to see that 

and 

Indeed, ipg(x) = - Ixoo I~?r g( u, B) dudB since 9 = 0, and hence 

Ix ·ipg(x)1 ~ Ixll
oo 

110
2

?r g(u, B) dBI du ~ 100 

lul l10
2

?r g(u, e) del du ~ IlglIK. 

Moreover, using these estimates, we have that 

(3.11) Ilipgllp = (11 lipg(X )IP dx + [ lipg(x )IP dX) IIp 
-1 llxl>l 

(' )'~ < Ilgll/l dx + IlgllKP 1 Ixl-P dx 
-1 Ixl>l 

< const.llgl11 + const.llgllK (l<p<oo) 

and 

(3.12) I<pg(x )1 < I[Uipg(u)]~oo - [Xoo U 102?r g(u, B) dBdul 

< 211gliK + [~luII102?r g( U, B) dBI du 

< 311g1/K. 

Define 
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and 

1 
rg(x, B) = --<Pg(x) + (ro * g)(x, e). 

7r 

Then it holds that 

(3.13) ro E LP(G) (1 ~ p < 00), 

(3.14) r 1 = oro/ax E LP(G), (0 < p < 2) 

and .6.rg = -2g for any suffisiently smooth function g. (See [6].) We deduce from (3.12) 

and (3.13) that 

(3.15) Irgl ~ const.llgl12 + const·llgllJ( 

and from (3.11) and (3.14) that 

(3.16) oJ: E LP(G), arg LP(G) ae E (1 < p < 00). 

Then we can put 

rt arg - ~ - t arg - ~ ~ 
M(t) = Jo ax (X(s), Y(s))dX(s) + Jo ae (X(s), Y(s))dY(s). 

(Generally, if FE LP(G) for some p with 1 < p ~ 00, then EoJ~F(X(s),Y(s))ds ~ 

const.IIFllp < 00, cf. Lemma 3.3.1 and Lemma 3.3.2 in section 2 below. ) 

If 9 is a sufficiently smooth function, Ito's formula gives an identity 

(3.17) lot g(X(s), Y(s)) ds = rg(O, 0) - rg(X(t), Y(t)) + M(t) a.s. 

For a non-smooth g, by the method of approximation we see that (3.17) is still valid. Since 

fg is bounded by (3.15), we can consider MA(t) = )...-1/4 M()...t) in place of 

)...3/4Ia
t 
g(X()...s), Y()...s)) ds. 

The fact (3.16) allows us to apply Corollary 1 for (AfA)t = )...1/2 J~ h(X()"'s), Y()...s)) ds 

where h(x, e) = (arg/ax)2 + (arg/ae)2, and Corollary 2 for 

(MA,XA)t = )...1/4Ia
t 
oJ: (X()...s),1I-()...s)) ds 

and 
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Then, as in Application 2, we arrive at the conclusion that 

as ), -t 00 in law, where (~(t), 77(t), B(t)) is a 3-dimensional Brownian motion, l(t,~) is the 

local time at 0 of ~ and h = 2~ Je h(x, 0) dxdO. The assertion (1.10) now follows if we notice 

that U) = 2h. 
The equality U) = 2h can be seen as follows. If g is a sufficiently smooth function, noting 

that ,0.fg = -2g , we have 

(3.18) 
= 1 afg afg 2 

[( ) 2 ( ) 2] 2h=;1o ax + De dxdO=;/eg(x,O)fg(x,O)dxdO 

by the integration by parts. For non-smooth g, by the method of approximation we see that 

(3.18) is still valid. On the other hand, using the fact that 9 = 0 and IlglIl( < 00, we have 

<I>g(x) = [yipg(Y)]~oo - 211" [Xoo yg(y) dy = const. + 211" [Xoo (x - y)g(y) dy, 

where g(y) = 2~ J;'II: g(y, 0) dO. Also we have 

fo * g(x, 0) = 10 fo(x - y, 0 - 'f)g(y, 'f) dyd'f 

-- log le A (9-tJ» - eX-YI· g(y, 'f) dyd'f 1 100 
!o2'11: 

11" x 0 

-- log lev'-l(9-tJ» - ey-xl· g(y, 'f) dyd'f 1 jX !o2'11: 
11" -00 0 

1 jX !o2'11: -- (log le x+A9 - ey+AIPI_ x) g(y, 'f) dyd'f 
11" -00 0 

-- log le x+A9 - ey+AtJ>I· g(y, 'f) dyd'f + 2 yg(y) dy 1100la~ 100 

11" x 0 x 

-~ /:00 !o2'11: log le x+A9 - eY+v'-lIPI· g(y, 'f) dyd'f + 2x [Xoo g(y) dy 

-.!:. r log lex+v'-l9 - eY+v'-lIPI· g(y, 'f) dyd'f + 2 jX (x - y)g(y)dy + const .. 
11" Je -00 

Then recalling the definition of fg(x, 0) we have 
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(3.19) fg(x, e) = -.!. r log le x +A9 - ey+A"'I· g(y, 1/J) dydlj; + const. 
7r le 

Combining (3.18) and (3.19) and using 9 = 0 again, we obtain 

2h = --;. r r log Ie x +A9 - ey+A"'I· g(x, B)g(y, 1/J) dxdydBd1/J = U). 
7r le le 

Remark 3.2.4. In Theorem 2.1 of [6] , it is proved that if g E L1{G) n LP(G) for some p 

with 2 < p ::; 00, Ilglll( < +00 and 9 = 0, then (3.10) holds. The above proof shows that we 

can refine Theorem 2.1 of [6] by weakening the condition g E L1(G) n LP(G) (2 < p::; 00) 

to the condition g E L1 (G) n LP( G) (2::; p ::; 00). (It should be noted that if p > 2, then 

(8fg/8x) and (8fg/8e) are bounded, while in case that p = 2, we have only (3.16).) 

3.3 The proof of Theorem 3.2.1 

For the proof of Theorem 3.2.1, first note that the generator of 8 t is {1/2)~M' where ~M 

is the Laplace-Beltrami operator for M. Since 1\1 is compact, ~M has pure point spectrum 

and we denote the corresponding normalized eigenfunctions by {IPn}. It is known that the 

transition density q(t, e, 1]) of 8 t has the following expansion: 

00 

(3.20) q(t, B, 1]) = L e-Ant IPn(e)IPn(1]), 
n=O 

which converges uniformly in (e, 1]) for every t > 0 (see Chavel [1], p.140). 

Before proving our theorem, we prepare some estimates for expectations of the functionals 

of X t and 8 t . 

Lemma 3.3.1 Suppose that h: Rd 1-+ R1 satisfies the condition: 

for some 1 ::; p ::; 00 and f3 ~ 0 . 

Then for every x E R d and t > 0, 

where H(x) = h(x)e-/3lxl . 
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Proof From the assumption for Xt, we have the following estimate for the transition 

density p(t, x, y) of X t : 

-d/2 (const.lx - Y12) (3.21) p(t, x, y) ::; canst. t exp - 2t . 

(See Friedman [3]' p.141, Theorem 4.5.) 

Then, by the assumption for h(x) and Holder's inequality, 

Exlh(Xt)1 ::; canst. C d/2 r exp (_ canst. Ix - Y12) IH(y)Ie.aIYI dy 
JRd 2t 

< canst. iRd exp ( - cons~.1~12 + ,8IVt~1 + ,8lxl) IH(Vt~ + x)1 d~ 

.alxl (I. (const.I~12 - 2,8v't1~1 ) d ) l/q < canst. e exp - q ~ 
Rd 2 

where lip + 11q = 1. 

The integral in the second factor of the last expression is bounded by 

10
00 ICld-1 (const.I~12 - 2,8VtI~1 ) dici canst. <, exp - q <, 

o 2 

< const.{32t 10 00 ICld-1 (canst. (I~I- const. ,8v't)2 ) dici canst. e <, exp - q <, 
o 4 

and the third factor is equal to t- d / 2P IIHllp. Q.E.D. 

Lemma 3.3.2 Suppose that f E LT(M, de) with some 1 ::; l' ::; 00. Then for every 0 > 0 

theTe exist positive constants C and Co such that 

JOT every e E M and t > O. 
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Proof. If 8 > 0, we have from (3.20) that 

q( t, 0, ~ )1('>6) :0; (; e -'.' 'l'n (0)2 )'/2 (; e -'.' '1'. (ry)2 )'/2 1('>6) 

(
00 )1/2 (00 )1/2 < E e->.n°<pn(e)2 E e->.n 6<pn(7])2 

q(8, e,e)1/2q(S, 7],7])1/2 :::; supq(8,e,e) = Co. 
(J 

On the other hand, the uniform estimate 

q(t,e,7]):::; const.Cm
/
2 (t 1 0) 

holds. (see Chavel [1], p.154 '" 155). Then noting that hI q(t, e, 17) d17 = 1 and f E Lr(M) c 
L1(M), we have that 

E(Jlf(8t)1 = !M q(t, e, 7])lf(7])1 d7] 

r q(t, e, 7])lf(7])1 d7] l(t<o) + r q(t, e, 7])lf(7])1 d7] l(t>o) JM - JAf 

< (!M q(t, e, 7])q d7]) 1/q IIflir 1(t9) + Collfllt l(t>o) 

< (!M(const. C m (q-l)/2 q(t, e, 7]) d7]) l/q IIflir 1(t9) + Collfllt l(t>o) 

const. c m
/
2r llfllr 1(t9) + Collflh 1(t>6) 

by Holder's inequality, where l/r + l/q = 1. (In the case that r = 1, the above estimate is 

still valid by replacing (fM q(t, e, 7])q d7])l/q with sup'1 q(t, e, 7]). ) Q.E.D. 

Now we are ready to prove Theorem 3.2.1. 

Proof of Theorem 3.2.1. We shall first. prove the special case that g(x, e) is of the form 

h( x )<Pn (e) and reduce the general case to this special case by approximations. 

1°) The case that g(x, e) = h(x)<Pn(e) for some n ~ 1 where h(x) E LT(Rd
) for some r 

with 1 :::; r :::; 00 and r > d/2. 

In this case, as seen by the proof below, the conditions r < 00, r > m/2 and (2) are not 

necessary. Moreover, the convergence is uniform in p. 

From now on we write the expectation E(o,(Jo) simply by E. Set 
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and 

In order to show that 

(3.22) 

as ). --+ 00 uniformly in p, it is clearly sufficient to prove that 

and 

(3.24) E sup IM/'>'I ---4 0 
0::s;t::5T 

as ). --+ 00 uniformly in p. 

The convergence (3.23) is proved as follows. By the orthonormality of {<pd and (3.20), 

it holds that 

By Lemma 3.3.1 and (3.25), we obtain the estimate for ul'>': 

(3.26) luI'>' (x, 8)1 < pd/2r 10
00 

Ex Ih(XI'.)IIEe [IPn(8)..)]1 ds 

Hence 

< const. pd/2r 1000 

(ps)-d/2r e->'n>" ds IIPn(B)1 

const. ).d/2r- 1IIPnUnl. 

for every B E .M. 

Because of the boundedness of <Pn (note that <Pn is continuous and M is compa.ct), it holds 

that ESUPO::s;t::5T IIPn(8).dl ~ const. 

Therefore, 

(3.27) E sup I ul'>'(Xl'h 8>.dl ~ const. ).d/2r-l ---4 0 
0::s;t::5T 
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as ). -+ 00 uniformly in p. 

We now prove (3.24). Fixing)., p and setting F t = cr{(XJl$J 8 AJ ); s ~ t}, we can see that 

Mt JlA is an (Ft)-martingale by a repeated use of Fubini's theorem. (Note by Lemma 3.3.1 

and (3.25) that 

E [10
00 

IE(x"f,0>.f) (h(XJlu )<Pn(8 Au ))1 dU] 

= E [10
00 

IEx"f(h(XJlu))IIE0>'f(<Pn(8Au))1 dU] < +00. ) 

Then we have that 

E sup I.MtAI :::; (E sup IM/'AI2)1/2 ~ canst. (EIMTJlAI2)1/2 
09~T 09~T 

by the martingale inequality. Hence it is sufficient to show that 

and 

as ). -+ 00 uniformly in p. We can easily deduce (3.28) from (3.26) in a similar way as 

the proof of (3.23). (3.29) can be proved as follows. By Lemma 3.3.1, (3.25) and Fubini's 

theorem, we have that 

12 = 2pd/r E [IoTdS fo Jdu h(XJlJ)h(XJlu)<Pn(8AJ)<Pn(8Au)] 

2fld/r foTds foJdu E[h(XJlu)Ex"Jh(XJl(J-u»)]] 

x E[<Pn(8.\u)E0>.J<Pn(8A(J-u»)1]. 

Lemma 3.3.1 implies that 

IE [h(XJlu)Ex"Jh(XJl(J-u»)]] I:::; E[lh(XJ<u)l· Ex"u Ih(XJ«J-u»)I] 

~ canst. (p( s - u)) -d/2r . (pu) -d/2r 
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and (3.25) implies that 

Hence 

h < const. foTds fo'due-).n).($-u)(s - u)-d/2T U-d/2T 

< const. )...d/2T-l + const. )...d/2T-l ----t 0 

as )... .....,. 00 uniformly in p. This completes the proof of (3.22). 

2°) General case. 

Since X t and 8 t are mutually independent, by Lemma 3.3.1 and Lemma 3.3.2, we have 

for fixed {; > 0, that 

E/g(Xl't,8t )/1(t>6) < const. E//g(Xl't, ')//l(M) 1(t>6) ~ const. E//g(Xl't, ')//T(M) 

< const. (pi) -d/2T I/g I/T( G). 

Similarly, using the assumption (2), we have by Lemma 3.3.1 and Lemma 3.3.2 that 

E/g(XJLt, 8 t)/1(t9) ~ const.. C m
/

2T EI/g(XJLt, ')//T(M) 1(t9) 

< const. C m
/

2T (pi) -d/2p econst'l't II I/g( x, .) I/T(Af)e -.8lx 'll
p
(R d) 

Putting these estimates together, we obtain that 

1 r)'T (p )-d/2T 
+ const. ~ J6 ~s ds I/gl/T(G) 

< const.p-d/2p )...d/2p-l e const' JL /). + p-d/2T (const. + const. )...d/2T-l) //gl/T(G)' 
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Here for the existence of the above integrals by s, the conditions r > d/2, r > m/2 and 

p > d/(2 - m/r) are needed. 

Therefore, using the condition that P 2 r, we have 

(3.31) sup p,d/2r E sup I r g(Xp.., e>..) dsl 
O~p.~N>' 09~T Jo 

< const. Nd/2r-d/2p econst. N A d/2r-1 + (const. + const. A d/2r-l) IIgllr(G) 

0(1) + (const. + 0(1)) IIgllr(G) (A -+ 00). 

Now define 

.c := {I; I is a finite linear combination of !PI, !P2, ... } 

AI := {gj 9 is a finite linear combination of functions of A} 

BI := {g; 9 is a finite linear combination of functions of B} 

S := {g; 9 is a Borel measurable function from G to RI s.t. 9 E Lr(G), 

IIg(x, ·)lIr(M)e-.Blxl E LP(Rd) and fM g(x, B)dB = 0 for a.a. x E Rd} . 

Every I E Lr(M) satisfying fM I{e)de = 0 can be II IIr(A-f)-approximated by l' E .c, because 

any continuous function 'ljJ on Af satisfying fM 'ljJ( e)de = 0 is uniformly approximated by 

functions of.c since M is compact (cj. Chavel [1], p.139-140), and continuous functions are 

dense in Lr(M) (1 ::; r < 00). Hence every hI E B can be 

II IIr(Gta,pproximated by hI' E A. On the other hand, every 9 E S can be II Ilr(Gt 

approximated by gl E BI. Therefore, every 9 E S can be II IIr(Gtapproximated by gl E AI. 

Consequently, noting that by (3.22) Theorem 3.2.1 holds for every hI E A (and so for 

every gl E AI ), we complete the proof by an approximation argument using (3.31). Q.E.D. 
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Chapter 4 

On Some Ergodic Theorems for a 

Brownian Motion on a Compact 

Manifold and an Ornstein-Uhlenbeck 

Process 

4.1 Introduction 

Let M be an m-dimensional compact (connected) Coo-Riemannian manifold without bound­

ary. We consider a diffusion process (Xt, 8d on G = Rd X M, where (8tk~0 is the Brownian 

motion on .M (i.e., the generator of 8 t is ~.6M' where .6M is the Laplace-Beltrami opera­

tor for M, see Ikeda and Wat.anabe [4], chapter 5, section 4) and (Xtk~o is an Rd-valued 

diffusion process with the generator L; 

1 d .. a2 f d. af 
Lf(x) = - '" a'J(x) aa .(x) + '" b'(x)-a .(x), 2.~ X' xJ ~ x' 

',J=l 1=1 

d 

where aiJ(x) = L O"~(x)O"~(x) for i, j = 1,···, d. We assume that O"(x) = (O"i(x)) E Rd x Rd 
k=l 

and b( x) = (hi (x)) E R d are bounded and smooth and 0"( x) is uniformly non-degenerate. 

Moreover we assume that X t and 8 t are independent and Xo = 0 and 8 0 = eo ( eo E .AI ). In 

the following, we consider Lp-spaces LP(Rd), LP(M), LP(G) where Rd and AI are endowed 

with Lebesgue measure dx and the Riemannian volume de, respectively and G is endowed 
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with the product measure dxd8. The norms are denoted by II IIp(Rd ), II IIp(M), II IIp(G), 
respectively, to distinguish the spaces. 

In Chapter 2 we proved, using the method of eigenfunction expantions, the following 

ergodic theorem to obtain some limit theorems for additive functionals of 2-dimensional 

Brownian motion. 

Theorem 4.1.1 Let F(x,8) be a Borel measurable function from G to Rt satisfying the 

following conditions: 

(Ai) For almost all x E R d, F(x,8) is null charged on 111; i.e., fM F(x, 8)d8 = 0 , 

(A2) F(x,8) E Y(G) for some r with 1 ::; r < 00 and r > max{ d/2, m/2}, 

(A3) IIF(x, ·)llr(M)e-f3lxl E LP(Rd) for some p and f3 ~ 0 with r ::; p ::; 00 and 

p> dl(2 - mlr). 

Then for every T > 0, it holds that 

sup J-Ld/2r E(O,90) [ sup I rt 

F(Xp.., 8 ).$)dslj--+ 0 
O~p.9 09~T Jo 

as A ~ 00. 

Here E(O,90) denotes the expectation specifying the starting point of (Xt, 8 t). 

On the other hand, in Chapter 1 we also proved the following ergodic theorem to obtain 

some limit theorems for "winding-type" additive functionals of a 2-dimensional Brownian 

motion. 

Theorem 4.1.2 Let h be a Borel measurable function from Rd to at and f be a Borel 

measurable function from M to at satisfying the following conditions: 

(Bi) f is null charged on M; i.e., fM f(8)d8 = 0, 

(B2) f is in Y(A1) for some l' with 1 ::; r < 00, 

(B3) For every x E R d, Ih(x)1 ::; const.lxl£) for some ex with ex > -d and ex > mlr - 2. 

Then for every T > 0, it holds thai 

E(O,90) [sup I rt h(X.)f(8).s)dslj--+ 0 
09~T Jo 
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as ). -+ 00. 

Our first purpose of this paper is to extend Theorem 4.1.2 as Theorem 4.1.1. That is, we 

will prove the following Theorem 4.1.3 in section 4.2. 

Theorem 4.1.3 Let F(x, B) be a Borel measurable function from G to Rl satisfying the 

following conditions: 

(Cl) For almost all x E Rd
, F(x, B) is null charged on AI, 

(C2) For almost all x E R d
, F(x, B) E LT(A1) for some r with 1 ~ r ~ 00 and r > d/2, 

(C3) For every x E R d
, IIF(x, ')llr(M) ~ const.lxlo for some a with a > -d and 

a> m/r - 2. 

Then for every T > 0, it holds that 

E(o,8o) [sup I ft F(X., e".)dslj--+ 0 
09~T Jo 

as ). -+ 00. 

Our second purpose of this paper is to show that these theorems are also valid in the case 

that Mis R m which is endowed with the normal distribution v(dB) = (27r)-m/2 exp( -IBI2 /2)dB 

instead of dB and (E>tk:~o is an Ornstein-Uhlenbeck process; i.e., (E>tk~o is a Rm-valued dif­

fusion process with generator A; 

We will prove this in section 4.3. In this case, the argument becomes subtler than in the 

case of Brownian motions on compact manifolds, because Eo sup IIPn(E>t)1 -+ 00 as T -+ 00 
O<t<T 

where lPn' n = 1,2, .. " are the Hermite polynomials, which are the eigenfunctions of A. 

4.2 The proof of Theorem 4.1.3 

First of all, we will recall that the generator ~~M of E>t has pure point spectrum 
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since M is compact. We denote the corresponding normalized eigenfunctions by {<Pn}. It is 

known that the transition density q(t, 8, 17) of 8 t has the following expansion: 
00 

(4.2) q(t,8,1]) =:L e->.n t <pn(8)<Pn(17), 
n=O 

which converges uniformly in (8,1]) for every t > 0 by Mercer's theorem (see Chavel [1] 

p.140). 

We will also recall that X t is determined by the stochastic differential equation: 

where (Btk~.o is a d-dimensional Brownian motion (see Ikeda and Watanabe [4], Chapter 4, 

section 6). 

Before proving our theorem, we prepare some estimates for expectations of the functionals 

of X t and 8 t . 

Lemma 4.2.1 Suppose that h : Rd __ Rl satisfies the condition: 

for some 1 :::; p :::; 00 and f3 ~ O. 

Then for every x E Rd and t > 0, 

Exlh(Xt)1 :::; const. r d / 2p econst . .I31t+.I3lxlllgllp, 

where g(x) = h(x)e-.I3lxl. 

Proof. From the assumption for Xt, we have the following estimate for the transition 

density p(t, x, y) of Xt : 

d/2 (const.lx-yI2) (4.4) p(t,x,y):::; const.r exp - 2t . 

(See Friedman [3]' p.141, Theorem 4.5.) 

Then, by the assumption for h( x) and Holder's inequality, 

Exlh(Xt)1 :::; const. r d/ 2 { exp (_ const·lx - Y12) Ig(y)le.l3lyldy 
JRd 2t 

< const. JR
d 

exp ( - cons~.1~12 + f3IVt~1 + f3lxl) Ig( Vt~ + x )Id~ 

.l3lxl (l (const.I~12 - 2f3v11~1 ) de) l/q const. e exp - q <, 
Rd 2 
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where lip + llq = l. 

The integral in the first factor of the last expression is bounded by 

100 ICld-1 (const.I~12 - 2f3v't1~1 ) dlCI const. <" exp - q <" 
o 2 

const.f3 2 t 100 ICld-1 (const. (I~I- const. f3.,fi)2 ) dl I < const. e <" exp - q ~ 
o 2 

and the second factor is equal to r d
/ 2P IIgli p • Q.E.D. 

Lemma 4.2.2 Suppose that f E Lr (!l1, de) with some 1 ~ r ~ 00. Then, for every 5 > 0 

there exist positive constants C and Co such that 

for every e E !l1 and t > O. 

Proof. From (4.2) we have that 

q(t, e, ry) 1(1)') S (E e-"''I'.(e)') 1/' (E e-"''I',(1)') 1/' 1(,>,) 

< (E e-"''I'.(e)'),,' (~o e-"''I'.( ry)')'" 

q(5, e, e)1/2q(5, 1], 1])1/2 

< sup q(5, e, e) = Co. 
o 

On the other hand, the uniform estimate 

(4.5) q(t, e, 1]) ~ const. r m
/
2 (t 1 0) 

holds. (see Chavel [1], p.154 rv 155). Then noting that fM q(t, e, 1])d1] = 1 and f E Lr(M) C 

L1(M), we have that 

Eolf(8dl = JM q(t, e, 1]) If (1]) Id1] 

JM q(t, e, 1])1f(17)ld171(t~0) + JM q(t, e, 1])If(1])ld1] 1(t>0) 
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< (11 q(t, e, 17)qd17) l/q IlfliT 1(t9) + Cellfllt 1(t>e) 

< (1M (const. r m (q-I)/2 q(t, e, 17)d1]) l/q IlfilT l(t9) + Cellfllt 1(t>e) 

const. r m
/

2r llfliT 1(t9) + Cellflll l(t>e) 

by Holder's inequality, where l/r + l/q = 1. (In the case that r = 1, the above estimate is 

still valid by replacing (fM q(t, e, 17)qd1])I/q with SUPry q(t, e, 1]).) Q.E.D. 

Proof of Theorem 4.1.3. The proof of this theorem is very similar to the proof of Theorem 

4.1.1 (cf. Chapter 2). We shall first prove the special case that F( x, e) is of the form 

h( x )!Pn (e) and reduce the general case to this special case by approximations. 

1°) The case that F(x, e) = h(x)tpn(e) for some n ~ 1, where h(x)e- 1xl E LP(Rd
) for 

some p with 1 ::; P ::; 00 and p > d/2. 

From now on we write the expectation E(o,(Jo) simply by E. Set 

and 

In order to show that 

as ). ----t 00, it is clearly sufficient to prove that 

and 

(4.8) E sup 11H"tAI---+O 
09~T 

as ). ----t 00. 

The convergence (4.7) is proved as follows. By the orthonormality of {tpd and (4.2), it 

holds that 
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for every e E AI. By Lemma 4.2.1 and (4.9), we obtain the estimate for U A: 

(4.10) luA(x,e)1 < 10
00 

Exlh(X.)IIE9[lPn(0 A.)]lds 

for sufficiently large ).. Hence 

Here :, " " 

(4.12) E sup exp(IXt!) < 00 
O::;t::;T 

holds. To prove this, set 

Mi(t, a, a') = exp (a t 1t O'j(X.)dB~ - a' t 1t O'j(X.)2dS) . 
J=l 0 J=l 0 

Since the quadratic process 

d r d rt 
(a L Jo O';(X.)dB;)t = a2 L Jo O';(.X.)2ds ~ const. t, 

J=l J=l 

M(t, a, a2/2) is a continuous exponential martingale for any a E R 1 (see Ikeda and \Vatanabe 

[3], p.154). Hence 

< 4EMj (T, a/2, a2/8)2 

4EMj (T, a, a2 /4) 

by the martingale inequality. Therefore noting that the coefficients 0'( x) and b( x) of the 

stochastic differential equation (4.3) are bounded, for any a E R1 and each i we have 

E sup exp(aX;) < const. E sup A{(t, a, a2/4) 
0::; t::; T O::;t::;T 

< const. EA1i(T, a, a2 /4) 

< const. E exp( aX~) 

< const. E exp(laXTI). 
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From this we have 

E sup exp(aIX;1) < E sup exp(aX-;) + E sup exp( -aX;) 
09:S;T 09:S;T 09:S;T 

< const. E exp(laXTI) 

and hence 

d d 

E sup exp(IXtl) < E sup exp(L IX;!) ::; L E sup exp(d . IX;!) 
09:S;T 09:S;T ;=1 ;=1 09:S;T 

< const. Eexp(d ·IXTI). 

Since Lemma 4.2.1 implies that the last expectation is bounded, we have (4.12). 

On the other hand, because of the bounded ness of 'Pn (note that 'Pn is continuous and 

M is compact), it holds that 

(4.13) E sup l'Pn(0).t)1 ::; const. 
°9:::;T 

Combining (4.11), (4.12) and (4.13), we have 

(4.14) E sup lu>.(Xt, 0>.t)1 ::; const. (AnA - const. )d/2p-1 E sup l'Pn(0).dl 
09:S;T 09:S;T 

---70 (A ~ 00). 

That is, (4.7) holds. 

We now prove (4.8). Fixing A and setting F t = cr{(X., 0>..); s ::; t}, we can see that 

M t>' is an (Ft)-martingale by a repeated use of Fubini's theorem and the Markov property 

of (Xt, 0 t ). (Note by Lemma 4.2.1 and (4.9) that 

E [fooo IE(Xt,0;\t)(h(Xu)'Pn(0>.u)) I dU] 

E [fooo IEXt(h(Xu))IIE0;\t('Pn(0>.u))1 dU] < +00.) 

Then we have 

E sup I lilt>' I ::; (E sup IMt>'1 2)1/2::; const. (EIMiI 2)1/2 
09:S;T 09:S;T 

by the martingale inequality. Hence it is sufficient to show that 
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and 

(4.16) 1, = E (f h(X,)I".(0,,} dS) 2 ~ 0 

as A -+ 00. We can easily deduce (4.15) from (4.10) in a similar way as the proof of (4.7). 

(4.16) ca.n be proved as follows. By Lemma 4.2.1, (4.9), Markov property and Fubini's 

theorem, we have that 

12 = 2E [foTds fo$dUh(X$)h(Xu)IPn(0>'$)IPn(0>.u)] 

- 2!a:dsjo4du E [h(Xu)ExJh(X$-u)]] 

x E [IPn(0).u)E0 ;\JIPn(0>'(3-U))J] . 

Lemma 4.2.1 implies that 

and (4.9) implies that 

(4.17) IE [IPn( 0 >.u)E0 ).u [IPn( 0 >'(3-U)) J] I < e->'n>'(3-U) EIIPn (0 >.u)1 2 

Hence 

< const. (AnA - const. )d/2p-l ---+ 0 (A -+ 00). 

This completes the proof of (4.6). 

2°) General case. 

For fixed rand 0:' in t.he condit.ions (C2) and (C3), t.here exists some p E [1,00) such that 

d/2 < p :::; rand O:'p > -d. We fix one of such p. Then it holds that F(x, B)e-1xl E LP( G). 
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Indeed, 

III1 F (x, ·)llp(M) e-lxlllp(Rd) 

< II cons t.IIF(x, ·)llr(M) e-lxlllp(Rd) 

< const. IIlxlae-lxlllp(Rd) < 00. 

In another words, F(x, e) E LP( G, e-p1x1dxde). We denote the norm of this space by II lip. 

Since X t and 8 t are mutually independent, by Lemma 4.2.1 and Lemma 4.2.2, we have, 

for fixed 0 > 0, that 

Similarly we have by Lemma 2.1 and Lemma 2.2 that 

EIF(Xt,8At )ll(At:S;O) < const. (At)-m/2r EIIF(Xh . )lIr(M) 

< const. (At)-m/2r EIXti a 

< const. (At)-m/2rC d / 2 r e-lxll/2tlxladx 
lRd 

const. ,\ -m/2r cm/2r+a/2. 

In deriving the third inequality in the above we used (4.4). 

Putting these estimates together, we obtain 

E sup I t F(X., 8AS)dsl ~ rT 
EIF(X., 8 AS )lds 

09~T lo lo 

ra
/
A 

EIF(X., 8 AS )lds + rT 
EIF(X., 8 As )lds lo lO/A 

ra/A 
< const. ,\-m/2r lo s-m/2r+a/2ds 

+ const. rT 
s-d/2Peconst.sds II Flip 

lO/A 
< const. ,\-a/2-1 + (const. + const. ,\d/2p-1)IIFlip. 
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Hence 

(4.18) E sup I rt F(X j , 0 Aj ) dsl :s; 0(1) + (const. + o(l))IIFllp 
09~T 10 

as .\ ~ 00. 

Now define 

£ := {j; j is a finite linear combination of t.pl,t.p2,···} 

A' := {F; F is a finite linear combination of functions of A} 

B := {hj; h(x)e-1xl E LP{Rd), j E LP(M) and fM j(e)de = O} 
l '/ 

B' := {F; F is a finite linear combination of functions of B} 

S := {F; F(x, e)e- 1xl E LP(G) and fM F(x, e)de = 0 for a.a. x E R d}. 

Every j E LP(M) satisfying fM j(e)de = 0 can be II IIp(Mtapproximated by l' E £, because 

any continuous function 1jJ on M satisfying fM 1jJ{e)de = 0 is uniformly approximated by 

functions of £ since M is compact (cf. Chavel [1], p.139-140), and continuous functions are 

dense in LP{M). Hence every h· fEB can be II lip-approximated by h· f' E A. On the other 

hand, every F E S can be II lip-approximated by F' E B'; Note that S C LP( G, e-p1x1dxde) 

and B' C LP( G, e-p1x1dxde). Therefore, every F E S can be II lip-approximated by F' E A'. 

Consequently, noting that by (4.6) Theorem 4.1.3 holds for every hj E A (and so for 

every F' E A'), we complete the proof by an approximation argument using (4.18). Q.E.D. 

4.3 Extention to the Ornstein-Uhlenbeck process 

In this section, we shall show that Theorem 4.1.1 and Theorem 4.1.3 (and so Theorem 4.1.2) 

can be proved in the case that M = R m and (0 t ) is an Ornstein-Uhlenbeck process: 

where Bt is an m-dimensional Brownian motion. Here, of course, in the statement of the 

theorems, we take the normal distribution N{de) = {21r)-m/2 exp{-leI 2 j2)de on R m instead 

of de. 
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For the proof, note first that the generator of 8 t has also pure point spectrum (4.1). The 

corresponding eigenfunctions {<Pn} are of the form; 

for some non-negative integers k1' k2,···, km where Hkj(e i ) is the normalized Hermite poly­

nomial of degree ki and e = (e 1, e2, ... ,em). 

The transition density q(t, e, 17) of 8 t is given by 

m ( e-2t (e i )2 _ 2e-tei r/ + e-2t(rl)2) 
II(l- e-2t)-1/2 exp ---...:.........:..----....:...---...:.....:.-~ 
. 2( 1 - e-2t ) .=1 

( 4.19) 

Since R m is not compact, the necessary changes for this case in the course of the proof 

appear where we have used the compactness of M. What we have to check are the following 

points in the proof of Theorem 3 ( since the proof of Theorem 1, Theorem 2 and Theorem 

3 are very similar, these points are the same as in the case of Theorem 1 and Theorem 2): 

(1) The assertion of Lemma 4.2.2. 

(2) ). -e E sup l<Pn(8).t)1 ~ 0 as). ~ 00 for any c > 0 
09~T 

in (4.15) and (4.17). 

in (4.14). 

(4) For 1 ~ r < 00, [, is dense in LT(Rm,N(de)) where [, is the set of all linear 

combinations of finite number of <PI, <p2,···. 

Firstly we consider (1). We see from the expression (4.19) that q(t, e, 17) l(t>o) is bounded 

and that q(t, e, 17) satisfies the uniform estimate 

q(t, e, 17) ~ const. C m
/
2 e11W /2 (t 1 0) 

instead of (4.5), and hence Lemma 4.2.2 is also valid for the Ornstein- Dhlenbeck process 8 t 

if we substitute t-m/2T e l912 /2T for t-m
/

2T and N( de) for de, respectively. Since we used Lemma 

4.2.2 only in the case that e = 0 to prove (4.18) in the proof of Theorem 3, (4.18) is also 

valid for the Ornstein-Dhlenbeck process 8 t . 

Secondly we consider (3). The proof of (3) is easy. Indeed, since 

m 

EI<Pn(8).t)12 = II EIHkj(8~t)12 
i=l 
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and 

(i = 1 ... m) , , , 

it is sufficient to show that 

( 4.21) 
. k 

E18~tl ~ const. for any kEN 

But this is obvious because 

El8~tlk = (1 - e-2>'t)-lj2 i: lelke-e-2A·/J2j2(1-e-2A·) N(de) ~ const. 

Thirdly we consider (2). It should be noted that (4.13) does not hold for the Ornstein­

Uhlenbeck process 8 t . Indeed, it is known that EsuP09~T 18>.tl ---... 00 as ). ---... 00 (see e.g. 

Friedman [2], chapter 8, section 1). But the assertion of (2) holds, which implies (4.14). The 

proof of (2) is as follows. By the inequality 
m 

E sup ICPn(8).t)1 ~ IT E sup IHki (8L)1 
09~T .=1 09~T 

and (4.20), it is sufficient to show that 

). -< E sup 18~tlk ---+ 0 
O~t~T 

as ). ---... 00 for any e > 0 and every kEN. This follows from Lemma 4.3.1 below. 

Lemma 4.3.1 Suppose (8t)t~0 is a i-dimensional Ornstein-Uhlenbeck process, i.e., an Rl_ 

valued process satisfying the stochastic differential equation 

8 0 = 0, 

where Bt is a i-dimensional Brownian motion. Then for any kEN and any e > 0, it holds 

that 

Eo sup 18t1 k = o(T<) 
09~T 

(T ---... 00). 

Proof. Fix e > 0 and let n E N be an even number such that n > lie. Since Ixln E 

C2(Rl), by Ito's formula we have that 

18 t lnk = V2nk lot 18slnk-1sgn(8.,) dB., 

+ lot (nk(nk - 1)18.,lnk-2 - nkI8.,lnk) ds 
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By Jensen's inequality and the moment inequality, we have 

As for 12 , we have 

E sup Ihl ~ nk(nk - 1) ( EI8.lnk-2ds + nk fT EI8.l nkds. ° 9::::; T Jo Jo 
Combining these estimates and (4.21), we obtain that 

E sup 18t/nk ~ (const. T)1/2 + const. T. 
° 9::::; T 

On the other hand, by Jensen's inequality, we conclude that 

Hence we have that 

T-e E sup 18 t l
k < T-~(const. T 1

/
2 + const. T)l/n 

°9::::;T 

-- 0 (T -+ 00). 

Remark 4.3.1. By a similar argument as in Lemma 4.3.1, we can see that 

(4.22) E sup 18tl ~ log(l + const. T 1
/

2 + const. T). 
0::::; t::::; T 

Q.E.D. 

Indeed, since E[exp(8 t )] ~ const. and E[l8d exp(8t)] ~ const. , applying Ito's formula to 

exp( x), we have that 

exp (E sup 18tl) ~ E ( sup eXP(8 t)) ~ 1 + const. T 1
/

2 + const. T, 
09::::;T 09::::;T 

which implies (4.22). 

Finally we consider (4). This fact is proved as the following lemma due to I.Siegal ( I 

learned this from professor K.Ito ). 
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Lemma 4.3.2 Let P be'the set of all polynomials of R m
, If a probability measure p on 

R m satisfies that JR'" exp(~18il)p(d8) < 00, -i = 1"" ,In, for any ~ > 0, then P is dense in 

L~ = LP(Rm,p(d8)) for every 1 S p < 00. 

Proof. Firstly we consider the case that 1 < p < 00. Since P is a vector subspace of L~, 

its II lip-closure in L~ , written C, is a closed linear subspace of L~ . It suffices to prove 

that C = L~ . Suppose that this were not true. Since 1 < p < 00, we can find a non-zero 

element y(8) E L~ (lip + 11q = 1) satisfying 

( 4.23) iR
m 

y(8)f(8)p(d8) = 0 for any f E C 

by using the Hahn-Banach theorem and noting that L ~ is dual to L~ . Since exp( 1~8i I) E L~ , 

i = 1"", m, for any ~ E R1 by the assumption, we obtain that JRm ly(8)1 exp(I~8il)p(d8) < 
00, z.e., 

( 4.24) (i= 1, .. ·,m). 

Observe that 

( 4.25) E (~)k iR
m 

y(8)(681 + ... + ~m8m)kp(d8) 

O. 

Here the first equality in the above was derived from (4.24); the last equality was derived 

from (4.23) and the fact that (68 1 + .. '+~m8m)k E P C C. Since y E L~ C L~, y(8)p(d8) is 

a signed measure of bounded variation on R m whose Fourier transform vanishes identically 

by (4.25). Hence y(8)p(d8) = 0 a.e.{p). This implies y = 0 a.e. in contradictio with our 

assumption y =f O. 

Secondly we prove that P is dense in L~ . Every f E L~ can be II 

r E L~ n L~ ( C L~ ) and r can be II 112-approximated (and so II 

f" E P as seen above. 
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