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Notations and Remarks

In the following we list the notations which are often used throughout this

thesis. Let N € IN.

- R" = N-dimensional Euclidean space,
(-,+) = the Euclidean inner product in RY,
B(z,r) = the open ball of radius r centered at z,

K(r,s,n) = U B(tn,st) forr, s>0andn € RY with In| = 1.
0<tLr

As to matrices, we define

$V = the set of all N x N real symmetric matrices,
||A|| = the norm of A € $" as a self adjoint operator,
I = the identity matrix,

‘A = the transposed matrix of A.
Let O‘C RY. When its boundary 8O is smooth, we denote v(z) by
v(z) = (v1(z), -+ ,v~n(z)) = the outward unit normal to O at z € 90.
For any function u : O — R, we define

u*(z) = lim sup{u(y) | y € B(e,r) N O},

us(z) = 11_5% inf{u(y) | y € B(z,r) N O}.

We call u* (resp., ux) the upper semicontimuous (u.s.c.) (resp., lower semicontin-
uous (L.s.c.)) envelope of u. It is easily seen that u, £ u £ u* on O and that u*
is u.s.c. in O and u, is Ls.c. in O. We observe that u is u.s.c. (resp., Ls.c.) at

z € O if and only if u(z) = u*(z) (resp., = u.(z)).

3



We denote by Jé""u(z), Jé’_u(:v) the super 2-jet of u and the sub 2-jet of u

in O, respectively:

Tyt u(z) = {(p,X) e RN xgV

u(z + k) £ u(z) + (p, )
+%(Xh,h) +o(|h]*) asz+heOandh— U},

Jé‘—u(:z:) = {(p,X) e RN xgV u(z + h) 2 u(z) + (p, h)

+%(Xh,h)+o(|h|2) asz+ h € O and h—»O}.

Furthermore J5 u(z), jg,’"u(m) are the graph closure of Jg,’+u(x), Jg,’_u(:c), re-

spectiverly:

TS u(z) = {(p, X) € RN x$V | there exist {zp}nenw C O
and (pnp, X5) € J2Tu(z,) such that
(6r6(Ea)sPrs Xn) = (2,1(2),p, X) a5 m — o0},
j(z,)’—u(:v) ={(p,X) € RN x gV | there exist {$n}‘ne]N coO
and (pn, X») € J2 u(z,) such that

(2> u(@n), P> Xn) = (2,u(z), p, X) as 7 — +o0}.

We note that if p € C%(O) and u — ¢ attains a local maximum (resp., local mini-
mum) at zo € O, then (Dp(z,), D2p(z0))€ T u(zo) (resp., (Dy(zo), D2 p(zo))€
J% u(z0)). Conversely, it is easily verified that, for any zo € O, if (p,X) €
J5%u(zo) (resp., (p,X) € Jo u(zo)), then there exists a function ¢ € C?(0)
such that u — ¢ attains a local maximum (resp., local minimum) at z, and

(D¢(z0), D*¢(z0)) = (p, X).



Let © ¢ RN. We define the sets of functions as follows.
USC(O)={u:0 - RU{Foo}:us.c.},
LSC(O)={u: 0 - RU{%oo} :ls.c.},

C(O) = {u: O — R : continuous} with the norm

|lullceoy = sup |u(z)],
T€Q

L*®(0) = {u: O — R : bounded and measurable} with the norm
|ull Lo (o) = ess.supzeo|u(z)|.
We introduce the notion of degenerate ellipticity, which plays an important
role to assure that the classical solutions of elliptic PDEs are viscosity solutions.
Definition. Let O C RY and let F € C(O x R x RN x 8V). Then we say
the F is degenerate elliptic provided
F(:c,r,p,X +Y) é F(x,raan)

forallz € O,rcR,pe RN, X, Y €8V andY > O.

Finally throughout this thesis we use the usual summation convention on
repeated indices. We surpress the term “viscosity” whenever we do not give rise to

confusions since we are mainly concerned with viscosity sub-, super- and solutions.



Introduction

In this thesis we consider the Dirichlet problems for the nonlinear second order
degenerate elliptic partial differential equations (PDEs) with constraints. Mainly
we are concerned with the following problems:

1) { max{F(z,u, Du, D*u),u — Mu} =0 in K,
max{u — ¢g,u — Mu} =0 on 089Q,
@) { min{max{F(z,v, Du, D*u),u ~ Mu},u — Nu} =0 in ,
min{max{u — g,u — Mu},u — Nu} =0 on Of.
Here Q@ ¢ RY is a bounded domain, F is a nonlinear degenerate elliptic operator,
Du, D*u are, respectively, the gradient and the Hessian matrix of the function u
and M, N denote the nonlocal operators defined below. These equations arise in
the Dynamic Programming approach for the optimal control problems and differ-
ential games for diffusion processes governed by stochastic differential equations.
See W. H. Fleming - R. W. Rishel [12], A. Benssousan - J. Lions [4], [5], N. V.
Krylov [30], B. Perthame [40] and G. Barles [1] etc. for the backgrounds. However
we consider these problems from the analytical viewpoints.

We easily observe by simple examples that, in general, the above problems do
not have classical solutions even if the F' is uniformly elliptic and the coefficients
of F' are smooth. Thus we must consider the weak solutions for them. However
we cannot use the weak solutions in the sense of Schwarz’ distributions because
we cannot integrate by parts the expressions which we have by multiplying the
equations above by test functions. Hence, in this thesis, we adapt the notion of
viscosity solutions as the weak solutions.

In 1983 the notion of viscosity solutions was introduced by M. G. Crandall - P.
L. Lions [9] as the weak solutions of Hamilton-Jacobi equations. We also refer M.
G. Crandall - L. C. Evans - P. L. Lions [6]. Here we briefly explain the derivation

of viscosity solutions. We consider the following Hamilton-Jacobi equation:
(3) H(z,u,Du)=0 in .
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To show the existence of solutions of (3), we approximate it by semilinear elliptic

PDEs as follows:
(3)e —eAu, + H(z,u,,Du,)=0 in @ (¢>0)

Let u, be a classical solution of (3).. Assume the sequence {u.}.>o converges to
some function v uniformly on as ¢ — 0. Then in what sense does the u satisfy
(3) 7 By this motivation the notion of viscosity solutions was derived. In the same
year P. L. Lions [35] extended this notion to nonlinear second order elliptic PDEs.
Afterwords by the results in R. Jensen [25], H. Ishii [16], H. Ishii - P. L. Lions
[19] we can interpret the notion of viscosity solutions as the weak solutions in the
sense of pointwise derived from Taylor expansion and the maximum principle in
calculus and general theories on viscosity solutions have been developped. See M.
G.. Crandall - H. Ishii - P. L. Lions [8] for the survay.

In their results, they assumed the strict monotonicity with respect to the 0-
th order terms. But we cannot apply them to the problems (1) and (2) directly
because the equations in (1) and (2) have the monotonicity with respect to the
0-th order terms, not the strict monotonicity by the nonlocal terms Mu and Nu.
Furthermore, in these problems the implicit bounbary conditions are imposed,
which are natural from the viewpoint of the impulse control problems. We study
(1) and (2) with paying the attentions to these points.

This thesis consists of three chapters. In Chapter I we consider the problem
(1). A. Benssousan and J. L. Lions treated this problem from the viewpoint of
quasi-variational inequality for the first time when F is linear. (See [5].) Since
then, it was studied as the usual Dirichlet problem under some compatibility
conditions by which we can get ¢ £ Mu on 9Q. We refer to [5] and B. Perthame
[38] etc. In B. Perthame [39] we obtained the existence and uniqueness of viscosity
solutions of (1). In this chapter we have the comparison principle and existence of

viscosity solutions of (1) under the weaker assumptions than those in [39].

7



The main strategies are similar to [8]. However, we cannot apply them to the
problem (1) directly because of the nonlocal term Mu. In proving the comparison,
we regard the term v — Mu as a function and deal with it. Then the equation
in (1) has only the monotonicity with respect to the 0-th order term. But, by
using the concavity of the operator M and the convex structure of the equation
we can prove the comparison principle. In the proof of the existence of solutions
it is very difficult to construct a subsolution and a supersolution of (1) satisfying
the boundary condition because of the term Mu. To overcome this difficulty
we construct a solution of the equation by Perron’s method and show that it
satisfies the boundary condition in (2) by the barrier argumenf and the comparison
principle. |

Chapter II is devoted the problem (2). This can be regarded an extension of
the problem (1). Once the existence of this problem was shown by using L? theory
under some compatibility conditions by which we can get Nu £ ¢ £ Mu on 99.
However, the uniqueness has not been proved. See [5] for the detail. Although it
seems that we can prove the uniqueness of solutions in a class of smooth functions
(e.g., W>P(Q),p > n), the regularity of solutions have not been obtained since
the operators does not neccesarily preserve the regularity of functions. Hence, by
using the notion of viscosity solutions we can obtain the comparison principle and
existence of solutions of (2).

The strategies of their proofs are similar to those in Chapter I. But we need to
remark that the operators M, N have different properties from each other and the
equation does not have the convex structure. Thus we use the definitions of M,
N and the idea seen in H. Ishii - S. Koike [18] to obtain the comparison principle.
As to the existence of solutions of (2) we construct one by Perron’s method and

show that it satisfies the boundary condition by the barrier argument and the
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comparison principle. Especially, we must discuss the latter fact carefully because
the boundary condition is more complicated than that in the problem (1).

Finally, in Chapter Il we return the problem (1) and consider the case F' is
degenerate on the boundary 0€2. In Chapter I, since the principal parts of the
equations are not degenerate on the boundary, we can observe that a unique so-
lution satisfies the boundary conditions in the classical sense. However, in the
case F' is degenerate on the boundary this fails. Hence we interpret the bound-
ary conditions in the viscosity sense, which is weaker than that in the classical
sense. This was introduced by H. Ishii [15] and is derived naturally from the
Dynamic Programming principle in the optimal control theory. Concerning the
Bellman equations without constraints, see [15] and M. A. Katsoulakis [26], [27].
In this chapter we obtain the comparison principle and existence of solutions of
(1) satisfying the boundary conditions in the viscosity sense.

In proving the comparison principle we cannot help assuming the nontangen-
’tial semicontinuity for a subsolution u and a supersolution v of (1) because we
interpret the boundary condition in the viscosity sense and do not know whether
u £ v on 0. As to the existence, if we get the nontangential semicontinuity of
solutions, we have ’;he continuity of solutions of (1) by the comparison principle.
However, it is difficult to analyze the solutions of (1) directly because of the nonlo-
cality of the operator M. Hence we apply the iterative approximation scheme by
B. Hanouzet - J. L. Joly [14] to have the existence of solutions of (1) in C(2). Of
course, the solution constructed by this method is a unique solution. We see the
uniqueness and existence of approximate solutions by [15], [26] and [27]. More-
over, we can get the representation formula of the solution of (1). By the similar
arguments we can prove the comparison principle and existence of solutions of the

boundary value problem of oblique type containing the nonlocal term Mu.
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To conclude, we have made clear the uniqueness and existence of viscosity
solutions of the Dirichlet problems for nonlinear second order degenerate elliptic

PDEs with constraints such as (1) and (2).
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Chapter 1

Viscosity solutions of nonlinear second order
elliptic PDEs associated with impulse control
problems

§1. Introduction

In this chapter we study the nonlinear second order elliptic PDEs with implicit

obstacles.
Let © C RY be a bounded domain with smooth boundary 892. For any

u: @ — IR, we define the nonlocal operator M as the following;

Mu(z)= gt {KE) +u(z+0)),

T+EEQ

where k(¢) is a nonnegative and continuous function on (R*)" and ¢ 2 0 means
¢ e (BTN

We consider the following nonlinear elliptic PDE with the implicit boundary

condition:
(1.1) max{Lu — f,u — Mu} =0 in Q,
(1.2) max{u — g,u — Mu} =0 on 01,

where L is a linear second order elliptic operator of the form:
Lu = —a;juz;z; + biug, + cu.

The problem (1.1)-(1.2) is associated with optimal impulse control problems, whose

state is governed by stochastic differential equations with impulsive jumps and
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whose value function has k({) as an impulsive cost. (For the details, see A. Ben-
soussan - J. L. Lions [5].)

In general the equation (1.1) with u = g on 99 has no solution because we
don’t know a priori whether ¢ £ Mu on 99 or not. So we put the implicit obstacle
in (1.2). (cf. B. Perthame [39] etc.)

From the view point of the impulse control, [5] treated one for the nondegen-
erate diffusions and J. L. Menaldi [36] did the degenerate case. They characterized
the value function of impulse control problems as the maximum solution of the
corresponding quasi-variational inequality (QVI) in some Sobolev spaces. Using
the notion of viscosity solutions by M. G. Crandall - P. L. Lions [9], G. Barles
[1) showed that the value function for deterministic impulse control problems is a
unique viscosity solution of the corresponding first order Hamilton-Jacobi QVI in
RY.

By an analytical treatment, B. Perthame [38] proved the existence and unique-
ness of solutions in the class leo,:o () N C(Q) under the assumption that (1.1)
has a subsolution u satisfying u < ¢ £ Mu on 9Q. Moreover, B. Perthame [39]
remarked that a unique maximal subsolution of (1.1) with the usual Dirichlet
condition is a unique viscosity solution of the problem (1.1)-(1.2). G. Barles [2]
extended his results in [1] to the general Hamiltonian case and obtained the exis-
tence and uniqueness of viscosity solutions of Hamilton-Jacobi QVI. J. Yong [56]
treated a system of Hamilton-Jacobi QVI associated with switching and impulsive
control problems in RY.

Our main purpose here is to obtain the comparison principle and existence of
viscosity solutions of the problem (1.1)-(1.2) under the assumptions weaker than
[39]. Although (1.2) is not the usual Dirichlet condition, we see in Sections 3 and

4 that the problem (1.1)-(1.2) can be treated similarly to that.
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Our plan of this chapter is the following. In Section 2 we state our assumptions
and recall the definition of viscosity solutions to general PDEs and the properties
of the operator M. In order to take the boundary condition (1.2) into account, we
introduce the notion of strong viscosity solutions (see M. G. Crandall - H. Ishii
- P. L. Lions [8; Section 7]). Section 3 is devoted to the proof of the comparison
principle of viscosity solutions. Qur argument is based upon H. Ishii - P. L. Lions
[19]. In Section 4 we construct a strong viscosity solution of the problem (1.1)-
(1.2) by Perron’s method. Because of the strongness, we can show the existence of
viscosity solutions satisfying (1.2) for each point on 89 without using the iterative
process by B. Hanouzet - J. L. Joly [14] and [41].

Finally we refer to H. Ishii - S. Koike [18] and S. M. Lenhart - N. Yamada

[31], [32] for some problems and results related to ours.

§2. Preliminaries

In this section we shall state our assumptioms and shall recall the definition
of viscosity solutions of nonlinear elliptic PDEs and the properties of the operator
M. We make the following assumptions.

(A.1) @ C RY is a bounded domain with smooth boundary 9.
(A.2) There exists a mapping P : @ x (R*)N — (R*)" satisfying

z+P(z,6) e forany z € Q, £ € (RT)V,
P(s,¢) = ¢ ifz+¢ed,
P(-,£) € C(9) for each £ 2 0.

(A.3) For the matrix (a;j(z)), there exists a nonnegative matrix (o;;(z)) such

that

(aij) = V04;)(0i;) with a5, € WHe(Q) (5,5 =1,---,N).
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(A4) b e Whe(Q) (i =1,---,N).

(A.5) c € C(Q), ¢ = ¢y on Q for some ¢y > 0.

(A.6) feC).

(A7) k€ CURT)NY, k(¢) 2 ko on (RT)Y for some ko > 0.
(A.8) g € C().

We denote by w, and wy the modulus of continuity of ¢ and f, respectively.

Remark 2.1. The assumption (A.2) does not hold if we only suppose the
smoothness of Q. When 2 is convex and regular, we can take P(z,£) as the
projection of ¢ on (RY)N N (2 — {z}). (See A. Bensoussan - J. L. Lions [5;

Chapter 4, Remark 1.7] and J. L. Menaldi [36].)

Now we give the definition of solutions of the nonlinear degenerate elliptic

PDEs with the implicit boundary condition:

2.1) { max{F(z,u, Du, D®u),u — Mu} =0 in Q,
' max{u — g,u — Mu} =0 on 0N,
where F € C(2 x R x RY x$") is a degenerate elliptic operator.

Definition 2.2. Let u: Q — R.
(1) We say u is a subsolution of (2.1) provided u* < +oo on Q and for any

@ € C*(Q), if u* — ¢ attains a local maximum at z € Q, then
max{F(z,u*(z), Dp(z), D*p(z)),u*(2) — Mu*(z)} £ 0.

(2) We say u is a supersolution of (2.1) provided u, > —oo on Q and for any

¢ € C*(Q), if u, — ¢ attains a local minimum at z € , then

max{F(z,us(z), Dp(z), D*p(z)), us(z) = Mu,(z)} 2 0.

14



(3) We say u is a solution of (2.1) provided u is both a sub- and a supersolution

of (2.1).

Next we state the equivalent propositions of Definition 2.2. We refer the
reader to M. G. Crandall - H. Ishii - P. L. Lions [8; Section 7] for general elliptic
PDEs.

Proposition 2.3. Let u: Q — R.

(1) u is a subsolution of (2.1) if and only if u* < 400 on Q and for all z € Q and

(p, X) € Ji u*(z), u* satisfies

max{F(z, 4" (), p, X), u"(z) ~ Mu*(2)} 0.
(2) w is a supersolution of (2.1) if and only if ux > —co on Q and for all z € Q
and (p, X) € J2 "u.(x), u. satisfies

max{F(z, us(z),p, X),ux(z) — Mu.(z)} 2 0.

Proposition 2.4. Assume M : USC(Q) — USC(Q) and M : LSC(R) —
LSC(Q). Let u: Q — R.
(1) u is a subsolution of (2.1) if and only if u* < 400 on Q and for all z € Q and
(p,X) € j3)‘+u*(:c), u* satisfies
"max{F(z,uv*(z),p, X),u*(z) — Mu*(z)} L0.
(2) u is a supersolution of (1.1) if and only if u, > —o00 on Q and for all z € Q

and (p,X) € J?)‘_u,,(:z:), u, satisfies

max{F(z, us(z),p, X), usx(z) — Mu.(z)} 2 0.

Since the proofs of the above propositions are similar to those in [8], we leave
them to the reader.
The boundary condition (1.2) differs from the usual Dirichlet condition. So

we introduce the notion of strong viscosity solutions. (cf. M. G. Crandall - H.

Ishii - P. L. Lions [8; Section 7].)
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Definition 2.5. Let u: Q — R.

(1) u is a strong subsolution of (2.1) if u is a subsolution of (2.1) and u satisfies
max{u*(z) — g(z),u*(z) — Mu*(z)} £0 for all z € 9.

(2) wu is a strong supersolution of (2.1) if u is a supersolution of (2.1) and u satisfies
max{u.(z) — g(z),us(z) — Mu.(z)} 20 for all z € 9N.

(3) u is a strong solution of (2.1) if u is a strong subsolution and a strong super-

solution of (2.1).

Remark 2.6. Tt is easily seen that if the strong solution u of (2.1) is continuous

on , then u satisfies the boundary condition for all z € 9.
We recall the properties of the operator M.

Proposition 2.7. Assume (A.1), (A.3) and (A.8) hold. Let u,v: Q — R.
Then we have the following properties.
(1) fu < v on 2, then Mu £ Mv on Q.
(2) M(tu+ (1 —t)v) 2 tMu + (1 — )Mo for all ¢ € [0, 1].
(3) M(u+c)=Mu+cforallceR.
(4) Ifu € LSC(Q), then Mu € LSC(Q).
(5) Ifu € USC(R), then Mu € USC(D).
(6) IMu—Mv|cm) £ llu—vllgag) forallu, v e c(Q).

Proof. We only show (4) and (5) because it is obvious by the definition of
M that (1)-(3) and (6) hold.
(4) We take {zn}nenw C Q, z € Q such that z, — z (n = +00). The condition
u € LSC(Q) implies that for each T, there exists a £, = 0 such that

T, +€n € ﬁ) Mu(xn) = k(fn) + u(xn + ‘fn)

16



Since {€n}nen is bounded, by taking a subsequence, if neccesary, we may consider

that limy— 4 e €n = € 2 0 such that z + ¢ € . Hence we have

liminf Mu(z,) 2 lir_{r_l k(€,) + liminf u(zn + €n)

2 k(€) +u(z +§)
2 Mu(z),
that is, Mu € LSC(Q).

(5) We take {Zn}new C Q and z € Q as in the proof of (4) and fix £ 2 0 such
that z + £ € Q. Then we have by (A.3),

Mu(zn) £ k(P(2n,£)) + w(zn + P20, £)).
Thus we get

limsup Mu(z,) £ 1ir4r_1 k(P(zn,£)) 4+ limsupu(z, + P(zy,§))

n—-+00 n—-4o0

S k(&) +u(z +€).

Taking the infimum with respect to ¢ 2 0 satisfying z + £ € Q, Mu € USC(Q) is

proved. |

§3. Comparison principle of solutions

In this section we shall prove the comparison principle of strong solutions of

the problem (1.1)-(1.2).

Theorem 3.1. Assume (A.1)-(A.8). Let u, v be a strong subsolution, a

strong supersolution, respectively, of (1.1)-(1.2). Then u* £ v, on Q.

In proving Theorem 3.1, we use some perturbation of strong subsolution to
deal with the term u — Mu. (cf. H. Ishii - P. L. Lions [19; Section V.1].) Moreover
the existence of certain derivatives plays an important role. So we prepare the

following lemmas.
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Lemma 3.2. Let u € USC(Q) be a strong subsolution of (1.1)-(1.2) and let
C = max{(||fllc@y/co: 9l @} + 1. Then for each m € N, up = (1 - 1/m)u —
C/m is a strong subsolution of
max{Lum—f,um——Mum}+l:O in Q,
(3.1)m m

max{um—g,um—Mum}+l=O on 99N,
m

where v = min{1, ko }.
Proof. First, we note that w = —C on Q satisfies

max{Lw — f,w — Mw} < max{—coC — f, -k} £ -y in 9,

max{w — g, w — Mw} £ max{-C — g,~k} £ —v on 0f.

For any fixed ¢ € C?%(2), we suppose u,, — ¢ attains a local maximum at

zg € §2. Then we have

m(an) = o) = (1= 2 ) ule) = £ = o)

= (1) {en - (Fet0+ 755}

and see that u — ((m/m — 1) + C/(m — 1)) attains a local maximum at z¢ € .

Hence using the fact that u is a subsolution of (1.1), we observe

m m
(3.2) max {_m — 1aij($o)tpz.-z,- (zo) + mbi(zo)%;(%)

+c(zo)u(zo) — f(zo),u(zo) — Mu(a:o)} <0

By (3.2) we have

(3.3) — m—Ti—l-a,-j(xo)gomj (zo) + m—Ti—l-bg(zo)gozi(zo) + c(zo)u(z0)
- f(z0) £0,
(3.4) u(zo) — Mu(zp) £ 0.
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Thus multiplying (3.3) by 1 — 1/m and subtracting C/m from (3.3), we obtain

)

—0i;(20)¢z;z;(T0) + bi(20)pz; (o) + c(z0)um(z0) — f(z0) £ _%

and by a similar calculation and using (A.7) and Proposition 2.7 (2),(3), we get
1 C 1 C
m - Mup, =[1-— ——=-M<[1-— - —
tum(0) Um(20) ( m) u(zo) m {( m) u(zo) m}

< (1-%)11(%)—1\4{(1—%)11(%)—%-o}

< (1 - %) u(zo) — (1 - %) Mu(zo) — fn—‘)

Thus we obtain

max { —ai;(70)¢z;z; (To) + bi(%0)pz; (z0) + c(z0)um(z0) — f(0),

1 .
Um(zo) — Mupm(z9)} £ —— min{coC + f(z0),ko} £ S
m m
It is easily verified that
1
ma.x{um—g,um—Mum}é—;min{C—i—g,ko} < ‘-——% on ON.

Hence the proof is complete.

Lemma 3.3. Let u € USC(Q) and v € LSC(R) and let (Z,7) € 2 x Q be
a local maximum point of the function u(z) — v(y) — a|z — y|*/2 (a > 0). Then

there exist X, Y € 8~ such that

(o 7)s(6 &)se(5 T
and
(a(z - 7),X) € P**u(@), (a(z ~ 1), ¥) € J~u(g).

19



This is proved in M. G. Crandall - H. Ishii [7; Example 1], so we omit the

proof.

Proof of Theorem $.1. We may assume that u € USC(Q2) and v € LSC(Q),
because, if otherwise, we replace u, v with u*, v,, respectively.

Let C be the same constant as in Lemma 3.2. For each m € IN, the function
Um = (1=1/m)u—C/m is a strong subsolution of (3.1)m,. To prove the comparison
principle, it is sufficient to show maxg(um —v) £ 0 for all m 2 1 because we
obtain the desired result by letting m — +4o00. To the contrary, we suppose
maxg(tm, —v) = 6 > 0 for some mq 2 1 and get a contradiction. Then there
exists a point z € Q such that § = um,(2) — v(2). .
Case 1. z € 9.

In this case we have

max (tmy(2) = 9(2)s umo(2) = Muumo(2)} £ =,

max{v(z) = g(z),v(z) — Mv(2)} 2 0.

When v(z)—g¢(z) 2 0, we obtain a contradiction easily. In the case v(z)—Mv(z) 2
0 we can find £, 2 0 such that

z4+& €Q and Mu(z) = k(£,) +v(z +£)

Hence we get

0 < B(E:) + uma(s + &) — k(E:) = v(z +&) — -
§ 6 — l3
LT

which is a contradiction.

Case 2. z € 1.

20



We note that the function um,(z) — |z —2|* —v(z) takes the maximum 6 and z
is a unique maximum point of this function. For each a > 0 we define the function
® on Q2 x Q by

4 & 2
CI’(:I:,y) = Umo(:l:) - I:L‘ - Z| - U(y) - -2—|:L‘ - yl ’
and let (Z,7) € © x § be a maximum point of . We observe that the inequality
®(z,z) £ ®(Z,7) implies that
a _
(85) 0= timy(2) ~ 2(2) S tma(2) = v(2) + 212 = T S mo(2) — |2 = 21 = 2(7).
Since the functions u,,, and —v are bounded above, we have, from (3.5), |Z —
j| — 0 as @ — +oo0. By the compactness of @ we see that Z,, jn — Z for a
suitable sequence {ay, }nen tending to +o0o and some z € Q. Using (3.5) and semi-
continuity of um, and v, we get 8 < upm,(2) — |2 — 2|* —v(2). Hence we have z = z
and Z, § — z (& — +00) because z is a unique maximum point of the function
Um,(z) — |z — 2|* — v(z). Moreover we observe
(36) tma(2) = v(2) € Hminf (umo(2) — v(3))
a—++0oco
< limsup(umy(Z) — v(F))
a—+oco
< lim sup Um,(Z) — lim inf v(g)
o —+00 a—++00
< Umo(2) — v(2).
Thus we have
lim (um(2) = 0(@)) = g (2) — (2).

By this equality and the semicontinuity of um, and v we obtain

Umo(2) 2 imsup umy(Z)
2 gl vm(?)
= liminf (g () = (7) + (7))
2 liminf(umo(a'c) — (%)) + liminf v(§)
2 g (2) = 0(2) o 9(2) = g (2)
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Therefore we conclude
(3.7) GETOO Umo(T) = umy(2z)  and al_i'l_ll_loo v(§) = v(2).
It is easily seen by (3.5) and (3.7) that

elz—g* =0 (a— +oo).

As Z,§ — z € Q as o — +00, we have Z, § € Q for large @ > 0. Then by

Lemma 3.3 there exist X, Y € 8V satisfying

(3-8) (a(z ~ §),X) € T>F(um,(Z) — |2 - 2[*),
(3.9) (a(z - 9),Y) € J>u(§),
and

I O X O I I
ao (L 9)2(3 ) su(’ 7).

Furthermore, (3.8) implies
((z—9)+4]z —z*(z —2), X + Z) e T2 H (um, (),

where Z = 4|z — 2|?I + 8(Z —2)®(Z —z) and Z — O as @« — +oco. Hence
using the facts that un,, is a strong subsolution of (3.1),,, and that v is a strong

supersolution of (1.1)-(1.2), we have the following inequalities:
(3.11) max{—tr{ o(z)o(z)(X + Z)}
+b:(2) {a(Zi — ) + 4|2 — 2*(%i — z:)}
Fe(@umo(®) = (&), tmo(2) = Mumy(8)} £ - -,
(3.12) max{—tr{ S(D)o@Y} + abi(@)E — 5)

+(@)(y) — f(@),v(§) - Mu(y)} 2 0.
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We divide our consideration into two cases.
(I) The case v(§) — Mv(g) 2 0 in (3.12).
(3.11) implies um,(Z) = Mum,(Z) £ —y/mo. Thus we get
0 < tmo(2) ~ () ~ |8~ 2I* S Mumy(2) — Mo(g) ~ ——~ |z~ z|*
From Proposition 2.7 (4), (5), sending & — 400, we have

6 < limsup Mup, (%) — lim_!i_nf Mv(g) - L

a—+-}-00 myo

< Mup,(2) — Mo(z) — L.
mo

As in Case 1, we get a contradiction.
(@) —tr{ o(@o@Y} + abi(7)(Z: — §i) + c(§)v(7) — f(§) 2 0in (3.12).
By (3.11) we have
—tr{ o(2)o(2)(X + 2)} + bi(z) {a(Z;i — §:i) + 4]z — 2|*(Zi — i)}
+ e(Z)umo(2) ~ £(2) S — -
Therefore noting that from (3.10)
tr{ o(2)o(2)X} - tr{ 2(7)o (7)Y}
< 3atr{ t(a(?) —o(@))(o(z) - o(7))},
and using (A.3), (A.4) and (A.5) we obtain
o(Z)tm, (Z) — c(F)v() < Batr{ (o(2) — o(§))(0(2) — 0(7))}
+ tr{ o(z)0(z)Z}
+ a(bi(Z) - bi(7))(Z — 7)
— 4|z — 2|?b;(2)(%; — %)
@ - @) -
SKolz—g*+ K|z - 2|* + K|z — 2

_ - Y
+uy(ls—gl) - =
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Here and hereafter K denotes a positive constant depending only on known con-

stants. Moreover we have
cof < coum,(Z) — v(g) — |7 — z|*)
< o(Z)(umo(Z) — v(9))
= ¢(Z)um,(Z) — c(F)v(¥) — v(F)(c(Z) — (7))
S Kol — g  + K|z — 2> + K|z — 2> + wg(|z — §])
7 _ _ —
) CORIO)
SKalz—g?+ K|z -z + K|z — 2> + ws(|Z — 7))
= = i
K — ) -
+ Kudlz—g) - -1,
because —v is bounded above. Thus letting @ — +00, we obtain a contradiction.

Thus we conclude that maxg(um —v) £ 0 for all m 2 1. Letting m — +o0,

we complete the proof. i

§4. Existence of solutions

In this section we shall show the existence of a strong solution of the problem
(1.1)-(1.2). |

Theorem 4.1. Assume (A.1)-(A.8). Furthermore, assume (A.9) or (A.10)
holds;

(A.9) (aij(z)) 2 puI on Q for some p > 0,
(A.10) (a;;(z)) 20 on © and
bi(z)vi(z) <0 onTl = {z € 9| a;j(z)vi(z)vj(z) = 0}.
Then there exists a unique strong solution u € C(Q) of the problem (1.1)-(1.2),

which is a unique solution of (1.1) satisfying (1.2).

Before proving Theorem 4.1, we show the existence of a strong supersolution
of (1.1)-(1.2).
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Lemma 4.2. Assume (A.1), (A.3), (A.4), (A.5), (A.6) and (A.8). If (A.9) or

(A.10) holds, there exists a solution u € C(Q) of

(4.1) {Lu—f=0 in Q,

u=yg on ON.
Proof. First of all, we remark that the comparison principle of viscosity so-
lutions of (4.1) holds. (See H. Ishii - P. L. Lions [19; Theorem II.2].) In the case
where (A.9) holds, there exists a solution u € Wﬁ,‘f(ﬂ) NC(Q) (n < p < +0) of
(4.1) satisfying @ = ¢g on 9Q by D. Gilbarg - N. S. Trudinger [13; Corollary 9.18].
Hence it is also a unique solution of (4.1) satisfying & = g on 9S2. (See P. L. Lions
[34; Theorem 1.2].)

In the case where (A.10) holds, we apply the barrier construction argument
in A. O. Oleinik - E. V. Radkevic [37; Theorem 1.5.2]. (cf. H. Ishii - S. Koike
[18; Proposition 4.3] and S. M. Lenhart - N. Yamada [31; Theorem 2.2].) Let
vd) € C*(Q) N C(N) be a function such that ¢ = g on Q. We consider the

following degenerate linear elliptic PDE:

(42) {Lw—f:O in 0,

w=0 on 09,

where f = @ij¥z;z; — bitz; — cp + f. Then for each z € 0N, there exist a

neighborhood V; of z and a local barrier (; € C*(Q2N V,) N C(Q NV, ) satisfying

Cz(z) =0,

¢:=20 on QNV,,
¢

;2 — on QNJV,,
Co

L, —f20 in QnV,,
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where C is a constant depending on [|a:;{| o), [16ill oy lellogy, 1fllo),

1¥llc@y |DY || Lo (@) [ D*]|Lo (). Hence setting

min {Cz(x), g—} forzeV,,
Co

¢

Co

((e) = inf{{,(z)|z € 80},

Co(z) =

otherwise,

we observe that {, € C(Q) is a supersolution of (4.2) and thus  is a u.s.c super-
solution of (4.2) such that ( = 0 on 9. In the same way we can construct a Ls.c.
subsolution ¢’ of (4.2) satisfying (' = 0 on 9. Hence by Perron’s method there
exists a solution w € C(Q) of (4.2) satisfying w = 0 on Q. Therefore T = w + 1
is a solution of (4.1) satisfying @ = g on 8. Indeed, for any ¢ € C?*(f2), suppose
U — ¢ attains a local maximum at zo € §2. Since w — (¢ — ) attains a local

maximum at z¢ € §2, we get

—aij(xo){(Pz.-z,- (1'0) - "abz;zj(xo)} + bi(xo){‘Pz;(xO) - ’abzi(xo)}

+ c(zo)w(z0) — f(z0) S 0.
The definition of f implies that

—aij(20)Pziz; (%0) + bi(zo)pz (7o) + c(zo){w(zo0) + ¥(z0)} — f(z0) £ 0.

Thus % is a subsolution of (4.1). We can show similarly that % is a supersolution

of (4.1). Hence we have obtained the result. |}

By Lemma 4.2, it is easily seen that u is a strong supersolution of the problem

(1.1)-(1.2). Next we show that Perron’s method can be used for (1.1)-(1.2).
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Proposition 4.3. We define the set S and the function u as follows:

S = {v:Q — R |v is a strong subsolution of (1.1)-(1.2)},

u(z) = sup{v(z) | v € S} (z € Q).

Then the following properties hold.
(Pl)ues.
(P.2) If v € S is not a strong supersolution of (1.1), then there exists w € S such

that v(y) < w(y) for some y € Q.

Proof. We note that S # 0 because, for the same constant C' as in Lemma 3.2,
u = —C € §. Moreover the function ¥ in Lemma 4.2 is a strong supersolution of
(1.1)-(1.2). Thus by the definition of u and Theorem 3.1 we observe that y Su <
on Q.

Now, we shall prove (P.1) holds. Suppose that for ¢ € C?(Q2), u* — ¢ attains

a local maximum at z, € Q. Without loss of generality, we may assume
u(z0) —p(x0) =0, u (z)—9p(z)<0 in Q,
and
uw*(z) —p(z) € ~|z —z0|* in B(zg,r) for somer > 0.

Then there exists {z, }nenw C B(zo,r) such that
T, = 29 and u*(z,)—¢(zn) =0 (n— +00).

Because of the definition of u, for each n € N, there exists a sequence {un}nen C S

satisfying

x(@n) = 9(an) > ' (2n) = plon) — 7,

u(z) — (z) £ —|z — zo* on B(zy,r).
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Let yn € B(zo,r) be a maximum point of u* — ¢ on B(zg,r). Then we see

w(@n) = 9(an) = = < uh(En) = P(zn) S Uh(a) ~ 0(vn)

< U*(yn) - ‘p(yn) s _lyn - $0|4-

Therefore we have y, — ¢ as n — 400 and

lim u(yn)= Hm_o(yn) = @(z0) = u*(20)-

n—-<400

Since u, is a strong viscosity subsolution of (1.1)-(1.2), we obtain

ma.x{—a,'_,-(yn)cp,,.,j (Yn) + 0i(Yn )@z (yn) + c(yn)un(yn)

— f(yn), un(yn) — Mup(yn)} £0

Remarking that u, < u on £ and Proposition 2.7 (5), we have

lim sup Mu},(yn) < limsup Mu*(y,) £ Mu*(zo).

n—-400 n—+oo

Sending n — 400, we get

max{—a;;(z0)¢z:z; (To) + bi(z0)pz;(20)

+ e(zo)u™ (o) — f(20), u™(z0) — Mu*(z0)} £ 0.

As to the boundary condition (1.2), u £ Won Q and 7 € C(Q) imply u*—g £ 0

on 8. Moreover, by the definition of u and Proposition 2.7 (1) we obtain
v = Mu* L0 -Mv* L0 on 9N forveES,

since v* — Mv* £ 0 on 9. Thus we have max{u* — g,u* — Mu*} < 0 on 99.

Henceu € S.
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Next, we suppose v € S is not a strong supersolution of (1.1)-(1.2). Then
there exist zo € Q and 8 > 0 such that

(43) max{—a;;(20)Xi;j + bi(zo)pi + c(z0)v«(20) — f(0),
Va(To) — Mva(z0)} £ -
for some (p, X)J?> v,(zo) if zo € Q,

(4.4) max{v.«(zo) — 9(z0),va(20) — Mui(z0)} £ —F if 2o € 0.

We consider the following two cases.
(I) The case (4.3). We can find ¢ € C%() satisfying Dy(zo) = p and D%p(z0) =

X and fix it. Furthermore, we may assume that
ve(T0) = ©(20), vu(z) 2 9(z)+ |z — 20|* for = € B(zo,r)

for some r > 0.
We claim v«(z0) < U(zo). If otherwise, v,(zo) = U(xo) and u(z)—¢(z) attains
its minimum at zo. Therefore we get
max{—aij(xo)‘P:c.':c,' (xo) + bi(xo)‘P:c.'(xO) + c(xo)ﬂ(xo)
— f(20),u(z0) — Mu(zo)} 2 0,

because & € C(R) is a strong supersolution of (1.1)-(1.2). This is a contradiction.

Thus there exists a é; > 0 such that
vi(z0) + 61 < U(z) for z € B(zo,61)-

Using (A.3), (A.4), (A.5), (A.6), continuity of ¢ and lower semi-continuity of Mw,,
we have, for 0 < 3§ < min{r, é;,1}/2,

max {—ai5(2)0s1e; (2) + Bi(@)0ue(2) + () {p(2) + 6°)
—f(z),¢(z) + 6* — Mv,(z)} <0, for z € B(zy, 26).
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Hence o(z) + 6* is a subsolution of

max{Lu — f,u — Mv.} =0 in B(zo,29).

max {¢(z) + 6*,v(z)} for z € B(zo,6),

w(e) = { o(z) otherwise.

We note that if § < |z — zo| £ 26, then vi(z) 2 p(z) + 6* and by w* = v* on 8Q
and Mv*(z) £ Mw*(z) on Q, we get

max{w* — g, w* — Mw*} £0 on Q.

Therefore by the similar argument to the proof of (P.1) we can observe that w € S.
Since 0 = vi(z0) — t,o(xé) = lim,—o inf{v(z) — ()| |z — 20| < 5, = € Q}, there
exists an n € B(zg,6) such that ©(n) + 6* > v(n).
(II) The case (4.4). We may assume that infgv > —oco. Because, if otherwise,
there exists a point y € Q such that v(y) < u. Thus u is a desired function.
(4.4) implies
vu(z0) £ min{g(zo), Mu.(zo)} — B.

So we can find 6 > 0 such that
1 —
va(To) + E,B < min{g(z), Mv.(z)}  in B(zo,8) NN

Hence by the barrier argument there exist 0 < g9 < & and ¢ € C%*(B(zo,€0) N

Q) N C(B(zo,€0) N Q) satisfying

1
((z0) = va(20) + 55,

(<yg in  B(zg,e0) N 09,
(£ Mo, in B(zg,60)NQ,
L(-fL0 in B(zg,e0)NQ,
(< i%fv on OB(zg,60) N Q.
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We define
w(z) = { max{((z),v(z)}  for z € B(=,50) N,

v(x) otherwise.
Noting v«(z) 2 {(z) if |z — z¢| = €1 for 0 < Jey < &g, we observe w € S as in (I).

By the definition of {, we obtain
1
vs(20) + 58 = ((20) = wu(20) > v4(20)-
Thus we can find y € Q such that v(y) < w(y).

Now, we can prove Theorem 4.1.

Proof of Theorem 4.1. Let u be as in Lemma 4.2. Then the assertions (P.1)
and (P.2) in Proposition 4.3 imply that u is a sub and supersolution in the strong
sense. Therefore by Theorem 3.1 we have u* < u, on Q. Then combining this
inequality with u, £ u < u*, we obtain u, = u = u* on  and u € C(2). Moreover
u satisfies the boundary condition (1.2) for each z € 8. Using Theorem 3.1 again,

we have the uniqueness of strong solutions. Thus the proof is complete. |

Remark 4.4. Of course we can extend Theorems 3.1 and 4.1 to Hamilton-

Jacobi-Bellman equation with impulse control:

veV

{max{sup{L”u - P hu~- Mu} =0 in Q,
max{u — g,u — Mu} =0 on 9NQ.
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Chapter II

Viscosity solutions of nonlinear elliptic PDEs
with nonlocal terms

1. Introduction

In this chapter we are concerned with nonlinear elliptic PDEs with nonlocal

terms.

Let @ ¢ RY be a bounded domain. For any function u : @ — IR, we define

the nonlocal operators M and N by

Mu(z) = inf{k1(€) + u(z + €)[€ 20, z + £ € 0},

Nu(z) = sup{—ko(é) +u(z +¢)|£ 20, z + ¢ € O},

where k;(¢) and k,(¢) are nonnegative and continuous functions on (R*)V and
£ 2 0 means £ € (R*)V.

We consider the following nonlinear PDE:
(1.1) min{max{Lu — f,u — Mu},u —Nu} =0 in Q,
under the implicit boundary condition:
(1.2) min{max{u — g,u — Mu},u — Nu} =0 on 9Q.

Here the functions f and ¢ are given and the L is a linear second order elliptic

operator of the form:
Lu = —a;;(x)uz;z; + bi(z)uz, + c(z)u.

Formally the problem (1.1)-(1.2) is derived from impulsive games whose states

are goverened by stochastic differential equations with impulsive jumps {¢ = 0}
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and whose value function has impulsive costs k; and k;. If k3 = 400, then the
equation (1.1) is equivalent to the following PDE of impulse controls for diffusion

processes governed by stochastic differential equations:
(1.3) max{Lu — fu—Mu}=0 in Q,
with the boundary condition:

(1.4) max{u —g,u— Mu} =0 on 990

For the derivations of the problems (1.1)-(1.2) and (1.3)-(1.4) and the related
results, see A. Bensoussan - J. L. Lions [5], K. Ishii - N. Yamada [23], [24], S. M.
Lenhart - N. Yamada [33] and Chapter I etc.

As to the problem (1.1)-(1.2), the existence of solutions in H}(£2) N L>=()
(the case ¢ = 0) was proved in [5; Chapter 3, Theorem 8.9] from the viewpoint
of quasi-variational inequality. But the uniqueness of solutions was not obtained.
In [23], [24] and [33], we have obtained the uniqueness and existence of viscosity
solutions for general elliptic PDEs with nonlocal terms. In them, to prove the
uniqueness we need some complicated conditions for equations and the one that
‘a.ll nonlocal terms are concave. (See, e.g., (F.4) and (M3) in [23].) However,
since the operator N is convex and the equation (1.1) has nonconvex structure, we
cannot apply the perturbation techniques used in them. Our main purpose here is
to get the uniqueness and existence of viscosity solutions of (1.1) satisfying (1.2)
by modifying the arguments in [23], [24] and [33].

The plan is organized as follows. In Section 2 we state our assumptions and
recall the notion of solutions of nonlinear PDEs whose principal part is a general
elliptic operator. Then we give the properties of the operators M and N. Section
3 is devoted to the proof of the comparison principle of solutions of (1.1)-(1.2). We

use the idea in H. Ishii - S. Koike [18; Section 3] to prove it. In Section 4 we show
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the existence of solutions of (1.1) satisfying (1.2) by Perron’s method. Since we
cannot construct viscosity sub- and supersolution of (1.1) satisfying (1.2) directly,
we apply the argument in [23; Lemma 5.1] and the comparison principle in Section

3 to verify that the solution u satisfies (1.2).

2. Preliminaries

In this section we shall state our assumptions and shall recall the notion of
solutions and the propreties of the operators M and N.

We make the following assumptions.
(A.1) & C RV is a bounded domain with smooth boundary 952.
(A.2) There exists a mapping P : Q x (R*)V — (R*)V satisfying

z+ P(z,6) € Q for all (z,¢) € O x (RT)V,
P(z,6)=¢ fz4+€€Q,
P(-,&) e C(D) for each £20.

(A.3) There exist 0ij € Wh(Q) (3,5 = 1,--- N) such that

(aij(2)) = “(0ij(z))(o:;(2)).

(A4) bi(z) e Whe(Q) fori=1,---,N.

(A5) c€ C(R) and ¢ 2 ¢o on § for some ¢y > 0.

(A.6) f,g9€C(Q).

(A.7) k; € C((R*)") and there exists a constant ko > 0 such that k;(£) 2 ko for
all £ € (RM)N. (i =1,2)

Remark 2.1. As to the assumption (A.2), see Remark 2.1 in Chapter L.

Next we give the definition of solutions of the following nonlinear PDE:

(2.1) min{max{F(z,u,Du,D*u),u — Mu},u — Nu} =0 in Q,
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where F € C(Q x R x RN x$%) is a degenerate elliptic operator.

Definition 2.2. Let u: Q — R.

(1) We say u is a subsolution of (2.1) provided u* < oo on Q and for any ¢ €

C%(R), if u* — p attains a local maximum at =, € {2, then

min{max{F(zq, u*(z0), Dp(z0), D*¢(z¢)),u*(z0) — Mu*(zo)},
u*(zo) — Nu*(z0)} £ 0.

(2) We say u is a supersolution of (2.1) provided u, > —oo on § and for any

¢ € C*(Q), if u, — ¢ attains a local minimum at z € 2, then

min{max{F(zo, us(z0), D(z0), D*p(20)),ux(z0) — Mu.(z0)},

us(To) — Nuu(zo)} 2 0.

(3) We say u Is a solution of (2.1) if u Is a subsolution and a supersolution of

(2.1).

We mention the propositions equivalent to Definition 2.2. We do not prove

them here because the proofs are similar to those in M. G. Crandall - H. Ishii - P.

L. Lions [8].

Proposition 2.3. Let u: Q — R.

(1) u is a subsolution of (2.1) if and only if u* < co on § and
min{max{F(z,u*(z),p,X),u*(z) - Mu*(z)},u*(z) — Nu"(z)} £0

forallz € Q, (p, X) € Jotu*(z).

(2) u is a supersolution of (2.1) if and only if u, > —oo on § and

min{max{F(z,u.(z),p, X), us(z) — Mu.(z)},us(z) — Nu.(z)} 2 0
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forall z € Q, (p, X) € J3 u.(z).

Proposition 2.4. Assume M, N : USC(Q) (resp., LSC(Q)) — USC(Q)
(resp., LSC()). Let u : @ — R.

(1) u is a subsolution of (2.1) if and only if u* < oo on § and
min{max{F(z,uv*(z),p, X),u*(z) — Mu*(z)},u*(z) - Nu*(z)} £0
for all z € Q, (p, X) € J2Tu*(2).
(2) u is a supersolution of (2.1) if and only if u, > —00 on § and
min{max{F(z,u.(z),p, X), uu(z) — Mu.(2)},us(z) — Nu.(z)} 20

for all z € Q, (p, X) € J3 ud(z).

We conclude this section by recalling the properties of M and N.

Proposition 2.5. Suppose (A.1), (A.2) and (A.7) hold. Let T = M, N and

let u, v: & — R. Then the following properties hold.

(1) Ifu £ v on Q, then Tu £ Tv on Q.

(2) M(tu+(1—t)v) 2 tMu+(1—t)Mv and N(tu+(1—t)v) £tNu+(1-t)Nv
for all t € [0,1]. '

(3) T(u+A)=Tu+ A for all X € R.

(4) T:USC(Q) = USC(Q) and T : LSC(Q) — LSC(D).

(5) IITu = Tl g S llv = vligg for all v, v € C(R).

We omit the proof of this proposition. See the proof of Proposition 2.7 in
Chapter 1.

3. Comparison principle of solutions

In this section we establish the comparison principle of solutions of the prob-
lem (1.1)-(1.2). For general elliptic PDEs, see M. G. Crandall - H. ishii - P. L.

Lions [8] and references therein.
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Theorem 3.1. Assume (A.1)-(A.7). Let u, v be, respectively, a subsolution

and a supersolution of (1.1). If u and v satisfy

(3.1) min{max{u* — g,u* — Mu*},u* — Nu*} <0 on 0R,

(3.2) min{max{v. — ¢,vs — Mv,},v« — Nv.} 20 on 99,
then u* < v, on §.

To deal with the nonlocal terms u — Mu and u — Nu, we need the following

lemma.

Lemma 3.2. Let © C R" be compact and u € USC(O). Then, for a.a.

g € RY, the function u(z) + (g, z) takes its strict maximum on O.

For the proof, see H. Ishii - S. Koike [18; Lemma 3.3].

Proof of Theorem 3.1. We may assume u € USC(Q) and v € LSC(R). We
suppose supg{u — v) = 36 > 0 and get a contradiction.
| It is easily seen from Definition 2.2 and (3.2) that v 2 Nv on . By Lemma
3.2, for a.a.g € RV, the function u(z)—v(z)+{g, ) on Q attains its strict maximum
at z(= zg) € . Thus we can take ¢ 2 0 such that 0 < |¢| < min{8/7, cob/|1ll oy }
and (g,e;) # 0 for 1 £i < N, where v = sﬁp5|z| and {e;}1<i<n is the standard

basis for RY. We claim
(3.3) u(z) > Nu(z) and  o(z) < Mv(z).

First, suppose u(z) £ Nu(z). Then we can find ¢, > 0 such that £, #0, z4+£, €Q
and Nu(z) = —ka(€,) + u(z + €;) by u € USC(Q) and (A.7). Therefore we have

u(z) — v(z) + {,2) & Nu(z) - No(z) + (g, 2)
< u(z + fz) - 'U(Z + fz) + (‘1,2 + fz) - (‘I,fz)-
é u(z) - ‘U(Z) + (QVZ) - (Qvé‘z)v
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which is a contradiction because (g,£;) > 0. Thus we obtain u(z) > Nu(z). Since
u is a subsolution of (1.1) and satisfies (3.1), we get u(z) £ Mu(z). Using this
fact, we have v(z) < Mv(z) in the similar way to the above argument. Hence we
obtain the claim (3.3).

If z € 0Q, then it follows from (3.1), (3.2) and (3.3) that u(z) < ¢(2) < v(z).

Therefore we observe
20 < u(z) —v(2) + (g,2) S lgllz] £ 6,

which is a contradiction. Thus we may consider z € Q.

For a > 1 we define the function ®(z,y) on Q x Q by

B(z,y) = u(=) = () + {g,9) ~ 5le —vl*

Let (Z,7) € Q x 2 be a maximum point of ®. By the similar calculation in [18;

Section 3], we see the behaviors of z, §, u(Z) and v(§) as & — oo:
(3.4) z, § =z, w(Z) = u(z), v(7) = v(2), alz - §* = 0.

Then we apply the maximum principle for semicontinuous functions (cf. [8; The-

orem 3.2]) to obtain X, Y € 8" such that

(3.5) (a(z = 7), X) € T"Fu(z), (2 - 9) +¢,Y) € T>7o(7),
and

(3.6) —3a (é ?) < (‘g _OY) §3a(_II ‘II)

Remarking (3.4), we may assume Z, § € § for large o > 1. Using the fact

that u, v are, respectively, a subsolution and a supersolution of (1.1), we get the
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following inequalities:
(87)  min{max{—a;(2)Xy; + bi(E)(a(: — §)) + c(2)u(z)
~ f(@),u(z) = Mu(z)},u(z) - Nu(2)} £ 0,
(3.8) min{ max{—a;;(9)Yi; + bi(¥)(e(Zi — §i) + ¢:) + c(F)v(9)
— f(@),v(7) — Mv(§)},v(7) — Nv(§)} 2 0.

It is observed from (3.3), (3.4) and Proposition 2.5 (4) that

Llr_x}irg(u(i) ~ Nu(z)) 2 u(2) — Nu(z) > 0,

lim sup(v(§) — Mv(§)) £ v(z) — Muv(z) < 0.

a—-00

Hence there exists ag > 1 such that
u(Z) —Nu(z) >0 and (7)) — Mv(y) <0,

for all & > ag. By (3.7), (3.8) and these inequalities, we conclude

(3.9) —a;;(2)Xij + bi(Z) (A2 — 7)) + (Z)u(Z)

- f(z) =0,
(3.10) —aij (7)Y + bi(9)( & — §:) + %) + (F)v(7)

- f(g) 20.

Subtracting (3.9) from (3.10) and using (3.6), (A.3)-(A.6), we obtain

2¢08 S o(2)(u(2) — u(§) + (7))
< o(2)u(Z) — (F)u(F) — (c(Z) = c(§))u(F) + c(Z){g,7)
< ai5(2) X5 — ai(§)i5 — (b:(Z) — bi( )N (Zi — 5:)) + bi(P)as
— (c(2) = c(§)u(g) + c(2){(g,9) + £(z) - f(§)
< Calz — gI* + Cuw(|z - §l) + b,
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where w is a modulus of continuity for ¢ and f and C denotes the various constants
depending only on known ones. Letting @ — 400 and then |g| — 0, we get a

contradiction. Thus we have completed the proof. |

4. Existence of solutions

In this section we show the existence of solutions of (1.1) satisfying (1.2) by
Perron’s method. In addition to (A.1)-(A.7), we assume
(A.8) bi(z)vi(z) < 0 on {z € IN | aij(z)vi(z)v;(z) = 0}.

Then, as seen in Theorem 4.1 in Chapter I, there exists a unique solution

u € C(Q) of
{max{Lu—f,u—Mu}:O in Q,
max{u — g,u — Mu} =0 on 99,

which is a subsolution of (1.1) satisfying min{max{u — g,u — Mu},u — Nu} £ 0
on 9N). Furthermore, there exists a unique solution z € C(Q) of
{min{Lu-—f,u—Nu}zO in Q,
min{u — g,u — Nu} =0 on 99,
which is a supersolution of (1.1) satisfying min{max{z — ¢,% — Mu},7— Nu} 20
on 90. (Note the existence of & can be proved simlarly to the proofs of Lemmas

4.2-4.4 below.) By using these functions we obtain the following theorem.

Theorem 4.1. Assume (A.1)-(A.8). Then there exists a unique solution u of

(1.1) satisfying

(4.1) { min{max{u* — g, u* — Mu*},u* — Nu*} £ 0,

min{ma.x{U* il g, U* - MU*},U* - NU*} g 0,
on A. Moreover the solution u is continuous on Q and satisfies the boundary
condition (1.2).
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We put

S = {v : subsolution of (1.1) |
min{max{v* — g,v* — Mv"},v* — Nv*} £ 0 on 99},
u(z) = sup{v(z) [v € S} (z €9).
We note S # § and v £ u <7 on Q since u € S and Theorem 3.1 holds. Perron’s

method can be divided into the following lemmas. In what follows we always

assume (A.1)-(A.8).

Lemma 4.2. v € S.

Lemma 4.3. If v € S is not a supersolution of (1.1), then there exist w € S

and y € Q such that v(y) < w(y).

By Lemma 4.2 and 4.3 we can easily see that the above function u is a solution
of (1.1) satisfying min{max{u* — g, Mu*},u* — Nu*} < 0 on 9Q. We need the

next lemma to show that u is a unique solution and satisfies (1.2)

Lemma 4.4. min{max{u, — g,us — Mu,},u., — Nu,} 2 0 on 99.

First we admit Lemma 4.2-4.4 hold and show Theorem 4.1. After this, we

prove them.

Proof of Theorem 4.1. Let u be the function defined above. From Lemma
4.2-4.4 it follows that 'u is a solution of (1.1) satisfying (4.1). Let v be any solution
of (1.1) satisfying (4.1) with v in place of u. It follows from Theorem 3.1 that
w <v, £vEv* Lu, SuLu*on Q. Hence u = v € C(Q). Combining this
with (4.1), we see that u satisfies (1.2). The proof is complete. i

Proof of Lemma 4.2. Fix z € Q and (p,X) € Jé""u(:z:). From the definition

of u* there exists a sequence {z,}nen C 2 such that
(4.2) t, - ¢ and u(z,)—u*(z) (n— +o0).
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Moreover it is observed that, for each n € IN, we can find u,, € S such that
1

(4.3) u(z,) — ~ < Un(zp).

By (4.2) and (4.3) we get

(4.4) un(zn) = u*(z) (n— 4o00).

From (4.2), (4.4) and M. G. Crandall - H. Ishii - P. L. Lions [8; Proposition 4.3

there exist {5 }nen C @ and (pn, Xn) € Jé,+u;(£n) satisfying
(4.5) (i"’u;(i")’p"’xn) - (.’II,’U*(.’II),p,X) (n — +00)
Since u, € S, we have

min{ max{—ai;(£n)Xn,ij + bi(&n)pn,i + c(En)un(Zs) — F(2a),

Un(En) — Mug(2n)}, un(2a) — Nup(£n)} £ 0.

In the case u}(£,) — Nuj(&,) £ 0, it follows from (4.5) and Proposition 2.5 (1),
(4) that
u*(z) — Nu*(z) £0.

In the another case we observe
max{—a;;(z)Xi; + bi(z)p; + c(z)u*(z) — f(z),u*(z) — Mu*(z)} <0

by (A.3)-(A.6) and Propsotion 2.5 (1), (4). Hence u is a subsolution of (1.1).
Next we prove min{max{u* — g,u* — Mu*},u* — Nu*} £ 0 on 99Q. In order

to do so, suppose to the cont'rary, i.e., dzo € 00 such that

(4.6) min{max{u*(zo)—g(z0),u*(z0) — Mu*(zo)},u"(z0) — Nu*(z0)} =28 > 0.
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Then we can take the sequences {Zn}nen C & and {un}nen C S satisfying (4.2)
with zo in place of z. Suppose there exists a sequence {n;} C IN such that

ng — +oo as k — 400 and z,, € 9. Since u,, € S», we have
min{maX{u;k (znk)_g(znk)7u:‘tk (znk)_MU’:&k (‘Tnk)}’u;k(znk)_Nu;k(znk)} é 0.

Letting k — 400, we obtain a contradiction to (4.6). Therefore we may consider

T, € Q for all n 2 1. By (4.2), (4.6) and Proposition 2.5 (4), we have
un(zn) — Nun(zn) >0 foralln > 1.
Using u, € S, we get

min{ max{faij(wn)Xij + bi(zn)pi + c(zn)up(zs) — f(2n),
Un(Tn) = Mup(za)},up(zn) — Nup(za)} S0

for all (p, X) € JiTu(z,). By this inequality we have u%(z,) — Mu*(z,) < 0.

Thus we obtain u*(z¢) — Mu*(z¢) £ 0. Consequently it is observed that
min{u*(z¢) — g(z¢), u*(zo) — Nu*(z0)} = 28.
Then there exists a 4 > 0 such that

u*(z0) — B 2 g(z) for z € B(zg,6) N 04,

u*(xg)—ﬂ_Z_Nu*(z) for ¢ € B(zq,6) N Q.
Furthermore, by using u, € S, we observe that u, is a subsolution of
- (4.7) min{Lu — f,u — (uv*(z0) - B)} =0 in B(zg,8) N,
and satisfies

u* Lu*(zo) =B on B(ze,6)N 64,

IA

on ﬁ

A
£l

3
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On the other hand, applying the barrier construction argument in A. O.
Oleinik - E. V. Radkevic [37], there exist &9 € (0,6) and ( € C%(B(zo,&) N

Q) N C(B(z0,€0) N Q) satisfying

((z0) = u*(z0) - B,

¢ 2u*(zg) - B in  B(zo,e0)N R,

- f20 in B(zo,e0) N,

¢ > supu on 8B(:c0,eo() na.
Q

We note ( is a supersolution of (4.7) in B(zg,€0) N Q. Thus it follows from the
standard comparison argument that u} < ¢ on mn Q for all n > 1. Since
Tn, € B(zo,e0) N for large n € N by (4.2), we obtain u},(z,) £ {(zn). Sending
n — 400, we get

u*(zo) £ ((z0) = u*(20) — B,

which is a contradiction. Hence we conclude min{max{u* — g,u* — Mu*},u* —

Nu*}£0ondQandu€s. |

Proof of Lemma 4.5. We suppose that v € § is not a supersolution of (1.1).
Then there exist zo €  and (p, X) € J3 va(2o) such that

(4.8)
min {max {—a;;j(z0)X;; + bi(zo)pi + c(zo)v«(z0)

"f(xo), U*(ivo) - MU*(:EO)} ,U*(ivo) - Nv,(:co)} =-8<0.

We claim v.(20) < (o). If not, v.(zo) = T(zo) and (p, X) € J¥ %(zo). Since T

is a supersolution of (1.1), we have

(4.9) min {max {—-a,-j(xo)X,'j + b,-(:z:o)p,- + c(xo)U(xo)
—f(z0), @(zo) — Mu(z0)},u(x0) — NU(z0)} 2 0.
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Using v.(z0) = u(zo), we obtain that (4.9) contradicts to (4.8). Hence we get the

claim.

We take ¢ € C%(R) satisfying

¢(z0) = ve(z0), Dp(zo) = p, D*¢(z0) = X,

ve(z) 2 p(z) + |z —z0|* in B(ze,r)(CC ) for some r > 0.

Noting (4.8) and Proposition 2.5 (4), there exists a § > 0 such that § < min(r, §)/2

and

min{max{L$ — f,@ — Mv.},¢— Nv,} £0 in B(zo,26),

where @¢(z) = ¢(z) + 6*. Therefore @ is a subsolution of
min{max{Lﬁ—f,u—Mv"‘},u—Nv"‘} <0 in B(zo,2).

We define the function w by

w(z) = { max {@(z),v(z)} for z € B(zy,$),

v(z) otherwise.

We notice that v.(z) 2 @(z) if |z — 29| = 6, which implies w = max{g,v}
in B(zg,28). Moreover we get Mv* £ Mw* and Nv* £ Nw* on Q because of
Proposition 2.5 (1) Using the fact w* = v* on 02, we have min{max{w* —g, w* —
Mw*},w*~Nw*} £ 0on 9Q. Thus by means of the similar argument to the proof
of Lemma 4.2, we can show w € S. Since w.(zo) = $(z0) by the definition of w,

we can find y € Q2 such that v(y) < $(y) = w(y). We have completed the proof. I

Proof of Lemma 4.4. We prove the assertion by the similar argument to the

proof of Lemma 4.2. We suppose that
min{max{ux(zo) — (o), ux(z0) ~ Mu«(z0)},us(z0) — Nu.(z0)} = =28 <0

for some z4 € 0.
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First we consider the case max{u.(zo) — g(z0),ux(20) — Mu.(z0)} = —28.
By the barrier construction argument there exist g > 0 and ¢ € C*(B(zg,e0) N

)N C(B(zo,€0) N ) satisfying

(o) = u*(z0) + B,

(<S¢ in  B(zq,e0) N 0L,
¢ £ Mu, in B(zo,e0)NQ,
L(-f£0 in B(zg,20)NQ,
(< i%fu on 38B(zq,e0)N fl_

(See the proof of Proposition 4.3 in Chapter I.)

We define

{ max {((z),u(z)} for z € B(zg,e0)NQ,
w(z) = :
u(z) otherwise.

Noting ((z) < u.(z) if |z — 2¢| 2 r for some r € (0,&0), we can show w € § by
the same argument as in the proof of Lemma 4.2. Since tl;.(zo) = u,(zo) + B, we
can find y € B(zg,e0) N Q such that u(y) < w(y). This is a contradiction.

In the case u.(z¢) — Nu.(zo) = —2f, we easily have a contradiction. Hence

we obtain the result. |
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Chapter III

Viscosity solutions of nonlinear second order
elliptic PDEs associated with impulse control
problems 1I

§1. Introduction

This chapter is concerned with the uniqueness and existence of viscosity so-
lutions of nonlinear second order elliptic PDEs with implicit obstacles.
Let @ C RY be a bounded domain. For any function u : @ — R, we define

the operator M as the following:

Mu(z)= jaf (K +u(z +0)}
z+z€5
where k() is a nonnegative and continuous function on (R*)" and ¢ > 0 means
¢ € (R*)N. We consider the nonlinear elliptic PDEs of the form:

{ max{F(z,u, Du, D?u),u — Mu} =0 in Q,

1.1
(1) max{u — g,u — Mu} =0 on A9Q.

Here the g is a given function and the F is a second order degenerate elliptic
operator. The problem (1.1) is associated with the impulse control problems for
certain diffusion processes. For the formal derivation of (1.1) and some results on
the impulse control problems, see A. Bensoussan - J. L. Lions [5], J. L. Menaldi
[36], B. Perthame [40] and G. Barles [1] etc.

In the case where F is nondegenerate, we can interpret the boundary condition
in (1.1) in the “classical” sense. When F is linear and g = 0 on 912, the existence
and uniqueness of solutions of (1.1) in H3 (2)NC(Q) is discussed from the viewpoint

of quasi-variational inequality in [5]. B. Perthame [38] obtained the existence and

47



uniqueness of solutions of (1.1) in W2>°(Q) N C(2) under some compatibility
conditions on ¢ and Mu. After introducing the notion of viscosity solutions, B.
Perthame [39] and Chapter I showed the uniqueness and existence of solutions of
(1.1).

However, in the case F' is degenerate (especially on 92), we cannot interpret
the boundary condition in the classical sense. H. Ishii [15] pointed out that in
the degenerate case we should interpret the boundary condition in the “viscosity”
sense and proved the comparison principle and existence of solutions of first order
Hamilton-Jacobi equations by analytical methods. (Also see M. G. Crandall - H.
Ishii - P. L. Lions [8] and references therein.) In order to get the comparison prin-
ciple he assumed the continuity of sub- and supersolutions near 952. Recently M.
A. Katsoulakis [26] and [27] have obtained the comparison principle of solutions
of nonlinear second order degenerate elliptic PDEs. To show the comparison prin-
ciple he has assumed the nontangential semicontinuity of sub- and supersolutions,
which is a weaker assumption than that in [15]. Moreover in [26] and [27] he has
established the existence of such solutions by probabilistic arguments. As to the
systems of elliptic PDEs, see S. Koike [29] and M. A. Katsoulakis - S. Koike [28].

Our main purpose here is to get the comparison principle and existence of
solutions of the problem (1.1). Since we deal with the case where F' is degenerate
on 952, we consider the boundary condition in the viscosity sense.

This chapter is organized in the following way. In Section 2 we give the defini-
tion of solutions of (1.1) and the equivalent propositions. In Section 3 we prove the
- comparison principle of solutions of (1.1). We remark that its proof is improved as
compared with that of Theorem 3.1 in Chapter 1. Sections 4 and 5 provide the ex-
istence of continuous solutions of (1.1). Since it is difficult to discuss it for general
elliptic operators, we consider only the case F'is the Hamilton-Jacobi-Bellman op-

erator in these sections. In Section 4 we apply the iterative approximation scheme
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by B. Hanouzet - J. L. Joly [14] to obtain the existence result, assuming the exis-
tence of continuous solutions of the usual obstacle problems. In Section 5 we show
it by using the results in [27]. In Section 6 we prove that the unique solution of
(1.1) obtained in Section 4 can be represented as the optimal cost function associ-
ated with the impulse control problem. In Section 7 we treat the boundary value
problem of oblique type involving the operator M. For the related problems, see
P. L. Lions - B. Perthame [35], P. Dupuis - H. Ishii [10], [11] and H. Ishii [17].

§2. Definitions of solutions

In this section we shall give the definitions of solutions of (1.1) and the equiv-

alent propositions. We set

([ max{F(z,r,p,X),r —m} (z € ),
G*(z,r,p, X,m) = { max{max{F(z,r,p,X),r —m},

| max{r — g(z),r —m}} (z € 092),
([ max{F(z,r,p,X),r —m} (z € Q),
G.(z,r,p,X,m) = { min{max{F(z,r,p,X),r —m},

| max{r — g(z),r —m}} * (z € 89),

where F € C(2 x R x RY x8") is a degenerate elliptic operator.

Definition 2.1. Letu:Q — R.
(1) We say u is a subsolution of (1.1) provided u* < +o0o on  and for any

@ € C*(Q), if u* — p attains a local maximum at = € §, then
G.(z,u*(z), Dy(z), D*p(z), Mu*(z)) £ 0.

(2) We say u is a supersolution of (1.1) provided u, > —oo on § and for any

@ € C*(Q), if us — y attains a local minimum at = € §, then

G* (2, us(2), De(2), D?p(), Mu(z)) 2 0.
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(3) We say u is a solution of (1.1) provided u is both a sub- and a supersolution

of (1.1).

Next we state the equivalent propositions of Definition 2.1. We refer the
reader to M. G. Crandall - H. Ishii - P. L. Lions [8; Section 7] for general elliptic
PDEs.

Proposition 2.2. Let u:Q — R.
(1) wu is a subsolution of (1.1) if and only if u* < 400 on § and for all z €  and
(p,X) € J%""u'(:r), u* satisfies

Gu(z,u*(z),p, X, Mu*(z)) S 0.
(2) u is a supersolution of (1.1) if and only if u, > —0o on § and for all z € Q
and (p,X) € Jé’_u.(:t), u, satisfies |

G*(z,u«(z),p, X, Mu.(z)) 2 0.

We note that, when F € C(2 x R x RY x$¥) and g € C(R), G* (zesp., G.)
is the u.s.c. (resp., Ls.c.) envelope of the function G:

max{F(z,r,p,X),r - m} (:L' € Q))

G(:t,T,P,X,m) = { ma.x{'r — g(x),'r‘ —_ m} (IE € aﬂ)

Proposition 2.3. Assume M : USC(R) — USC(Q) and M : LSC(Q) —
LSC(R). Let u: ¥ — R.
(1) u is a subsolution of (1.1) if and only if u* < 400 on Q and for all z €  and
(p,X) € J_%’"'u*(z), u* satisfies

G.(z,u*(z),p, X, Mu*(z)) <o.

(2) u is a supersolution of (1.1) if and only if u, > —oco on § and for all z € Q

and (p, X) € j%’_u,(z), u, satisfies
G*(z,u.(z),p, X, Mu.(z)) 2 0.
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Since the proofs of the above propositions are similar to those in (8], we leave
them to the reader.
Finally, we state the definition and the equivalent propositions for the usual

obstacle problems we treat in Sections 4 and 5.

(2.1) { max{F(z,u, Du, D*u),u — ¢} =0 in Q,

max{u —g,u — ¥} =0 on 99N.

Definition 2.4. Let u:Q — R.
(1) We say u is a subsolution of (2.1) provided u* < +4oco on Q and for any
@ € C%(Q), if u* — y attains a local maximum at z € §, then

0.

A

G.(z,u*(c), De(a), D?p(a), ¥*(2))

(2) We say u is a supersolution of (2.1) provided u, > —co on Q and for any

@ € C*(Q), if us — y attains a local minimum at z € Q, then
G*(II),u*(III),D(p(III),D%p(m),tﬁ,(x)) 2 0.

(3) We say u is a solution of (2.1) provided u is both a sub- and a supersolution

of (2.1).

Proposition 2.5. Let u: Q — R.
(1) u is a subsolution of (2.1) if and only if u* < +o0 on Q and for all z € Q and
(p,X) € J%"*'u*(x), u* satisfies

Gi(z,u*(z),p, X,¢*(z)) £ 0.

(2) u is a supersolution of (2.1) if and only if u, > —co on  and for allz € Q
and (p,X) € J%"’u.(x), u, satisfies

.G*(z,u4(2),p, X, Yu(z)) 2 0.
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Proposition 2.6. Assume € C(Q). Let u: Q0 — R.
(1) u is a subsolution of (2.1) if and only if u* < 400 on Q and for all z € Q and
(p,X) € .726’+u"(x), u* satisfies

Gu(z,u*(z),p, X, ¥(z)) £0.

(2) u is a supersolution of (2.1) if and only if u, > —oco on Q and for all z € §
and (p,X) € J_%’_u,.(:c), u, satisfies

G*(xau*(z))ana ¢($)) g 0.

We omit the proofs of the above propositions. See [8; Section 7].

§3. Comparison principle of solutions

In this section we shall prove the comparison principle of solutions of the
problem (1.1). To do so, we use the similar techniques to those in H. M. Soner
[41], H. Ishii [15] and M. A. Katsoulakis - S. Koike [28].

We make the following assumptions.

(A.1) Q C RY is a bounded domain.
(A.2) There exist constants r, s,t > 0 and a mapping n € C(Q : IRN)}with Inj =1
on 02 such that

z+ K(r,s,n(2)) C Q for all z € 99,

y+ K (r,t, —$—> C forallz € K(r,s,n(2)), y € B(z,r)nﬁ,

||

(A.3) There exists a mapping P : Q x (R*)N — (R)N satisfying

z+ P(z,£) €N for all (z,¢) € Q x (RN,
P(z,£)=¢ if o4+ ¢ €Q,
P(-,6) e C(Q) for each £ 2 0.
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(A4) FeC( xR xRN x8M).
(A.5) There exists a function w; € C(R™) such that w;(0) = 0 for which

F(y,r,p, Y) - F(:L‘,T,p,X) < wl(alx - y|2 + IIL' - yl(lpl + 1))
: I O X O I -I
-3 (g 9)s (5 S) sl 7 )
forallz,yeQ,peRY, a>1and X,Y e8?.
(A.6) There exists a function wy € C(RY) such that w,(0) = 0 for which

|F(.’L‘,7‘,p,X) - F(.’L‘,T‘,q,X)I é W2(|p— ql)

forallz €Q,r €R, p,q € RN and X €8V,

(A.7) There exists a constant A > 0 such that
F(z,r,p,X) = F(z,5,p,X) S Nr—s) ifr<s

forallz e Q, r,seR,peRY, X e8V.
l(A.8) k € C((IRT)N) and there exists a constant ko > 0 such that k(¢) 2 ko for
 all¢ e (RH)V.
(A.9) g € C(Q).

Remark 3.1. (1) When 89 is of class C?, we take r = s = ¢ > 0 sufficiently
small and n € C(Q : RY) such that n(z) is the inner normal to Q at = € Q.
Then it is easily verified that (A.2) is satisfied.

(2) As to the assumption (A.3), see Remark 2.1 in Chapter 1.
(3) If (A.6) holds, then the operator F is degenerate elliptic. (cf. [8; Remark 3.4].)
(4) A typical example of F satisfying (A.4)-(A.7) is the Hamilton-Jacobi-Bellman

operator treated in Sections 4 and 5.

We notice that if (A.1), (A.3) and (A.8) hold, then Proposition 2.7 in Chapter

I holds. The comparison principle of solutions of (1.1) is stated as follows.
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Theorem 3.2. Assume (A.1)-(A.9) hold. Let u and v, respectively, be
a subsolution and a supersolution of (1.1). For each z € 9, let K, = z +
K(r,s,n(z)). If a.hy one of the followings holds, then u* < v, on Q.
(1) imsupg 5., u*(z) = w*(z) and iminfg, 5., v.(z) = v.(2) for each z €
Q. |
(2) imsupg, 5,-., u*(z) = u*(z) and uw*(z) £ ¢(z) for each z € OQ.
(3) Iminfg, 52— ve() = vu(2) and vu(z) 2 g(2) for each z € ON.

Remark 8.3. We call the properties in Theorem 3.3 (1) nontangential upper-
and lower semicomtinuity, respectively. See M. A. Katoulakis [26], [27] and [28].
We need the following lemma to deal with the term u — Mu.

Lemma 3.4. Let © C R" be compact and u € USC(O). Then, for a.a.

q € RY, the function u(z) + (g, z) takes its strict maximum on O.

For the proof, see H. Ishii - S. Koike [18; Lemma 3.3].

Proof of Theorem 3.2. We may assume u € USC(Q) and v € LSC(Q). We
easily observe that © £ Mu on Q. First let the condition (1) hold.

We suppose supzeﬁ(u —wv) = 50 > 0 and shall get a contradiction. Let
L= SuP;gh‘lml and let {e,-}lé,-gN be the standard basis for RY. We take ¢ 2 0

such that
(3.1) 0< gl S6/L, 0 wa(lgl) S A,
(3.2) (¢,ei) >0 foreachi=1,--- ,N

and fix it. Then by Lemma 3.4 the function u(z) — v(z) + (g, z) attains its strict

maximum at z(= z,) € Q. We easily see

(3.3) u(z) —v(z) + (g,2) 240, wu(z)>v(z).
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We claim
(3.4) v(2) < Mv(z).

To prove this, suppose v(z) = Mwv(z). Since v € LSC(), using the definition
of M and (A.8), we can find £, = 0 satisfying £, # 0, z + ¢, € Q and Mv(z) =
k(€:) +v(z +€;). Thus u(z) £ Mu(z) and v(z) 2 Mv(z) imply

u(z) = v(z) + (g,2) Su(z+ &) —v(z+ &) + (g, 2 + &) — (g,€2)-

Then we obtain a contradiction because (g,£,) > 0 by (3.2). Therefore we get the
claim (3.4).

We divide our consideration into three cases.
Case 1. z € 9§ and v(z) < g(2).

Let {zp}new C K, be a sequence such that
zp — 2z, u¥(zn) — u*(2) (n — 400).
’We define the function &(z,y) on Q x Q by
%(z,y) = u(z) = o(v) + (9,¥) = Flo —y =z + 2P,

where a,, = s3/|2, — z|* and sy > 0 satisfies w;(s3) < 6.
Let (2n,yn) € Q x Q be a maximum point of ®. Since ®(zn,2) £ ®(zn, yn),

we get

(3.5) w(zn) = v(2) + (g,2)
< u(zn) = 0(2) + (0,2) + Son = Yo — n + 2I°

< u(zn) — v(yn) + (4, yn).

The function u(z) — v(y) is bounded above on £ x Q because u, —v € USC(Q)

and Q x Q is compact in R?N. Hence (3.5) implies |2, — yn — 2n + 2| — 0 as
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n — +o0o0. Moreover we easily observe |z, —y,| — 0 as n — +00. Then there exist
a sequence {n;} C IN and a point 7 € § such that z,,,, yn, — Z as k — 4o0. It

follows from this, (3.5) and the semicontinuity of v and v that
u(z) —v(2) +(¢,2) S u(Z) —v(2) + (g, 2).

Since z is a unique maximum point of the function u(z) — v(z) + (g, ) on §, it

follows from this inequality that 7 = z and
(3.6) Tny, Yyn — 2 (n = +o00).
Thus, by (3.5) we get
Jim (u(zn) — v(yn)) = u(z) — v(2).
Using (3.5), this equality and the semicontinuity of © and v, we have
(3.7)  u(zy) = u(z), v(yn) = v(2), An|Tn —yn — 20 +2|* 5 0 (n = +o0).

We may consider z,, € § for sufficiently large n € IN because (3.7) implies |z, ~yn—
Zn + 2| < t|zn — 2| for large n € IN, where ¢ is the constant in (A.2). Furthermore,

it is observed by the definition of a, and (3.7) that

(38) Vanlzn - ynl —* 3 (Tl —- +OO)

We can apply the maximum principle for semicontinuous functions to obtain

X, Y €8" satisfying

(pn,X) € .72’+u(m,,),

(Pn +4q, Y) € f2’+v(y,,),

I o\_(X o I -I
(o )56 )5 (L 7)
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where pn, = @n(Zn — Yn — 2n + 2). Using the fact that u and v are respectively, a

subsolution and a supersolution of (1.1), we obtain the following inequalities:

(3.9) Gu(zn,u(zn),pn, X, Mu(z,)) £ 0,

(3-10) G*(ym U(yn),pn +4,7Y, Mv(yn)) 2 0.

We note v(yn) < ¢(yn) for large n € IN by (A.9), (3.6) and v(z) < g(z). Moreover,
since Mv € LSC(8) by Proposition 2.7 (3) in Chapter I, using (3.4) we get

lim sup(v(yn) — Mo(yn)) < v(2) — Mv(z) <0

and conclude that v(y,) — Mv(y,) < 0 for sufficiently large n € IN. Therefore, by
(3.10) we obtain

(3.11) F(yn,v(yn)pn+¢,Y) 20.

From (3.9) and z, € § for large n € IN, we have

(3.12) F(zn,u(n),pn, X) £ 0.

Subtracting (3.12) from (3.11) and using (A.S), (A.6), (A.7) and (3.3), we obtain

400 < AMu(zr) — v(yn) + (g ¥n))
é F(yn,u(xn),pn + q, Y) - F(xn,u(xn),pn,X) + ’\‘(qyyﬂ)

S wi(an|zn = ynl® + |20 = yul(lpal + 1)) + w2(lg]) + ALlgl.
Recalling (3.1), (3.7) and (3.8) and letting n — 400, we get
400 < wi(sd) +wa(lgl) + A8 < 326,

which is a contradiction.

Case 2. z € 9%, u(z) > ¢(z).
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As in Case 1, we define the function @ by
(I’(‘”,y)=U($)—”(y)+(q,$)—gzﬁ|$—y+zn—22 on OQx.

We can prove the remainder similarly to the above.
Case 3. z € (.

For a > 0, we consider the function
a - —
®(z,y) = u(z) —v(y) + (g,z) - -2-|:r - yl2 on f2xf.

In this case the proof is standard. See [8; Section 3].
When the condition (2) (resp., (3)) holds, it is sufficiently to consider only
Case 2, 3 (resp., Case 1, 3) in the above proof. Thus we obtain the result. §

Remark 3.5. As compared with the proof of Theorem 3.1 in Chapter I, the
above one is improved on the point that we do not need the uniform continuity in

the variable X € $" and the convexity in (r,p,X) € R x RN x$V.

We conclude this section by stating the comparison principle of solutions of

the usual obstacle problem (2.1). We omit the proof because it is similar to that

of Theorem 3.2.

Theorem 3.6. Assume (A.1), (A.2), (A.4)-(A.7), (A.9) and ¢ € C(). Let
u, v be, respectively, a subsolution and a supersolution of (2.1). For each z € 0%,
let K, = z 4 K(r,s,n(z)). If any one of the followings holds, then u* £ v. on €.
(1) limsupg, 5., u*(z) = u*(2) and liminfg, 5, .. v.(z) = v.(z) for each z €
a0,
(2) limsupy 5,_,,u*(z) = u*(z) and u*(z) < ¢(z) for each z € 99,
(3) liminfx, 52— ; v«(z) = vi(2) and vy(2) 2 g(z) for each z € 09,

Remark 8.7. Of course, in Theorems 3.2 and 3.6, if u, v € C(Q), then u S v

on 1.
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§4. Existence of continuous solutions

In this and the next section we shall establish the existence of continuous
solutions of (1.1). As mentioned in Section 1, it is difficult to show it for the
general elliptic operator case. Hence in these sections we treat the case F' is the

Hamilton-Jacobi-Bellman operator:

F(z,r,p, X) = iléﬁ{ —tr(*o(z, @)o(z, a)X) + (b(z, @), p)

+c(z,a)r — f(z,a)},

where A is a compact metric space and trA and *A denote, respectively, the trace
and the transposed matrix of 4. In tlﬁs and the next sections we assume 92 is of
class C2. Then we note (A.2) is satisfied. Let p(z) = dist(z,Q°). We make the
assumptions of the coefficients of F' as follows.
(C1) supaen {9( @llwr.co @y 156> ligne @y s @l oy, 1 G Dl |
< +o0.
(C.2) inf{c(z,a)|z € 0, a € A} 2 ¢ for some ¢y > 0.
(C.3) There exists a function @ € WH*°(Q) satisfying
() tr(*o(z, a(2))o(z, a(2))D*0(=))— (4(3, &(2)), Dp(a)) 2 1 for somen > 0,
(i) (*o(z,a(2))o(z, a(2))Dp(), Dp(z)) = 0,
(iii) There are unit vectors {&};<i<cn—1 C R by which the tangent

plane at z is spanned such that
(o2, a(2))o(z, a(2))er, &) = 0

except at most two vectors {é;,, €, },
for all z € 0N2.

(C.4) There exist a constant 7 > 0 and a function 8 € WH*(Q) satisfying either
(i) tr(*o(z, B(z))o(z, B(z))D*p(2)) - (b(=, B(z)), Dp(z)) < —n

or
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(ii) (‘o(=, B(z))o(z, B(z))Dp(z), Dp(z)) 2 1
for all z € 9.
Remark 4.1. (1) As to the assumption (C.3), see M. A. Katsoulakis [26] and
[27].

(2) We consider the following operator:
F(IL‘,T‘,p,X) = max{_th +r— fl(x)3 (b(x),p) +r— fz(x)}

Here b € W1°(R), b= —v on 80 and f!, f2 € C(Q). Then the above F satisfies
the assumptions (C.1)-(C.4).

(3) In the case o(z,a) = O for all z € §, a € A, the existence of solutions was
proved by H. Ishii [15; Section 4].

(4) In the case only (C.4) (i) or (ii) holds for all z € 9Q and a € A, we have
already proved the existence of solutions of (1.1) by Perron’s method. See Sectiox;

4 in Chapter L.

Under the assumptions (A.1), (A.3), (A.8), (A.9), (C.1) and (C.2), Theorems
3.2 and 3.6 hold. We get the following theorem. |

Theorem 4.2. Assume (A.1), (A.3), (A.8), (A.9) and (C.1)-(C.4). Then

there exists a unique solution u € C(Q) of the problem (1.1).

In order to show this theorem, the following proposition plays an important

role.

Proposition 4.3. Assume (A.1), (A.9) and (C.1)-(C.4). Then, for each

¥ € C(Q), there exists a unique solution uy € C(Q) of the problem (2.1).

Here we admit Proposition 4.3 is true and prove Theorem 4.2. We give the

proof of Proposition 4.3 in the next section.
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Proof of Theorem 4.2. We adopt the iterative approximation scheme intro-
duced in B. Honouzet - J. L. Joly [14].

Let €, = max{supaen (£l I9llo@ ) By replacing (., a), g with
f(-,a@) +Cy, g + Cy, respectively, we may assume f(-,a) 20 (e € A), g 20o0n Q.
Using the results in [27], there exists a unique solution uo € C() of

{ F(z,u,Du,D*u) =0 in Q,

4.2
(42) u—g=20 on ON.

Since Muy € C(R) by Proposition 2.7 (4), (5) in Chapter I, there exists a
unique solution u; € C(Q) of

(4.3) ' { max{F(z,u, Du, D?u),u — Mup} =0  in- Q,
3h

max{u — g,u — Mup} =0 on Of.
by Proposition 4.3. For n = 2,3,---, we denote by u, € C(ﬁ) a unique solution
of

(4.3), { max{F(z,u,Du, D?u),u — Mu,_;} =0 in Q,

max{u — g,u — Mup_1} =0 on 99N.

(It is follows from Proposition 2.7 (4), (5) in Chapter I that Mu,_, € C(Q).)
Since u; is a subsolution of (4.2), we obtain u; < up on §? by Theorem 3.6. It is
easily seen that u = 0 on Q is a subsolution of (4.3);. Thus Theorem 3.6 implies
u; 20 on Q. Since 0 £ Mu; £ Mug on © by 0 £ u; £ ug on  and Proposition
2.7 (2) in Chapter I, u, is a subsolution of (4.3);. Then we get us < u; because of
Theorem 3.6. In the similar way to the above, we have us > 0 on . Continuing

these processes, we conclude
(4.4) 0L SLu, £---Sups Sy Sy on K.

Next we show an upper estimate. We take u € (0,1) such that uljuollgg) <
ko. For each n € IN, there exist 8,, € (0, 1] such that

(4.5) Up — Upt1 S Ontiy on .
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It is observed by (A.8) and Proposition 2.7 (2) in Chapter I that

(4.6) (1-6,)Muy, + 6,k £(1—-6,)Mu, +6,M0

o

SM(1-6p)up £ Mupq on
We define ¥, w and v, as follows:

¥ =(1—6,)Mu, +8,k(e C(Q)),

w € C(R) : a unique solution of

(@7 { max{F(z,u, Du, D?*u),u %} =0 in £,
max{u—g,u—9¥} =0 on 09,
vp € C(Q) : a unique solution of
(4.8) { max{F(z,u, Du, D*u),u ‘—' ke}=0 in Q,
max{u — g,u —ko} =0 on 9N.

Noting ¥ < Mu,41 on §, we see that w is a subsolution of (4.3),42. Hence we
get w £ up42 on Q by Theorem 3.6. It is observed by f(-,a) 20,9 2 0 on  and
(4.8) that 6,vq is a solution of

(4.9) { max{Fy (z,u,Du,D?u),u — 0.k} =0 in Q,

max{u — 0,9,u — .k} =0 on 49,

where

Fy(z,r,p, X) = sup{ - tr(*o(z, @)o(z, @)X) + (¥(z, @), )
+ c(a:, a) - of(ma a)}

It follows from f(-,a) 20, ¢ 20, % 2 6,ko on Q and (4.7) that 8w is a super-
solution of (4.9). Thus, using Theorem 3.6, we have 6,vy < 6,w on Q. Moreover,
we easily see that (1 — 8,)un+1 and (1 — 6,)w are, respectively, a subsolution and
a solution of '
{ max{F,_g, (z,u,Du, D?u),u — (1 - ,)%} =0 in
max{u — (1 —0,)g,u— (1 —-6,)¥} =0 on A9Q.
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Therefore we obtain (1—6,)up+1 < (1—6,)w on by Theorem 3.6. Consequently,

we get

ol

(4.10) (1 =6n)unt1 +6nvo < unyo on

From ﬁ‘”“OHC(ﬁ) < ko and f(,a) 2 0, g 2 0 on Q, we observe that pu,; is a
subsolution of (4.8). Thus, by Theorem 3.6 we have pu,+; < vy on . Hence

(4.10) implies
(411) Un41 — Upn42 é 0,,(1 - ,u)un_H on ﬁ

By the way, since u; — uz < u; on £, we obtain u; — uz £ (1 — p)ug on Q.
Therefore we can take §; = 1 — p in (4.5) when n = 2. Then it is observed by
(4.11) uz —ug < (1—p)?us on Q. Therefore, using the above argument inductively,

vwe conclude
(4.12) Untl = Unt2 S (1= ) uni1 S (1= p)"fluollggy on &,

which is our desired estimate.

Combining (4.4) with (4.12), we can find a function u € C(Q) such that
lun — u||c(5) — 0 as n — +oo. By Propositon 2.7 (6) in Chapter I and the
stability of solutions (cf. P. L. Lions [34; Proposition 1.3] ), we conclude that u is

a solution of (1.1). The uniqueness follows from Theorem 3.2. |}

§5. Proof of Proposition 4.3
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In this section we shall show Proposition 4.3. We always assume the assump-

tions in Proposition 4.3. We prepare some notations.

W, = standard N — dimensional Brownian motion.
A = {a; : [0,+00) — A : progressively measurable}.
B = {6 : stopping time}.

X, : solution of
dX, = —b(X¢, a)dt + V20 (X, 0)dW,, t > 0,
{ Xo=z€ Q.
T =inf{t 20| X, ¢ Q}.

14 = characteristic function for A.

Let § = min{g,%} on 92. We consider the penalized problem for (4.1).

{ F(z,un, Dup, D*uy) + n(u, — )t =0 in Q,

5.1
(5.1) Up = § on 01,

where n € IN and r* = max{r,0}.
Noting r* = sup{yr | 0 £ ¥ £ 1}, it is easily seen that (5.1) is equivalent to

the following PDE:

sup qea {—tr(*o(z,a)o(z,a)Du,) + (b(z, @), Du,)
~€Jo,1]

(5.2) +(c(z, @) + ny)up — f(z,a) —nyp} =0 in £,
Up = § on 0.

Then applying the results in M. A. Katsoulakis [27], for each n € IN, there exists
a unique solution u, € C(Q) of (5.2).
Next we consider the following problem:

{ F(z,vn,Dv,,D%vp) + n(up —¢)t =0 in £,

5.3
( ) Vp =7 on 09,
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where u, is the function obtained above. Using the results in [27] again, for each
n € IN, there exists a unique solution v, € C(8) of (5.3) and it is characterized as

follows:
(z) = inf B, { [ (10t @) = nun(x) - wix0)")

exp (- /0 t c(X,,a,)ds) dt
+§(X)exp (— /OT c(X,,aa)ds)} .

Since (5.1) and (5.2) are equivalent to each other and the uniqueness of solutions

of (5.1) holds in the class C(f2), we get

(54) un(z) = inf E; {/0 (F(Xe, &) = n(ua(Xe) — (X)) T)

- exp (- /0 t c(X,,a,)ds) dt
+(X,) exp (— /0 TC(X,,a,)ds) } |

Using (C.4) and the barrier argument, we have
(5.5) Un £ § on 09 forallne N

Since the operator nr* is monotone with respect ton € IN and u, 2 —C for large

C > 0, we obtain

(5.6) —-C<--Su ~SuzSu; on

H/\

by the comparison principle of solutions of (5.1). (cf. M. G. Crandall - H. Ishii -
P. L. Lions [8; Theorem 7.9].) Hence we can define the function u by

n—+4o0
y—z

(5.7) u(z) = hm un(z) (= lim sup u,,(y)) .
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Then we get the following lemma.

Lemma 5.1. The above function u is a u.s.c. subsolution of (2.1).

Proof. Since the sequence {uy}nen is decreasing by (5.6), we easily observe
u € USC(R). Using (5.5) and letting n — 400, we have u < § on 9.

For any ¢ € Cz(ﬁ), we assume that u —¢ attains a local maximum at z¢ € Q.
We may consider zo € € and that z¢ is a strict local maximum point of u — ¢.

Then there exists a § > 0 such that
(5.8) u(zo) — ¢(z9) > u(z) —p(z)  for all ¢ € B(zy,8)(C Q), z # zo.

Let ¢, be a maximum point of u, —¢ on B(zo, §). Then there exists a subsequence

{znk}kE]N - {zn}nEN such that
Tn, — T € B(z0,6), up,(zn,) 2B ER (k— +00).

Since

Un, () — 0(2) £ un, (Zn,) — (Tn,) for all z € B(zg,9),

we get

u(z0) — ¢(z0) < limsup(un, (z) — ¢(z))
YA

é limiup(unk(xnk) - So(xnk))

=B —o(z)
< lim sup(un, (2) — ()
k—>+9o
= u(Z) — (7).
Therefore using (5.8) and the above inequality, we obtain
(5.9) Tp — To, Up(Tn) = u(zo) (n — 400).
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(cf. G. Barles - B. Perthame [3; Lemma A.3].) Since u, is a subsolution of (5.1),

we get

(5.10) F(2n,un(zn), Dp(2n), D*(2n)) + n(ua(zn) — ()t £ 0.

It follows from (C.1) and (5.9) that there exists a constant C' > 0 such that
n(un(zn) — P(za))t £C  forallne N,

Thus passing to the limit as n — 400, we have

u(z0) — ¥(z0) £ 0.

-

Moreover, (5.10) implies F(zn, un(zn), D¢(zys), D2p(2,)) £ 0. Sending n — +o0,
we obtain

F(zo,u(z0), De(0), D*¢(z0)) 0.
Therefore we have completed the proof. I

Remark 5.2. We notice that we cannot apply the results for the limit opera-
tions in [8; Section 5] to (2.1) and (5.1) directly since the term n(r — (z))* does

not converge to 0 locally uniformly on © x R as n — +0o.

We return to the formula (5.4). According to N. V. Krylov [30; p.37], we get

the following lemma.

Lemma 5.3. The formula (5.4) can be rewritten as follows.

(5.11)
un(z) = oilrglng, {‘/01'/\0 f(X¢,ai)exp (— /: c(X,,a,)ds) dt

8

8
+10<r¢n(X0)exP (‘/ C(X,,d,)dS)
0

Hozd(Xexp (- [ oXnads) }.
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where a A b = min(a,b) and ¥, = ¥ + (u, — ).

Proof. We remark that the function u, satisfies the dynamic programming

principle:

. TAG
un(z) = inf, s { | a0 = nun(X) = X))

t
- exp (—/ c(X,,a,)ds) dt
0

)
+1lp<run(Xo)exp (—/ c(Xs,as)ds)
0

Hagrd () ewp (- [ X a)is)}

for any 6 € B. Since u, < 1, on Q, we get

(5.12)
TA8 t
un(z) < ;IEIaEI {/0 f(Xtaat)exp ('_/0 C(Xsaas)ds) di

6eB

8
+10<,,1/)n(X9)exp <_/ C(Xsaaa)ds)
0

Hozrd (Koo (- [ elXunanas) }.

Let 6™ = 6™ = inf{t 2 0|un(X;) 2 ¥(X¢)}. Then using u,(X;) < ¥(X;)
(0 £t < 0™) and un(Xgn) = 9(Xgn) with probability 1, we have

TAO" t
un(z) = inf B, {/ f(X¢,00)exp (—/ c(Xs,as)ds> dt
a€A 0 : \]
¢
+10"<f'¢n(X3)exP _—/ C(Xsaas)ds
0
+1gn>,3(X-)exp (—/ c(X,,a,)ds) }
= 0
Combining this with (5.12), we obtain the result. |

Using this lemma, we get
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Lemma 5.4. u, = u on § as n — +oo and the function u is represented as

TAG t
u(z) = inf E, / f(Xy, ay) exp (—/ c(X,,a,)ds) dt

]

8
+10<r¢(X0)eXP ("-/; C(Xsaas)d3>

Hozei(Xexp (= [ X, a)is) b

Proof. It is easily seen by Lemma 5.1 that u < 3 on Q. We observe that
n € C(Q) for all n € N and

Ya(z) \ ¥(z) (n— 4+o00) for each z € Q
by (5.6) and (5.7). Hence, using Dini’s Theorem, we get
Yoy  on Q  (n— 4o0).

Letting n — +o00, we conclude that

TAG t
RHS of (5.11) = irel-i;‘Ez {/ f(X:, ap) exp (—/ c(X\,,ast) dt
a 0 0

9€B
8
+1o<r(Xp) exp (—/ C(Xsaas)d5>
0
Fozeg(Xes (= [ alXais) |
0
On the other hand, we have already obtained u,(z) — u(z) as n — +oo for
each z € Q by (5.7). Thus we have the result. |
We are now in a position to prove Proposition 4.3.

Proof of Proposition 4.8. We have only to show that u is a supersolution of

(2.1).
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For any ¢ € C?()), we assume u — ¢ takes a strict local minimum at z, € 2.
We consider the case zq € 9Q. Then we may assume u(zy) < §(z¢), because,
if otherwise, we get u(zo) = g(zo) or u(zg) = ¥(zo) and have nothing to prove.

Since u € C(R) by Lemma 5.4, there exists a § > 0 satisfying

u(z) < g(z) z € B(zo,6) NOQ,

u(z) <¢(z) z € B(zo,6)NQ.
Moreover, Lemma 5.3 implies there exists an ny € IN satisfying, for all n > nq,

(5.13) un(z) < g(z) z € B(z¢,6) N 9Q,

(5.14) un(z) < ¥(z) z € B(z,6) N Q.

Let z, € B(zg,6) N be a minimum point of u,, — ¢ on B(ze,6)N{. By the

same argument as in the proof of Lemma 5.1, we have
Tp — ZTg, Un(zn) = u(zy) (n — +00).

Therefore, using (5.13), (5.14) and the fact that u, is a supersolution of (5.1), we

obtain

F(2p,un(2a), De(zn), D*¢(zn)) 2 0.

Sending n — +o00, we get
F(Zo,U(Zo), D(P(.’llo),thp(Zo)) g 0.

Thus the proof is completed. |

§6. Stochastic representation of solutions

In this section we shall prove that the unique solution of (1.1) is represented

as the optimal cost function for the impulse control problem.
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We call a collection (a,8,¢) an impulse control if

a€ A,
0= {0;}?:1(’ C B satisfies
6 <0< <, <= +00 (n— +00),
¢ = {&}1% : a sequence of random variables taking values on (R*)Y,

adapted with respect to {6;}7%.

The C denotes the set of all impulse controls.
We define the sequence of diffusions {X7*}$23 with jumps by the Ito equation:

n=1

{ dX? = —b(X?, a)dt + V20 (X, 0 )dW,, ¢=0,

X)=zeQ,
{ dXP = —=b(XP, a;)dt + V20(XP,0)dW;, t > 6y,
X5 =X+ Lizp, bn t<90,.

We set
X = lim X7, t20.

n—-oo
Then the process X;, which is right continuous and has left limits, satisfies the

following stochastic differential equation:

{ dX; = —b( Xy, 00)dt +V20(X g, 00)dWy + 520 6:6(t ~ 6;)dt, ¢ 20,
Xo =2,

where 6(t) is the Dirac measure. We put
T=inf{t 20| X, &€ Q}.
We call a collection (e, 8, ) € C an admissible impulse control if it satisfies
X, €0 as. on {r<+oo},

that is, no jump of the process X; is outside of Q before 7. We denote by Cq the

set of all admissible impulse controls.
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Now, we can define the cost function for this system:
K = (a’ 9’ 6)’

J(z,K)=E, {AT f(Xy, ) exp (— /: c(X,,a,)ds) dt
+oo é;
+Z la,.<+°°k(§,')exp (—‘/0‘ C(X_,,CY,)ds)

=1

+9(X-)exp (— /of c(X,,a,)ds)}

and the optimal cost function:
w(z) = Kue]%o J(z, K).
Then we have the following theorem.

Theorem 6.1. Assume (A.1), (A.3), (A.8), (A.9), (C.1)-(C.4) and 99 is of

class C?. Let u be a unique solution of (1.1). Then u = w on Q.

We state some properties of the sequence {u,},en of solutions of (5.1).

Lemma 6.2. For each n € N, we have
(6.1)

un(z) = Kig(i:'"EI {/01' f(X:, o) exp (—/0 c(X,,a_,)ds) dt
n 6;
+ Z 19.'<+ook(€i)exp (_/ c(X,,a,)d.s) dt

=1

+oXep (- [ odXuais) at},
0
where C™ = {(a, {6:}1°, {€}1) € Co |6; = 400 fori 2 n +1}.

Proof. By Lemma 5.4 the function u, can be represented as follows:

TAG
un(w) = auelilE: {/(; f(Xt’at)exp (_ ‘/o‘t c(X,,a,)ds> dt

6eB

8
+1lop<rMup—1(Xg)exp (—/ c(X,,as)ds)
0

HageiXenp (- [ et a)as)}.
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We prove the assertion by induction. Let w, = RHS of (6.1).

For n = 1, it is trivial. We assume u, = w, on £ for n = 1 and show
Unt1 = Wp41 ON Q.

Fix z € Q and K € C"!. We may consider 8; < 7, because, if otherwise, we

have the result. It is clear that
T t
wn+1($) éE; {/ f(Xt,ozt)exp (—/ c(X,,a,)ds) dt
0 0

n+1 4;
+ Z 10.'<+ook(§i) €xp (— / C(X,, aa)d3> dt
0

i=1

+9(Xr)exp (— /orc(X,,a,)ds) dt} .

We observe

6,
Wn+1 (:E) §E:c

t
f(X:, ) exp (—/ c(X,,a,)ds) dt
0
1"—'01
+EX91-0+51 { A f(Xt+91 ) at+91)
t
- €Xp (—/ C(Xs+91,as+01)d3) dt
0

n+1 0.’-—-01
+ Z 1o, <+ook(&i) exp (—/ C(Xs+01’as+01)ds) di
0

i=2

T—8
+g(XT) exp <_ A C(Xs+91 y X+, )ds> dt + k(ﬁl)}

- exp (— /:1 c(X,,a,)ds) dtJ .

Since (a¢tq,,{0;i — 61 ?:;, {&:}3)) € €™, we take the infimum with respect to

admissible controls in C" to obtain

6, i
wnt1(z) SE; { f(X¢, o) exp (—-/ c(X,,a,)ds) dt
0 0

6, :
+(un(X91 -0+ él) + k(fl))e){p (—/0 C(X,,a,)dS) dt} .
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Moreover, taking the infimum with respect to & 2 0 satisfying Xg,—o + £ € Q, we

have

6 t
Wn41 (l‘) éE.‘l: { f(Xtaat)exp (—/ C(Xaaaa)ds) dt
0 0

6
+Mu,(Xg,—0)exp (—/ c(X,,a,)ds) dt}.
0

Hence by taking the infimum with respect to (a,6;) € A x B we get wny1(z) £

Un+1 (:ZI)
Next we prove the opposite inequality. For each ¢ > 0, there exists an impulse

control K = (a,6,¢) € C™*! such that
w(z)+¢e 2 J(z,K).

We calculate
0

wpti(z) +e 2 E; { A f(X:, o) exp (—/; c(X,,a,)ds) dt
A
+(un(X01—0 + 61) + k(fl)) €xXp (‘A C(X,, aa)ds) dt} .

61 t
g E.‘l: { f(Xt,at)GXp <—/ C(Xaaas)ds) dt
0 0

6
+Mun(Xeg, o) exp (—/ c(X,,a,)ds) dt}
0

2 un+1($)-
Letting € — 0, we have w,,+1(2) 2 un+1(z). Thus we have completed the proof. |

Remark 6.9. We can show that the function w satisfies
T t
w(z) = inf E, {/ f(X¢, o) exp <—/ c(X,,a,)ds) dt

a€A 0 0

9€B
' 0

+1locrMw(Xg) exp —/ (X, a,)ds | dt
0

+9(X,)exp (— /Or c(X,,a,)ds) dt}
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by the similar way. See G. Barles [1; Theorem 2.1].

Lemma 6.4. We have

(6.2)

C

|lwn —w||peo(ay £ 77— for some C > 0.
kon

Proof. First we remark that w < --- S w, £ -+ £ w; < ug on Q. Let

K =(a,6,¢) € Co. We set

Let X' be the process associated with K™ and 7" = inf{t =2 0| X ¢ Q}. Then

en_{&- ifi<n,
P oo fi2n+1,
" = {67}

=1

K™ = (a,6™,¢) €Cm.

we note that if 7 < 6,41 or 6,41 = +00, then 7™ = 7. Hence we get

J(z,K) - J(z,K") 2 E,

{/;: F( Xty ar) exp (— /Ot C(Xa,a,)ds) dt

+9(X,)exp (— /OT (X, a,)d.s) dt

- [ sz agen (— / o, a)is ) d
6y 0

+9(X7») exp (— /OT c(X;‘,a,)ds) dt}

* 19n+1 <+0019,,+1§1':,

2 E;

6n
14, <+o00u(Xs, ) exp (—/ c(X,,a,)ds) dt
0

1
~lon<too (I Cs e + 9llc)

0n
- exp (~—/ c(X,",a,)ds)]
0
0n
2 —CE; ¢exp —/ C(X.;laaa)ds) 19,,<+oo},
0
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where C = luollo@g) + (supaen (- oy + 9l ogmy)/co-
On the other hand, we may consider J(z,K) < [uoll gy for all K € Cq.

Therefore we have

o0 8;
E, {Z 1g; <+ook(€i) exp (—/0 C(Xa’aa)ds) } <C

=1

Thus it is observed by this inequality and (A.8) that

On
konE, {19" <400 €XP (_/ C(Xaa aa)d'S) } <C.
0

Hence we obtain

c
> O P
J(z,K) 2 J(z,K™) Fon
c
2 wn — o

Taking the infimum with respect to K € Cq, we get
C —
w(z) 2 wa(z) — — for all z € Q.
kon

Thus we obtain (6.2). §I

Proof of Theorem 6.1. Lemmas 6.2 and 6.4 imply u, = w on § as n — +oo.

Hence it is clear that v = w on . J

§7. Boundary value problem of oblique type

In this section we shall treat the boundary value problem of oblique type:
max{F(z,u, Du, D*u),u — Mu} =0 in Q,
(7.1) '

max{@-,u—Mu}=0 ) on Of.
Oy

Here 8N is smooth and « is a vector field on RN “oblique” to 8. The problem
(7.1) is derived from the impulse control problem for the diffusion processes re-

flecting at the boundary 9. See P. L. Lions - B. Perthame [35] for the related
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problems. P. Dupuis - H. Ishii [10], [11] and H. Ishii [17] has obtained the unique-
ness and existence of solutions of some oblique derivative problems. But they do
not contain the problem (7.1).

Here we prove the comparison principle and existence of solutions of (7.1) by
the similar arguments to those in [10], [11] and [17]. Instead of (A.6) we assume
the uniform continuity of the F with respect to the variable (p, X) € RY x $V.
(A.6)" There exists a function ws € C(IR*) such that ws(0) = 0 for which

IF((B,T,p,X) - F(z,r,q,Y}]l é w3(|p - ql + ”‘X - Y”)

forallzeQ,reR,p,ge R, X,Y e8V.
Besides, we put the following assupmtion.
(A.10) v € C?(8Q) and there exists a constant 7 > 0 such that (v(z),v(z)) 2 »
for all z € 992.

In order to give the definition of solutions of (7.1), we set
max{F(z,r,p,X),r —m} (z € Q),
H*(z,r,p,X,m) = J max{max{F(z,r,p,X),r —m},
\ max{(p,7(z)),r — m}} (z € 90),
( max{F(z,r,p,X),r —m} (z € ),
H.(z,r,p,X,m) = { min{max{F(z,r,p,X),r — m},
[ max{(p,7(z)),r —m}} (z € 60),

where F' is the same function as in Section 2.

Definition 7.1. Let u: Q — R.
(1) We say u is a subsolution of (7.1) provided u* < +oco on Q and for any

@ € C*(Q), if u* — ¢ attains a local maximum at zo € Q, then
H,(xo,u*(xo),D(P((Bo),DZCP(:II()),MU*(:E())) é 0.

(2) We say u is a supersolution of (7.1) provided u, > —oc on Q and for any

@ € C*(Q), if u, — ¢ attains a local minimum at zo € Q, then
H*(z9,ue(z0), Dp(z0), D*@(z0), Mu.(z0)) 2 0.
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(3) We say u is a solution of (7.1) provided u is both a sub- and a supersolution

of (7.1).

We mention the equivalent propositions of Definition 7.1 wihtout their proofs.

Proposition 7.2. Let u:Q — R.
(1) u is a subsolution of (7.1) if and only if u* < 400 on Q and for all z € Q and

(p,X) € J%"*'u*(z), u* satisfles
H*(xaut(z),P,X, Mu*(x)) é 0.

(2) u is a supersolution of (7.1) if and only if u, > —co on § and for all z € Q

and (p,X) € J%’_u*(z), u, satisfles
H*(z,us(z),p, X, Mu.(z)) 2 0.

Proposition 7.3. Assume M : USC(R2) — USC(Q) and M : LSC(Q) —

LSC(Q). Let u:Q — R.
(1) u is a subsolution of (7.1) if and only if u* < +oo on Q and for all z € Q and

(p,X) € -725'+u*(1:), u* satisfies
H.(z,u*(z),p, X, Mu*(z)) £ 0.

(2) u is a supersolution of (7.1) if and only if u, > —c0 on Q and for all z € Q

and (p, X) € %—u*(z), u, satisfies

H*(z,u«(z),p, X, Mu.(z)) 2 0.

Now, we state our main results in this section.
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Theorem 7.4. Assume (A.1), (A.3)-(A.5), (A.6), (A.7), (A.8), (A.10) and
O is smooth. Let u, v be, respectively, a subsolution and a supersolution of (7.1).

Then u* £ v, on Q.

Theorem 7.5. Under the same assumptions as in Theorem 7.4, there exists

a unique solution u of (7.1). Moreover u € C(£).

We need some lemmas to prove these theorems.

Lemma 7.6. Assume (A.10). Let z € 9Q. Then there exist constants § > 0,

Co > 0 and {wq}a>0: C''!-functions on B(z,8) x B(z,8) satisfying the following

properties:
ale,2) 5 & on B,
wal2,) 2 Sl — ol on B(z,6) x B(z,0),
(Dzwa(z,y),7(2)) 2 —Coba if z € 8Q and y € B(z,9),
(—=Dywa(z,y),7(y)) < Coba ify € 8Q and z € B(z, 6),

|Dywa(z,y)| S Co(alz —y| +1),
|Dzwa(z,y) + Dywa(z,y)| £ Coba,
I I I O
(Dwa(z,y),ago (—I I ) + Cobqo (O I )) € JPtwa(z,y)
for a>0, z,y € B(z,6),

where 64 = (alz — y|? + 1/a).

The above lemma is proved in [17; Section 4]. Hence we omit the proof.

Lemma 7.7. Assume (A.1), (A.3) and (A.8). Let u € USC(Q) and v €
LSC(Q). Ifu £ Mu on §, then there exists a maximum point z € § of the
function u — v on Q such that v(z) — Mv(z) < 0.

This lemma is mentioned in [35; Section 5] without its proof. For the sake of

completeness we give the proof.
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Proof. Let zy €  be any maximum point of the function u — v on . If
the assertion in this lemma holds at zy, we have nothing to prove. We suppose
v(z0) — Mv(2z9) 2 0. Then there exists a £ 2 0 such that & # 0, zo + & € Q and
Mu(zy) = k(&) + v(zo + &) by (A.8). Since u £ Mu on {2, we obtain

(7.2) u(2z9) — v(20) £ u(20 + &o) — v(20 + &o)-

Hence 2¢ + & is a maximum point of u — v. If the assertion holds at zp + &,
the proof is completed. Here we suppose that the above process can be repeated
indefinitely, that is, there exists a sequence {zn }nen of maximum points of u — v

on Q such that
z1=20+&, 2zn=2n-1+E€n-1, ‘v(zn) 2 Mv(zn) (n € ]N)’
where £, 2 0 satisfies

61‘1#0, Zn+£n€§,
Mu(z,) = k(€n) + v(zn + &).
Then we obtain
zn =% (n— +o0o0) for some zZ €'Q,

because Q is compact and zp < 2; £ +++ £ z, < - -+ by the definition of {2z, }nen.
(2n 2 zn—1 means z, —zp—1 € (RY)V.) Since the inequality (7.2) holds at z, + ¢,

in place of 2y + & and u — v € USC(Q), we have
u(z0) = o(z0) = lim_(u(za) = v(za)) = u(2) ~(2).

Thus it follows from the above equality and semicontinuity of u and v that v(z,) —

v(Z) as n — +oo. Using the definition of {z,}nen and (A.8), we conclude that

v(z) = n_lirfoo v(zp) 2 nﬁrfoo Mu(z,)
= lim (€ + (20 +60)
g kO + v(f),
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which contradicts the fact kg > 0. Therefore we can find an ng € IN such that
v(2p,) — Mv(zp,) < 0. 1

Now, we can prove Theorem 7.4.

Proof of Theorem 7.4. We may assume u € USC(Q) and v € LSC(2). We
suppose supg(u —v) = § > 0 and get a contradiction. Since u is a subsolution
of (7.1), we get u £ Mu on Q. It is seen from Lemma 7.7 that there exists a
maximum point z € § of u — v satisfying v(z) — Mv(z) < 0. We divide our
consideration into two cases.

Case 1. z € 0.
For simplicity we consider |y(z)| = 1. Let ¢ € C*(Q) be a function such that

=0 ondf, o >0 inQ, and (Dy,y) 27y on ON.

for some ng > 0. (cf. M. G. Crandall - H. Ishii - P. L. Lions [8; Section 7].)
For each B > 0, the function u(z) — v(z) — B(|z — z|* + 2¢(z)) attains a strict
‘maximum on  at z. Thus we may restrict this function on B(z,6) N Q (= W).

For any & > 0, we define the function ®(z,y) on W x W by
&(z,y) = u(z) - v(y) ~ walz,y) = B(lz — 2* + ¢(z) + #(y)),

where w,, is the function in Lemma 7.6. Let (Z,§) € W x W be a maximum point
of ®. By ®(z,2) £ 9(z,y) and (7.4) we get

1 R

6 — = S u(z)—v(@) — =|z -yl

L <u@) (o) - Loy

Thus we have
F-9/>0  (a— +oo).

As in the proof of Theorem 3.2, we obtain the behaviors of Z, ¥, u(z), v(y) as

a — 400!
(7.4) Z,§ — z, u(Z) — u(z), v(§) = v(2), a|z — 7| = 0.

81



Moreover, ®(z,y) £ ®(Z, ) on W implies, as (z,y) — (7, §),

u(z) = u(y) £ u(@) - o(§) ~ BIE — 2 + Blz ~ oI
= B(#(Z) — () = B(#(7) — #(¥)) — wa(Z,§) — wal(z,y)
Su@)-v(@)+20(Z-2,z—-%)+ Bz — %,z - I)
+B{{Do(a),2 ~ 2) + 5(D*0(a)(z - 2),2 ~ 2}
+BUD(@),y — 9) + 5 (D) — 9),v - )
+(D:wa(2,9), ¢ = Z) + (Dywa(Z, ),y — §)
+ 5aCol(z ~2) - (y - )
+alle ~ 2 + ly - 7P)
+o(lz - z* + |y - 9*).
Thus we conclude

(P2 ot =B 80D ) o (1, )

(5 o2 i)
€ J2% (u(z) — v(§))-

Therefore by the maximum principle, there exist X, Y € $¥ such that

(28(Z — z) + Dzwq(Z,9) + BDyp(Z), X) € J>Hu(z),

(=Dywa(Z,9) — BDe(§),Y) € >~ v(7),

I O X —éa1 o
‘3"C°<0 I)é( 0 —Y—&aI)
I -I 2I + D?%p(z) o
ssecs (L 7)o (0 pigy):
In the case T € 9, we have

(7.5) (28(z - z) + D:wa(Z, §) + BDy(%),7(2))
2 2B(2 — 2,%(%)) — ba + Bno >0
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for sufficiently large @ > 0. Similarly, in the case § € 912, we get

(76) (_Dywa(i,g) - ,BDSO(g),'Y(g)) L ba—PBno <0

for sufficiently large @ > 0. Moreover, since it is easily observed from (7.4),

Mv € LSC(Q) and Lemma 7.7 that

(7.7) lim sup(v(§) — Mv(§)) £ v(z) — Mv(z) < 0,

a—++00

we obtain v(j) — Mv(y) < 0 for large @ > 0. Hence using (7.5), (7.6), (7.7) and
the fact that u and v are, respectively, a subsolution and a supersolution of (7.1),

we obtain the following inequalities:

F(7,u(2),26(% - 2) + D.wa(3,7) + BDp(3), X) £ 0,

F(yj, 'U(g), _Dywa(fa ?7) - IBD‘p(g), Y) _2. 0.
By (A.5), (A.6), (A.7), (7.2) and Lemma 7.6 we observe

A0 < Mu(z) = v(7))

< F(§,u(2), —Dywe(%,7) — BD¢(¥),Y)
— F(2,u(2),26(% - z) + D;we(%,§) + BDe(2), X)

S F (§,u(®), ~Dywa(Z,9), Y + 6oL + BD%¢(7))
~ F (2,u(8), ~Dywa(Z, §), X — bal — B(2I + D?¢(7)))
+ws (6o + B Dl + 1 D*¢l)))
+ws (260 + B(2+ 2I& — 2| + || Dyl + | D))

S w; (ColZ — g (alz — g + 1) + aColz — §I?)

+2w3 (260 + B(2+ 2|7 — 2| + || Dyl + [ D?¢]))) .

Letting o — 400 and then § — 0, we obtain a contradiction.

Case 2. z € 1.
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We define the function ®(z,y) on Q x Q by

%(z,y) = u(x) = v(¥) = 5le —yl* — Jo - 2I*.

By the same calculation as in Case I with this function we also get a contradiction.

Thus we have completed the proof. |

Proof of Theorem 7.5. Let C = supg |F(z,0,0,0)|. Then it is easily verified
that u(z) = —C and u(z) = C are, respectively, a subsolution and a supersolution
of (7.1). Thus by Perron’s method and Theorem 7.4 we can show the existence of

a unique solution u of (7.1) and u € C(Q). i
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