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Notations and Remarks 

In the following we list the notations which are often used throughout this 

thesis. Let N E IN. 

JRN = N-dimensional Euclidean space, 

(', .) = the Euclidean inner product in JR N, 

B( x, r) = the open ball of radius r centered at x, 

K(r, s, n) = U B(tn, st) for r, s > 0 and n E JRN with Inl = 1. 
o <t;;:;r 

As to matrices, we define 

$N = the set of all N x N real symmetric matrices, 

IIAII = the norm of A E $N as a self adjoint operator, 

I the identity matrix, 

t A = the transposed matrix of A. 

Let 0 C JRN. When its boundary 80 is smooth, we denote v( x) by 

v( x) (VI (x)", ... ,VN( x)) = the outward unit normal to 0 at x E 80. 

For any function u : 0 --t JR, we define 

u*(x) = lim sup{u(y) lyE B(x,r) nO}, 
r-O 

u*(x) lim inf{u(y) lyE B(x, r) nO}. 
r-O 

We call u* (resp., u*) the upper semicontimuous (u.s.c.) (resp., lower semicontin­

uous (I.s.c.)) envelope of u. It is easily seen that u* u S. u * on 0 and that u * 

is u.s.c. in 0 and u* is I.s.c. in O. We observe that u is U.S.c. (resp., Ls.c.) at 

x E 0 if and only if u(x) = u*(x) (resp., = u*(x)). 
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We denote by J;;+u(x), J;;-u(x) the super 2-jet of u and the sub 2-jet of u 

in 0, respectively: 

J;;+u(x) = {(p,X) E JRN X $N I u(x + h) u(x) + (p, h) 

+ ~ (Xh, h) + o(lhI2) as x + h E 0 and h -+ o} , 
J;;-u(x) = {(p,X) E JRN x$N I u(x + h) ~ u(x) + (p,h) 

+~(Xh,h) + o(lhI2) as x + hE 0 and h -+ o}. 

Furthermore ~+u(x), J;;-u(x) are the graph closure of J;;+u(x), J;;-u(x), re-

spectiverly: 

J'b'-u(x) = {(p,X) E JRN x$N I there exist {Xn}nElN cO 

We note that if'P E C2 ( 0) and u - 'P attains a local maximum (resp., local mini-

J~-u(xo)). Conversely, it is easily verified that, for any Xo E 0, if (p,X) E 

J;;+u(xo) (resp., (p,X) E J;;-u(xo)), then there exists a function 'P E C2(0) 

such that u 'P attains a local maximum (resp., local minimum) at Xo and 
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Let 0 C lRN. We define the sets of functions as follows. 

U SC( 0) {u: 0 ---+ lR U {±oo} : u.s.c.}, 

LSC( 0) {u : 0 ---+ lR U {±oo} : l.s.c.}, 

C( 0) = {u : 0 ---+ lR : continuous} with the norm 

IIUllc(o) = sup lu(x )1, 
xEO 

L 00 (0) = {u : 0 ---+ lR : bounded and measurable} with the norm 

We introduce the notion of degenerate ellipticity, which plays an important 

role to assure that the classical solutions of elliptic PDEs are viscosity solutions. 

Definition. Let 0 C lRN and let F E C(O x lR X lRN X $N). Tben we say 

tbe F is degenerate elliptic provided 

F(x,r,p,X + Y) ~ F(x,r,p,X) 

for all x E 0, r E lR, p E lRN, X, Y E $N and Y 2 O. 

Finally throughout this thesis we use the usual summation convention on 

repeated indices. We surpress the term "viscosity" whenever we do not give rise to 

confusions since we are mainly concerned with viscosity sub-, super- and solutions. 
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Introduction 

In this thesis we consider the Dirichlet problems for the nonlinear second order 

degenerate elliptic partial differential equations (PDEs) with constraints. Mainly 

we are concerned with the following problems: 

(1) { 
max{F(x,u,Du,D2u),u Mu} = 0 

max{u - g,u - Mu} = 0 

{ 
min{max{F(x, u, Du, D 2u), U - Mu}, u 

(2) 
min{max{u g, u Mu}, u Nu} 0 

In n, 
on an, 

Nu} = 0 in n, 
on an. 

Here n c JRN is a bounded domain, F is a nonlinear degenerate elliptic operator, 

Du, D 2u are, respectively, the gradient and the Hessian matrix of the function u 
-

and M, N denote the nonlocal operators defined below. These equations arise in 

the Dynamic Programming approach for the optimal control problems and differ­

ential games for diffusion processes governed by stochastic differential equations. 

See W. H. Fleming - R. W. Rishel [12], A. Benssousan - J. Lions [4], [5], N. V. 

Krylov [30], B. Perthame [40] and G. Barles [1] etc. for the backgrounds. However 

we consider these problems from the analytical viewpoints. 

We easily observe by simple examples that, in general, the above problems do 

not have classical solutions even if the F is uniformly elliptic and the coefficients 

of F are smooth. Thus we must consider the weak solutions for them. However 

we cannot use the weak solutions in the sense of Schwarz' distributions because 

we cannot integrate by parts the expressions which we have by multiplying the 

equations above by test functions. Hence, in this thesis, we adapt the notion of 

viscosity solutions as the weak solutions. 

In 1983 the notion of viscosity solutions was introduced by M. G. Crandall- P. 

1. Lions [9] as the weak solutions of Hamilton-Jacobi equations. We also refer M. 

G. Crandall - L. C. Evans - P. L. Lions [6]. Here we briefly explain the derivation 

of viscosity solutions. We consider the following Hamilton-Jacobi equation: 

(3) H(x, u, Du) = 0 in n. 
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To show the existence of solutions of (3), we approximate it by semilinear elliptic 

PDEs as follows: 

m n (c > 0). 

Let Ue; be a classical solution of (3)e;. Assume the sequence {ue;}e;>o converges to 

some function U uniformly on n as c -+ O. Then in what sense does the U satisfy 

(3) ? By this motivation the notion of viscosity solutions was derived. In the same 

year P. L. Lions [35] extended this notion to nonlinear second order elliptic PDEs. 

Afterwords by the results in R. Jensen [25], H. Ishii [16]' H. Ishii - P. L. Lions 

[19] we can interpret the notion of viscosity solutions as the weak solutions in the 

sense of pointwise derived from Taylor expansion and the maximum principle in 

calculus and general theories on viscosity solutions have been developped. See M. 

G. Crandall H. Ishii - P. L. Lions [8] for the survay. 

In their results, they assumed the strict monotonicity with respect to the 0-

th order terms. But we cannot apply them to the problems (1) and (2) directly 

because the equations in (1) and (2) have the monotonicity with respect to the 

O-th order terms, not the strict monotonicity by the nonlocal terms Mu and Nu. 

Furthermore, in these problems the implicit bounbary conditions are imposed, 

which are natural ftom the viewpoint of the impulse control problems. We study 

(1) and (2) with paying the attentions to these points. 

This thesis consists of three chapters .. In Chapter I we consider the problem 

(1). A. Benssousan and J. L. Lions treated this problem from the viewpoint of 

quasi-variational inequality for the first time when F is linear. (See [5].) Since 

then, it was studied as the usual Dirichlet problem under some compatibility 

conditions by which we can get 9 :::;; Muon an. We refer to [5] and B. Perthame 

[38] etc. In B. Perthame [39] we obtained the existence and uniqueness of viscosity 

solutions of (1). In this chapter we have the comparison principle and existence of 

viscosity solutions of (1) under the weaker assumptions than those in [39]. 
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The main strategies are similar to [8]. However, we cannot apply them to the 

problem (1) directly because of the nonlocal term M u. In proving the comparison, 

we regard the term u - M u as a function and deal with it. Then the equation 

in (1) has only the monotonicity with respect to the O-th order term. But, by 

using the concavity of the operator M and the convex structure of the equation 

we can prove the comparison principle. In the proof of the existence of solutions 

it is very difficult to construct a sub solution and a supersolution of (1) satisfying 

the boundary condition because of the term Mu. To overcome this difficulty 

we construct a solution of the equation by Perron's method and show that it 

satisfies the boundary condition in (2) by the barrier argument and the comparison 

principle. 

Chapter II is devoted the problem (2). This can be regarded an extension of 

the problem (1). Once the existence of this problem was shown by using L2 theory 

under some compatibility conditions by which we can get N u ~ 9 ~M u on an. 

However, the uniqueness has not been proved. See [5] for the detail. Although it 

seems that we can prove the uniqueness of solutions in a class of smooth functions 

(e.g., W 2 ,p(n),p > n), the regularity of solutions have not been obtained since 

the operators does not neccesarily preserve the regularity of functions. Hence, by 

using the notion of viscosity solutions we can obtain the comparison principle and 

existence of solutions of (2). 

The strategies of their proofs are similar to those in Chapter 1. But we need to 

remark that the operators M, N have different properties from each other and the 

equation does not have the convex structure. Thus we use the definitions of M, 

N and the idea seen in H. Ishii - S. Koike [18] to obtain the comparison principle. 

As to the existence of solutions of (2) we construct one by Perron's method and 

show that it satisfies the boundary condition by the barrier argument and the 
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comparison principle. Especially, we must discuss the latter fact carefully because 

the boundary condition is more complicated than that in the problem (1). 

Finally, in Chapter ill we return the problem (1) and consider the case F is 

degenerate on the boundary an. In Chapter I, since the principal parts of the 

equations are not degenerate on the boundary, we can observe that a unique so­

lution satisfies the boundary conditions in the classical sense. However, in the 

case F is degenerate on the boundary this fails. Hence we interpret the bound­

ary conditions in the viscosity sense, which is weaker than that in the classical 

sense. This was introduced by H. Ishii [15] and is derived naturally from the 

Dynamic Programming principle in the optimal control theory. Concerning the 

Bellman equations without constraints, see [15] and M. A. Katsoulakis [26], [27]. 

In this chapter we obtain the comparison principle and existence of solutions of 

(1) satisfying the boundary conditions in the viscosity sense. 

In proving the comparison principle we cannot help assuming the nontangen­

tial semicontinuity for a sub solution u and a supersolution v of (1) because we 

interpret the boundary condition in the viscosity sense and do not know whether 

u ~ v on an. As to the existence, if we get the nontangential semicontinuity of 

solutions, we have the continuity of solutions of (1) by the comparison principle. 

However, it is difficult to analyze the solutions of (1) directly because of the nonlo­

cality of the operator M. Hence we apply the iterative approximation scheme by 

B. Hanouzet - J. L. Joly [14] to have the existence of solutions of (1) in C(n). Of 

course, the solution constructed by this method is a unique solution. We see the 

uniqueness and existence of approximate solutions by [15], [26] and [27]. More­

over, we can get the representation formula of the solution of (1). By the similar 

arguments we can prove the comparison principle and existence of solutions of the 

boundary value problem of oblique type containing the nonlocal term Mu. 
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To conclude, we have made clear the uniqueness and existence of viscosity 

solutions of the Dirichlet problems for nonlinear second order degenerate elliptic 

PDEs with constraints such as (1) and (2). 
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Chapter I 

Viscosity solutions of nonlinear second order 
elliptic PDEs associated with impulse control 
problems 

§1. Introduction 

In this chapter we study the nonlinear second order elliptic PDEs with implicit 

obstacles. 

Let n c IRN be a bounded domain with smooth boundary an. For any 

u : n -t IR, we define the nonlocal operator M as the following: 

Mu(x)= inf {k(e)+u(x+e)}, 
e~o 

xHEn 

where k(e) is a nonnegative and continuous function on (IR+)N and e ~ 0 means 

We consider the following nonlinear elliptic PDE with the implicit boundary 

condition: 

(1.1 ) 

(1.2) 

max{Lu - f,u - Mu} = 0 

max { u - g, u - M u} = 0 

III n, 

on an, 

where L is a linear second order elliptic operator of the form: 

The problem (1.1 )-( 1.2) is associated with optimal impulse control problems, whose 

state is governed by stochastic differential equations with impulsive jumps and 
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whose value function has k(e) as an impulsive cost. (For the details, see A. Ben-

soussan - J. 1. Lions [5].) 

In general the equation (1.1) with u = 9 on an has no solution because we 

don't know a priori whether 9 ~ Mu on an or not. So we put the implicit obstacle 

in (1.2). (cf. B. Perth arne [39] etc.) 

From the view point of the impulse control, [5) treated one for the nondegen­

erate diffusions and J. L. Menaldi [36] did the degenerate case. They characterized 

the value function of impulse control problems as the maximum solution of the 

corresponding quasi-variational inequality (QVI) in some Sobolev spaces. Using 
. 

the notion of viscosity solutions by M. G. Crandall - P. L. Lions [9], G. Barles 

[1) showed that the value function for deterministic impulse control problems is a 

unique viscosity solution of the corresponding first order Hamilton-Jacobi QVI in 

By an analytical treatment, B. Perthame [38] proved the existence and unique­

ness of solutions in the class Wl~'~(n) n C(n) under the assumption that (1.1) 

has a subsolution 1£ satisfying 1£ ~ 9 ~ M1£ on an. Moreover, B. Perthame [39] 

remarked that a unique maximal subsolution of (1.1) with the usual Dirichlet 

condition is a unique viscosity solution of the problem (1.1)-(1.2). G. Barles[2] 

extended his results in [1] to the general Hamiltonian case and obtained the exis­

tence and uniqueness of viscosity solutions of Hamilton-Jacobi QVI. J. Yong [56) 

treated a system of Hamilton-Jacobi QVI associated with switching and impulsive 

control problems in lR N . 

Our main purpose here is to obtain the comparison principle and existence of 

viscosity solutions of the problem (1.1)-(1.2) under the assumptions weaker than 

[39]. Although (1.2) is not the usual Dirichlet condition, we see in Sections 3 and 

4 that the problem (1.1)-(1.2) can be treated similarly to that. 
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Our plan of this chapter is the following. In Section 2 we state our assumptions 

and recall the definition of viscosity solutions to general PDEs and the properties 

of the operator M. In order to take the boundary condition (1.2) into account, we 

introduce the notion of strong viscosity solutions (see M. G. Crandall - H. Ishii 

P. L. Lions [8; Section 7]). Section 3 is devoted to the proof of the comparison 

principle of viscosity solutions. Our argument is based upon H. Ishii - P. L. Lions 

[19]. In Section 4 we construct a strong viscosity solution of the problem (1.1)­

(1.2) by Perron's method. Because of the strongness, we can show the existence of 

viscosity solutions satisfying (1.2) for each point on an without using the iterative 

process by B. Hanouzet - J. L. Joly [14] and [41]. 

Finally we refer to H. Ishii - S. Koike [18] and S. M. Lenhart N. Yamada 

[31], [32] for some problems and results related to ours. 

§2. Preliminaries 

In this section we shall state our assumptioms and shall recall the definition 

of viscosity solutions of nonlinear elliptic PDEs and the properties of the operator 

M. We make the following assumptions. 

(A.l) n c JRN is a bounded domain with smooth boundary an. 

(A.2) There exists a mapping P : n x (JR+)N -t (JR+)N satisfying 

x +p(x,e) E n 

p(x,e) = e 

pc-, e) E c(n) 

for any x E n, e E (JR+)N, 

if x + e E n, 

for each e .2. o. 

(A.3) For the matrix (aij(x)), there exists a nonnegative matrix (O'ij(X)) such 

that 

(aij) = tUij)(Uij) with Uij E W1,OO(n) (i,j = 1"" ,N). 
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(A.4) bi E W1,OO(n) (i = 1", . ,N). 

(A.5) C E C(n), C ~ Co on n for some Co > O. 

(A.6) I E C(n). 

(A.7) k E C((R+)N), k(e) ~ ko on (R+)N for some ko > O. 

(A.S) 9 E C(n). 

We denote by We and wI the modulus of continuity of c and I, respectively. 

Remark 2.1. The assumption (A.2) does not hold if we only suppose the 

smoothness of an. When n is convex and regular, we can take P(x, e) as the 

projection of e on (R+)N n (n - {x}). (See A. Bensoussan - J. 1. Lions [5; 

Chapter 4, Remark 1.7] and J. 1. Menaldi [36].) 

Now we give the definition of solutions of the nonlinear degenerate elliptic 

PDEs with the implicit boundary condition: 

(2.1) { 
max{F(x,u,Du,D2u),u - Mu} = 0 

max{u - g,u - Mu} = 0 

m n, 
on an, 

where F E C(n X R X RN X $N) is a degenerate ellip~ic operator. 

Definition 2.2. Let u : n -+ R. 

(1) We say u is a subsolution of (2.1) provided u* < +00 on n and for any 

<p E C2(n), if u* - <p attains a local maximum at x E n, then 

max{F(x,u*(x),D<p(x),D2<p(X)),U*(X) - Mu*(x)} < O. 

(2) We say u is a supersolution of (2.1) provided u* > -00 on n and for any 

<p E C2 (n), if u. - <p attains a local minimum at x E n, then 
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(3) We say u is a solution of (2.1) provided u is both a sub- and a supersolution 

of (2.1). 

Next we state the equivalent propositions of Definition 2.2. We refer the 

reader to M. G. Crandall H. Ishii P. L. Lions (8; Section 7] for general elliptic 

PDEs. 

Proposition 2.3. Let u : n --+ JR. 

(1) u is a subsolution of (2.1) if and only if u* < +00 on n and for all x E n and 

(p, X) E Jk+ u*( x), u* satisfies 

max{F(x,u*(x),p,X),u*(x) - Mu*(x)} ~ O. 

(2) u is a supersolution of (2.1) if and only if u* > -00 on n and for all x E n 

and (p,X) E J~'-u*(x), u* satisfies 

max{F(x, u*(x ),p, X), u*(x) - Mu*(x)} ~ o. 

Proposition 2.4. Assume M : U sc(n) --+ u SC(n) and M : LSC(n) --+ 

LSC(n). Let u : n --+ JR. 

(1) u is a subsolution of(2.1) if and only ifu* < +00 on n and for all x E n and 

(p,X) E ~'+u*(x), u* satisfies 

. max{F(x,u*(x),p,X),u*(x)-Mu*(x)} O. 

(2) u is a supersolution of (1.1) if and only if u* > -00 on n and for all x E n 

and (p,X) E ~'-u*(x), u* satisfies 

max{F(x, u*(x),p, X), u*(x) - Mu*(x)} O. 

Since the proofs of the above propositions are similar to those in (8], we leave 

them to the reader. 

The boundary condition (1.2) differs from the usual Dirichlet condition. So 

we introduce the notion of strong viscosity solutions. (cf. M. G. Crandall - H. 

Ishii - P. L. Lions (8; Section 7].) 
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Definition 2.5. Let u : n -+ IR. 

(1) u is a strong subsolution of(2.1) ifu is a subsolution of(2.1) and u satisfies 

max{u*(x) - g(x),u*(x) - Mu*(x)} ~ 0 for all x E an. 

(2) u is a strong supersolution of(2.1) ifu is a supersolution of(2.1) and u satisfies 

max{u*(x) - g(x),u*(x) - Mu*(x)} ~ 0 for all x E an. 

(3) u is a strong solution of (2.1) if u is a strong subsolution and a strong super­

solution of(2.1). 

Remark 2.6. It is easily seen that if the strong solution u of (2.1) is continuous 

on n, then u satisfies the boundary condition for all x E an. 

We recall the properties of the operator M. 

Proposition 2.1. Assume (A.l), (A.3) and (A.8) hold. Let u, v : n -+ JR. 

Then we have the following properties. 

(1) Ifu ~ v on n, then Mu ~ Mv on n. 
(2) M(tu + (1- t)v) ~ tMu + (1 - t)Mv for all t E [0,1]. 

(3) M (u + c) M u + c for all c E JR. 

(4) Ifu E LSC(n), then Mu E LSC(n). 

(5) Ifu E USC(n), then Mu E USC(n). 

(6) IIMu Mvllc(n) ~ lIu - vll c (5) for all u, v E C(n). 

Proof. We only show (4) and (5) because it is obvious by the definition of 

M that (1)-(3) and (6) hold. 

(4) We take {Xn}nEIN C n, x E n such that Xn -+ x (n -+ +00). The condition 

u E LSC(n) implies that for each Xn there exists a ~n 0 such that 
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Since {en}nEJN is bounded, by taking a subsequence, if neccesary, we may consider 

that limn ..... +oo en = e .2 0 such that x e E n. Hence we have 

~k(e)+u(x+O 

Mu(x), 

that is, Mu E LSC(n). 

(5) We take {Xn}nEJN C n and x E n as in the proof of (4) and fix e > 0 such 

that x + e E n. Then we have by (A.3), 

Thus we get 

limsupMu(xn)~ lim k(P(xn,O)+limsupu(xn+P(xnle)) 
n ..... +oo n ..... +oo n ..... +oo 

~ k( 0 + u( x + e). 

Taking the infimum with respect to e 2: 0 satisfying x + e E n, Mu E USC(n) is 

proved. I 

§3. Comparison principle of solutions 

In this section we shall prove the comparison principle of strong solutions of 

the problem (1.1 )-(1.2). 

Theorem 3.1. Assume (A.l)-(A.8). Let u, v be a strong subsolution, a 

strong supersolution, respectively, of (1.1)-(1.2). Then u* ~ v. on n. 

In proving Theorem 3.1, we use some perturbation of strong subsolution to 

deal with the term u - Mu. (d. H. Ishii - P. L. Lions [19; Section V.I].) Moreover 

the existence of certain derivatives plays an important role. So we prepare the 

following lemmas. 
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Lemma 3.2. Let U E USC(n) be a strong subsolution of (1.1)-(1.2) and let 

C = max{(llfllc(IT/eo, IIgllC(IT)} + 1. Then for each m E IN, U m = (1 - l/m)u -

C /m is a strong subsolution of 

{ 

max{Lum - I,u m - MUm} +7 ~ = 0 

max{u m - g,um - MUm} + - - 0 
m 

III n, 

on an, 

where, = min{l, ko}. 

Proof. First, we note that w = -C on n satisfies 

max{Lw - f, w - Mw} 5: maxi -coC - f, -k} 5: -, 

max{w - g,w - Mw} 5: max{-C - g,-k} ~-, 

in n, 

on an. 

For any fixed cP E C 2(n), we suppose U m - cP attains a local maximum at 

Xo E n. Then we have 

Um(Xo) - cp(xo) = (1 - ~) u(xo) - ~ - cp(xo) 

= (1-~) {U(xo)- ( m cp(xo)+ C )} 
m m-1· m-1 

and see that U - ((m/m - l)cp + C/(m - 1)) attains a local maximum at Xo En. 

Hence using the fact that U is a subsolution of (1.1), we observe 

(3.2) max {- m r: 1 aij(xO)'PXiXj(XO) + m r: 1 bi(xo)'PXi(XO) 

+c(xo)u(xo) - f(xo),u(xo) - MU(Xo)} ~ 0 

By (3.2) we have 

(3.3) 
m m 

--aij(xo)'PXiXj(xO) + bi(XO)'PXi(XO) + c(xo)u(xo) 
m-1 m-1 

- f(xo) ~ 0, 

(3.4) U(Xo) - Mu(xo) ~ O. 
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Thus multiplying (3.3) by 1 - 11m and subtracting C 1m from (3.3), we obtain 

1 
f(xo) ::s --, 

m 

and by a similar calculation and using (A.7) and Proposition 2.7 (2),(3), we get 

Um(Xo) Mum(xo) = (1- ~) u(xo) ~- M {(1- ~) u(xo) - ~} 

~ (1- ~) u(xo) - M { (1 - ~) u(xo) - ~ .o} 
~ (1- ~) u(xo) - (1- ~) Mu(xo) - : 

~ _ ko. 
m 

Thus we obtain 

max {-aij(xo)'PXiXj(XO) + bi(XO)'PXi(XO) + c(xo)um(xo) - f(xo), 

um(xo) - Mum(xo)} ~ - 1 min{coC + f(xo), ko} I 
m m 

It is easily verified that 

on an. 

Hence the proof is complete. I 

Lemma 3.3. Let u E USC(n) and v E LSC(n) and let (x, y) E n X n be 

a local maximum point of the function u(x) - v(y) - o:lx - Yl2/2 (0: > 0). Then 

there exist X, Y E $N such that 

and 

(o:(x -y),X) E P'+u(x),(o:(x y),Y) E p·-v(y). 
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This is proved in M. G. Crandall - H. Ishii [7; Example 1], so we omit the 

proof. 

Proof of Theorem 9.1. We may assume that U E USC(n) and v E LSC(n), 

because, if otherwise, we replace u, v with u·, v., respeCtively. 

Let C be the same constant as in Lemma 3.2. For each m E IN, the function 

U m = (l-l/m)u- Clm is a strong subsolution of (3.1)m. To prove the comparison 

principle, it is sufficient to show maxn( U m - v) ~ 0 for all m 1 because we 

obtain the desired result by letting m ~ +00. To the contrary, we suppose 

maxn ( U mo - v) = f) > 0 for some mo 1 and get a contradiction. Then there 

exists a point z E n such that f) = U mo (z) - v( Z ). 

Case 1. z E an. 
In this case we have 

max{umo(Z) - g(z), umo(z) - Mumo(z)} ~ -~, 
mo 

max{v(z) - g(z),v(z) Mv(z)} ~ O. 

When v( z) - g( z) ~ 0, we obtain a contradiction easily. In the case v( z) M v( z) ~ 

o we can find ~z 0 such that 

Hence we get 

which is a contradiction. 

Case 2. zEn. 
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We note that the function Umo (x) -Ix - Z 14 - v( x) takes the maximum () and Z 

is a unique maximum point of this function. For each a > 0 we define the function 

q. on n x n by 

q.(x,y) = umo(x) -Ix - zI4 
- v(y) - ;Ix _ y12, 

and let (x, y) E n x n be a maximum point of q.. We observe that the inequality 

q.(z,z) ~ q.(x,y) implies that 

(3.5) () 

Since the functions U mo and -v are bounded above, we have, from (3.5), Ix 

yl ~ 0 as a ~ +00. By the compactness of n we see that xn, Yn ~ z for a 

suitable sequence {an}nEN tending to +00 and some Z E n. Using (3.5) and semi­

continuity of Umo and v, we get () S umo(z) -Iz - Z/4 - v(z). Hence we have z = Z 

and X, fj ~ Z (a ~ +00) because Z is a unique maximum point of the function 

umo(x) -Ix - zI4 
- vex). Moreover we observe 

(3.6) Umo(Z) - v(z) S liminf(umo(x) - v(y)) 
0'-++00 

limsup(umo(x) - v(y)) 
0'-++00 

~ limsupumo(X) -liminfv(y) 
0'-++00 0'-++00 

~ umo(z) - v(z). 

Thus we have 

lim (umo(x) - v(y)) = Umo(Z) - v(z). 
0'-++00 

By this equality and the semicontinuity of U mo and v we obtain 

Umo(Z) ~ limsupumo(x) 
0'-++00 

~ Hminf umo(x) 
0'-++00 

= liminf(umo(x) - v(y) + v(y)) 
0'-++00 

> liminf(umo(x) - v(y)) + liminfv(iJ) 
0'-++00 0'-++00 

umo(z) - v(z) + v(z) = umoCz). 
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Therefore we conclude 

(3.7) and lim veil) = v( z). 
0'-+00 

It is easily seen by (3.5) and (3.7) that 

alx - ill 2 
--+ 0 (a --+ +00). 

As x, il --+ zEn as a --+ +00, we have x, il E n for large a > O. Then by 

Lemma 3.3 there exist X, Y E $N satisfying 

(3.8) 

(3.9) 

and 

(a(x - il),X) E J2,+(umo (x) -Ix - Z/4), 

(a(x - il), Y) E J2'-v(il), 

Furthermore, (3.8) implies 

where Z = 41x - zl2 1+ 8(x - z) ® (x - z) and Z --+ 0 as a --+ +00. Hence 

using the facts that U mo is a strong subsolution of (3.1 )mo and that v is a strong 

supersolution of (1.1)-(1.2), we have the following inequalities: 

(3.11) max{ -tr{ tu(x)u(x)(X + Z)} 

(3.12) max { -tr{ tu(il)u(il)Y} + abi(il)(Xi ili) 

+ c(il)v(il) - f(il), veil) - Mv(il)} ~ o. 
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We divide our consideration into two cases. 

(I) The case v(y) - Mv(y) ~ 0 in (3.12). 

(3.11) implies umo(x) - Mumo(x) ~ -,imo. Thus we get 

From Proposition 2.7 (4), (5), sending a --t +00, we have 

e < lim sup Mumo(x) -liminf Mv(y) - ~ 
0'--++00 0'--++00 mo 

I 
~ Mumo(z) - Mv(z) - -. 

mo 

As in Case 1, we get a contradiction. 

(ll) -tr{ h(y)O"(y)Y} + abi(Y)(Xi - Yi) + c(y)v(y) - f(y) ~ 0 in (3.12). 

By (3.11) we have, 

-tr{ h(x)O"(x)(X + Z)} + bi(x) {a(xi - Yi) + 41x - zl2(Xi - Zi)} 

+ c(x)umo(x) - f(x) :s -~. 
mo 

Therefore noting that from (3.10) 

tr{ to" ( x)O"( x)X} - tr{ to"(Y)O"(Y)Y} 

~ 3atr{ t(O"(x) - O"(y))(O"(x) - O"(y))} , 

and using (A.3), (AA) and (A.5) we obtain 

C( x)u mo (x) - c(y)v(y) ~ 3atr{ t( 0"( x) - O"(y))( 0"( x) - O"(y))} 

+ tr{ h(x)O"(x)Z} 

+ a(bi(x) - bi(y))(x - y) 

- 41x - zI2bi(x)(Xi - Zi) 

+ f(x) - f(y) - ~ 
mo 

~ Kalx - Yl2 + Klx - zI2 + Klx - zI3 

+ w,(lx - yl) - ~. 
mo 
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Here and hereafter K denotes a positive constant depending only on known con­

stants. Moreover we have 

coB .s:; co(umo(x) - v(y) -Ix - Z/4) 

~ c(x)(umo(x) - v(y)) 

= c(x)umo(x) - c(y)v(y) - v(y)(c(x) - c(y)) 

.s:; K a/x - y/2 + Klx - zl2 + Klx - Zl3 + w/(Ix - yl) 

- :L - v(y)( c(y) c( x)) 
mo 

.s:; K alx - Yl2 + Klx - Zl2 + Klx - ZI3 + w/(Ix - yl) 

+ KWc(lx - yl) - , 
mo 

because -v is bounded above. Thus letting a -+ +00, we obtain a contradiction. 

Thus we conclude that maxnC U m - v) 0 for all m ~ 1. Letting m -+ +00, 

we complete the proof. I 

§4. Existence of solutions 

In this section we shall show the existence of a strong solution of the problem 

(1.1)-(1.2). 

Theorem 4.1. Assume (A.l)-(A.8). FUrthermore, assume (A.9) or (A.I0) 

holds; 

(A.9) (aij(x)) > Jll on 11 for some Jl > 0, 

(A.I0) (aij(x)) 2 0 on n and 

bi(x)Vi(X) < 0 on r = {x E an I aij(x)vi(X)Vj(x) = O}. 

Then there exists a unique strong solution U E C(n) of the problem (1.1)-(1.2), 

which is a unique solution of (1.1) satisfying (1.2). 

Before proving Theorem 4.1, we show the existence of a strong supersoiution 

of (1.1 )-(1.2). 
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Lemma 4.2. Assume (A.1), (A.3), (AA), (A.5), (A.6) and (A.8). If(A.9) or 

(A.10) holds, there exists a solution IT E C(n) of 

( 4.1) { 
Lu f = 0 

u=g 

III n, 
on an. 

Proof. First of all, we remark that the comparison principle of viscosity so-

lutions of (4.1) holds. (See H. Ishii - P. L. Lions [19; Theorem 11.2].) In the case 

where (A.9) holds, there exists a solution IT E wl~:(n) n C(n) (n < p < +00) of 

(4.1) satisfying it = 9 on an by D. Gilbarg N. S. Trudinger [13; Corollary 9.18]. 

Hence it is also a unique solution of (4.1) satisfying IT = 9 on an. (See P. L. Lions 

[34; Theorem 1.2].) 

In the case where (A.10) holds, we apply the barrier construction argument 

in A. O. Oleinik - E. V. Radkevic [37; Theorem 1.5.2]. (cf. H. Ishii - S. Koike 

[18; Proposition 4.3] and S. M. Lenhart - N. Yamada [31; Theorem 2.2].) Let 

'¢ E C2(n) n C(n) be a function such that '¢ = 9 on an. We consider the 

following degenerate linear elliptic PDE: 

(4.2) { 
Lw - j = 0 

w =0 

III n, 
on an, 

where j = aij'¢xiXj - bi'¢Xi - c'¢ + f. Then for each z E an, there exist a 

neighborhood Vz of z and a local barrier (z E C2(n n Vz ) n C(n n Vz ) satisfying 

(z(z) = 0, 

(z 0 on nnvz, 

(z 
(; 

n n avz, on 
Co 

L(z - j ':? 0 III nnvz, 
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where 6 is a constant depending on lIaiillc(n), Ilbillc(n)' l!ellc(n), IlfllC(n), 

IItPllc(n), IIDtPIILOO(!l), IID2 tP IILOO(!l)' Hence setting 

min { (,(xl, : } 

6 
Co 

otherwise, 

((x) = inf{(z(x)lz E an}, 

we observe that (z E C(n) is a supersolution of( 4.2) and thus ( is a U.S.c super­

solution of (4.2) such that ( = 0 on an. In the same way we can construct a l.s.c. 

subsolution (' of (4.2) satisfying (' = 0 on an. Hence by Perron's method there 

exists a solution W E C(n) of (4.2) satisfying w = 0 on an. Therefore IT = w + tP 

is a solution of (4.1) satisfying IT = 9 on an. Indeed, for any cp E C2 (n), suppose 

IT - cp attains a local maximum at Xo E n. Since w - (cp - tP) attains a local 

maximum at Xo E n, we get 

-aii( xo){ CPx;Xj (xo) - tPx;Xj (xo)} + bi( xo){ <Px; (xo) ...:. tPXi (xo)} 

+ c(xo)w(xo) - }(xo) ~ o. 

The definition of j implies that 

Thus IT is a subsolution of (4.1). We can show similarly that IT is a supersolution 

of (4.1). Hence we have obtained the result. I 

By Lemma 4.2, it is easily seen that IT is a strong supersolution of the problem 

(1.1)-(1.2). Next we show that Perron's method can be used for (1.1)-(1.2). 
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Proposition 4.3. We define the set S and the function u as follows: 

S = {v : n --? 1R I v is a strong subsolution of (1.1 )-( 1.2) } , 

u(X) = sup{v(x) I v E S} (x E n). 

Then the following properties hold. 

(P.1) u E S. 

(P.2) If v E S is not a strong supersolution of (1.1), then there exists w E S such 

that v(y) < w(y) for some y E n. 

Proof. We note that S =J. 0 because, for the same constant G as in Lemma 3.2, 

y. == -G E S. Moreover the function IT in Lemma 4.2 is a strong supersolution of 

(1.1)-(1.2). Thus by the definition of u and Theorem 3.1 we observe that Y. u ~ IT 

on n. 

Now, we shall prove (P.1) holds. Suppose that for t.p E G2(n), u* - t.p attains 

a local maximum at Xo E n. Without loss of generality, we may assume 

u*(xo) - t.p(xo) = 0, u*(X) - t.p(x) < 0 in n, 

and 

u*(X) - t.p(x) ~ -Ix - XOl4 In B(xo, r) for some r > O. 

Then there exists {Xn}nEN C B(xo,r) such that 

Because of the definition of u, for each n E IN, there exists a sequence {un} nEN C S 

satisfying 

u~ (xn) - t.p( Xn) > u*( xn) - t.p( xn) - .!., 
n 

u~(x)-t.p(x) -lx-xoI4 on B(xo,r). 
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Let Yn E B(xo, r) be a maximum point of u* - cP on B(xo, r). Then we see 

u*(xn) - cp(xn) - .!. < u~(xn) - cp(xn) u~(Yn) - CP(Yn) 
n 

u*(Yn) - CP(Yn) 5: -IYn - xol4
• 

Therefore we have Yn -+ Xo as n -+ +00 and 

Since Un is a strong viscosity sub solution of (1.1)-(1.2), we obtain 

maxi -aiAYn)CPx;xj (Yn) + bi(Yn)CPxi (Yn) + C(Yn)U~(Yn) 

- !(Yn), U~(Yn) - MU~(Yn)} 5: 0 

Remarking that Un ~ U on ,0 and Proposition 2.7 (5), we have 

limsupMu~(Yn) 5: lim sup MU*(Yn) Mu*(xo). 
n-+oo n-+oo 

Sending n -+ +00, we get 

+ c(xo)u*(xo) - !(xo), u*(xo) - Mu*(xo)} 5: O. 

As to the boundary condition (1.2), u ~ u on ,0 and U E C(n) imply u* -g ~ 0 

on an. Moreover, by the definition of u and Proposition 2.7 (1) we obtain 

v* - Mu* 5: v* - Mv* 0 on an for v E S, 

since v* - Mv* 5: 0 on an. Thus we have max{u* - g, u* - Mu*} ~ 0 on an. 
Hence u E S. 
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Next, we suppose v E S is not a strong supersolution of (1.1)-(1.2). Then 

there exist x 0 E nand (3 > 0 such that 

(4.3) max{ -aij(xO)Xij + bi(xo)Pi c(xo)v.(xo) - /(xo), 

v.(xo) - Mv.(xo)} < -(3 

for some (p,X)]2,-v.(xo) if Xo En, 

We consider the following two cases. 

(I) The case (4.3). We can find 1.p E C2(n) satisfying D1.p(xo) =P and D21.p(XO) = 
X and fix it. Furthermore, we may assume that 

for some r > O. 

We claim v.(xo) < u( xo). If otherwise, v.(xo) = u(xo) and u( x) -1.p(x) attains 

its minimum at Xo. Therefore we get 

max{ -aij(xO)1.px;Xj (xo) bi(XO)1.px;(xo) + c(xo)u(xo) 

- /(xo), u(xo) Mu(xo)} ~ 0, 

because u E C(n) is a strong supersolution of (1.1)-(1.2). This is a contradiction. 

Thus there exists a 61 > 0 such that 

Using (A.3), (AA), (A.5), (A.6), continuity of 1.p and lower semi-continuity of Mv., 

we have, for 0 < :36 < min{r,61 , 1}/2, 

max {-aij(x )1.px;Xj (x) + bi(X)1.px;(x) c(x) {1.p(x) + 64
} 

-/(x),1.p(x) + 64 
- Mv.(x)} ~ 0, for x E B(xo,26). 
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Hence <PC x) + 54 is a su bsolution of 

max{Lu - f,u - Mv*} = 0 III B(xo,25). 

We define 

( ) 
= { max {<p(x) + 54 ,v(x)} 

W X vex) 
for x E B(xo,5), 
otherwise. 

We note that if 5 Ix - xol ~ 25, then v*(x) ~ <p(x) + 54 and by w* = v* on an 

and Mv*(x) ~ Mw*(x) on n, we get 

max{w* - g,w* - Mw*};;;; 0 on an. 

Therefore by the similar argument to the proof of (P.I) we can' observe that w E S. 

Since 0 = v*(xo) - <p(xo) = lims-4o inf{v(x) - <p(x)1 Ix - xol < 5, x E n}, there 

exists an 17 E B( Xo, 5) such that <pC 17) + 54 > v( 17). 

(II) The case (4.4). We may assume that infnv > -00. Because, if otherwise, 

there exists a point y E n such that v(y) < Y,. Thus Y, is a desired function. 

(4.4) implies 

So we can find 50 > 0 such that 

III B(xo,50)nn. 

Hence by the barrier argument there exist 0 < eo < 50 and ( E C2(B(xo,eo) n 

n) n C(B(xo, eo) n n) satisfying 

I 
((xo) = v*(xo) + 2/3, 

(Sg 

L( -f 0 

( < ig.f v 
n 
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We define 

( ) ={max{((x),v(x)} 
w x v(x) 

for x E B(xo, co) n n, 
otherwise. 

Noting v*(x) ~ ((x) if Ix - xol = Cl for 0 < 3cl < eo, we observe w E S as in (1). 

By the definition of (, we obtain 

1 
v*(xo) + "2/ = ((xo) = w*(xo) > v*(xo). 

Thus we can find y E n such that v(y) < w(y). I 

Now, we can prove Theorem 4.1. 

Proof of Theorem 4.1. Let u be as in Lemma 4.2. Then the assertions (P.1) 

and (P.2) in Proposition 4.3 imply that u is a sub and supersolution in the strong 

sense. Therefore by Theorem 3.1 we have u* s u* on n. Then combining this 

inequality with u* 5: u 5: u*, we obtain u* = u u* on n and u E C(n). Moreover 

u satisfies the boundary condition (1.2) for each x E an. Using Theorem 3.1 again, 

we have the uniqueness of strong solutions. Thus the proof is complete. I 

Remark 4.4. Of course we can extend Theorems 3.1 and 4.1 to Hamilton­

Jacobi-Bellman equation with impulse control: 

{ 
max{!~e{Vlu - P'},u - MU} = 0 

max{u g,u-Mu}=O 

III n, 

on an. 
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Chapter II 

Viscosity solutions of nonlinear elliptic PDEs 
with nonlocal terms 

1. Introduction 

In this chapter we are concerned with nonlinear elliptic PDEs with nonlocal 

terms. 

Let n c RN be a bounded domain. For any function u : n -+ R, we define 

the nonlocal operators M and N by 

Mu(x)=inf{k1(e)+u(x+e)le 0, x+eEn}, 

Nu(x) = sup{-k2(e)+u(x+e) Ie 0, x+eEn}, 

where k1(e) and k2(e) are nonnegative and continuous functions on (R+)N and 

e !;; 0 means e E (R+)N. 

We consider the following nonlinear PDE: 

(1.1 ) min{max{Lu - f,u - Mu},u - Nu} = 0 III n, 

under the implicit boundary condition: 

(1.2) min{max{u - g,u - Mu},u - Nu} = 0 on an. 

Here the functions f and 9 are given and the L is a linear second order elliptic 

operator of the form: 

Formally the problem (1.1)-(1.2) is derived from impulsive games whose states 

are goverened by stochastic differential equations with impulsive jumps {e O} 
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and whose value function has impulsive costs kl and k2. If k2 = +00, then the 

equation (1.1) is equivalent to the following PDE of impulse controls for diffusion 

processes governed by stochastic differential equations: 

(1.3) max{Lu /, u Mu} = 0 In n, 

with the boundary condition: 

(104) max{u - g,u - Mu} = 0 on an. 

For the derivations of the problems (1.1)-(1.2) and (1.3)-(104) and the related 

results, see A. Bensoussan - J. 1. Lions [5], K. Ishii - N. Yamada [23], [24], S. M. 

Lenhart - N. Yamada [33J and Chapter I etc. 

As to the problem (1.1)-(1.2), the existence of solutions in HJ (n) n LOO(n) 

(the case 9 == 0) was proved in [5; Chapter 3, Theorem 8.9] from the viewpoint 

of quasi-variational inequality. But the uniqueness of solutions was not obtained. 

In [23], [24] and [33], we have obtained the uniqueness and existence of viscosity 

solutions for general elliptic PDEs with nonlocal terms. In them, to prove the 

uniqueness we need some complicated conditions for equations and the one that 

all nonlocal terms -are concave. (See, e.g., (FA) and (M.3) in [23].) However, 

since the operator N is convex and the equation (1.1) has nonconvex structure, we 

cannot apply the perturbation techniques used in them. Our main purpose here is 

to get the uniqueness and existence of viscosity solutions of (1.1) satisfying (1.2) 

by modifying the arguments in [23], [24] and [33]. 

The plan is organized as follows. In Section 2 we state our assumptions and 

recall the notion of solutions of nonlinear PDEs whose principal part is a general 

elliptic operator. Then we give the properties of the operators M and N. Section 

3 is devoted to the proof of the comparison principle of solutions of (1.1)-(1.2). We 

use the idea in H. Ishii - S. Koike [18; Section 3] to prove it. In Section 4 we show 
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the existence of solutions of (1.1) satisfying (1.2) by Perron's method. Since we 

cannot construct viscosity sub- and supersolution of (1.1) satisfying (1.2) directly, 

we apply the argument in [23; Lemma 5.1] and the comparison principle in Section 

3 to verify that the solution u satisfies (1.2). 

2. Preliminaries 

In this section we shall state our assumptions and shall recall the notion of 

solutions and the propreties of the operators M and N. 

We make the following assumptions. 

(A.1) n c JRN is a bounded domain with smooth boundary an. 
(A.2) There exists a mapping P : n x (JR+)N -t (JR+)N satisfying 

x + P(x,e) E n 

p(x,e) = e 

p(·,e) E c(n) 

for all (x, e) E n x (JR+)N, 

if x + e E n, 

for each e ~ o. 

(A.3) There exist O'ij E W1,OO(n) (i,j = 1,'" N) such th~t 

(A.4) bi(X) E W1,OO(n) for i = 1," . ,N. 

(A.5) C E c(n) and C ~ Co on n for some Co > o. 

(A.6) j, 9 E c(n). 

(A.7) ki E C((IR+)N) and there exists a constant ko > 0 such that ki(~) ko for 

alleE(JR+)N. (i=1,2.) 

Remark 2.1. As to the assumption (A.2), see Remark 2.1 in Chapter I. 

Next we give the definition of solutions of the following nonlinear PDE: 

(2.1) min{max{F(x,u,Du,D2u),u - Mu}, u - Nu} = 0 in n, 
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where F E C(n x R x RN X $N) is a degenerate elliptic operator. 

Definition 2.2. Let u : 12 ~ R. 

(1) We say u is a subsolution of (2.1) provided u* < 00 on 12 and for any cp E 

C2(n), if u* - cp attains a local maximum at Xo En, tben 

min{max{F(xo, u*(xo), Dcp(xo), D2cp(xo)),u*(xo) Mu*(xo)}, 

u*(xo) - Nu*(xo)} !S:: O. 

(2) We say u is a supersolution of (2.1) provided u* > -00 on 12 and for any 

cp E C2 (n), if u* - cp attains a local minimum at Xo En, tben 

min{max{F(xo, u*(xo), Dcp(xo), D2cp(xo)),u*(xo) - Mu*(xo)}, 

u*(xo) - Nu*(xo)} O. 

(3) We say u is a solution of (2.1) if u is a subsolution and a supersolution of 

(2.1). 

We mention the propositions equivalent to Definition 2.2. We do not prove 

them here because the proofs are similar to those in M. G. Crandall - H. Ishii - P. 

L. Lions [8]. 

Proposition 2.3. Let u : 12 ~ R. 

(1) u is a subsolution of (2.1) if and only if u* < 00 on 12 and 

min{max{F(x, u*(x ),p,X), u*(x) - Mu*(x)}, u*(x) - Nu*(x)} !S:: a 

for all x E 12, (p,X) E Jk+u*(x). 

(2) u is a supersolution of(2.1) if and only ifu* > -00 on 12 and 

min{max{F(x,u*(x),p,X),u*(x) - Mu*(x)},u*(x) - Nu*(x)} 2. 0 
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for all x E n, (p,X) E J~'-u.(x). 

Proposition 2.4. Assume M, N : USC(n) (resp., LSC(n)) --+ USC(n) 

(resp., LSC(n)). Let u : n --+ lR. 

(1) u is a subsolution of(2.1) if and only ifu· < 00 on nand 

min{max{F(x, u·(x),p,X), u·(x) - Mu·(x)}, u·(x) - Nu·(x)} 0 

for all x E n, (p, X) E ~'+ u·(x). 

(2) u is a supersolution of (2.1) if and only if u. > -00 on n and 

min{max{F(x, u.(x),p,X), u.(x) - Mu.(x)}, u.(x) - Nu.(x)} 0 

for all x E n, (p,X) E ~'-u.(x). 

We conclude this section by recalling the properties of M and N. 

Proposition 2.5. Suppose (A.l), (A.2) and (A.7) hold. Let T = M, N and 

let u, v : n --+ lR. Then the following properties hold. 

(1) Ifu S v on n, then Tu ~ Tv on n. 
(2) M(tu + (1- t)v) ~ tMu + (1- t)Mv and N(tu + (1- t)v) ~ tNu + (1- t)Nv 

for all t E [0,1]. 

(3) T(U+A) Tu+AforallAElR. 

(4) T: U SC(n) --+ u SC(n) and T : LSC(n) --+ LSC(n). 

(5) IITu - TvllC(o) S Ilu - vllc(n) for all u, v E C(n). 

We omit the proof of this proposition. See the proof of Proposition 2.7 in 

Chapter 1. 

3. Comparison principle of solutions 

In this section we establish the comparison principle of solutions of the prob­

lem (1.1)-(1.2). For general elliptic PDEs, see M. G. Crandall - H. ishii - P. L. 

Lions [8] and references therein. 
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Theorem 3.1. Assume (A.1)-(A.7). Let u, v be, respectively, a subsolution 

and a supersoiution of (1.1). If u and v satisfy 

(3.1) 

(3.2) 

min{;nax{ u'" - g, u'" - Mu"'}, u'" - Nu"'} .~ 0 

min{max{v", - g, v", - Mv",}, v", - Nv",} ~ 0 

on an, 

on an, 

then u'" ~ v", on n. 

To deal with the nonlocal terms u - Mu and u - Nu, we need the following 

lemma. 

Lemma 3.2. Let 0 C ]RN be compact and u E U SC( 0). Then, for a.a. 

q ERN, the function u(x) + (q, x) takes its strict maximum on O. 

For the proof, see H. Ishii - S. Koike [18; Lemma 3.3]. 

Proof of Theorem 9.1. We may assume u E USC(n) and v E LSC(n). We 

suppose sUPn\ u - v) = 39 > 0 and get a contradiction. 

It is easily seen from Definition 2.2 and (3.2) that v ~ Nv on n. By Lemma 

3.2, for a.a.q E ]RN, the function u(x)-v(x )+(q, x) on n attains its strict maximum 

at z(= Zq) E n. Thus we can take q ~ 0 such that 0 < Iql < min{9/"),, co9/lIbllG(o)} 

and (q, ei) ::j:. 0 for 1 ~ i ~ N, where,,), = sUP-n Ixl and {edl~i~N is the standard 

basis for ]RN. We claim 

(3.3) u(Z) > Nu(z) and v(Z) < Mv(z). 

First, suppose u(z) ~Nu(z). Then we can find ez ~ 0 such that ez ::j:. 0, z+ez E n 
and Nu(z) = -k2(ez) + u(z + ez) by u E USC(n) and (A.7). Therefore we have 

u(z) - v(z) + (q,z) ~ Nu(z) - Nv(z) + (q,x) 

::;;: u(z + ez) - v(z + ez) + (q, z + ez) - (q,ez). 

~ u(z) - v(z) + {q,z} - {q,ez}, 
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which is a contradiction because (q, ez) > O. Thus we obtain u(z) > Nu(z). Since 

u is a subsolution of (1.1) and satisfies (3.1), we get u(z) ~ Mu(z). Using this 

fact, we have v(z) < Mv(z) in the similar way to the above argument. Hence we 

obtain the claim (3.3). 

If z E on, then it follows from (3.1), (3.2) and (3.3) that u(z) ~ g(z) ~ v(z). 

Therefore we observe 

2(J u(z) - v(z) + (q,z) ~ Iqllzl ~ (J, 

which is a contradiction. Thus we may consider zEn. 

For a > 1 we define the function cl>( x, y) on n x n by 

a 
cl>(x,y) = u(x) -v(y)+ (q,y) - "2lx _YI2. 

Let (x, jj) E n x n be a maximum point of cl>. By the similar calculation in [18; 

Section 3], we see the behaviors of x, jj, u(x) and v(jj) as a -+ 00: 

(3.4) x, jj -+ z, u(x) -+ u(z), v(jj) -+ v(z), alx - ilI2 -+ O. 

Then we apply the maximum principle for semicontinuous functions (cf. [8; The­

orem 3.2]) to obtain X, Y E $N such that 

(3.5) (a(x - jj),X) E P'+u(x), (a(x - y) + q, Y) E P'-v(jj), 

and 

(3.6) (10) (X 0) (1 -1) -3a 0 1 s: 0 _ Y ~ 3a -1 1 . 

Remarking (3.4), we may assume x, fi E n for large a > 1. Using the fact 

that u, v are, respectively, a sub solution and a supersolution of (1.1), we get the 
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following inequalities: 

(3.7) min{max{-aij(x)Xij + bj(x)(a(xj 1h)) + c(x)u(x) 

- f(x),u(x) Mu(x)},u(x) - Nu(x)} 0, 

(3.8) min{ max{ -aij(Y)~j + bj(y)(a(xi - Yi) + qi) + c(y)v(y) 

- f(1'), v(y) - Mv(y)}, v(y) - Nv(y)} > o. 

It is observed from (3.3), (3.4) and Proposition 2.5 (4) that 

liminf(u(x) - Nu(x)) ~ u(z) - Nu(z) > 0, 
0'-++00 

limsup(v(y) - Mv(y)) 5: v(z) - Mv(z) < O. 
0'-++00 

Hence there exists ao > 1 such that 

u(x) - Nu(x) > 0 and v(y) - Mv(y) < 0, 

for all a > ao. By (3.7), (3.8) and these inequalities, we conclude 

(3.9) -aij(x)Xjj + bj(x)(a(xj - Yi)) + c(x)u(x) 

- f(x) S 0, 

(3.10) -ajjCy)~j + bj(y)(a(xi - Yi) + qd + c(y)v(y) 

- fey) ~ o. 

Subtracting (3.9) from (3.10) and using (3.6), (A.3)-(A.6), we obtain 

2eoB s c(x)(u(x) - u(y) + (q,y)) 

c(x)u(x) - c(y)u(y) - (c(x) - c(y))u(y) + c(x){q, y) 

S ajj(x)Xjj - aij(Y)~j - (bi(x) - bi(y))(a(xi - Yi)) + bi(y)qi 

- (c(x) - c(y))u(y) + c(x){q, y) + f(x) - f(g) 

Calx - Yl2 + Cw(lx - yl) + coB, 
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where w is a modulus of continuity for c and f and C denotes the various constants 

depending only on known ones. Letting Q; -+ +00 and then Iql -+ 0, we get a 

contradiction. Thus we have completed the proof. I 

4. Existence of solutions 

In this section we show the existence of solutions of (1.1) satisfying (1.2) by 

Perron's method. In addition to (A.1)-(A.7), we assume 

Then, as seen in Theorem 4.1 in Chapter I, there exists a unique solution 

Y. E c(n) of 

{ 
max{Lu - f,u - Mu} = 0 

max{u-9,u-Mu} =0 

m n, 
on an, 

which is a subsolution of (1.1) satisfying min{max{!! - 9,!! - My.},!! - N!!} s: 0 

on an. Furthermore, there exists a unique solution u E c(n) of 

{ 
min{Lu - f,u - Nu} = 0 

min{u - 9,U - Nu} = 0 

m n, 
on an, 

which is a supersolution of (1.1) satisfying min{max{u - 9, u - Mu}, u - Nu} ~ 0 

on an. (Note the existence of u can be proved simlarly to the proofs of Lemmas 

4.2-4.4 below.) By using thes~ functions we obtain the following theorem. 

Theorem 4.1. Assume (A.1)-(A.8). Then there exists a unique solution u of 

(1.1) satisfying 

(4.1) { 
min{max{ u· - 9, u· - Mu·}, u· - Nu·} s: 0, 

min{max{u. - 9, u. - Mu.}, u. - Nu.} ~ 0, 

on an. Moreover the solution u is continuous on n and satisfies the boundary 

condition (1.2). 
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We put 

s = {v : subsolution of (1.1) I 

min{max{ v* - g, v* - Mv*}, v* - Nv*} s;: 0 on an}, 

u(x) = sup{v(x) I v E S} (x E n). 

We note S :f:. 0 and 1£ S u S it on n since 1£ E S and Theorem 3.1 holds. Perron's 

method can be divided into the following lemmas. In what follows we always 

assume (A.1)-(A.8). 

Lemma 4.2. u E S. 

Lemma 4.3. If v E S is not a supersolution of (1.1), then there exist w E S 

and yEn such that v(y) < w(y). 

By Lemma 4.2 and 4.3 we can easily see that the above function u is a solution 

of (1.1) satisfying min{max{u* - g,Mu*},u* - Nu*} SOon an. We need the 

next lemma to show that u is a unique solution and satisfies (1.2) 

Lemma 4.4. min{max{u* - g,u* - Mu*},u. - Nu.} 0 on an. 

First we admit Lemma 4.2-4.4 hold and show Theorem 4.1. After this, we 

prove them. 

Proof of Theorem 4.1. Let u be the function defined above. From Lemma 

4.2-4.4 it follows that 'u is a solution of (1.1) satisfying (4.1). Let v be any solution 

of (1.1) satisfying (4.1) with v in place of u. It follows from Theorem 3.1 that 

u· < v. S v ~ v* S u. S u S u· on n. Hence u = v E C(n). Combining this 

with (4.1), we see that u satisfies (1.2). The proof is complete. I 

Proof of Lemma 4.ft. Fix x E nand (p,X) E J~'+u(x). From the definition 

of u· there exists a sequence {Xn}nEN en such that 

(4.2) Xn-+X and u(xn)-+u·(x) (n-++oo). 

41 



Moreover it is observed that, for each n E IN, we can find Un E S such that 

(4.3) 

By (4.2) and (4.3) we get 

(4.4) (n -+ +(0). 

From (4.2), (4.4) and M. G. Crandall- H. Ishii - P. L. Lions (8; Proposition 4.3J 

there exist {Xn}nElN nand (Pn,Xn) E J~'+U~(Xn) satisfying 

Since Un E S, we have 

min{ max{ -aij(Xn)Xn,ij + bi(Xn)Pn,i + C(Xn)U~(Xn) - f(xn), 

u~(xn) - Mu~(xn)},u~(Xn) - Nu~(xn)} ~ O. 

In the case u:(xn) - Nu:(xn) 5: 0, it follows from (4.5) and Proposition 2.5 (1), 

(4) that 

u*(x) - Nu*(x) ~ O. 

In the another case we observe 

max{-aij(x)Xij + bi(x)pi + c(x)u*(x) - f(x),u*(x) - Mu*(x)} ~ 0 

by (A.3)-(A.6) and Propsotion 2.5 (1), (4). Hence u is a subsolution of (1.1). 

Next we prove min{max{u* - g, u* - Mu*}, u* - Nu*} 0 on an. In order 

to do so, suppose to the contrary, i.e., :3xo E an such that 

(4.6) min{max{u*(xo)-g(xo),u*(xo)-Mu*(xo)},u*(xo)-Nu*(xo)} = 2{3 > O. 
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Then we can take the sequences {Xn}nEN C nand {Un}nEN C 5 satisfying (4.2) 

with Xo in place of x. Suppose there exists a sequence {nk} C IN such that 

nk -jo +00 as k -jo +00 and Xnk E an. Since unk E 5, we have 

Letting k -jo +00, we obtain a contradiction to (4.6). Therefore we may consider 

Xn En for all n ~ 1. By (4.2), (4.6) and Proposition 2.5 (4), we have 

Using Un E 5, we get 

for all (p,X) E J~'+u~(xn). By this inequality we have u~(xn) - Mu*(x n) ~ O. 

Thus we obtain u*(xo) - Mu*(xo) ~ O. Consequently it is observed that 

min{u*(xo) - g(xo),u*(xo) - Nu*(xo)} = 2/3. 

Then there exists a 8 > 0 such that 

u*(xo) - /3 ~ g(x) 

u*(xo) - /3 ~ Nu*(x) 
, 

for x E B(xo, 8) nan, 

for x E B(xo, 8) n n. 

Furthermore, by using Un E 5, we observe that Un is a subsolution of 

(4.7) min{Lu - j,u - (u*(xo) - /3)} = 0 in B(xo, 8) n n, 

and satisfies 

u* ~ u*(xo) - /3 on B(xo,8) nan, 

u* ~ U-n - on n. 

43 



On the other hand, applying the barrier construction argument in A. O. 

Oleinik - E. V. Radkevic [37], there exist eo E (0,8) and ( E C2(B(xo,eo) n 

n) n C(B(xo,eo) n n) satisfying 

(xo) = u*(xo) - (3, 

( ~ u*(xo) - (3 

L( - f '?: 0 

(> sup 17 
il 

In B(xo,eo) n n, 

In B(xo,eo)nn, 

on oB(xo, eo) n n. 

We note ( is a supersolution of (4.7) in B( xo, eo) n n. Thul? it follows from the 

standard comparison argument that u~ S ( on B( Xo, eo) n n for all n :2: 1. Since 

Xn E B(xo,eo) n n for large n E N by (4.2), we obtain U~(Xn) ~ (xn). Sending 

n --t +00, we get 

u*(xo) S (xo) = u*(xo) - (3, 

which is a contradiction. Hence we conclude min{max{u* - g, u* - Mu*}, u* -

N u *} ~ 0 on on and u E S. I 

Proof of Lemma 4 . .'1. We suppose that v E S is not a supersolution of (1.1). 

Then there exist Xo E n and (p, X) E J~'-v*(xo) such that 

(4.8) 

We claim v*(xo) < 17(xo). If not, v*(xo) = 17(xo) and (p,X) E J~'-17(xo). Since 17 

is a supersolution of (1.1), we have 

(4.9) min {max {-aij(xo)Xij + bi(XO)pi + c(xo)17(xo) 

- f(xo), 17(xo) - M17(xo)} , 17(xo) - N17(xo)} 2 O. 
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Using v",(xo) = u(xo), we obtain that (4.9) contradicts to (4.8). Hence we get the 

claim. 

We take r.p E C2(n) satisfying 

v",(x) :;:: r.p(x) + Ix - xol4 in B(xo, r)( CC n) for some r > O. 

Noting (4.8) and Proposition 2.5 (4), there exists a 6 > 0 such that 6 < min(r, 13)/2 

and 

min{max{L<p - j,<p - Mv",},<p - Nv",} < 0 III B(xo,26), 

where <p(x) = r.p(x) + 64
• Therefore <p is a subsolution of 

min{max{Lu - j, u - Mv"'}, u - Nv"'} ~ 0 III B(xo,26). 

We define the function w by 

) 
_ {max{<p(x),v(x)} 

w(x - v(x) 
for x E B (xo, 6) , 

otherwise. 

We notice that v",(x) ~ <p(x) if Ix - xol :;:: 6, which implies w = max{<p,v} 

in B(xo, 26). Moreover we get Mv'" Mw'" and Nv'" :s;;; Nw'" on n because of 

Proposition 2.5 (1). Using the fact w'" = v'" on an, we have min{max{ w'" -g, w·­

M w"'}, w'" - N w"'} :s;;; 0 on an. Thus by means of the similar argument to the proof 

of Lemma 4.2, we can show w E S. Since w",(xo) = <p(xo) by the definition of w, 

we can find yEn such that v(y) < <p(y) = w(y). We have completed the proof. I 

Proof of Lemma 4.4. We prove the assertion by the similar argument to the 

proof of Lemma 4.2. We suppose that 

min{max{u.(xo) - g(xo), u",(xo) - Mu",(xo)},u.(xo) - Nu",(xo)} = -213 < 0 

for some Xo E an. 
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First we consider the case max{u.(xo) - g(xo),u.(xo) - Mu.(xo)} = -2{3. 

By the barrier construction argument there exist eo > 0 and ( E 0 2 (B( xo, eo) n 

n) n C(B(xo,eo) n n) satisfying 

((xo) = u·(xo) + {3, 

( 9 In B(xo, eo) nan, 

( ~Mu. In B(xo,eo)nn, 

L( - f ~ 0 In B(xo,eo) n n, 

( < infu on aB(xo, eo) n n. 
n 

(See the proof of Proposition 4.3 in Chapter 1.) 

We define 

( ) = {max{((x),u(X)} 
w x u(x) 

for x E B(xo,eo) n n, 

otherwise. 

Noting ((x) < u.(x) if Ix - xol 2 r for some r E (O,eo), we can show w E S by 

the same argument as in the proof of Lemma 4.2. Since w.(xo) = u.(xo) + {3, we 

can find y E B(xo,eo) n n such that u(y) < w(y). This is a contradiction. 

In the case u.(xo) - Nu.(xo) = -2{3, we easily have a contradiction. Hence 

we obtain the result. I 
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Chapter ill 

Viscosity solutions of nonlinear second order 
elliptic PDEs associated with impulse COlltrol 
problems n 

§l. Introduction 

This chapter is concerned with the uniqueness and existence of viscosity so­

lutions of nonlinear second order elliptic PDEs with implicit obstacles. 

Let n c JRN be a bounded domain. For any function u : n -to JR, we define 

the operator M as the following: 

Mu(x) = inf {k(e) + u(x + e)}, 
e~o 

xHEO 

where k(e) is a nonnegative and continuous function on (JR+)N and e ~ 0 means 

e E (JR+)N. We consider the nonlinear elliptic PDEs of the form: 

(1.1 ) { 
max{F(x,u,D~)D2u), u - Mu} = 0 

max{u - g,u - Mu} = 0 

In n, 
on an. 

Here the 9 is a given function and the F is a second order degenerate elliptic 

operator. The problem (1.1) is associated with the impulse control problems for 

certain diffusion processes. For the formal derivation of (1.1) and some results on 

the impulse control problems, see A. Bensoussan - J. L. Lions [5], J. L. Menaldi 

[36], B. Perthame [40J and G. Barles [1] etc. 

In the case where F is nondegenerate, we can interpret the boundary condition 

in (1.1) in the "classical" sense. When F is linear and 9 == 0 on an, the existence 

and uniqueness of solutions of (1.1) in HJ(n)nC(n) is discussed from the viewpoint 

of quasi-variational inequality in [5]. B. Perthame [38] obtained the existence aild 
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umqueness of solutions of (1.1) in wl~':o(n) n C(n) under some compatibility 

conditions on g and M u. After introducing the notion of viscosity solutions, B. 

Perthame [39] and Chapter I showed the uniqueness and existence of solutions of 

(1.1). 

However, in the case F is degenerate (especially on an), we cannot interpret 

the boundary condition in the classical sense. H. Ishii [15] pointed out that in 

the degenerate case we should interpret the boundary condition in the "viscosity" 

sense and proved the comparison pri,nciple and existence of solutions of first order 

Hamilton-Jacobi equations by analytical methods. (Also see M. G. Crandall - H. 

Ishii - P. L. Lions [8] and references therein.) In order to get the comparison prin­

ciple he assumed the continuity of sub- and supersolutions near an. Recently M. 

A. Katsoulakis [26] and [27] have obtained the comparison principle of solutions 

of nonlinear second order degenerate elliptic PDEs. To show the comparison prin­

ciple he has assumed the non tangential semicontinuity of sub- and supersolutions, 

.which is a weaker assumption than that in [15]. Moreover in [26] and [27] he has 

established the existence of such solutions by probabilistic arguments. As to the 

systems of elliptic PDEs, see S. Koike [29} and M. A. Katsoulakis - S. Koike [28}. 

Our main purpose here is to get the comparison principle and existence of 

solutions of the problem (1.1). Since we deal with the case where F is degenerate 

on an, we consider the boundary condition in the viscosity sense. 

This chapter is organized in the following way. In Section 2 we give the defini­

tion of solutions of (1.1) and the equivalent propositions. In Section 3 we prove the 

comparison principle of solutions of (1.1). We remark that its proof is improved as 

compared with that of Theorem 3.1 in Chapter 1. Sections 4 and 5 provide the ex­

istence of continuous solutions of (1.1). Since it is difficult to discuss it for general 

elliptic operators, we consider only the case F is the Hamilton-Jacobi-BelIman op­

erator in these sections. In Section 4 we apply the iterative approximation scheme 

48 



by B. Hanouzet - J. L. Joly [14] to obtain the existence result, assuming the exis­

tence of continuous solutions of the usual obstacle problems. In Section 5 we show 

it by using the results in [27]. In Section 6 we prove that the unique solution of 

(1.1) obtained in Section 4 can be represented as the optimal cost function associ­

ated with the impulse control problem. In Section 7 we treat the boundary value 

problem of oblique type involving the operator M. For the related problems, see 

P. L. Lions - B. Perthame [35], P. Dupuis - H. Ishii [10], [11] and H. Ishii [17J. 

§2. Definitions of solutions 

In this section we shall give the definitions of solutions of (1.1) and the equiv­

alent propositions. We. set 

{ 

max{F(x,r,p,X),r-m} 

G*(x, r,p,X, m) = max{max{F(x, r,p,X),r - m}, 

max{r g(x),r-m}} 

{ 

max{F(x,r,p,X),r-m} 

G*(x, r,p,X, m) = min{max{F(x, r,p,X), r - m}, 
max{r - g(x),r - m}} . 

(x En), 

(x E an), 
(x En), 

(x E an), 

where FE c(n x JR X JRN X $N) is a degenerate elliptic operator. 

Definition 2.1. Let u : n -+ JR. 

(1) We say u is a subsolution of (1.1) provided u* < +00 on n and for any 

t.p E C 2(n), if u* - t.p attains a local maximum at x E n, then 

G*(x, u*( x), Dt.p(x), D2t.p(x), Mu*( x)) o. 

(2) We say u is a supersolution of (1.1) provided u* > -00 on n and for any 

t.p E C 2(n), if u* - t.p attains a local minimum at x E n, then 

G*(x,u*(x),Dt.p(x),D2t.p(x),Mu*(x)) ~ o. 
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(3) We say u is a solution of (1.1) provided u is both a sub- and a supersolution 

of(1.1). 

Next we state the equivalent propositions of Definition 2.1. We refer the 

reader: to M. G. Crandall - H. Ishii - P. L. Lions [8; Section 7] for general elliptic 

PDEs. 

Proposition 2.2. Let u : n --+- R. 

(1) u is a subsolution of (1.1) if and only ifu· < +00 on n and for all x E n and 

(p, X) E J~'+ u·( x), u· satisfies 

G.(x,u·(x),p,X,Mu·(x)) ~ o. 

(2) u is a supersolution of (1.1) if and only if u. > -00 on n and for all x E n 
and (p, X) E J~'-u.(x), u. satisfies 

G·(x, u.(x),p,X, Mu.(x)) ;;;:: O. 

We note that, when F E C(S1 x R X RN X $N) and 9 E C(n), G· (resp., G.) 

is the U.S.c. (resp., l.s.c.) envelope of the function G: 

( ) 
_ { max{F(x, r,p,X), r - m} 

G x,r,p,X,m - { () } max r-g x ,r-m 

(x En), 
(x E an). 

Proposition 2.3. Assume M : USC(n) --+- USC(n) and M : LSC(n) --+­

LSC(S1). Let u : n --+- R. 

(1) u is a subsolution of (1.1) if and only ifu· < +00 on n and for all x E nand 

(p, X) E ~'+ u·( x), u· satisfies 

G.(x, u·(x),p, X, Mu·(x)) ~ O. 

(2) u is a supersolution of (1.1) if and only if u. > -00 on n and for all x E n 

and (p,X) E ~-u.(x), u. satisfies 

G·(x,u.(x),p,X,Mu.(x));;:: o. 
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Since the proofs of the above propositions are similar to those in [8], we leave 

them to the reader. 

Finally, we state the definition and the equivalent propositions for the usual 

obstacle problems we treat in Sections 4 and 5. 

(2.1) { 
max{F(x,u, Du,D2u),u - t,b} = 0 

max { u - g, u - t,b} = 0 

Definition 2.4. Let u : S1 --? JR. 

III S1, 

on aS1. 

(1) We say u is a subsolution of (2.1) provided u· < +00 on S1 and for any 

<.p E G2(S1), if u· - <.p attains a local maximum at x E S1, then 

(2) We say u is a supersolution of (2.1) provided u. > -00 on S1 and for any 

<.p E G2(S1), if u. - <.p attains a local minimum at x E S1, then 

(3) We say u is a solution of (2.1) provided u is both a sub- and a supersolution 

of (2.1). 

Proposition 2.5. Let u : S1 --? JR. 

(1) u is a subsolution of (2.1) if and only if u· < +00 on S1 and for all x E S1 and 

(p, X) E J&+ u"'( x), u'" satisfies 

(2) u is a supersolution of (2.1) if and only if u. > -00 on S1 and for all x E S1 . 

and (p,X) E J&-u",(x), u'" satisfies 

.G"'(x,u",(x),p,X,t,b",(x)) ~ o. 
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Proposition 2.6. Assume t/J E C(n). Let u : n ........ R. 

(1) u is a subsolution of(2.1) if and only ifu· < +00 on n and for all x E n and 

(p,X) E ~'+u·(x), u· satisfies 

G.(x,u·(x),p,X,t/J(x» ~ o. 

(2) u is a supersolution of (2.1) if and only if u. > -00 on n and for all x E n 
and (p,X) E ~-u.(x), u. satisfies 

G·(x,u.(x),p,X,t/J(x»)::::: O. 

We omit the proofs of the above propositions. See [8; Section 7]. 

§3. Comparison principle of solutions 

In this section we shall prove the comparison principle of solutions of the 

problem (1.1). To do so, we use the similar techniques to those in H. M. Soner 

[41], H. Ishii [15] and M. A. Katsoulakis - S. Koike [28]. 

We make the following assumptions. 

(A.I) n c RN is a bounded domain. 

(A.2) There exist constants r, s, t > 0 and a mapping n E C(n : lRN) with Inl = 1 

on an such that 

z + K(r, s, n(z» en for all z E an, 

y + K (r, t, I:') en for all x E K(r, s, n(z», y E B(z, r) n n. 

(A.3) There exists a mapping P : n x (R+)N ........ (R+)N satisfying 

x + P(x,~) E n 

P(x,O = ~ 

P(·,e) E c(n) 
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(AA) FE C(!1 x lR X lRN X $N). 

(A.5) There exists a function WI E C(lR+) such that WI(O) = 0 for which 

F(y,r,p, Y) - F(x, r,p,X) ~ wI(alx -- Yl2 + Ix - yl(lpl + 1») 

if - 3a (~ ~) S (~ ~Y) S 3a (!J -f) 
for all X,y E !1, p E lRN, a> 1 and X, Y E$N. 

(A.6) There exists a function W2 E C(lR+) such that W2(O) = 0 for which 

IF(x,r,p,X) --F(x,r,q,X)1 sW2(lp-q\) 

for all x E !1, r E lR, p, q E lRN and X E $N. 

(A.7) There exists a q:mstant >. > 0 such that 

F(x,r,p,X) -- F(x,s,p,X) S >.(r -- s) if r S s 

- N N for all x E !1, r, s E lR, p E lR ,X E $ . 

(A.S) k E C((lR+)N) and there exists a constant ko > 0 such that k(~) ko for 

all ~ E (lR+)N. 

(A.9) 9 E C(!1). 

Remark 9.1. (1) When an is of class C2, we take r = s = t > 0 sufficiently 

small and n E C(!1 : lRN) such that n(x) is the inner normal to !1 at x E a!1. 

Then it is easily verified that (A.2) is satisfied. 

(2) As to the assumption (A.3), see Remark 2.1 in Chapter 1. 

(3) If (A.6) holds, then the operator F is degenerate elliptic. (d. [8; Remark 304].) 

(4) A typical example of F satisfying (AA)-(A.7) is the Hamilton-Jacobi-Bellman 

operator treated in Sections 4 and 5. 

We notice that if (A.l), (A.3) and (A.S) hold, then Proposition 2.7 in Chapter 

I holds. The comparison principle of solutions of (1.1) is stated as follows. 
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Theorem 3.2. Assume (A.1)-(A.9) hold. Let u and v, respectively, be 

a subsolution and a supersolution of (1.1). For each z E an, let K% = z + 

K(r, 5, n(z)). If anyone of the followings holds, then u'" ~ v", on n. 

(1) limsuPKaz-+%u"'(x) = u"'(z) and liminfKz3z-+zv",(x) = v",(z) for each z E 

an. 

(2) limsuPKaz-+z u"'(x) = u"'(z) and u"'(z) ~ g(z) for each z E an. 
(3) liminfKaz-+% v",(x) = v",(z) and v",(z) ~ g(z) for each z E an. 

Remark 9.9. We call the properties in Theorem 3.3 (1) nontangential upper­

and lower semicomtinuity, respectively. See M. A. Katoulakis [26], [27] and [28]. 

We need the following lemma to deal with the term u - Mu. 

Lemma 3.4. Let 0 C JRN be compact and u E U SC( 0). Then, for a.a. 

q E JRN, the function u(x) + (q,x) takes its strict maximum on O. 

For the proof, see H. Ishii - S. Koike [18; Lemma 3.3J. 

Proof of Theorem 9.2. We may assume u E U SC(n) and v E LSC(n). We 

easily observe that u Mu on n. First let the condition (1) hold. 

We suppose sup z EO( u - v) = 58 > 0 and shall get a contradiction. Let 

L = sUPzEO Ixl and let {edl~i~N be the standard basis for JRN. We take q ~ 0 

such that 

(3.1) 

(3.2) (q, ei) > 0 for each i = 1"" ,N 

and fix it. Then by Lemma 3,4 the function u(x) - vex) + (q,x) attains its strict 

maximum at z( = Zq) E n. We easily see 

(3.3) u(z) - v(z) + (q, z) ~ 48, u(z) > v(z). 
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We claim 

(3.4) v(z) < Mv(z). 

To prove this, suppose v(z) ~ Mv(z). Since v E LSC(n), using the definition 

of M and (A.8), we can find e:: ~ 0 satisfying e:: 0, z + e:: E n and Mv(z) == 

k(e::) + v(z + ez)' Thus u(z) < Mu(z) and v(z) > Mv(z) imply 

u(z) - v(z) + (q, z) s u(z + ez) - v(z + e::) + (q, z + e::) - (q, e::)· 

Then we obtain a contradiction because (q, ez) > 0 by (3.2). Therefore we get the 

claim (3.4). 

We divide our consideration into three cases. 

CaJe 1. z E an and v(z) < g(z). 

Let {Zn}nEIN C K:: be a sequence such that 

(n -4 +00). 

We define the function <I>(x, y) on n x n by 

<I>(x,y) == u(x) - v(y) + (q,y) - ~n Ix - y - Zn + z12, 

where an = s5/lzn - zl2 and So > 0 satisfies WI (s5) < ).f}. 

Let (Xn,Yn) E n x n be a maximum point of <I>. Since <I>(Zn,Z) < cfl(xnl Yn), 

we get 

(3.5) u(zn) - v(z) + (q,z) 

S U(zn) - v(z) + (q, z) + ~n IX n - Yn - Zn + zl2 

S u(xn) - V(Yn) + (q,Yn)' 

The function u(x) - v(y) is bounded above on n x n because u, -v E USC(n) 

and n x n is compact in ]R2N. Hence (3.5) implies IXn - Yn - Zn + z\ -4 0 as 
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n ~ +00. Moreover we easily observe IXn -Ynl ~ 0 as n ~ +00. Then there exist 

a sequence {nk} C 1N and a point z E n such that Xn,,' Yn" ~ z as k ~ +00. It 

follows from this, (3.5) and the semicontinuity of u and v that 

u(Z) - v(z) + (q, z) ~ u(z) - v(z) + {q, z}. 

Since z is a unique maximum point of the function u(x) - v(x) + (q, x) on n, it 

follows from this inequality that z = z and 

(3.6) (n ~ +(0). 

Thus, by (3.5) we get 

lim (u(Xn) - v(Yn)) = u(z) - v(z). 
n ...... oo 

Using (3.5), this equality and the semicontinuity of u and v, we have 

(3.7) u(xn) ~ u(z), v(Yn) ~ v(z), anlxn - Yn - Zn + zl2 ~ 0 (n ~ +(0). 

We may consider Xn E n for sufficiently large n E 1N because (3.7) implies IX n -Yn­

Zn + zi < tlzn - zl for large n E 1N, where t is the constant' in (A.2). Furthermore, 

it is observed by the definition of an and (3.7) that 

(3.8) (n ~ +(0). 

We can apply the maximum principle for semicontinuous functions to obtain 

X, Y E $ N satisfying 

and 

(Pn, X) E p'+u(xn), 

(Pn + q, Y) E P'+V(Yn), 

(10) (X 0) (1 -1) -3an 0 1 ~ 0 -Y ~ 3an -1 1 ' 
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where pn = O:n(xn - Yn - Zn + z). Using the fact that u and v are respectively, a 

subsolution and a supersolution of (1.1), we obtain the following inequalities: 

(3.9) 

(3.10) 

We note v(Yn) < g(Yn) for large n E N by (A.9), (3.6) and v(z) < g(z). Moreover, 

since Mv E LSC(n) by Proposition 2.7 (3) in Chapter I, using (3.4) we get 

limsup(v(Yn) - MV(Yn)) S v(z) - Mv(z) < 0 
n--+oo 

and conclude that v(Yn) - MV(Yn) < 0 for sufficiently large n E IN. Therefore, by 

(3.10) we obtain 

(3.11) 

From (3.9) and Xn E n for large n E lN, we have 

(3.12) 

Subtracting (3.12) from (3.11) and using (A.S), (A.6), (A.7) and (3.3), we obtain 

~ F(Yn, u(xn),Pn + q, Y) - F(xn, u(xn),Pn,X) + A{q, Yn) 

S WI (O:nlxn - Ynl 2 + IXn - Ynl(IPnl + 1)) + w2(lqj) + ALlql· 

Recalling (3.1), (3.7) and (3.8) and letting n -+ +00, we get 

which is a contradiction. 

CaJe 2. z E an, u(z) > g(z). 
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As in Case 1, we define the function <P by 

<p(x,y) = u(x) - v(y) + (q,x) - an Ix - y + Zn - zI2 
2 

We can prove the remainder similarly to the above. 

Case 9. zEn. 

For a > 0, we consider the function 

on n x n. 

a 
<P(x,y) = u(x) - v(y) + (q,x) - "2lx _ Yl2 on n x n. 

In this case the proof is standard. See [8; Section 3]. 

When the condition (2) (resp., (3)) holds, it is sufficiently to consider only 

Case 2, 9 (resp., Case 1, 9) in the above proof. Thus we obtain the result. I 

Remark 9.5. As compared with the proof of Theorem 3.1 in Chapter I, the 

above one is improved on the point that we do not need the uniform continuity iIi 

the variable X E $N and the convexity in (r,p,X) E R X RN X $N. 

We conclude this section by stating the comparison principle of solutions of 

the usual obstacle problem (2.1). We omit the proof because it is similar to that 

of Theorem 3.2. 

Theorem 3.6. Assume (A.l), (A.2), (AA)-(A.7), (A.9) and .,p E C(n). Let 

u, v be, respectively, a subsolution and a supersolution of(2.1). For each Z E an, 
let Kz = Z + K(r, s, n(z)). If anyone of the followings holds, then u· ~ v. on n. 
(1) limsuPKz3x-+zu·(x) = u·(z) and liminfKz3x-+zv.(x) = v.(z) for each z E 

an, 
(2) limsuPKz3x-+z u·(x) = u·(z) and u·(z) ~ g(z) for each z E an, 
(3) lim infKz 3x-+z v.(x) = v.(z) and v.(z) ~ g(z) for each z E an, 

Remark 9.7. Of course, in Theorems 3.2 and 3.6, if u, v E C(n), then u ~ v 

on n. 
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§4. Existence of continuous solutions 

In this and the next section we shall establish the existence of continuous 

solutions of (1.1). As mentioned in Section 1, it is difficult to show it for the 

general elliptic operator case. Hence in these sections we treat the case F is the 

Hamilton-Jacobi-Bellman operator: 

F(x, r,p, X) = sup{ - trCO'(x, a)O'(x, a)X) + (b(x, a),p) 
aEA 

+ c(x, a)r - f(x, a)}, 

where A is a compact metric space and tr A and t A denote, respectively, the trace 

and the transposed matrix of A. In this and the next sections we assume an is of 

class C2 • Then we no~e (A.2) is satisfied. Let p( x) = dist (x, nC
). We make the 

assumptions of the coefficients of F as follows. 

(C.1) sUPaEA {IIO'(" a)llwl,OO(n)' Ilb(·, a)llwl,OO(n)' Ilc(·, a)llC(n)' Ilf(', a)llc(n)} 

< +00. 

(C.2) inf{c(x, a) Ix E n, a E A} ~ Co for some co> O. 

(C.3) There exists a function a E W1,OO(n) satisfying 

(i) tr(tO'(x, a(x ))O'(x, a(x ))D2 p(x ))-(b(x, a(x )), Dp(x)) ~ 7] for some 7] > 0, 

(ii) (to'(x, a(x))O'(x, a(x))Dp(x), Dp(x)) = 0, 

(iii) There are unit vectors {elh~I~N-l C 1RN by which the tangent 

plane at z is spanned such that 

except at most two vectors {ell' eI2 }, 

for all x E an. 
(CA) There exist a constant 7] > 0 and a function (3 E W1,OO(n) satisfying either 

(i) treO'(x, {3(x))O'(x, (3(x))D2p(x)) - (b(x,{3(x)),Dp(x)) ~-7] 

or 
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(ii) (tu(x, {3(x))u(x, {3(x))Dp(x),Dp(x)) ::2: 1] 

for all x E an. 

Remark 4.1. (1) As to the assumption (C.3), see M. A. Katsoulakis [26] and 

(27]. 

(2) We consider the following operator: 

F(x, r,p,X) = max{ -trX + r - t(x), (b(x),p) + r - j2(x)}. 

Here b E Wl,OO(n), b = -1/ on on and p, P E C(n). Then the above F satisfies 

the assumptions (C.1)-(CA). 

(3) In the case u(x, a)= 0 for all x E n, a E A, the existence of solutions was 

proved by H. Ishii [15; Section 4]. 

( 4) In the case only (C.4) (i) or (ii) holds for all z E on and a E A, we have 

already proved the existence of solutions of (1.1) by Perron's method. See Section 

4 in Chapter 1. 

Under the assumptions (A.1), (A.3), (A.B), (A.9), (C.1) and (C.2), Theorems 

3.2 and 3.6 hold. We get the following theorem. 

Theorem 4.2. Assume (A.1), (A.3), (A.B), (A.9) and (C.1)-(CA). Then 

there exists a unique solution U E C(f2) of the problem (1.1). 

In order to show this theorem, the following proposition plays an important 

role. 

Proposition 4.3. Assume (A.1), (A.9) and (C.1)-(C.4). Then, for each 

'tP E C(n), there exists a unique solution U'I/J E C(n) of the problem (2.1). 

Here we admit Proposition 4.3 is true and prove Theorem 4.2. We give the 

proof of Proposition 4.3 in the next section. 
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Proof of Theorem 4.2. We adopt the iterative approximation scheme intro­

duced in B. Honouzet - J. L. Joly [14]. 

Let C1 = max{suPaEA {llf(', a)lIc(Sl)}, IIgllc(n)}' By replacing f(·) a), 9 with 

f(', a) + C}, 9 + C1 , respectively, we may assume f(" a) ~ 0 (a E A), 9 ~ 0 on O. 

Using the results in [27], there exists a unique solution Uo E C(O) of 

(4.2) { 
F(x,u,Du,D2u) = 0 

u-g=O 

In 0, 

on a~. 

Since M Uo E C( 0) by Proposition 2.7 (4), (5) in Chapter I, there exists a 

unique solution Ul E C(O) of 

(4.3h { 
max{F(x,u,Du,D2u),u - Muo} = 0 

max{u - g,u - Muo} = 0 

in· 0, 

on a~. 

by Proposition 4.3. For n = 2,3," . , we denote by Un E C(O) a unique solution 

of 

(4.3)n { 
max{F(x,u,Du,D2u),u - MUn -l} = 0 

max{u - g,u - Mun-d = 0 

In 0, 

on a~. 

(It is follows from Proposition 2.7 (4), (5) in Chapter I that MU n -1 E C(O).) 

Since Ul is a subsolution of (4.2), we obtain Ul S Uo on 0 by Theorem 3.6. It is 

easily seen that y. == 0 on 0 is a subsolution of (4.3h. Thus Theorem 3.6 implies 

Ul ~ 0 on O. Since 0 S MUI ~ Muo on 0 by 0 S Ul S Uo on 0 and Proposition 

2.7 (2) in Chapter I, U2 is a subsolution of (4.3)1' Then we get u2 S Ul because of 

Theorem 3.6. In the similar way to the above, we have U2 ~ 0 on O. Continuing 

these processes, we conclude 

( 4.4) on O. 

Next we show an upper estimate. We take J.t E (0,1) such that J.tl\uol/C(o) ~ 

ko. For each n E N, there exist On E (0,1] such that 

(4.5) on O. 
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It is observed by (A.8) and Proposition 2.7 (2) in Chapter I that 

on S1. 

We define 'IjJ, w and Vo as follows: 

(4.7) 

(4.8) 

wE C(n) : a unique solution of 

{ 
max{F(x,u,Du,D2u),u - 'IjJ} = 0 

max{u - g,u - 'IjJ} = 0 

Vo E C(S1) : a unique solution of 

{ 
max{F(x,u,Du,D2u),u - ko} = 0 

max { u - g, u - ko} = 0 ' 

In S1, 

on an, 

In S1, 

on aS1. 

Noting 'IjJ ::;; MUn+I on n, we see that w is a subsolution of (4.3)n+2. Hence we 

get w::;; U n+2 on S1 by Theorem 3.6. It is observed by I(·,a) ~O, 9 ~ 0 on S1 and 

,( 4.8) that Bnvo is a solution of 

(4.9) 

where 

{ 
max{Fen(x,u,Du,D2u),~ - Bnko} = 0 

max{u - Bng,u - Bnko} - 0 

In n, 
on aS1, 

Fe(x,r,p,X) = sup{ - treu(x,a)u(x,a)X) + (b(x,a),p) 
aEA 

+c(x,a) -BI(x,a)}. 

It follows from I(',a) ~O, 9 ~ 0, 'IjJ ~ Bnko on n and (4.7) that Bnw is a super­

solution of (4.9). Thus, using Theorem 3.6, we have Bnvo ::;; Bnw on n. Moreover, 

we easily see that (1 - Bn)Un+l and (1- Bn)w are, respectively, a subsolution and 

a solution of 

{ 
max{Fl_en(x,u,Du,D2u),u - (1- Bn)'IjJ} = 0 

max{u - (1- Bn)g,u - (1- Bn)'IjJ} = 0 
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Therefore we obtain (1-8n )un +l .:::; (1-8n )w on n by Theorem 3.6. Consequently, 

we get 

( 4.10) on n. 

From J.llluollC(o) .:::; ko and f(·,ex) ~ 0, 9 ~ 0 on n, we observe that J.lUn+l is a 

subsolution of (4.8). Thus, by Theorem 3.6 we have J.ltl n+l .:::; Vo on n. Hence 

(4.10) implies 

(4.11) on n. 

By the way, since Ul - U2 .:::; Ul on n, we obtain U2 - U3 .:::; (1 - J.l)U2 on n. 

Therefore we can take 82 = 1 - J.l in (4.5) when n 2. Then it is observed by 

(4.11) U3 - U4 .:::; (1- J.l )2U3 on n. Therefore, using the above argument inductively, 

we conclude 

( 4.12) on n, 

which is our desired estimate. 

Combining (4.4) with (4.12), we can find a function U E C(n) such that 

IIUn - ullC(o) --+- 0 as n --+- +00. By Propositon 2.7 (6) in Chapter I and the 

stability of solutions (cf. P. L. Lions [34; Proposition I.3j ), we conclude that U is 

a solution of (1.1). The uniqueness follows from Theorem 3.2. I 

§5. Proof of Proposition 4.3 
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In this section we shall show Proposition 4.3. We always assume the assump-

tions in Proposition 4.3. We prepare some notations. 

Wt = standard N-dimensional Brownian motion. 

A = {at : [0, +00) -+ A : progressively measurable}. 

B = {8 : stopping time}. 

X t : solution of 

{ 
dXt = -b(Xt, at)dt + V2O'(Xt, at)dWe, t > 0, 

Xo = x E n. 
r = inf {t ~ a I x t ~ n}. 

1 A = characteristic function for A. 

Let 9 = min{g,1P} on an. We consider the penalized problem for (4.1). 

(5.1) { 
F(x, u_n, DUn, D2un) + n( Un -1P)+ = a 
Un = 9 

where n E 1N and r+ = max{r, a}. 

In f2, 

on an, 

Noting r+ = sup{ I'r I a ~ I' ~ 1}, it is easily seen that (5.1) is equivalent to 

the following PDE: 

{

SUP G'EA {-tr(tO'(x, a)O'(x, a)Dun ) + (b(x,a),Du n ) 
lE[O,!] 

(5.2) + (c(x, a) + nl') Un - f(x, a) - nl'1P} = a 
Un = 9 

In n, 
on an. 

Then applying the results in M. A. Katsoulakis [27], for each n E 1N, there exists 

a unique solution Un E C(n) of (5.2). 

N ext we consider the following problem: 

(5.3) { 
F(x'~n,Dvn,D2Vn)+n(Un-1P)+ =0 

Vn 9 
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where Un is the function obtained above. Using the results in [27] again, for each 

n E lN, there exists a unique solution Vn E C(n) of (5.3) and it is characterized as 

follows: 

Vn(X) = inf Ex { [T (J(Xt,at) - n(un(Xt) - ?j>(Xt))+) 
crEA Jo 

. exp (-lot C(X'" a,,)ds) dt 

+g(XT) exp (-loT C(XSl as)ds) } . 

Since (5.1) and (5.2) are equivalent to each other and the uniqueness of solutions 

of (5.1) holds in the class C(n), we get 

(5.4) Un(X) = inf Ex { [T (J(Xt, at) - n(un(Xt) - ?j>(Xt))+) 
crEA Jo 

. exp (-lot c(X", a,,)ds) dt 

+g(XT) exp (-loT c(Xs, a,)ds) } . 

Using (C.4) and the barrier argument, we have 

(5.5) Un 9 on an. for all n E IN. 

Since the operator nr+ is monotone with respect to n E IN and Un ~ -c for large 

C > 0, we obtain 

(5.6) on n 

by the comparison principle of solutions of (5.1). (cf. M. G. Crandall - H. Ishii -

P.1. Lions [8; Theorem 7.9J.) Hence we can define the function U by 

(5.7) U(X) = lim un(x) (= limSUPUn(Y)) . 
n-++oo n-++oo 

y-x 
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Then we get the following lemma. 

Lemma 5.1. The above function U is a u.s.c. subsolution of(2.1). 

Proof. Since the sequence {Un}nE1N is decreasing by (5.6), we easily observe 

U E U 5C(n). Using (5.5) and letting n -+ +00, we have U ~ 9 on an. 
For any cp E C2 (n), we assume that U -cp attains a local maximum at Xo E n. 

We may consider Xo E n and that Xo is a strict local maximum point of U - cpo 

Then there exists as> 0 such that 

(5.8) U(Xo) - cp(xo) > u(x) - cp(x) for all x E B(XOI S)( en), x i- Xo. 

Let Xn be a maximum point of Un -cp on B(xo, S). Then there exists a subsequence 

{XnA:hE1N C {Xn}nEN such that 

Since 

we get 

for all x E B(xo, S), 

U(Xo) - cp(xo) limsup(un.,(x) - cp(x)) 
k--+oo 
x--xo 

~ limsup(unA:(xnA:) - cp(xnA:)) 
k--+oo 

= (3 - cp(x) 

~limsup(unA:(x) - cp(x)) 
k--+oo 

x-+x 

= u(x) - cp(x). 

Therefore using (5.8) and the above inequality, we obtain 

(5.9) (n -+ +00). 
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(cf. G. Barles - B. Perthame [3; Lemma A.3].) Since Un is a subsolution of (5.1), 

we get 

It follows from (C.1) and (5.9) that there exists a constant C > 0 such that 

for all n E N. 

Thus passing to the limit as n ~ +00, we have 

U(XO) - '¢(xo) S o. 

Moreover, (5.10) implies F(xn, un(xn), Dcp(xn), D2cp(xn)) O. Sending n ~ +00, 

we obtain 

Therefore we have completed the proof. I 

Remark 5.2. We notice that we cannot apply the results for the limit opera­

tions in [8; Section 5] to (2.1) and (5.1) directly since the term nCr - ,¢(x))+ does 

not converge to 0 locally uniformly on n x 1R as n ~ +00. 

We return to the formula (5.4). According to N. V. Krylov [30; p.37], we get 

the following lemma. 

Lemma 5.3. The formula (5.4) can be rewritten as follows. 

(5.11) 

Un(X) = ~~~Ez {[AB f(X" 0,) exp (-l' c(X"o.)dS) dt 
(JEB 

+l'<r.p.(X,)exp (- 1.' c(X"o.)dS) 

+l(J~Tg(XT)exp (-iT c(Xs,os)ds) }, 
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where a 1\ b = min(a, b) and '¢n = tP + (un - ,¢)+. 

Proof. We remark that the function Un satisfies the dynamic programming 

principle: 

for any e E B. Since Un :s;;: '¢n on S1, we get 

(5.12) 

Un(X):S;;: l~~Ex {J.TAU !(X"cr,)exp (- J.' c(X" ",,)dS) dt 
IJEB 

+1'<T>P.(X,) exp ( - t c(X" cr,)dS) 

+11J;;;:T9(XT) exp (-loT c(X .. ; a .. )ds) } . 

Let en = en,Ot = inf{t ~ 0 I un(Xt ) ~ '¢(Xt )}. Then using un(Xt ) < '¢(Xt ) 

(0 t < en) and Un (XlJn ) = '¢(XlJn) with probability 1, we have 

un(x) = l~~E. {J.",n !(X" cr,) exp (- J.' C(X"cr,)dS) dt 

+1,n<T>Pn(X3)exp ( - J.' C(X"cr,)dS) 

+1IJn;;;:T9(XT)exp (-loT c(Xs,as)ds) }. 

Combining this with (5.12), we obtain the result. I 

U sing this lemma, we get 
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Lemma 5.4. Un =t U on n as n -+ +00 and the function u is represented as 

u(x) = ~~~Ez {i™ !(Xt,at)exp (-it c(X."a.,)ds) dt 
SEB 

+1e<r.p(Xe)exp (- [ C(X,,",)dS) 

+lS~Tg(XT) exp (-iT c(X." a.,)ds) } . 

Proof. It is easily seen by Lemma 5.1 that u ::; 1f; on n. We observe that 

1f;n E C(n) for all n E :IN' and 

1f;n(X) '\,1f;(x) (n -+ +00) for each x E n 

by (5.6) and (5.7). Hence, using Dini's Theorem, we get 

on n (n -+ +00). 

Letting n -+ +00, we conclude that 

RHS of (5.11) =t ~~~ Ez {i™ !(Xt, at) exp (-it c(Xs, as)ds) dt 
SEB 

+1e<r.p(Xe) exp ( -[ c(X" ",)dS) 

+lS~Tg(XT)exp (-iT c(X."as)ds)}. 

On the other hand, we have already obtained Un ( X) -+ U( X) as n -+ +00 for 

each x E n by (5.7). Thus we have the result. I 

We are now in a position to prove Proposition 4.3. 

Proof of Proposition 4.9. We have only to show that u is a supersolution of 

(2.1 ). 
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For any <p E C2 (n), we assume U - <p takes a strict local minimum at Xo E n. 
We consider the case Xo E an. Then we may assume u(xo) < g(xo), because, 

if otherwise, we get u(xo) = g(xo) or u(xo) t/J(xo) and have nothing to prove. 

Since u E C(n) by Lemma 5.4, there exists a 8> 0 satisfying 

u(x) < g(x) 

u(x) < t/J(x) 

x E B(xo, 8) nan, 

x E B(xo,8)n n. 

Moreover, Lemma 5.3 implies there exists an no E N satisfying, for all n > no, 

(5.13) 

(5.14) 

un(x) < g(x) 

un(x) < t/J(x) 

x E B(xo,8) nan, 

x E B(xo,8) n n. 

Let Xn E B( xo, 8) n n be a minimum point of Un - <p on B( Xo, 8) n n. By the 

same argument as in the proof of Lemma 5.1, we have 

(n -4 +(0). 

Therefore, using (5.13), (5.14) and the fact that Un is a supersolution of (5.1), we 

obtain 

Sending n -4 +00, we get 

Thus the proof is completed. I 

§6. Stochastic representation of solutions 

In this section we shall prove that the unique solution of (1.1) is represented 

as the optimal cost function for the impulse control problem. 
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We call a collection (a, 0, e) an impulse control if 

a E A, 

o = {OJ} t=~ c B satisfies 

01 < O2 < ... < On < ... -+ +00 (n -+ +00), 

e = {edt=~ : a sequence of random variables taking values on (1R+)N, 

adapted with respect to {Od t=~ . 

The C denotes the set of all impulse controls. 

We define the sequence of diffusions {Xr}!~ with jumps by the Ito equation: 

We set 

{ 
dX~ = -b(Xf, at)dt + v'2u(Xf, at)dWt , t 20, 

o -
Xo = ~ En, 

{ 
dXr = -b(Xr,at)dt+v'2u(Xr,at)dWt, t > On, 

Xr; = X t
n- 1 + It=9n en t :::;: On· 

t 2 O. 

Then the process X t , which is right continuous and has left limits, satisfies the 

following stochastic differential equation: 

{ 
dXt = -b(Xt, at)dt + v'2u(Xt, at)dWt + 2:t=~ eiO(t - Oi)dt, 

Xo =x, 

t ~ 0, 

where o(t) is the Dirac measure. We put 

We call a collection (a, 0, e) E C an admissible impulse control if it satisfies 

a.s. on {r < +oo}, 

that is, no jump of the process X t is outside of n before r. We denote by Co the 

set of all admissible impulse controls. 

71 



Now, we can define the cost function for this system: 

K = (a,8,e), 

l(x,K) = Ex {iT !(Xt,at)exp (-it c(Xa,aa)ds) dt 

+ ~ lei <+ook(ei) exp (- f
e
; c(Xa, aa)dS) 

1=1 10 

+g(XT) exp (-iT c(Xa, aa)ds) } 

and the optimal cost function: 

w(x) = inf lex, K). 
KECo 

Then we have the following theorem. 

Theorem 6.1. Assume (A.l), (A.3), (A.S), (A.9), (C.l)-(CA) and an is of 

class C2
• Let U be a unique solution of (1.1). Then U = w on n. 

We state some properties of the sequence {Un}nEN of solutions of (5.1). 

Lemma 6.2. For each n E IN, we have 

(6.1) 

Un(x)= inf Ex{ fT !(xt,at)exp (- tC(Xa,~a)ds)dt 
KEcn 10 10 

+ t 1ei<+ook(ei) exp (_18i 

c(Xa, aa)ds) dt 
;=1 0 

+g(XT) exp (_1T c(Xa, aa)ds) dt} , 

where Cn = Ha, {8dt=~, {ot=~) E Co 18i = +00 for i ~ n + I}. 

Proof By Lemma 504 the function Un can be represented as follows: 

un(x) = ~~~Ex {[AI !(X"",.)exp (_[ c(X" ",,)dS) dt 
8EB 

-t'l'<rMUn-l(X,)exP ( - 1.' C(X.,,,,,)dS) 

+19~Tg(XT)exp (_1T c(Xs,aa)ds)}. 
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We prove the assertion by induction. Let Wn = RHS of (6.1). 

For n = 1, it is trivial. We assume Un = Wn on n for n ~ 1 and show 

U n+l = W n+l on n. 
Fix x E n and K E en+1

• We may consider ()1 < r, because, if otherwise, we 

have the result. It is clear that 

We observe 

Since (aH811 {()i - ()d i:l , {ed ~l) E en, we take the infimum with respect to 

admissible controls in en to obtain 

Wn+l{X) sE. {J." f{X"a,)exp (- 1.' c{X"a.)ds) tit 

+(un{Xe,-o +6) + k{~,))exp (- J." c{X"a.)d.s) dt}. 
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Moreover, taking the infimum with respect to 6 ~ 0 satisfying Xth -0 + e E Q, we 

have 

Wn+l(X) 'fE, {1." !(X" a,)exp ( - J.' c(X" a,)ds) dt 

+Mun(X., -0) exp ( -1," c(X., a,)ds) dt} . 

Hence by taking the infimum with respect to (0,81 ) E A x B we get Wn+l (x) ::;;; 

Un+l(X). 

Next we prove the opposite inequality. For each e > 0, there exists an impulse 

control K = (o,8,e) E Cn+1 such that 

w(x) + e ~ J(x,K). 

We calculate 

W n+1(x) +. ~ E, {1," !(X" a,)exp ( - J.' c(X"a,)ds) dt 

+(un(X.,-o + e,) + k(\l»exp ( - 1." c(X.,a,)dS) dt} . 

~ E, {1." !(X"a,) exp ( - J.' c(X" a.)ds) dt 

+Mun(X., -0) exp ( - 1." c(X" a.)ds) dt} 

~ Un+l(X). 

Letting e -+ 0, we have Wn+l(X) ~ Un+l(X). Thus we have completed the proof. I 

Remark 6.9. We can show that the function W satisfies 

w(x) = ~~~Ex {I
T 

!(Xt,ot)exp (-It C(Xs,os)dS) dt 
DEB 

+l'<rMw(X.) exp (- 1.'c(X" a,)dS) dt 

+g(XT)exp (-IT C(Xs,os)dS) dt} 
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by the similar way. See G. Barles [1; Theorem 2.1]. 

Lemma 6.4. We have 

(6.2) 
C 

kon 
for some C > O. 

Proof. First we remark that W • •• ~ Wn ~ ••• ~ WI Uo on n. Let 

]{ = (o,8,e) E Co. We set 

8!l = { 8i if i ~ n, 
~ +00 ifi~n+l) 

on = {8nt:~) 

Let Xl'" be the process associated with ]{n and Tn = inf{t ~ 0 I Xl'" fI, n}. Then 

we note that if T < 8n+1 or 8n +1 = +00, then Tn = T. Hence we get 

J(a:, K) - J(a:, Kn) ~ E. [ {l f(X"a,)exp ( -[ c(X" a.)ds) dt 

+g(XT)exp (_foT c(X,)o,)ds) dt 

-J.~" f(X~, a,) exp ( -[ c(X!" a.)ds) dt 

+g(X;,)exp (-t' c{x:"a.)dS) dt} 

o 1,,+, <+~I,,+,:<::r 1 

E. [1',<+~U(X',)exp (- J." c(X"a.)dS) dt 

1 
-19n <+oo-(lIf("o)llc(o) + IlgllC(o») 

Co 

oexp (-t c(x:,a.)ds) 1 
-CE. {exp (-[, c(x!',a,)dS) I',<+~}, 
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where G = lIuollc(n) + (suPorEA IIf(·,a)lIC(n) + ligllc(n»)/co, 

On the other hand, we may consider J( x, K) ~ lIuo II C(n) for all K E Co. 

Therefore we have 

Thus it is observed by this inequality and (A.8) that 

konE, {l,.<+~exp (- /". c(X.,a.)dS) } s:. C. 

Hence we obtain 

J(x,K) 2 J(x,Kn) - kG 
on 

G 
2Wn --

k 
. 

on 

Taking the infimum with respect to K E Co, we get 

W(x) 
G 

wn(x) --k 
on 

for all x E n. 

Thus we obtain (6.2). I 

Proof of Theorem 6.1. Lemmas 6.2 and 6.4 imply Un =t W 'on n as n --+ +00. 

Hence it is clear that u = W on n. I 

§1. Boundary value problem of oblique type 

In this section we shall treat the boundary value problem of oblique type: 

{ 

max{F(x,u,Du,D2u),u - Mu} = 0 

max { :~, u - M u } = 0 . 

In n, 
(7.1) 

on an. 

Here an is smooth and I is a vector field on ]RN "oblique" to an. The problem 

(7.1) is derived from the impulse control problem for the diffusion processes re­

flecting at the boundary an. See P. L. Lions - B. Perthame [35] for the related 
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problems. P. Dupuis - H. Ishii [10], [11] and H. Ishii [17] has obtained the unique­

ness and existence of solutions of some oblique derivative problems. But they do 

not contain the problem (7.1). 

Here we prove the comparison principle and existence of solutions of (7.1) by 

the similar arguments to those in [10], [11] and [17]. Instead of (A.6) we assume 

the uniform continuity of the F with respect to the variable (p, X) E JRN X $N. 

(A.6)' There exists a function Wa E C(JR+) such that waCO) = 0 for which 

IF(x, r,p,X) - F(x, r, q, Y)I ::;: w3(lp - ql + IIX - YII) 

- N N for all x E n, r E JR, p, q E lR ,X, Y E $ . 

Besides, we put the following assupmtion. 

(A.I0) , E C 2 (an) an~ there exists a constant 'f] > 0 such that (v(x), ,(x)) ~ 'f] 

for all x E an. 
In order to give the definition of solutions of (7.1), we set 

{ 

max{F(x,r,p,X),r-m} 

H"'(x, r,p,X, m) = max{max{F(x, r,p,X), r - m}, 
max{{p,,(x)),r -m}} 

{ 

max{F(x, r,p,X), r - m} 

H",(x,r,p,X,m) = min{max{F(x,r,p,X),r - m}, 

. max{ (p, ,(x )), r - m}} 

where F is the same function as in Section 2. 

Definition 7.1. Let u : n ---+> lR. 

(x En), 

(x E an), 
(x En), 

(x E an), 

(1) We say u is a subsolution of (7.1) provided u'" < +00 on n a.nd for any 

<p E C2(n), if u'" - <p attains a local maximum at Xo E n, tben 

(2) We say u is a supersolution of (7.1) provided u'" > -00 on n and for any 

<p E C2(n), if u. - <p attains a local minimum at Xo E n, tben 
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(3) We say u is a solution of (7.1) provided u is both a sub- and a supersolution 

of (7.1). 

We mention the equivalent propositions of Definition 7.1 wihtout their proofs. 

Proposition 7.2. Let u : f2 -+ R. 

(1) u is a subsolution of (7.1) if and only if u· < +00 on n and for all x E f2 and 

(p, X) E J~+ u·( x), u· satisfies 

H.(x,u·Cx),p,X, Mu·(x)) ~ O. 

(2) u is a supersolution of C7.1) if and only if u. > -00 on n and for all x E f2 

and (p, X) E J~-u.Cx), u. satisfies 

H·Cx, u.(x ),p, X, Mu.Cx)) ~ O. 

Proposition 7.3. Assume M : USCCf2) -+ USCCf2) and M : LSC(f2) -+ 

LSC(f2). Let u : f2 -+ R. 

Cl) u is a subsolution ofC7.1) if and only ifu· < +00 on f2 and for all x E n and 

(p,X) E ~'+u·(x), u· satisfies 

H.Cx, u·Cx),p,X, Mu·(x)) ~ O. 

(2) u is a supersolution of (7.1) if and only if u. > -00 on f2 and for all x E f2 

and (p,X) E ~'-u.(x), u. satisfies 

H·(x, u.(x ),p, X, Mu.(x)) ~ O. 

Now, we state our main results in this section. 
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Theorem 7.4. Assume (A.l), (A.3)-(A.5), (A.6)', (A.7), (A.8), (A.I0) and 

an is smooth. Let u, v be, respectively, a subsolution and a supersolution of(7.1). 

Then u· ~ v. on n. 

Theorem 7.5. Under the same assumptions as in Theorem 7.4, there exists 

a unique solution u of (7.1). Moreover u E G(n). 

We need some lemmas to prove these theorems. 

Lemma 7.6. Assume (A.I0). Let z E an. Then there exist constants 8 > 0, 

Go > 0 and {Wa}a>O: GI,I-functions on B(z,8) x B(z,8) satisfying the following 

properties: 

1 
wa(x, x) ~ -

a 
a . 

wa(x,y) Six - Yl2 

{Dxwa(x, y),/,(x)) .2 -GoSa 

(-Dywa(x,y),/,(Y)} ~ Go8a 

IDywa(x, y)1 ~ Go (alx - yl + 1), 

IDxwa(x,y) + DyWa(x,y)1 ~ Go8a, 

on B(z,8), 

on B(z,8) x B(z,S), 

if x E an and y E B(z,S), 

ify E an and x E B(z,S), 

( DWa(x, y), a.Go (!I -f) + GoSa (~ ~)) E j2,+wa(x, y) 
-::-;----,,.,.. 

for a> 0, X,y E B(z,S), 

where Sa = (alx - Yl2 + l/a). 

The above lemma is proved in [17; Section 4]. Hence we omit the proof. 

Lemma 7.7. Assume (A.l), (A.3) and (A.8). Let u E USG(n) and v E 

LSG(n). If u Mu on n, then there exists a maximum point z E n of the 

function u - v on n such that v(z) - Mv(z) < 0. 

This lemma is mentioned in [35; Section 5] without its proof. For the sake of 

completeness we give the proof. 
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Proof. Let Zo E n be any maximum point of the function u - v on n. If 

the assertion in this lemma holds at Zo, we have nothing to prove. We suppose 

v( zo) - M v( zo) > O. Then there exists a ~o ~ 0 such that ~o =I 0, Zo + ~o E n and 

Mv(zo) = k(~o) + v(zo + ~o) by (A.S). Since u ~ Mu on 11, we obtain 

(7.2) u(zo) - v(zo) u(zo + ~o) - v(zo + ~o). 

Hence Zo + ~o is a maximum point of u - v. If the assertion holds at Zo + ~o, 

the proof is completed. Here we suppose that the above process can be repeated 

indefinitely, that is, there exists a sequence {Zn}nElN of maximum points of u - v 

on 11 such that 

(n EN), 

where ~n ~ 0 satisfies 

~n =I 0, Zn + ~n E n, 

Then we obtain 

(n --+- +00) for some z E'n, 

because 11 is compact and Zo ~ Zl ~ ... ~ Zn ... by the definition of {Zn}nElN. 

(zn ~ Zn-l means Zn - Zn-l E (JR+)N.) Since the inequality (7.2) holds at Zn + ~n 
in place of Zo + ~o and u - v E U Seen), we have 

u(Zo) - v(zo) = lim (u(zn) - v(zn)) = u(z) - v(z). 
n-+oo 

Thus it follows from the above equality and semicontinuity of u and v that v(zn) --+­

v(z) as n --+- +00. Using the definition of {Zn}nElN and (A.8), we conclude that 

v(z) = lim v(zn) ~ lim Mv(zn) 
n-+oo n-+oo 

~ ko + v(z), 
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which contradicts the fact ko > o. Therefore we can find an no E 1N such that 

Now, we can prove Theorem 7.4. 

Proof of Theorem 7.4. We may assume u E USC(n) and v E LSC(n). We 

suppose sUPn( u - v) = B > 0 and get a contradiction. Since u is a subsolution 

of (7.1), we get u !5:: Mu on n. It is seen from Lemma 7.7 that there exists a 

maximum point z E n of u - v satisfying v(z) - Mv(z) < o. We divide our 

consideration into two cases. 

Case 1. z E an. 

For simplicity we consider II'( x) I = 1. Let <p E C2 (n) be a function such that 

<.p = 0 OR an, <.p > 0 in n, and (D<p,I') ~ 7]0 on an. 

for some 7]0 > o. (cf. M. G. Crandall - H. Ishii - P. 1. Lions [8; Section 7].) 

For each f3 > 0, the function u(x) - v(x) - f3(lx - zl2 + 2<p(x)) attains a strict 

maximum on n at z. Thus we may restrict this function on B ( z, 8) n n (= W). 

For any a > 0, we define the function <I? ( x, y) on W X W by 

<I?(x, y) = u(x) - v(y) - wa(x, y) - f3(lx - zl2 + <p(x) + <.p(y)), 

where Wa is the function in Lemma 7.6. Let (x, y) E W x W be a maximum point 

of <I? By <I?(z,z)!5:: <I?(x,y) and (7.4) we get 

1 - a 2 
B - a ~ u(x) - v(y) - six - yl . 

Thus we have 

Ix - yl-+ 0 (a -+ +00). 

As in the proof of Theorem 3.2, we obtain the behaviors of x, y, u(x), v(y) as 

Q -+ +00: 

(7.4) x,y -+ Z, u(x) -+ u(z), v(y) -+ v(z), alx - y\2 -+ O. 
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Moreover, q>(x, y) q>(x, y) on W implies, as (x, y) -+ (x, y), 

u(x) - u(y) :5: u(x) - v(y) - ,Blx - zl2 + ,Blx - zl2 

- ,B( cp( x) - cp( x)) - ,B( tp(y) - tp(y)) - wa ( x, y) - wa( x, y) 

:5: u(x) - v(y) + 2,B(x - z, x - x) + ,B(x - x, x - x) 
1 + ,B{(Dcp(x),x - x} + 2(D2cp(x)(x - x),x - x}} 

1 
+ ,B{ (Dcp(y), y - y} + "2(D2cp(y)(y - y), Y - y}} 

+ (Dzwa(x, y), x - x) + (Dywa(x, y), y - y) 

+ ~aCol(x - x) _ (y _ y)12 

+ Da(lx _ xI2 + Iy _ Y12) 

+ o(lx - xI2 + Iy - YI2). 

Thus we conclude 

((
2,B(X-Z)+Dzwa(x,y)+,BDCP(X)) C (I -I) 

Dywa(x,y)+,BDcp(y) ,a 0 -I I 

+D (I 0) +,B (21 + D2cp(x) 0)) 
a 0 I 0 D2cp(y) 

E J2·+(u(x) - v(y)). 

Therefore by the maximum principle, there exist X, Y E $N such that 

(7.5) 

(2,B(x - z) + Dzwa(x, y) + ,BDcp(x), X) E P'+u(x), 

(-Dywa(x, y) - /3Dcp(y) , Y) E jl·-v(y), 

(
I 0) (X - DaI 0 ) 

- 3aCo 0 1:5: 0 -Y - DaI 

:5: 3 C (I -I) + Q (21 + D2cp(x) 
- a 0 -I I fJ 0 

In the case x E an, we have 

(2,B(x - z) + Dzwa(x, y) + ,BDcp(x), -y(x)) 

2,B(x - z, -y(x)) - DO' + ,B'flo > 0 
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for sufficiently large a > O. Similarly, in the case fi E an, we get 

(7.6) 

for sufficiently large a > O. Moreover, since it is easily observed from (7.4), 

Mv E LSC(n) and Lemma 7.7 that 

(7.7) limsup( v(fi) - MV(fi)) ~ v(z) - Mv(z) < 0, 
0-+00 

we obtain v(y) - Mv(y) < 0 for large a > O. Hence using (7.5), (7.6), (7.7) and 

the fact that u and v are, respectively, a subsolution and a supersolution of (7.1), 

we obtain the following inequalities: 

F(x, u(x), 2(3(x - z) + D:two(x, fi) + (3Dtp(x), X) SO, 

F(y, v(y), -Dywo(x, y) - (3Dtp(y) , Y) :;:: O. 

By (A.5), (A.6Y, (A.7), (7.2) and Lemma 7.6 we observe 

),,8 S )..(u(x) - v(fi)) 

S F(y, u(x), -Dyw~(x, y) - (3Dtp(y) , Y) 

- F(x,u(x),2(3(x - z) + D:tw~(x,y) + (3Dtp(x),X) 

S F (y, u(x), -Dywo(x, y), Y + 00 1 + (3D2tp(y)) 

- F (x, u(x), -Dywo(x, tl), X - 00 1 - (3(21 + D2tp(x))) 

+ W3 (00 + (3(IIDtpil + IID2tpll)) 

+ W3 (200 + (3(2 + 21x - zl + IIDtpl1 + IID2tpll)) 

S WI (Colx - yl (alx - tll + 1) + aColx - fi12) 

+ 2W3 (200 + (J(2 + 21x - zl + IIDtpli + IID2tpll)) . 

Letting a -? +00 and then {J -? 0, we obtain a contradiction. 

Case ~. zEn. 
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We define the function ~(x,y) on S'l x S'l by 

By the same calculation as in Case 1 with this function we also get a contradiction. 

Thus we have completed the proof. I 

Proof of Theorem 7.5. Let C = sUPn IF(x, 0, 0, 0)1. Then it is easily verified 

that y(x) = -C and u(x) == C are, respectively, a subsolution and a supersolution 

of (7.1). Thus by Perron's method and Theorem 7.4 we can show the existence of 

a unique solution u of (7.1) and u E C(S'l). I 
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