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Preface

A locally flat n-sphere embedded in the Euclidean (n + 2)-space
is called an n-knot. If n > 2, it is called a high dimensional
knot. There is the so-called “motion picture method” to describe
an n-manifold in the (n + 2)-space. In this dissertation, by this
method we will study an important class of n-knots which are
called ribbon n-knots (n > 2), which has been studied by T.
Yajima, T. Yanagawa and others since 1960’s.

In Chapter 1, we will give a simple method to calculate Alexan-
der polynomials of ribbon n-knots and an estimation of the ribbon
genus for ribbon n-knots.

A ribbon n-knot K™ are constructed by attaching m bands to
m + 1 n-spheres in the Euclidean (n + 2)-space. There are many
ways of attaching them; as a result, K™ has many presentations
which are called ribbon presentations. From this point of view,
we will study ribbon n-knots in Chapters 2 and 3.

I would like to express my sincere appreciation to Professor
Fujitsugu Hosokawa and Professor Takaaki Yanagawa, who have
been encouraging and taking care of me.

I also wish to express my hearty thanks to Professor Yasutaka
Nakanishi for all the help and encouragement he has given me.
His enthusiasm has been very inspiring.

I am especially grateful to Professor Makoto Sakuma and Pro-
fessor Yoshihiko Marumoto for their encouragement and valuable
suggestions.

Many thanks are also due to Professor Kouji Kodama and Pro-
fessor Manabu Sanami for their encouragement and their helpful
discussions.
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Chapter 0

INTRODUCTION

0.1. Contents of the Dissertation

In Chapter 1, we will consider presentations and the genus for
ribbon n-knots. Concerning n-knots K™ in the oriented Euclidean
(n + 2)-space R™2, there is a quention “what type of (n + 1)-
manifolds can be bounded by K™7?”. T. Yanagawa gave a partial
answer that any ribbon n-knot bounds an (n + 1)-manifold W™t!
homeomorphic to an (n + 1)-disk D™ or #7_,(S™ x §1); — °An+!
with a trivial system in [Y1] and [Y2]. Furthermore, in [Y4] he
defined the ribbon genus, g(K™), of a ribbon n-knot K™ by the
lower bound of such integers .

Until now, we have not known a method to compute g(K™)(n >
2). In Chapter 1, we will give an estimation of the ribbon genus by
the degree of the Alexander polynomial, degA g« (t), and the width
index wid(K™) of K™, which will be introduced in Section 1.2. We
will also show how to construct an (n + 1)-manifold bounded by
K™, which is homeomorphic to #;‘:f(K“v)(S" x S1); — °A™1. The
main theorem in Chapter 1 is the following.

Theorem A. For a ribbon n-knot K™(n > 2), we have
degA g (t) < g(K™) < wid(K™).

Moreover, for the case that g(/(™) is greater than 1, we will give
examples of inequivalent ribbon n-knots with the same Alexander
polynomial and the same ribbon genus.

To give the above Theorem A, we will introduce a new presenta-
tion of a ribbon n-knot, which is called the (41)-distribution pre-
sentation. It has the following utilities:

(1) We can restore K™ (see 1.2.5).
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(2) We can easily calculate the Alexander polynomial of K™ (see
1.2.6).

(3) We can estimate the ribbon genus of K™ (see the above The-
orem A).

In Chapter 2, we will consider ribbon types of ribbon knots. Rib-
bon types are kinds of geometrical equivalence classes for ribbon
presentations of ribbon knots. It has been a fundamental problem
to study whether a ribbon knot has a unique ribbon type or not.
For the trivial n-knot, it is known that it has the unique ribbon type
as a ribbon knot of 1-fusion because we can interpret Scharlemann’s
theorem in [Sc] and Marumoto’s theorem in [M1] as solutions in the
cases of n = 1 and n > 2, respectively. For the case of non-trivial
ribbon n-knots, Y. Nakanishi and Y. Nakagawa [NN] constructed
ribbon 1-knots with distinct ribbon types in the case of n = 1. But
the technique in [NN] cannot be applied in the case of n > 2. For an
arbitrary integer n > 2, the above problem has been remained open.
In Chapter 2, we will solve this problem for an arbitrary integer n
> 2.

Theorem B. For an arbitrary integer n > 2, there are infinitely
many ribbon n-knots of 1-fusion, each of which has two ribbon

types.

We will spin two arcs which are obtained by removing different
segments of a 2-bridge knot to construct ribbon n-knots of 1-fusion,
which have distinct ribbon type. We will show that these two rib-
bon n-knots have distinct ribbon types by pointing out that group
presentations of their knot guoups are not Nielsen equivalent.

In Chapter 3, we will consider a classification for ribbon presen-
tations of ribbon knots. In the first place, we will induce a notion to
classify ribbon presentations for ribbon n-knots of 2-fusions, which
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is applicable in general. In the second place, we will show that such
classes form a totally ordered set by natural inclusion relation as
follows:

Theorem C. Let K7, be the set of all ribbon presentations for
ribbon n-knots of m-fusions. There are four classes in K%, denoted
by K3, (n>2; k =1, 2, 3, 4), such that

(i) K? =K3,5K3,5K33SK2 s = K7, and

(ii) for any k = 2,3,4, there exists a ribbon presentation (K™,
{b;}2_,) in K3« such that every ribbon presentation in K3, , is
of distinct ribbon type to the given one.

In the same way, we can also give a partially order in general
cases. ( see the corollary (3.3.2) ). Moreover, we can give a nega-
tive answer to the following question which is a higher dimensional
version of Gordon’s conjecture [Go] ( see the corollary (3.3.3) ):
Can a ribbon concordance be decomposed into a finite sequence of
ribbon concordances with only one suddle-point and one minimal-
point?

0.2. Notations and Preliminaries

Definition 0.2.1. An n-link with u components is the image of
locally flat embedding e : U;‘z (S R"™*? of a disjoint union of
p copies of an oriented n-sphere into the oriented Euclidean (n+ 2)-
space. In particular, an n-link with one component is called an
n-knot. An n-link, which is the image of e : ;‘zl ST — Rrt2
with g components, is called trivial if and only if there exists a
locally flat embedding e* : ;'1=1 D;'H — R™*? with e*(aD;H) =
e(S7) ( =1,2,...,u), where D;’H is the (n + 1)-disk and (9D?+1
is the boundary of D;H’l. Two n-links Kf UK U---UKJ in R**2
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and K{" UK3"U---UK}" in R**? are said to be equivalent (or
of the same type) if and only if there is an orientation preserving
homeomorphism f of R"t? onto itself with f(K?) = Ki*"(j =

1)2)"' )/'1')

Definition 0.2.2. We say K™ a ribbon n-knot of m-fusions if and
only if the following condition C, ,, is satisfied:

Chrm ¢ (1) there exists a trivial link SFUSTU---US? in R*+2,
(2) there exists an embedding of the direct product of D™
and the unit interval I = [0,1], f; : D™ x I = R™*? for
each ¢ (i = 1,2,...,m), such that

fi(D™ x {0}) if j=0,
(a) fi(Dn X [) N S]n = fi(Dn X {1}) if j =1,
¢ otherwise,
(b) fi(D™ x I)N f;(D™ x I) = ¢ for i#j, and
(3) K»=SrUSrFU---USLUT* — °T,
where T* = | J7_, f;(0D™ x I) and
°T is the interior of 7' = | Ji_, f;(D" x 0I).

We call f;(D™ x I) (= b;) an ith band of K™. A ribbon n-knot
of m-fusions (m > 1) is sometimes called a ribbon n-knot shortly.
We say (K", {b;}/,) a ribbon presentation with m-bands of K™.
Two ribbon presentations with m-bands of K™, (K™, {b;},) and
(K™, {b}}12,) are said to be equivalent (or of the same ribbon type) if
and only if there exists an orientation preserving homeomorphism of
R™*? onto itself which maps K™ onto K™ and {b;}™, onto {b}1,.

The fundamental group m; (R**?— K™) is called the knot group of
K™. For an arbitrary ribbon n-knot of m-fusions, K™, we construct
a group presentation of the knot group for a ribbon presentation
with m-bands of K™ as follows (cf. [Ya]). Let K™ be aribbon n-knot
of m-fusions and (K™, {f;(D" x I)}I*,) a ribbon presentation with
m-bands of K™. We denote [; = f;({0}xI) (: =1,2,--- ,m), where
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{0} is the central point of D™. [; has its initial point f;({0} x {0})
in 5¢, and its terminal point f;({0} x {1}) in S?. For S? in the
definition (0.2.2), there are disjoint (n + 1)-balls D;'H such that
DM =87 (j=0,1,2,--- ,m).

We can assume that [; intersects U;’f__OD;H transversely at finite
points and we denote these points by a;1,a;2, - ,ais, according to
the direction of [;, we obtain the word w;, consisting of s; letters as
follows. If [; intersects D;H’l at a;x from its positive side (or negative
side), we denote the kth letter of w; is z; (or a:j_l, respectively).
Here, z; is corresponding to the meridian generator of S, and
zow;z; 'w ! (i= 1,2,--- ,m) are the defining relators of the knot
group of K. Then we obtain a group presentation of the knot
group with (m + 1)-generators and m-relators as follows:

(*) [ z;57=0,1,2,--- ,m | mowiwi_lwfl;izl,?,n-,m ]

Definition 0.2.3. We call the group presentation obtained from
a ribbon presentation (K™, {b;}™,), by the above construction,
a group presentations associated with (K™, {b;},), denoted by
G(K™,{b;}2;). On the other hand, we can construct a ribbon
presentation (K™, {b;},) in the inverse procedure, from the group
presentation G(K™, {b;}12,). We call this ribbon presentation (K™,
{b:;}2), a ribbon presentation associated with G(K™, {b;}™,).

For a ribbon presentation (K™, {b;}I*,), we cannot have the
unique group presentation. But this fact does not affect the fol-
lowing argument.
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Chapter 1

RIBBON GENUS

Section 1.1 gives a notion of the ribbon genus. Section 1.2 includes
notions and results on the (%1)-distribution presentation and the
width inder, and in addition utilities of (£1)-distribution presenta-
tion. Section 1.3 is devoted to a proof of the following theorem.

Theorem A. For a ribbon n-knot K™(n > 2), we have
degAgn(t) < g(K™) < wid(K™),

where degA gn(t) is the degree of the Alexander polynomial of K™,

g(K™) is the ribbon genus of K™, and wid(K™) is the width idex of

K", :

Section 1.3 gives an application of the Theorem A.

1.1. Ribbon Genus

The following theorem is known. By “A & B”, we denote that A
is homeomorphic to B.

Theorem 1.1.1([Y1],[Y2]). Let K™ be a ribbon n-knot in R"*+2.
Then, K™ bounds an (n + 1)-manifold W™*! for K™ such that
Wnt1 is homeomorphic to an (n + 1)-disk D*** or a connected-
sum of some copies of S™ x S! with an open (n + 1)-disk missing,

=1 (S™xS1); - °A™F1. Moreover, when Wnt+1l & 4t (87 x S1);
— °A™ML Wntl has a trivial system of n-spheres which is defined
as below.

A collection ST,S%,--- ,SZ._1,S5%. of mutually disjoint n-spheres
in an (n + 1)-manifold W™+t o #7_ (8™ x §1); — °A™*! s called



7

a trivial system of n-spheres in W™t if and only if it satisfies the
following;
(1) STUSEU---USY _; USZ is a trivial n-link in R™*2,
(2) S* U S?,,. bounds a spherical-shell N; & §™ x W™+! where
NiﬂNj———@fOIlSiSjST,
(3) the closure CI(W™*! — Ny — Ny — --- — N,.) is homeomorphic
to
an (n+1)-sphere S™*! with 2r + 1 open (n + 1)-disks missing.

(The converse of this theorem is valid, too. See, [Y1] and [Y2].)

Definition 1.1.2. For an (n + 1) -manifold W™*! in Theorem
(1.1.1), we define g(W™*1!) by g(Wn+!) = 0 if W+l = D"+l and
g(Wntl) = p if Wrtl 2 #7_ (5™ x S'); — °A™*L. For a ribbon
n-knot K", we define the ribbon genus g(KX™) of K™ by the lower
bound of integers g(W™*1) for W"*! bounded by K™ in R™*+2.

1.2. (£1)-distribution presentation

In this section, we will introduce a new presentation for a ribbon
n-knot K™ which will be called (+1)-distribution presentation. By
making use of it, we will introduce the width index and utilities of
(£1)-distribution presentation.

Definition 1.2.1. By making use of words in (%) in Section 0.2,
We construct a set of words w = (wy, wa, -+, Wm). We call it a
word presentation of a ribbon n-knot K™, where w; (1 =1, 2,---,m)
is the word corresponding to the i-th band of K™. For the i-th word
w;, if it includes z,z7 ' or 'z, (s = 0,1, 2, --- ,m), we can reduce
it because it has no sense geometrically. And because of the same
reason, if the first letter of the word is ¢ or x5!, we can reduce
it, and if the last letter of the word is x; or a:i_l, we can reduce it.
If the above reductions make a word empty, we redefine this word



an one-letter word z;, for the sake of convinience. If a word w is
equal to w* by the above reductions, we say that w = w* modulo
reductions of words. '

We define a (41)-distribution presentation of a ribbon n-knot by
using a word presentation of K™ as follows. Let K™ be any ribbon
n-knot of m-fusions.

Definition 1.2.2. We make correspondences between zj ', zo,

7!, and z, (s = 1, 2, ---, m) and four (2 x 2) -lattices with
directions z; and 2, as shown in Fig. 1, Fig. 2, Fig. 3, and Fig. 4,
respectively.

A (£1)-distribution presentation of the i-th component w; for a
word presentation of K" is composed by putting these four sorts
of (2 x 2)-lattices on the infinite lattice with directions z; and z;
according to the given word of K™ under the following rule. Now,
we may assume that the i-th word w; has u letters.

Putting rule is the following;

(1) we choose a (2 x 2)-lattice on the infinite lattice,

(2) on it, we put the (2 x 2)-lattice corresponding to the first letter
of w; such as the directions of the z;- and z;-axises coinside with
those of the infinite lattice,

(3) we put the (2 x 2)-lattice corresponding to the k-th letter of
the given word w; as the directions of z;- and zp-axises coincide
with those of the infinite lattice, and the initial point of its direct
graph coincides with the terminal point of the direct graph in the
(2 x 2)-lattice corresponding to the (k — 1)-th letter of the given
word w;(2 < k < u), and

(4) lastly, we write ‘—1’ in the square with the terminal point of
the direct graph corresponding to the u-th letter.
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In this way, we get a direct graph and a distribution of +1 on the
infinite lattice, which is called the (&1)-distribution presentation
D(w;) corresponding to w; (i = 1,2, ---, m). And we call (D(wy),
D(ws), -++, D{(wm)) a (E1)-distribution presentation of K™. We
denote D(K™) = (D{w1), D(ws), ---, D{wy)). And the graph in
D(w;) is denoted by G(w;).

Example 1.2.3. Let a set of words for K™ be
w = (wy,wy) = (125 oy 'edaT eyt zaxyizi20)
where K™ is a ribbon n-knot of 2-fusions. Fig. 5 shows sketch of

K™. And Fig. 6 shows the (+1) -distribution presentation of K™.

L
<

o
| E“ | E—z
el

-
o 1

£

Fig. 5
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X
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X,
Xo

|

Fig. 6

D(w)

-1 i
X
Xo
_T ‘
1
~1
Xo

-1

11
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Definition 1.2.4. The column in the infinite lattice is called the
the base column of D(w;) if the initial point of G(w;) is in the
column (i = 1,2,--- ,m). If the terminal point of the graph G(w;)
is in the cth column of the infinite lattice counting from the base
column in the direction of z;-axis, take the word w} = w;z; °. Then,
G(w}) has the terminal point in the base column and w} = w;

modulo reductions of words. For a fixed integer j(j = 1,2,--- ,m),
let vij1,vij2, -+ ,Vijyy;, - Vijq;; De the vertices in (2 x 2)-lattices

which are the initial and terminal points of edges corresponding to
letters x; and 9:]71 in D(w;). Now, for each v;jy,;, we define the
integer z(vijy,, )(vi; = 1,2, ,qi555 = 1,2,--- ,m) as (vyjy,;) is in
the z(v;j;y,; )th column of the infinite lattice counting from the base
column in the direction of z;-axis. For D(K™), we define:
wid(a:j,m;-‘l)

= maz{ 21(vijy;;) | 21(Vijy;;) 20, 1 <wij < gijy 1

+ma${ lzl(vijyij)l | Zl(vijyij) <0,1<

and the width number wid(D(K"™)) = Z;’;l wid(:cj,:cj_l).

The minimum number of width numbers for all (+1)- distribution
presentations of K™ is called width index of K™, and denoted by
wid(K™).

For example, K" in the example(1.2.3) has the width number 5
because
wid(zy,z7")=2+|0|=2 and wid(zxz,z;')=2+| — 1|=3. In fact, this
n-knot K™ has the width index 5, which will be shown by the corol-
lary(1.3.4).

Fact 1.2.5 From a (+1)-distribution presentation D(K™), we can
restore a ribbon n-knot equivalent to K™.

A method restoring K™ is clear according to the method of con-
structing (*) in Section 0.2 and the inverse procedure.
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Theorem 1.2.6. Let K™ be a ribbon n-knot of m-fusions and
D(K™) its (+1)- distribution presentation where D(K™) =

( (D(wy), D(w2), -+, D(wm) ). Get the sum of the numbers lining
up in the columun where there are the initial and terminal points of
edges corresponding to letters z; and w_]-_l of D(w;) (i,7=1,2,---,
m). Let n(vijy,.) (¥i; = 1,2, -, gi;) be the sum of numbers corre-
sponding to z1(vijy,, )th column and a;; = Z”,_l n(Vijy,; )t 21 (Vidui;)
where v;j1,v;52, - yVijyijr " * »Vijq:; are the vertices which are the
initial and terminal points of edges corresponding to letters x; and
:cj”l in D{w;). Then, A = (a;;)(i,j = 1,2,--- ,m) is an Alexander
matrix and |A| is the Alexander polynomial of K™.

Proof. Let K™ be a ribbon n-knot of m-fusions. Then, by (*) in
Section 0.2 the fundamental group m(R"*2 — K™) has a group
presentation
[ m]a]:O?L?m l mOwim;lwi_l;izla27"’am ]7

where m] is the same generator as in (%) of Section 0.2, w; =
ITk= lccs(k):co"‘ o (1 < s(k) < m) and (e, k) =(1,0), (-1,0),
(1,1), or (=1, —1) according as the kth letter in the word w; of the
ith band is g, z7 ", To(k), OF ;1:;(2), respectively (i = 1,2,--- ,m)
(cf.[Ki], [M1], [Y3]). Let r; be @o(w;)z (w]) (6 = 1,2,--- ,m).
By making use of Fox’s free differential calculus([F1], [F2], [Ki]), we
have

s —§;
8 1 81} il
_ a(1) 8y (1)
\p@(aw7)1<ij<m = e ((TO 5e; Tal) e, )
+( m(fu 511))( 6mif2! +z oz ;((;) )
3(1) L0 "5z 3(2) dx;

€3 61 €5 ‘—612 8 (:8 a :(‘i:’
(el a0 el 7T e S + 20 )
+

% 61 ) ‘Siu-— ( Tr— _éiu—~ ) 31! ::) iw 61}811:“
+ ("Bs(l)mg)e L ) o (ms(u ll)w e l )(:L.O +$s(u) Bz_,') )

€5 6, iu zu‘_ént -
(@l ae™ ) - (2l al >><momi1><—1>uﬁ)1§,jsm
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0 (i#7) .
where v;; = 1 (i=j) , and where ® and ¥ are the following ho-
i=7
momorphisms: Let F' be the free group on generators z1, x5, -+, T

and ¢ the natural homomorphism of F onto G = m(R"*% — K™).
Let H be the abelianization of G and 1 the natural homomorphism
of G onto H. Let JF, JG, and JH be the group-rings of F', G, and
H with integral coefficients, respectively. Then these homomor-
phisms ¢ and 1 can be linearly extended to homomorphisms of JF'
to JG and of JG to JH, respectively. We denote these extended
homomorphisms by ® and ¥, respectively.

Therefore, we can obtain an Alexander matrix, (f,-j(t))Ki i<m of
K™, where o
(1.2.7) fi(t) = % —1

+ tfil( t5i2 -1 )
+ t‘-i1+€i2( tfsia -1 )

+ .-
+ t€i1+€i2+"‘+€iu—1( t&tu -1 )

+ teil +5i2+"'+5iu«1+6iu (_1)1/1] .

Consequently, the coefficients of f;;(t) is calculated by entering 1
and/or —1 in the infinite lattice as in Fig. 7.
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the 1-sl row.

the u-th row
the (u-+1)-th row

Fig. 7

We entry the coefficients —1 and/or 1 corresponding to the poly-
nomial of the kth term in the formula(1.2.7) in the kth row (k =
1,2,--- ,u,u +1). When all the coefficients of a term in the for-
mula(l 2 7) are 0, we do not entry any number. Hence, the coef-
ficients of the term in the formula(1.2.7) corresponding to the kth
letter of the word w; is entried in the kth row (k = 1,2,--- ,u).
Then, the distribution of &1 on the mﬁmte lattice 001nc1des with
that of +1 corresponding to only 2 "and z; in D(w;). The proof
is complete ’

Example 1.2.8. K™ in the example(1.2.3) has the Alexander poly-
nomial
Agn(t) = 22—t —t 41—t t?
K= 14t —1+4t—t?
= 144t — 62+ 712 —4t* +t° (mod £ t7).
See Figs. 6 and 8.
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1.3. Proof of Theorem A
Definition 1.3.1. We define that z* ( or 2" ) is consisted of h

“r;” (aci_1 resp.) (h> 0;i = 1,2,---,m). The following words are
called the basic words;

w::»%l _ f”z"li 1, iy a: —(h; —1),

wZ:”m"_l = mg‘_lxomflmi—(hi—l),

w:j’z"—l = a::“ le; Ty m ~(hi _1)

wm(:,mo*l _ mgi_lwow 1w0—(h,—l),

wi‘:mo = 93,'_( ‘_l)m,xo T, ~(him1)

wiﬁ}::wi — CE()_(hi_l):Eo:B;l.’L'i_(hi_l),

wi’li’m‘ = m;(h‘_ )a; oyt (h i—l),and

W™ = g " VaoaT leg Y (2 0,i= 1,2, ,m).

The above h; and —h; are called the width of each basic word and
the graph corresponding to basic words is called basic graphs.

Lemma 1.3.2. Let K™ be aribbon n-knot of m-fusions and D(K™)
= (D(w1), D(ws), -+ ,D(wy,)) a (£1)-distribution presentation of
K™ where each w; is a word consisting of 2m + 2 letters o, xo”l,

T1, @Y, v, Tm, ol And let the graph in D(K") be G(K™) =
(G(wy), G(wa), -+ , G(wm)). Then, there exists a (+1)-distribution
presentation D*(K™) = (D*(w}), D*(w}), ---, D*(w},)) of K™
such that

(i) the graph G*(w}) in D*(w}) is the union of basic graphs,
(ii) w; = w} modulo reductions of words (i = 1,2,--- ,m) and
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(iii) wid(D*(K™)) = wid(D(K™)).

Proof. We assume that the terminal point of G(w;) is the base
column by replacing w; by w;z® for an appropriate integer h if it is

necessary (i=1,2,--- ,m). For w =(wy,wq, -+ ,w,), we can write
w‘! —_ m810$;11 - w:‘rtvn xSZUm‘;‘ZI e w:ﬁnu . xa‘xﬂw;nl R w;;;"l
(rk; = —1,0,1).

) TRj ) Thit1 s = Rk mhid
In w;, we replace z;” =" by sc Ty T, J+1 by turns

from the first and second letters where Ry; = szl ol )re +
" 1Tkt (4,7 =0,1,--- ,m; k=1,2, --- ,s). The resulting words sat-
isfy (1), ( i), and (111) (1 =1,2,--- ,m). The proof is complete. '

Lemma 1.3.3. Let K™ be a ribbon n-knot of m-fusions. If K™ has
a (£1)-distribution presentation D(K™) whose graphs are a union
of basic graphs and its width number wid(D(K™)) is r, then K"

bounds an (n + 1)-manifold W(";rl ~ #I_(S™ x St); - cAntL

where S’ is a j-sphere (j = 1,n), # means the connected sum, and
°Am*+1 js the interior of an (n + 1)-simplex A1,

Proof. (Step 1) Let K™ be a ribbon n-knot of 1-fusion and w; its
word where w; = wyq wip -+ wys,, each wy; is a basic word, and
its width is hy; (j = 1,2, -+, 51). We assume that

pr=maz{ hi; | hy; 20(i=1,2,---,51)}

4 = ma:z:{ lhljl l hlj <0 (-7 =12, 331)}’
By the definition(1.3.1), wid(K™) <wid(:c1,a:1_1) =p+q. If
w = wfl’z"l, wf“’zll, wi”™ , and wz“’w“ , the ribbon n-knot
of 1-fusion with the word w bounds an (n + 1)-manifold Wwptt ~
(S™x S1) - °A™H1 where Wt is constructed by attaching a tube
homeomorphic to §™ x I to n-disk as shown in Fig. 9(i). For the

-1 —1 —1
xT1,T T, x1,T Tg, T .
case w = wy " ° ,w, ' ,wy b, and wp o (k > 2), the rib-

bon n-knot of 1-fusion with the word w bounds an (n + 1)-manifold
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Woth o 4k (8™ x SY); — °A™ where W7t is constructed by
carrying out a connected-sum of S™ x S! for W**}! as shown in Fig.
9. Here, the heavy lines means the band for cases (i)-(a), (ii)-(a),
and (iii)-(a), and we omit the bands corresponding to those heavy
lines in (ii)-(b) and (iii)-(b). Moreover, (i)-(a), (ii)-(a), and (iii)-(a)
are cross sections for (i)-(b), (ii)-(b), and (iii)-(b), respectively.



(i) The case thal w = Wi

X, .
3

(i) The case thal w = w

Fig. 9
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On the other hand, in the similar way we can show that if w =
a:;l,a:g a:(',—l,z; :1:1_1 =y

1
w0 w T Wt T or w” 0™ the ribbon n-knot of 1-fusion
with the word w bounds an (n+41)-manifold W™ ~ #* | (S7x S,

— °A"*+! a5 shown in Fig. 10. We show the band by heavy line in
(a) and omit it in (b).

-
The case thal w = w;"-"o

IMig. 10
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Seeing the above form of W' *! (k = 1,2,---), we find that K"
bounds Wit} o~ #P1tangn oy 51y, - °Amtl as shown in Fig. 11.
Hence, if D(K™) has the width number wid(D(K ™)) = p14 ¢ = r,

K™ bounds an (n + 1)-manifold W(','\;“l ~ H#T (S x ST); - At

The case that p,=3 and q,= 2.
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(Step 2) We assume that D(K"™) = (D(w1), D(wz), - -+, D(wm)),
W; = W1 Wiz +-- Wis, is a basic word consisting of 2m + 2 letters
T, wal, Ty, :cl_l, Sey T, Ty, and its width number is h;; (§ =1,2,
-+, 8;). In the similar way to (Step 1), if wid(mj,xj_l) = p; +q;
where

p; = mam{ h‘ij I h’ij >0;7=12,---,s;51=1,2,--- )m} and

qg; = max{ |hij| | hi; <0; j=1,2,--- ,s8;;1=1,2,--- ,m}.
K™ bounds W1 ~ #izz::‘l';‘(pi+qi)(5" xS1); = °A™t1. Therefore, if
D(K™) has the width number wid(D(K™)) = 7., {wid(z;, z; 1)}
= r, K™ bounds an (n + 1)-manifold W(’;Tl_'\: (8™ x Sh; -

°A™*t1 The proof is complete. -

Proof of Theorem A. Let D be a (£1) -distribution presentation
attaining the width index » of K™. We may assume that its graph
is an union of basic graphs by the lemma(1.3.2). And then, by the
lemma(1.3.3), if wid(D) = r, K™ bounds W(':”;rl Hence, g(K™) <
wid(D) = wid(K™).

On the other hand, we shall prove the other inequality in the
Theorem 1. The following has been suggested by T. Yanagawa and
Y. Nakanishi to the author.

Let X be the infinite cyclic covering of X = ™2 — K™ and W+!
an (n + 1)-manifold homeomorphic to #7_,(S™ x S'); - °A™+!
which is bounded by K™. We have

Hy(S™2 — WhHt, Z) o D=1 (b, Z) o 71
by the Alexander duality and H;(W2t'; Z) ~ Z'. Therefore,
Hi(X) has r generators and 7 relations by the method of the con-
struction for X, and then we have an (r x r)-matrix as an Alexander
matrix where every entry is a polynomial with the degree of at most
one. Hence, for any ribbon n-knot K™ and the degree of Agn(t),
degAgn(t), we have degA g (t)<g(K™). The proof of Theorem 1
is complete.
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By a (£1)-distribution presentation of K™, we can easily obtain
degA g~ (t) and wid(K™).

Corollary 1.3.4. Let K™ be a ribbon n-knot of m-fusions.
If degAgn(t) = wid(K™) = g, then g(K™) = g.

Example 1.3.5. The knot in the example(1.2.3) is a ribbon n-knot
with the ribbon genus 5.
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1.4. Application
The following theorem is known.

Theorem 1.4.1([Y4]). Suppose that K and K} are ribbon n-
knots with g(K7) = g(K}) = 1. If their Alexander polynomials
are identical with together, K' belong to the same knot type as
either K3 or — K7, where — K} denotes an n-knot with the reversed
orientation of K7'.

We obtain the following theorem:.

Theorem 1.4.2. There exist ribbon n-knots KT and K7' such that
() 9(KT') = 9(KF) =g (9 2 2),
(ii) Agpr = Agp and
(iii) K and K} are inequivalent and is not the inverse of the
other.

Proof. (Case 1) g = 2k + 1(k > 1).
Let K2"k+1,1 and ng+1,2 be ribbon n-knots of 1-fusion such that
their words are

—2k+1_—-1_2k -1
Wak4+1,1 = 3311170 .’BO 3,'1 Zg {Elil)o
. -1 -1
_ a:l,w(, Ty v”’l “’1 1o T1,T,
= w, w 2k+1 -2k W1 ,and
—1 -2k+1_—1_2k
Wak42,2 = Q?](EO 231(170 :IIO Ty Ig

—1 -1 -1 -1
. ml»mo wwlvm{) z() 1Tl 171 1y Zo

= Wy 1 W _op1Wook >

respectively. By their (+1)-distribution presentations
Agp,,, () =2=3t71 —¢72F 4 ¢72k~1 and
'LU'ld(D(WQk_}.]_J')) =2k+1 (i=12).
Hence, (K3, ;) = 2k + 1 by the corollary(1.3.4) (i = 1,2).

The knot group of K3}, ; has a group presentation:
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. -2k -1 2k . —1_—1_ —1_—2k. 2k —1
K rv1a Do, @ | momig Twy @f mimy @] ®OT, Ty XT1THTT] ],
1, -2k —1_2k_—1_—2k_ .2k —1

n . — - ~1, 1
K2k+1'2.[:130,m1 | xozizg w1y “w] @3Fx] g twizdfel oz ']

Let (M;‘,;fl’i, okt1,:) be the 3-fold irregular branched covering
space of (S™2, KJyy1:) (i=1,2). Then L3, ;in M;,:fl,i has the
distinct reduced Alexander polynomial {72k+1,i(t) (which is called
the V-polynomial of the knot K7 ., ; by K. Murasugi([Mu]) such

that

621‘,_,_1,1(—-1) =3k+3 and
Varg12(-1) = -6k —1 (i=1,2).

This fact shows that K3, ,,, and K3}, , are inequivalent and
one is not the inverse of the other.

(Case 2) g = 2k (k > 1).
Let K;k,l and K;k,z be ribbon n-knots of 1-fusion such that their
words are

_ -1 —2k+1_—1_2k—1 -1
Wa2k,1 = T1T; T3T Ty &y Tr1&g
-1 -1 -1 -1 —1
—_ T1,2, X1, Ty Ty xl yZo T1,T,
=Wy 1 —2k+2W 2k +1W1 , and
- -1 -1 —2k+1_,—1_2k—1
Wak,2 = T1&y T1&y XT1T Ty Ty

_ wl,:n(Tl ml,m(Tl wn‘l,ml ml_l,wn
=W, Wy W_2k42W_2k+1>

respectively. By their (£1)-distribution presentations
Agp (t) =3 —4t=! —¢=2k+1 4 4=2k apd
wid(D(War;)) = 2k (i=1,2).
Hence, g(Kj} ;) = 2k by the corollary(1.3.4) (i = 1,2).

The knot group of K3} ; has a group presentation:

n . -1 —2k+1_,—1,_2k—1 -1,,-1 —1_—2k+1
K2k,1 -[3?0,1131 |930331% T1Zy Ty Ty TG Ty LT, Ty
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2k—-1_-1,, -1
Tixy Xy ToTy |,
. —1_, =1 —2k+1, -1, 2k—1_—1, —2k+1
K;'k,2~[w0,fﬂ1 | zoz12y Ty X1 xwyw] g
2k-1_~1_ -1 _~1
TiTy X ToT] Toxy |

Let (M;,jf, o%,:) be the 3-fold irregular branched covering space
of (S™*2, K3:) (i = 1,2). Then L3 ; in Mzn,iiz has the dis-
tinct reduced Alexander polynomial Y.72k,,-(t) (which is called the
V-polynomial of the knot K7, ,, ; by K. Murasugi([Mu]) such that

<72k_1(—1) - —gk + 9 and

Vana(=1) = Tk +7 (i=1,2).

This fact shows that K3y 1 and KJy , are inequivalent and one is
not the inverse of the other. The proof is complete.
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Chapter 2

RIBBON KNOTS WITH TWO RIBBON TYPES

Section 2.1 gives a notion of the Nielsen equivalence, which plays
an important part in discriminating whether two ribbon presenta-
tions are same ribbon type. Section 2.2 is devoted to a proof of the
following theorem.

Theorem B. For an arbitrary integer n > 2, there are infinitely
many ribbon n-knots of 1-fusion, each of which has two ribbon

types.

2.1. Nielsen Equivalence

There is the following equivalence relation for group presentations
with two generators and one defining relator ([LM],[MKS]).

Definition 2.1.1. Let [z,y | R ] and [ z*,y* | R* ] be group
presentations of a given group with two generators and one rela-
tor. These two group presentations are said to be Nielsen equiv-
alent if and only if there exists an isomorphism for free groups,
o: [z,y| ] = [z*y*| |, such that ¢(R) is conjugate to
R*il.

We call the group presentation obtained from (K™,b) by con-
struction of the group presentation (*) in Section 0.2, the group
presentation associated with (K™,b). By the definition(2.1.1) and
the construction of (%), we can obtain the following lemma.

Lemma 2.1.2. Let (K",b) and (K™, b*) be ribbon presentations of
a ribbon n-knot of 1-fusion, K™. And let G(K™,b) and G(K™,b*)



29

the group presentations associated with (K™ b) and (K™,b*), re-
spectively. If (K™,b) and (K™,b*) are of the same ribbon type,
then G(K™,b) and G(K™,b*) are Nielsen equivalent.
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2.2. Proof of Theorem B.

Concerning arbitrary two group presentations with two genera-
tors and one relator for the knot group of a 2-bridge knot, Funcke
[Fu] gave a necessary and sufficient condition to determine whether
these group presentations are Nielsen equivalent or not. After Schu-
bert’s notation ([S]), let S(a,3) be a 2-bridge knot, where « and 3
are coprime integers such that « > 0,~a < # < a, and (3 is odd.

Lemma 2.2.1([S]). S(«a,f) and S(a*,B3*) are of the same knot
type, if and only if (i) a = o*, and (i1) B = B* or 8* =1 mod 2a.

Let G(S(a,B)) and G(S(a,3*)) be the group presentations for
the knot groups of S(«, 8) and S(a, 8*), respectively, each of which
is a group presentation with two generators and one relator, where
the elements corresponding to two overbridges of the knot diagram.

Lemma 2.2.2([Fu]). If B8B8* = 1 mod 2a and B* # %03, then
G(S(a, B)) and G(S(«,B*)) are Nielsen equivalent.

In the following, we construct an n-knot by spinning an arbitrary
1-knot (cf. [A], [C], [Su]). S(e,B) has two underbridges, 7,1 and
Yu2, and two overbridges, 7,1 and 7,2. Let R? be the plane defined
by { (z1,22y...y2n42) E R*™? | 23 =t, 24 = -+ = a2 = 0 }.
We can put 7,; and 7,2 on R% and put 7,5 and 7,2 in H? (see
Fig. 1), where H? is the half space difined by { (21,22,...,2n42) €
R™"2? | 23>t 24="--= 2,42 =0 }. We obtain the arc, denoted
by «y, by removing °v,2 from S({«, ). Pull the boundary of vy down
R2 parallel to the z3-axis in H, then we have the proper arc in
H3, denoted by v(S(«,f)), with its boundary in R2. Both v,
and 7,2 have one endpoint in R2 and the other endpoint in R2.
We spin v(S(a,3)) about RZ. Then, v(S(a,3)) sweep out an n-
sphere. We call this n-sphere the spun n-knot of S(«, (), denoted
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by K?(S(a,3))- It is a ribbon n-knot of 1-fusion because the loca of
Yo1U%o2 and 7y, correspond to S§UST —°T and T in the definition
(0.2.2), respectively. Therefore, we can obtain the following lemma.

Lemma 2.2.3. For an arbitrary 2-bridge knot, S(c, 3), its spun n-
knot, denoted by K(S(«,)), is a ribbon n-knot, and has a ribbon

presentation with 1-band.

For the spun n-knot of the lemma (2.2.3), we denote its ribbon
presentation by K7(S(«,),bs), and the group presentation asso-
ciated with G(K['(a,3),bs)). By the construction of K7(S(a,3))

we can obtain the following lemma.

Lemma 2.2.4. G(S(o,f)) = G(K2(S{«,3),bs)).

Two 2-bridge knots, denoted by k' = S(«a, ) and k*! = S(w, 8*),
satisfying the condition in the lemma (2.2.2) are of the same knot
type by the lemma (2.2.1). Therefore, their spun n-knots, K7(k!)
and K7(k*!) are also of the same knot type. By the lemma (2.2.3),
they are ribbon n-knots of 1-fusion, and by the lemma (2.2.2),
G(K?(k'),bs) and G(K?(k*!),b%) are Nielsen inequivalent. Then,
by the lemma (2.1.2), these two ribbon presentations with 1-band
are distinct ribbon types.

Therefore, we have infinitely ribbon n-knots with two ribbon
types because there are infinitely many pairs of 2-bridge knots sat-
isfying the condition in the lemma (2.2.2). The proof of Theorem
is complete.

Example 2.5. The 5;-knot ([AB], [R]) has two knot diagrams as
shown in Figs. 12 and 14, the spun 2-knot of 53-knot has two rib-
bon types, which are K2(S(7,~3),b,) and K%(5(7,~5),b?). Their
equatorial sections are indicated in Figs. 13 and 15, respectively,
and their group presentations are the following:
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G(K?(S('Y, _3)a bs))
=[zo, @1 | oz 2y ' T1202]
G(K2(S(T,~5),51))
=[x,z | afay zgey ey togay e aga T  eg w2l T ey ]
These two group presentations are not Nielsen equivalent by the
lemma (2.2.2), but there exists an isomorphism
¢ : G(KX(S(7,~5),52)) — G(K2(S(7,~3),b,)) such that p(z3) =

a:o_la:lzco.

1,,-1,,-1 -1,-1
Ty T] TeT1T, T ToTq s

1 1 1
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5(7,-3)

Fig. 13

Fig. 12

5(7, -5)

it
Fig. 15

Fig. 14
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Chapter 3

RIBBON PRESENTATIONS

Section 3.1 gives a notion on classification of ribbon presentations,
and Section 3.2 is devoted to a proof of the following theorem.

Theorem C. Let KJ!, be the set of all ribbon presentations for
ribbon n-knots of m-fusions. There are four classes in K7, denoted
by K3, (n>2; k =1, 2, 3, 4), such that

(1) Ky = K3, SK3, 5 K53 S K7, = K3, and

(ii) for any k = 2,3,4, there exists a ribbon presentation (K™,
{b:}2.,) in K3 such that every ribbon presentation in K3, _, is

of distinct ribbon type to the given one.

Section 3.3 includes an extension of the above Theorem C and
answers to problems on the ribbon concordance.

3.1. Classes on Ribbon Presentations

A useful set of invariants of knot types is the chain of elementary
ideals and the equivalence classes on Alexander matrices ([CF]),
which also include informations of the ribbon types if we calculate
them from a group presentation associated with a ribbon presenta-
tion. From such a viewpoint, we calculate the chain of elementary
ideals and Alexander matrices, and classify ribbon presentations.

Definition 3.1.1. Let (K", {b;}/2,) be a ribbon presentation with
m-bands of a ribbon n-knot K™, G a group presentation associated
with (K™, {b;}12,), and

ri (1=1,2,---,m) defining relators of GG. By Fox’s free differential

calculus ([F1],[F2],[Ki]), we have ¥& ( g—;? ) 1< j<m Where ¥ and ®

are the homomorphisms in ‘Proof’ of the theorem(1.2.6).
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We define the Alexander matriz associated with G by
A(G) = (ai5) = ‘I'(I’( gf_’;? )15i,]‘5m'

For two matrices with entries in JH, A and A*, A is said to
be equivalent to A*, if there exists a finite sequence of matrices,
A= Ay, Ay,--- , A, = A*, such that A;;; is obtained from A;, or
vice-versa, by one of the following operations:

(i) Permuting rows or permuting columns.

0
(iii) Adding to a row a linear combination of other rows.
(iv) Adding to a column a linear combination of other columns.
(v) Adjoining a new row and column such that the entry in the
intersection of the new row and column is 1, and the remaining

(ii) Adjoining a row of zeros; A — < A )

entries in the new row and column are all 0; A — <61 (1)>

The following lemma is known.

Lemma 3.1.2 ([CF]). Let K™ be an n-knot, and G and G* group
presentations of K™. Then, A(G) and A(G*) are equivalent.

Definition 3.1.3. For an arbitrary non-negative integer d, we de-
fine the dth elementary ideal of A(G), denoted by E4(A(G)), by the
ideal of JH generated by the (m — d) x (m — d) minors of A(G),
with the conventions: (i) m — d < 0 then E4(A(G)) = JH. (ii)
m —d > m+1 then E4(A(G)) = 0.

The following lemmas are known.

Lemma 3.1.4([CF]). The elementary ideals of A(G) form an as-
cending chain,

Eo(A(G)) C E1(A(G)) C -+ C Em(A(G)) = --- = JH.
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Lemma 3.1.5([CF]). FEquivalent matrices define the same chain
of elementary ideals.

Definition 3.1.6. Let (K™, {b;}2_,) be an arbitrary ribbon pre-
sentation of a ribbon n-knot of 2-fusions K™. We apply the con-
struction of () in Section 1 to (K™, {b;}2_,). Then (K™, {b;}2_,)

is said to belong to (* . -class, : . -class, and

*
*
such that I/, and [, satisfy the following conditions (i),(ii), and (iii),
respectively;
(i) l; does not intersect Dy+1.
And [, does not intersect D;‘“.
(ii) I; does not intersect D;"’l.
(iii) No restriction.

-class, if and only if (K™, {b;}2_,) is a ribbon presentation

By the definitions(3.1.3) and (3.1.6), we obtain the following
propositions.

Proposition 3.1.7. Let K™ be a ribbon knot of 1-fusion and
(K™,b) its ribbon presentation. Then, E(A(G(K™,b))) is a prin-
cipal ideal and E;(A(G(K™,b)))

is JH.

Proposition 3.1.8. Let K™ be a ribbon n-knot of 2-fusions, (K",
{b;}2_,) its ribbon presentation, and G a group presentation asso-
ciated with (K™, {b;}2_,).
Then, A(G) is a 2 x 2 matrix such that

(i) the (1,2)- and (2,1)-components are 0, if (K™, {b;}%2_,) belongs

to
( * ) -class,
*
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(ii) the (1,2)-component is 0, if (K™, {b;}2_,) belongs to <I *>

-class.

3.2. Proof of Theorem C

By making use of the chain of elementary ideals obtained from
the group presentation of a ribbon n-knot, we can find a differ-
ence between ribbon n-knots of 1-fusion and ribbon n-knots of 2-
fusions, and also among three classes on ribbon types in n-knots of
2-fusions. Let K7, be the set of all ribbon presentations for ribbon
n-knots of m-fusions (m = 1,2), and K3,,K% 3, and K7, the set

of all ribbon presentations belonging to <* *> -class (I *>

-class, and : : -class, respectively. By using the conditions

(i),(ii), and (iii) in the definition (3.1.6), we have concluded that

22 C K33 C K3, = K7. On the other hand, for any element
(K™,b) belonging to K}, we can interpret (K™,b) as an element
in K3, by the following procedure: We can consider that (K™,b)
is constructed by using DIt D?*!, and I, in the construction of
(*) in Section 0.2. There is an n-disk DF*! which does not in-
tersect D{)'H U D;“H U ly. There is also a 1-disk I which has its
initial point pp in DF 1! and its terminal point p; in OD3*!, and
intersects Dyt U D?“ Uy only at po U p2. By applying the con-
struction of (*) in Section 0.2 to the above Dy*' U D+t U D!
and [, U [y, we obtain a ribbon presentation of K™ as an element
in K3 ,. Therefore, we can identify K7 with K3 ,, and obtain the
following lemma. Moreover, we can obtain the following lemmas

(3.2.2), (3.2.3), and (3.2.4).
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Lemma 3.2.2. K3,SK7,.

Proof. Let G2 be the following group presentation:

[ zo,z1,22 | moml_lmoarl_lmo_lzcl, :coa:gl:cozz_lm;l:cz ]
Let (K3,,{bi}?-;) be a ribbon presentation associated with Gz .
Then, E1(A(G2,2)) = ( (1 - 2t)2 ) and Ez(A(Gzyz)) = ( 1-2¢ )
Therefore, by the proposition (2,7), (K™, {b;}2_,;) does not belong
to KT = K3 ;.

Lemma 3.2.3. K3, K7 ;.

Proof. Let G 3 be the following group presentation:

[ zo,z1,22 | moa:l_lmoxl—lma'lxl, mowwglw“l I,
where w = w{lxomflmomflwomz—lxo. Let (K§'3,{b;‘}?=l) be a rib-
bon presentation associated with G 3.

Then A(G33) = <31(1 __2; 1 _O2t .
E»(A(G23)) = (3, 1+¢t) is not a principal ideal. On the other
hand, if (K3 3,{b}}i-,) belongs to KZ,, the diagonal components
are 1 and (1—2t)2, or both of them are 1—2¢, because E1(A(G23)) =
( (1-2¢)%). In both cases, E(A(G2,3)) is a principal ideal. This is
a contradiction. Therefore, (K73, {b}}?_,) does not belong to K2 ,.

Lemma 3.2.4. K3,S K7 ,.

Proof. Let G; 4 be the following group presentation:
-1, -1 -1, —1
[ zo,z1,@2 | Towiz] w] ', Towezy wy |,
where wy = mflxomz_lxomz_lmowglmo and
Wy = 172_15170:15;13}0$1_1$0$1_1330(131_12170213;1330331_1.’130.
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where w; =':1:1_1:c0m2_13:0:c2_1:z:0a:2_13:0 and
Wy = :c;1:coml_lxoxl_lmoml_lwoml_lwomflazgml”lwo.

Let (K}5, {b*}2_;) be a ribbon presentation associated with
G- Then, A(G2,4) = (6}1 _Zi) 31(1_ 22)) and EI(A(GZA)) =
( —14t? 4 32t — 17 ). Here, the generator of E1(A(G>,4)) is an ir-
reducible element in JH. On the other hand, by the condition (ii)
in the proposition(3.1.8), an arbitrary ribbon presentation belong-
ing to K7 3 has the first elementary ideal generated by a reducible
element in JH, or there is 1 in the orthogonal components of the
Alexander matrix. In the latter case, the second elemetary ideal is
JH. Therefore, if (K74,{b;*}?_;) does not belong to K3 3, then
E>(A(G2,4)) must be JH. But by the substitution of t = —1, there
exists an onto homomorphism

h:Ey(A(G24))=(1-2t,3(1—-¢t) )= (3).
Then E5(A(G2,4)) # JH. This is a contradiction.

Therefore, (K74, {b}*}7_,) does not belong to K7 ;.

3.3. Concluding Remarks
We can generalize the definition (3.1.6) as follows.

Definition 3.3.1. Let (K™, {b;}2,) be a ribbon presentation of a
ribbon n-knot of m-fusions K™ constructed by |Ji~,/; and

U;-'?__OD?’” as in the construction of (%) in Section 1. We define
the following m x m matrix R from (K™, {b;}/2,) by the rules as
in the definition (3.1.6): For a pair of integers ¢ and j such that [;
intersects D;‘H, the (¢, j)-component of R is entried by “ * ”. And
the other components of R are blank. Then, (K™, {b;}i%;) is said
to belong to R-class.
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We can obtain a partially ordered relation in K7, in the same way
as in Section 3.2. That is, for a pair of classes in K7, say R;-class
and Rj-class, Rj-class is said to include R;-class if R, is entried by
“ % ” in the same components as R;’s. Furthermore, let R-class be
an arbitrary class in K7, where R is an m x m matrix. R-class
can be identified with some class in K7, . ;, R*-class, where R* is
an (m+1) x (m+ 1) matrix entried by “ * ” in the same component
as R's (m = 1,2,---). Therefore, as a corollary of the theorem in

§0, we can obtain the following.

Corollary 3.3.2. A family of R-classes is a partially ordered set.

C. McA. Gordon [Go] has given the following conjecture: For two

knots K; and K, in the 3-sphere S3, we write Ky > K if there
exists a ribbon concordance from Kj to K;. Then, “ > ” is a partial
ordering on the set of knots in §3. In relation to this conjecture,
there is the following question:
(x*) For two knots K; and K, in S*, we write K, 2 K; if there
exists a ribbon concordance with only one saddle-point and one
minimal-point from K3 to Ki. Then, if Ky > Ky, do there exist ¢
knots Klla K12,' ) I{lt in Sa such that 1{2 % K]t % cee % 1{12 ?
K1 3 K, for some positive integer ¢ 7 _

As a parallel question, there is the following question:

(* * x) For two n-knots K7* and K in S™*2, we write K 7 K7 if
there exists a ribbon concordance with only one saddle-point and
one minimal-point from K7 to K. Then, If KI' > K7, do there
exist ¢ knots K34, K7, -+, K]\ in $"*? such that K 2 K}, 2 ...
? Ky $ Ky # K7, for some positive integer t (n > 2) ?

An answer to (% % *) is negative by the theorem in this paper
(see Theorem C). For example, there exists a ribbon concordance
from K34 in the lemma(3.2.4) to the trivial n-knot O™. But, by the
lemma(3.2.4), there does not exist a ribbon n-knot of 1-fusion K™*
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= O"#,0" such that K3, & K™ #,0™ where we mean a band
connected sum by “#;,”. Therefore, as a corollary of Theorem C,
we can obtain the following.

Corollary 3.3.3. There exist two knots KT and K7 in S™*? such
that (i)K7 % KT, and (ii)there do not exist t knots K, KT, -+,
K7 in S™*? such that Ky 3 K}, 2 --- 3 K4 2 K4y 7 K7, for
any positive integer t (n > 2).

Moreover, an answer to the question (*#) is also negative by the
following argument. T. Kobayashi introduce the following argu-
ment of K. Miyazaki to the author. We mean a connected sum by
“#” trivial 1-knot by O, the mirror image of 1-knot L by rL, the
Alexander plynomial of L by A(t), and the genus of L by g(L).

Classical Knot Case 3.3.4. Let K be prime, fibered, not a
2-bridge knot, and have an irreducible Alexander polynomial. If
K! = K#rK and K} = O, then K{ and K; satisfy the conditions
(i) and (ii) in the corollary(3.3.3) for n = 1.

A proof is the following. It is easily seen that K#rK > O.
Moreover, K#rK satisfies the condition(ii) in the corollary(3.3.3)
for n = 1. That is, there is no ribbon concordance such that K#rK
2 K* for any 1-knot K* % K#rK. Because if there exists such
an 1-knot K*, we have a contradictionary result by the following
argument.

Lemma A. K#rK =2 K*#,0.

Proof. We have the lemma(A) by the assumption that K#rK 2
K*.

Lemma B. K* is fibered.

Proof. By the assumption that K is fibered, K#rK is fibered.
Therefore, K* is fibered by the lemma(A) and the following theorem
in [Ko):
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For two knots L; and Ly in S3, if Ly#yL4 is fibered, then L, and
L, are fibered.

The following fact is well known (cf. [FM]):

For two knots Ly and Ly in S3, if Ly > Ly, then Ay, (t) = AL, (t) -
p(t) - p(1/t) where p(t) is a polynomial with integral coeflicients.
Therefore, by the assumption that there exists an 1-knot K* such
that K#rK 2 K*, we have Aggrx(t) = Ag-(t) - q(t) - q(1/t)
for some polynomial g(t) with integral coefficients. Moreover, it is
easily seen that A x4,k (t) = Ak(t)-Ax(t). By the assumption that
Ak (t) is an irreducible polynomial, we have the following two cases;
(C1) Ag-(t) = L and Ak (t) = q(t), or (C2) Ak-(t) = Ak(t)-Ak(t)
and q(t) = 1.

In the case of (C1), since Ag-(t) = 1 by the assumption and K*
is fibered by the lemma(B), K* is a genus zero fibered knot, that is,
the trivial 1-knot O. Therefore, K#rK = O#;0 by the lemma(A).
That is, K#rK is a ribbon number one knot. Moreover, there is
following theorem in [BM]:

A composite ribbon number one knot has a 2-bridge summand.
Therefore, K#rK has a 2-bridge summand. This is in contradiction
with the assumption that K is prime and not a 2-bridge knot.

In the case of (C2), since Ag-(t) = Ag(t) - Ax(t) = Axprx(t)
by the assumption. Therefore, we can obtain g(K*) = g(K#rK)
because K* and K#rK are fibered by the lemma(B). and its proof.
Moreover, g(K#rK) = g(K*#40) by the lemma(A). Therefore,
g(K*) = g(K*#30). The following theorem in [Ga] is known:

For two knots Ly and Ly in 83, if L = Ly#yL2, then g(L) >
g(L1) + g(L2). Equality holds if and only if there exists a Seifert
surface for L which is a band connected sum (using the same band)
of minimal Seifert surface for Ly and L.

Therefore, K*#,0 = K*#0 = K*. That is, K#rK = K* by
the lemma(A). This is in contradiction with the assumption that

K#rK % K*.

By the above argument, a ribbon concordance from K#rK to
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O cannot be decomposed by “ 2 ”. That is, an answer to the

question(**) is negative. For example, we can take the 85-knot
([AB],[R]) as K. This is prime, not a 2-bridge knot and has an ir-
reducible Alexander polynomial ([C],[R]), whose leading coefficient

is 1. Therefore, the 8;6-knot is fibered ([Ka]).

We must take notice that the above two arguments for the two
questions (#*) and (* % *) are independent at the present time. Be-
cause ribbon presentations for a ribbon n-knot is not always unique
by the theorems in [NN] and [Ys2] (n > 1). That is, even if K2
is the ribbon 2-knot associated with the ribbon 1-knot K#rK in
the argument of Miyazaki, then by making use of another ribbon
presentation for K?, we may construct a ribbon concordance from
K? to the trivial 2-knot O? which can be decomposed by “ 2 ”.
Therefore, at the present time, we cannot extend the above argu-
ment for (xx) to the argument for (* * %), and also in the inverse
extension, we cannot do so by the same reason.
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