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Abstract

In this thesis, first, fractal boundaries of the invariant set are investigated, in connec-
tion with a class of one-dimensional discrete nonlinear dynamical systems. The evaluation
of the Hausdorff dimension of the boundary brings us existing conditions of fractal bound-
aries, i.e., it is analytically shown that if periodic points with period three exist, then
fractal boundaries of the invariant set appear. Furthermore, by introducing the notation
of the symbolic dynamics, mechanisms yielding fractal invariant set are clarified.

The results obtained are applied to explore the invariant set of a class of one-dimensional
nonlinear sampled-data control systems and it is demonstrated that the set of initial con-
ditions, under which the state variable is finite, exhibits the fractal structure. Fractal
basin boundaries of coexisting final states are also explored. These results reveal that in
order to determine the sampling period, it is necessary to take into account the structure
of the invariant set.

Based on results obtained in one-dimensional systems, fractal boundaries of the invari-
ant domain of a class of predator-prey systems are discussed. The existing conditions and
the yielding mechanisms of fractal boundaries are clarified, concerned with the Volterra-
Lotka type two-dimensional difference equations. The invariant domain treated here is a
set of initial conditions, under which the prey and predator coexist.

Secondly, based on the fact that chaotic oscillations are often not desirable in some
physical systems, for example, biological population systems, the stabilization scheme of
the chaotic behavior is investigated in a class of predator-prey systems, by introducing
mathematical models with control inputs, where the harvesting or supplying of predators
is adopted as control inputs. Furthermore, noting that the chaotic system often exhibits
fractal boundaries of the invariant domain, the influences of control inputs, which stabilize
the system, on fractal structures of the invariant dokmain are discussed.

Throughout this thesis, numerical experiments are carried out in order to show the

validity of the results.
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Chapter 1

Introduction

1.1 Historical Background

Chaos and fractals are distinct but closely related subjects that many mathematicians
and engineers look to as a new way for understanding apparent complexity of nature
and as a challenging field in engineering applications. Mathematical studies on chaos
demonstrate that deterministic system — some of them surprisingly simple — can behave
in seemingly unpredictable fashion. Fractals — a term coined by B. Mandelbrot in the
1970s [Man75],[Man77] - offer an alternative to the smooth curves of Euclidean geometry
and yield a geometry representing the true nature of trees, clouds, and coastlines [Fed88].
Both subjects have come the fore in recent years with the advent of high-speed computers
. and computer graphics, which allow scientists to explore new territory and literally see the
intricate structures of simple differential or difference equations. The aim of this section

is to present a historical background of the chaos and fractal theory.

1.1.1 Chaos

(a) Classical Studies on Dynamical Systems and Discovery of Chaos

For many years, a great number of scientists are fascinated by problems concerned
with dynamical systems. Among such problems, Newton’s studies on celestial mechanics,
especially those on the motions of the bodies in the solar system, are notable, which yield
studies on models described by differential equations.

For linear ordinary differential equations, a relatively complete theory was developed
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by the great mechanicians and mathematicians of the eighteenth and nineteenth centuries.
However, nonlinear systems remained largely inaccessible, apart from successful applica-
tions of perturbation methods to weakly nonlinear problems, where the most famous appli-
cations are demonstrated in celestial mechanics. Poincaré’s work [Poi90a],[Poi90b],[Poi99]
in the late-nineteenth century is the origin of a qualitative approach to studies on nonlin-
ear differential equations. One could assume naively that deterministic motion is rather
regular and far from being chaotic because successive states evolve continuously from each
other. However, H. Poincaré (1854-1912) was already aware that the nonintegrable three-
body problem of classical mechanics can lead to completely chaotic trajectories [Poi90b] .
He also found various important concepts, which are fundamental for investigating chaotic
phenomena such as a homoclinic point, the Poincaré map, bifurcation theory and so on.
A qualitative study of nonlinear dynamical systems, proposed by Poincaré, was continued
by G. D. Birkhoff (1884-1944) [Bir35]. Furthermore, about sixty years later, Kolmogorov
[Kol54], Arnold [Arn63] and Moser [Mos67] formulated the so-called KAM theorem, which
is significant for investigating chaos in slightly nonintegrable Hamiltonian systems.

Besides Hamiltonian systems, before the concept of chaos in deterministic systems
was established, complicated behavior exhibited by deterministic systems were observed
by some scientists. M. L. Cartwright and J. E. Littlewood found a certain second order
nonlinear differential equation with a forcing term exhibiting a complicated behavior
[CL45]. N. Levinson simplified this equation and presented a deterministic second order
piecewise linear ordinary differential equation, that a Bernoulli shift is embedded in a
solution process [Lev49]. In this sense, Levinson showed that a stochasticity can be
observed in a solution process of a deterministic system. From this point of view, Kalman
found that in a certain solution set of a nonlinear difference equation, a Markov process
can be embedded [Kal56]. A number of outstanding problems, including the famous
horseshoe model, are outlined by Smale’s classic paper [Sma67].

Concerned with fluid dynamics, in 1963, the meteorologist E. N. Lorenz found that
even a simple set of three coupled first order nonlinear differential equations, which are

derived as an approximation of the Navier-Stokes equation, can lead to completely chaotic
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trajectories [Lor63]. He discovered one of the first examples of deterministic chaos in dis-
sipative systems. The importance of strange attractors in the study of turbulence was
suggested by Ruelle and Takens [RT71]. On the other hand in biological population dy-
namics, R. May indicates the existence of simple mathematical model exhibiting chaotic
behavior [May74]. The study on electrical circuits, by Y. Ueda, led to discover an ex-

traordinarily beautiful set of strange attractors [Ued79].

(b) Simple Mathematical Models Exhibiting Chaos in Discrete Systems

Stimulated by discoveries of chaotic phenomena presented in previous subsection, dur-
ing the past three decades, there has been an explosion of researches, concerned with the
complicated phenomena in nonlinear dynamical systems. At the first stage of studies
on chaos theory, an important role was played by one or two-dimensional simple and
deterministic maps, in order to understand the basic nature of chaotic phenomena.

Simplest mathematical objects which can display chaotic behavior are given by a class
of nonlinear one-dimensional maps [GOI77], [CE80], [GM80], [Ott81], [Pre83], [GH83],
[Sch84], [Dev89], [TS86]. Although the famous definition of chaos is provided by the
statement period 3 implies chaos of Li and York [LY75], there are many definitions of
chaos in a dynamical system [Blo78], [0080], [Dev89], [Ott81], [BPV84]. Oono and
. Osikawa (1980) [O0O80] enumerated physical intuitive pictures of chaos appearing in one-
dimensional difference equations. The excellent theorem concerned with the existence of
periodic orbits was shown by Sarkovskii (1964) [Sar64], [Guc79]. Furthermore, conditions
for existence of stable periodic orbits were demonstrated by Singer [Sin78]. In order to
discuss the stochasticity of chaos, relationship between chaotic processes and Bernoulli
shift was studied by using symbolic dynamics [Bil65], [AA68], [Fei78], [FOY83].

A well-studied two-dimensional map is the so-called Hénon map [Hen76], [BC91]. The
attractor of Hénon map has scale invariance and fractal structure as a Cantor set. Irregu-
lar behavior of measure preserving mapping, for example, the baker transformation, were
discussed in Lasota and Mackey [LM85]. Various properties of strange attractors were

illustrated by using the horseshoe map [Sma67], [SV81], [GH83], [TS86]. Methods for
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detecting chaos in higher-dimensional systems was presented by Marotte [Mar78] and Di-
amond [Dia76]. Furthermore, Marotte’s theorem was generalized by Shiraiwa and Kurata
[SK79].

Lyapunov exponents measure the exponential attraction or separation in time of two
adjacent trajectories in phase space with different initial conditions. A positive Lyapunov
exponent indicates a sensitive dependence of a trajectory on initial conditions and a
chaotic motion in a dynamical system with bounded trajectories. Therefore, Lyapunov
exponents is often adopted as a tool for diagnosing whether or not a system is chaotic
[Ose68], [SN79], [WSSV85], [GPL90], [ABK91]. Furthermore, influences of noises on chaos
are also evaluated by using Lyapunov exponents [MH81], [SMY88], [SMYK83], [SMY84],
[MY91]. In this thesis, the usefulness of Lyapunov exponents will be shown in numerical

experiments of Chap.5.

(c) Chaos Observed in Various Research Fields

There exist widespread interest in the engineering and applied science with respect
to strange attractors, chaos and dynamical systems theory. In recent years — due to new
theoretical results, the availability of high speed computers, and refined experimental
techniques — it has become clear that a chaotic phenomenon is abundant in nature and
has far-reaching consequences in many branches of science. Some nonlinear systems which

display chaos are listed as follows:

o Elastic structures and mechanical systems [HM83], [M0092]

— Various types of beam and arch
[MHT79], [Moo80a], [Moo80b], [Hol82], [MS83], [Moo84], [MH85], [SY85],
[PMMS83], [CM90]

— Three-dimensional strings [Mil84b], [ORr91]
— Multiple-well potential problems [ML85a], [ML85b], [LM90a], [LM90b]

— Duffing’s equation
[Ued79], [Ued80al, [Ued80b], [Ued85], [DP86], [UNHS88], [NS89], [KP91b]
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— Bouncing ball problem [WB81], [Hol82], [LL83], [TA86]

— Pendulum problems

[Mcl81], [LK81], [DBHL82], [RS84], [Mil84a), [HHS6], [GW85], [MCH87], [SS89)]

Vibration with friction [FM89], [PS90], [FM92a], [FM92b]

— Loose-fitting gears [SXC89], [PK90], [CS90], [KP91a)]

I

Impact Print Hammer [Hen83]

— Robotic mechanisms [Bel90]

Cutting process [Gra86], [Gra88]
e Fluid systems [Swi83], [Tat86]
— Rayleigh-Bernard convection
[Lor63], [BDMP80], [DBC82], [Libs7], [HES7]
— Taylor-Couette flow [BSS*83], [Swi83], [BSSW84], [BS87]
— Fluid drop chaos [Sha84]

— Chaotic fluid flow on Jupiter [Mar88], [MSS89]
e Acoustic systems [LC81], [MCL86], [Gib88], [LH91]
¢ Electrical and electronic circuits and systems [ES90]

— Circuits described by Duffing type equation
[Ued79], [Ued80a], [Ued80b], [Ued85]

— Circuits described by Van der Pol type equation
[UA81], [Guc80]

— Diode circuit [Lin81], [SY82], [RH82]
— Chua circuit — Double scroll [Mat84], [MCT84], [MCT85], [CKMS86]

— Phase-locked loop circuit [EC88], [EC89], [EC90], [End90], [EIC90],

the Josephson junction device [CP82], [Mag83],[SS85]
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Optical systems

— Laser systems [Hak75], [Hak85], [MSA87]

— Optical devices and light systems [HKGS82], [HB86]

Chemical systems [AAR*87b]

— Belousov-Zhabotinski reaction [SWS82], [AAR87a]

— Reaction-diffusion system [Rmb76a], [Rmb76b], [VRS90]

Biological systems [DHF87], [GM88]

Other topics

— Neural networks [ATT90]

— Numerical analysis [YM79], [YU81], [Ush82], [Hat90]

Earthquake model [CL89]
— Economic systems [Che88]

— Chaos synchronization and secure communications

[PC90],[KHE*92],[IM92], [[MHC93],[IM93],[Ush94],

In the above list, the control system and the biological population system are omitted,
since these two research fields are closely related to this thesis and the following subsections

give outlines of chaotic phenomena observed in these two fields.

(d) Chaos in Control Systems

It is well-known that the feedback mechanism often generates chaotic phenomena
[Spa80], [Spa8l], [adHWS83], [Hol85], [HU90], [GMI1]. Great interest has recently been
aroused in the study of chaotic behavior and strange attractors in various types of control

systems:

e Sampled-data control systems

[Kal56], [UH83], [UH84],[UH85a], [HA8S], [Hir90]
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e PWM control systems [BBW80], [UH85D)]
e Adaptive control systems [RAC85], [MB86], [MB88], [SB88]
¢ Digital control systems — Chaotic rounding error [UH87a], [UH87b]

Recent progress has been made in using nonlinear behavior to advantage in the design
of control system. For example, the new concepts of controlling chaos illustrate how
one might constructively use the exponentially divergent nature of chaotic orbits and the

extreme sensitivity of these systems with respect to small perturbations, in order to design

useful systems [OGY90], [SOGY90], [HH91], [RGOD92], [SGOY93], [KSK*93].

(e) Chaotic Dynamics of Biological Populations and Control Inputs

A central task for population biologist is to clarify the underlying mechanisms that
regulate natural populations so that no one species of plant or animal increases without
bound. Such studies lead us to consider simple equations that might describe the dynamics
of natural populations if environmental noise and uncertainty could be stripped away.

One of the oldest problems in mathematical ecology is the explanation of oscillatory
behavior observed in many interacting animal populations. The Volterra-Lotka model
[Lot25], [Vol26], although too simple to be realistic, provided a first attempt at this
- explanation. A more realistic explanation has been given by May [May73], based on a
limit-cycle theorem of Kolmogorov.

As emphasized in the early 1970s, nonlinearities, in simple models for the regulation of
plant and animal populations, can lead to chaotic dynamics [May74]. Therefore, complex
dynamics - including chaos - is likely to be abundant in population biology and population
genetics, even in seemingly simple situations [BFL75], [May76], [GOI77], [SS80], [May87].

The classical work of Volterra on fish populations in the Adriatic sea was one of
the earliest studies of effects of harvesting on populations. Possibilities of reducing a pest
population by harvesting and of accidentally wiping out a useful population by harvesting
are two important aspects which have been studied. Another important area involves the

economic aspects of harvesting [Cla76]. The formulation of the problem of maximizing
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the discounted value of a harvest as an optimal control problem has led to results of
considerable use in fisheries management. There have been many studies on the effect of
harvesting or enrichment according to a specified strategy on a population system, and
much is known about effects of constant-rate and constant-effort harvesting on equilibrium

population sizes and stability [Bra76], [BSJ76], [Lud79], [LV79], [BS79], [BS85].

1.1.2 Fractal

A widespread interest in fractal geometry is generated by Benoit B. Mandelbrot, with
his creative work [Man77], [Man82]. A book The Fractal Geometry of Nature (1982) writ-
ten by Mandelbrot contains both the elementary concepts and an unusually broad range
of new and rather advanced ideas. The advent in recent years of inexpensive computer
power and graphics has led to the study of nontraditional geometrical objects in many
fields of science. The concept of fractals has caught the imagination of scientists in many
fields and a enormous numbers of papers and books discussing fractals in various con-
texts were published [Man82], [Fal85], [Tak86], [PT86], [PR86], [Bar88], [Fed88], [PS88],
[Fal90], [Dev90], [Edg90], [Che91], [Mo092].

Many of the fractals and their descriptions go back to classical mathematics and

mathematicians as follows:

e Cantor set [Can83]

Space-filling curves — Peano and Hilbert curves [Pea90], [Hil91]

Koch curve [vK04], [vK06]

Sierpinski gasket and carpet [Siel6]

Julia set [Jul18]

Hausdorff dimension [Hau19].

Mandelbrot demonstrated that these early mathematical fractals in fact have many fea-

tures in common with shapes found in nature and proposed the following definition of a
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fractal [Man82]:
A fractal is a shape made of parts similar to the whole in some way.

It is now accepted that many geometric objects in nature have fractal-like shapes and
surfaces such as coastlines, clouds, mountain ranges, certain trees and leaves [Man82],
[Fed88]. In a recent book, Barnsley [Bar88] showed how one can recreate these shapes
using iterated maps and made a very nice connection between the static fractal objects
and the dynamical equations.

The horseshoe map is the simplest example of an iterative dynamics in the plane that
leads to fractal properties. Another example for which one can calculate the fractal prop-
erties is the baker’s transformation on two-dimensional space [FOY83]. Other examples
of iterated maps which produce fractal distribution of points are found in Mira [Mir87]
and Barnsley [Bar88].

(a) Fractal Dimension of Strange Attractors

There are two principal applications of fractal mathematics to nonlinear dynamics:
characterization of strange attractors and measurement of fractal boundaries in initial
condition and parameter space.

In order to characterize strange attractors, three definition of fractal dimension are
- often used : averaged pointwise dimension, correlation dimension and Lyapunov dimen-
sion. With the aid of methods for discretizing the signals, for example, discretization
of phase-space variable, Poincaré maps or embedding space method [M0092], the fractal

dimension of the strange attractor was measured in the following systems:

e Two-well potential problem — Duffing-Holmes equation [ML85b]

Periodically excited circuit [Lin85]

Long, thin cantilevered beam [CM90]

Rayleigh-Benard convection [MABD83], [BPV84]

Taylar-Couette flow [LPC81], [Swi85]



e Surface waves in a fluid [CG85]

e Chua’s circuit [MCT85]

Furthermore, the correlation dimension has been successfully used by many experimen-
talists, for example, Malraison et al. [MABD83], Swinney [Swi85], Ciliberto and Gollub
[CG85] and, Moon and Li [ML85b]. An extensive study of this definition of dimension
has been given by Grassberger and Proccacia [GP83]. The information dimension, which
is a measure of the unpredictability in a system, is discussed by Farmer et al. [FOY83],
Grassberger and Proccacia [GP83] and Shaw [Sha81],[Sha84]. Some relation ship between
fractal dimension were made by Kaplan and York [KY78], Grassberger and Proccacia
[GP83],[GP84].

(b) Fractal Boundaries

Studies on analytic maps f : C — C with the complex variable z + 7y € C, including
beautiful fractal pictures of the Julia and Mandelbrot sets, have demonstrated the inti-
mate connection between dynamical systems and fractals, and furthermore how incredible
patterns of complexity can occur from simple mathematical models [PR86], [Dev89].

In dynamical systems, modeled by various kind of differential or difference equations,
it happens that the solution processes are attracted to various stable sets, which in the
simplest case consist of single point. These stable sets, for example, equilibrium positions,
periodic or limit cycle motions, are called attractors in the mathematics of dissipative
dynamical systems. In nonlinear systems, it is possible that more than one attractor
coexist in a phase space and each attractor has its own basin of attraction — the set of
points that are drawn to that attractor. Therefore, the final state of the system depend
on the initial condition.

In classical problems, we expect the basin boundary to be a smooth, continuous line
or surface. However, it has been discovered that in many nonlinear systems, basins inter-
weave among each other in extremely complicated fashion and basin boundaries exhibit
fractal structure [GOY83], [MGOY85a], [MGOY85b]. If the basin boundary is fractal,

then small uncertainties in initial conditions may lead to uncertainties in the outcome
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of the system and predictability in such systems is not always possible. In the following

physical systems, the fractal basin boundary is observed:
e Periodically forced particle in a two-well potential [ML85a], [LM90b]
e Phase-locked loop circuits [EC90]

Grebogi et al. have also studied a phenomenon called boundary basin metamorphosts,
in which a change in some parameter of a dynamic process causes the basin boundary
to snap from a smooth curve into fractal form — a kind of mathematical phase change
[GOYS86].

A criterion for the existence of fractal basin boundaries was derived by Holmes [GH83]),
using a method by Melnikov [Mel63]. In the case of the forced motion of a particle in a
two-well potential, it turn out that this criterion gives a very good indication of fractal

basin boundaries [ML85a].

1.2 Problem Statement

As stated in previous sections, studies on chaos and fractal phenomena in nonlinear
dynamical systems are significant from the both scientific and engineering view points.

Noting that the basin of attraction, for example, is an invariant set of the dynamical
“system, the invariant set is one of the main subject in the dynamical system theory. The

first problem of this thesis is to clarify
o the existing conditions of fractal boundaries of invariant sets and
o the mechanisms yielding fractal boundaries of invariant sets,

concerned with one and two dimensional nonlinear discrete dynamical systems, which
represent models of sampled-data control systems and biological population systems.
Secondly, based on the fact that chaotic oscillations are often not desirable in some

physical systems, for example, biological population systems,

o the stabilization scheme of the chaotic behavior
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is investigated in a class of discrete dynamical systems, which present predator-prey sys-
tems, by introducing mathematical models with control inputs. Furthermore, noting that
the chaotic systems often have fractal invariant sets, the influences of control inputs,

stabilizing the system, on fractal structures of the invariant set are discussed.

1.3 Summary of Contents

In this thesis, fractal boundaries and the stabilization of chaotic behavior are studied
in deterministic nonlinear discrete dynamical systems, i.e., there exists a prescription,
in terms of difference equations, for calculating their future behavior from given initial
conditions.

In Chapter 2, the existing conditions of fractal boundaries of invariant set are demon-
strated by calculating the Hausdorff dimension of boundaries in a class of one-dimensional
nonlinear dynamical systems described by first order difference equation. The relation
between periodic points with period three and fractal boundaries is investigated in this
chapter. Furthermore, noting that the basin of attraction is an invariant set of the sys-
tem, the theoretical results are applied to explore the basin boundaries of a class of
one-dimensional nonlinear sampled-data control systems.

The mechanism yielding fractal boundaries of invariant sets, discussed in Chapter 2,
is presented in Chapter 3. The five different mechanisms are represented by using the
concept of the symbolic dynamics.

Based on results obtained in Chapter 3, fractal boundaries of invariant domain of
a class of predator-prey systems are discussed in Chapter 4. The existing conditions
and the yielding mechanisms are clarified, concerned with the Volterra-Lotka type two-
dimensional difference equations. The invariant domain treated in this chapter is a set of
initial conditions, under which the prey and predator coexist.

Chapters 5 and 6 are devoted to the investigation of the stabilization of chaotic be-
havior, observed in the predator-prey system, whose fractal boundaries of the invariant

domain are discussed in Chapter 4. The mathematical models with control inputs are

12



derived by using the stock-recruitment concept. It is shown through the stability analysis
that the constant and constant rate harvestings or supplyings of predators contribute to
prevent oscillating behavior of the system. Furthermore, influences of control inputs on
fractal boundaries of the invariant domain are discussed.

Throughout all chapters, except Chapter 7 which is devoted to the discussion and the
summary of results, numerical experiments are carried out in order to show the validity

of the results.

13



Chapter 2

Hausdorff Dimension of Fractal
Boundaries of Invariant Sets in
One-Dimensional Discrete
Dynamical Systems

2.1 Introductory Remarks

In a certain class of nonlinear dynamical systems, recognizing that the asymptotic
behavior of the system depends on the initial condition, in order to assign the final state
of the system, it is required to estimate the basin, that is, a set of initial conditions
under which the system state converges to a final state. Recently, it has been shown that
there exists the basin with extremely complicated boundaries called fractal [MGOY85a).
If basin boundaries are fractal, then it is difﬁcult to decide whether an initial condition
is included in the basin or not in the neighborhood of the basin boundary. Namely, it
is difficult to preassign the final state of the system from initial conditions. Hence, the
fractal structure of basin boundaries are generally undesirable in engineering systems.
In order to prevent the appearance of fractal basin boundaries, it is necessary to clarify

existing conditions of fractal basin boundaries.

In this chapter, by discussing the Hausdorff dimension of the basin boundary, existing

conditions of fractal basin boundaries are demonstrated, concerned with a class of one-
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dimensional discrete dynamical systems of the form [YS93], [YS94a], [YS94b]:

mn-{-l:f(mn)a n=0a1)2>"')
(2.1)
z, €R! f:R!'—=R.

First of all, in order to clarify existing conditions of fractal basin boundaries, it is shown

that the basin is an invariant set of the system, From this fact, existing conditions of
fractal basin boundaries are converted into those of fractal boundaries of the invariant set.
Secondly, based on the fact that, in one-dimensional systems, if the Hausdorff dimension
of the basin boundary is greater than 0, then the basin boundary is said to be fractal and
any magnification of the boundary does not bring us a simple structure of the boundary
[MGOY85a), a lower bound of the Hausdorff dimension of basin boundaries is calculated
and existing conditions of fractal basin boundaries are clarified.

The result obtained is applied to explore basin boundaries of a class of one-dimensional
nonlinear sampled-data control systems. Illustrative examples together with numerical
experiments show the existence of fractal basin boundaries of the sampled-data control
system. These theoretical and numerical results reveal that in order to determine the
sampling period, it is necessary to take into account the structure of the basin of final

states.

2.2 Preliminaries

This section is devoted to describe the definition and properties of Hausdorff dimension.
Furthermore, the invariance of the basin is demonstrated. These items are needed to
calculate a lower bound of the Hausdorfl dimension of the basin boundary in the next

section.

2.2.1 Definition of Hausdorff Dimension

For a subset A of R!, the diameter of A is defined by

|A| =sup{|z —y| : 2 € A,y € A}.

15



If 0 < |U;] < p for each i and

Ec|JU, ECR,

i=1
then the set of subsets {U,} is called the p-cover of E. If the case where the number of
elements U; of {U;} is countable, {U;} is called the countable p-cover.
Let S be a subset of R! and let s be a non-negative number. For a constant p > 0,

define

H3(S) =inf ) |UiJ*,

ot

where the infimum is over all countable p-cover {U;} of S. The Hausdorff s-dimensional

measure of .S is given by

H*(S) = lim H3(S).

p—0
Definition 2.1 (Hausdorff Dimension [Fal85]) For any subset S C R', there is a unique
value dimy(S), called the Hausdorff dimension of S, such that

(5 00, 0 < s < dimg(S)
] o, dimy(S) < s < 0.

2.2.2 Invariance of Basin
We define the n-hold composition of the function f with itself by
fn(m) = f(fn_l(w))’ fo(m) =T,

and furthermore, in order to indicate the initial condition, the state variable z, starting

from an initial condition z, is denoted by
zn(20) = f"(0)-
The distance d(z, E) between a point z and a set E C R' is defined by
d(z,E) =inf{|z — y| : y € E}.

The asymptotic behavior of the discrete dynamical system (2.1) with respect to a initial

condition %, is given by

Su(20) = {z : lim d(z, | ] zx(20)) = 0}.

n—o00
k>n
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The basin of the set S, (Zo), i.e., the set of initial conditions converging to S, (Zo) is defined
by

A(Su(&0)) = {zo : lim d(zn(20), Su(£0)) = 0} = {20 : lim d(f™(20), S (%0)) = 0}

(2.2)
Let S be a set with S C R'. The inverse mapping of S is defined by
f7H(S) ={z: f(z) € S}.
If a set S C R! satisfies that
f7(8) =5, (2.3)
then the set S is called the invariant set.
The following Lemma gives important properties of the basin A:
Lemma 2.1 The basin A, defined by (2.2), satisfies that
f1(A) = A (2.4)

The proof of Lemma 2.1 is shown in Appendix 2A of this chapter.

The Lemma 2.1 indicates that the basin is an invariant set of the system. Hence, from
now, our attention is concentrated on a lower bound of the Hausdorff dimension of the
boundary of invariant sets and existing conditions of the fractal boundary of invariant

-sets in the discrete dynamical system (2.1) are clarified. Based on Lemma 2.1, results

obtained can be applied to investigate fractal basin boundaries.

2.3 Hausdorff Dimension and Existing Conditions
of Fractal Boundaries

Let S be the invariant set of the system (2.1), i.e., f~1(S) = S. The boundary of the
invariant set S is denoted by 05. The goal of this section is to give existing conditions of
the fractal boundary 95 satisfying that dimyg(8S) > 0 in the discrete-time system (2.1).

A lower bound of the Hausdorff dimension of the boundary 35 is calculated and the

basic existing conditions for fractal boundaries are demonstrated in the following theorem:
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Theorem 2.1 In the discrete dynamical system (2.1), if there exist two open intervals

A, B C R! satisfying that

(A2.1) ANB=@
(A2.2) f(A) D (AUB), f(B)D>(AUB).

(A2.3) For any uj,uz € A or uj,u; € B, there exists a positive constant ¢ < 1
satisfying that
|ur —

|f(u1) = f(uz)| <

(A2.4) dSN(AUB)# .

c

then there exists a positive constant 6 < 1 and the Hausdorff dimension of boundaries of

the invariant set satisfies that

log 2

dimg(S) > > 0. (2.5)

~logc +logé

In order to demonstrate the proof of Theorem 2.1, the following operator is needed:

For any set K C (AU B),

p(K) = {1y NnAanas)u(f(y)yn BN as)} (2.6)
yeEK

and
A AROES 7))
Furthermore, the following two lemmas are required:
Lemma 2.2 If assumptions (A2.1) to (A2.3) hold, then, for any point P € dSN(AUB),

there exists a positive constant 6 = 6(P) < 1 such that, for any integer n > 1, in order to

cover a set of points

P, = fa5(P), (2.7)

at least 2"~ + 1 intervals with the length c*~1§ is needed.
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Lemma 2.3 If, for any countable p-cover {U;} of E C R?,

holds, then

dimy(E) > s.

The proof of Lemma 2.2 is demonstrated in Appendix 2B, where the invariance of the
set S is needed. Namely, in order to obtain Theorem 2.1, the invariance of the set S is

needed. Lemma 2.3 is cited from the reference [Fal85].

(Proof of Theorem 2.1) The assumption (A2.4) indicates that there exists at least a
basin boundary P € {(AU B)NdS}. From Lemma 2.2, for any P € {(AUB)N S} and

for any n > 1, there exists a positive constant 6 < 1 such that, in order to cover the set
P, = fi5(P),

at least 2”71 + 1 intervals with the length c"7!§ is needed.

Hence, let {V;} be the ¢"~14-cover of the subset of Py, i.e.,
(Vi}={Vi:|Vil=c"1,P,nV, # T, 1 <i<2" +1}.
On the other hand, let {U;} be the countable p-cover of 35S, i.e.,

{U;}={U;:0<|U;] < p,85 C JU;}-
i=1
From the definition (2.7) of P, and the definition (2.6) of the operator f75(-), it follows
that

P, C0S. (2.8)

Furthermore, from the condition 0 < ¢ < 1 in the assumption (A2.3),

lim ¢* 716 = 0. (2.9)

n—oo
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the diameter of V; = ¢*~1§

Vv, Vy. V.,
| [ ____| L] o 2:
U,

Figure 2.1: Components of {V;} and {V;}

Taking into account (2.8) and (2.9), it is derived that, for any countable p-cover {U,} of
0S5, we can compose the set {V;}1<ican-141, with sufficiently large n, satisfying that
=141

GU]:) U vi. (2.10)

In this case, as shown in Fig.2.1, if m components of {V;} is included in a component U,

of {U;}, then, for any k > 0, the inequality
U1 > m(e )¢ (211)

holds [Fal85]. From (2.10) and (2.11), we obtain
2141

Z|U = Z [VilF = (27 + 1)(c"716)F > 2n () (D, (2.12)

If a constant k 1s set as

log 2
—— >0 2.13
log ¢+ log é > (2.13)

then it holds that
2n—1(65)(n—1)k =1.

Hence, from (2.12), it is obtained that, if a constant k satisfies Eq.(2.13), then, for any

countable p-cover {U,} of 8S, an inequality
U F>1 (2.14)
=1

holds. This fact and Lemma 2.3 indicate that

dimy(05) > —— 282 S ¢ (2.15)

logc + log5
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Figure 2.2: A unimodal mapping and open intervals A, B in assumptions (A2.1) to
(A2.3)

(Q.E.D)

A simple example of the nonlinear function satisfying assumptions (A2.1) to (A2.3)
is a unimodal and differentiable one, as plotted in Fig.2.2. However, restrictions for the
nonlinear function f(-), described by these assumptions (A2.1) to (A2.3) of Theorem
2.1, is too strict to apply this result to the sampled-data control system or other engi-
neering systems. Hence, in order to investigate fractal basin boundaries, concerned with
engineering systems, it is necessary to modify assumptions of Theorem 2.1. The following
‘Theorem 2.2 presents the relation between periodic point with period three and fractal
basin boundaries. In Sec.2.4, by using Theorem 2.2, fractal basin boundaries of a class of

sampled-data control system is discussed.

Theorem 2.2 In the discrete dynamical system (2.1), if there exist points p,q and r
satisfying that
(A2.5) fir)<p<flp)=q<flg)=r

(A2.6) For any u;,up €lp,r[= {z : p < z < r}, there exists a positive constant

c < 1 satisfying that
|u1 — ug

() = fa)] < P22

(A2.7) Ip, 7[NOS # 9,
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then the Hausdorff dimension of the boundary 3S satisfies that

dimg(8S) > 0. (2.16)

(Proof) The principal idea for proving Theorem 2.2 is to consider the system
Fna1 = f(Fn), n=0,1,2.---, (2.17)

where f(:) = f(f(-)). From the definition of the invariant set, the invariant set S of the

system (2.1) satisfies that

Namely, the invariant set of the system (2.1) is also the invariant set of the system (2.17).
Hence, if the boundary of the invariant set of the system (2.17) is fractal, then that of
the system (2.1) is also fractal. Therefore, the remainder of the proof is to show that
if (A2.5) to (A2.7) holds, then the boundary of the invariant set of the system (2.17)
is fractal. To do this, in the system (2.17), it is shown that, under assumptions (A2.5)
to (A2.7), there exist two open intervals satisfying assumptions (A2.1) to (A2.4) of
Theorem 2.1.

If the assumption (A2.6) holds, then the nonlinear function f(-) is continuous. Hence,

from the assumption (A2.5), we obtain

f(p, ql) 211(p), f(@)[Dlg, [ (2.18)

and
f(a,rD) 21f(r), f(D)Dlp, r[. (2.19)

From the relations presented in (2.18) and (2.19), it follows that

FUp,aD) = £*(p,al) D £(a,7[) Dlp, [ (2.20)

and
fQa,7D) = £2Qg,7D > £(p, ) Dlp, r[ (2.21)

22



From (2.20) and (2.21), it is shown that, setting A =]p, ¢[, B =]g, r[, the nonlinear function
f(-) = f3(-) satisfies the assumption (A2.2) in Theorem 2.1. Tt is clear that sets A =]p, q[
and B =]g, r| satisfy the assumption (A2.1) in Theorem 2.1.
Furthermore, under the assumption (A2.6), it holds that
() = Flua)] = 1£(f(w)) = f(f(u2))l

| f(u1) = f(us)l
< c (2.22)

Therefore, noting that if 0 < ¢ < 1, then 0 < ¢ < 1, and replacing ¢ in (A2.3) by ¢, it
is concluded that the nonlinear function f(-) satisfies the assumption (A2.3) of Theorem
2.1.

Finally, noting that (A2.7) in Theorem 2.2 is equivalent to (A2.4) in Theorem 2.1,
it has been shown that in the system (2.17), assumptions (A2.1) to (A2.4) hold. This
complete the proof of Theorem 2.2. (Q.E.D.)

Points p, ¢ and r satisfying the condition (A2.5) of Theorem 2.2 are called the ex-
tended periodic point with period three [LY75]. Theorem 2.2 indicates that the period

three implies fractal boundaries of invariant sets.

2.4 Fractal Basin Boundaries of a Class of Sampled-
Data Control Systems

2.4.1 System Model of Sampled-Data Control Systems

In this section, our attention is focused on the fractal basin boundaries observed in a

class of one-dimensional nonlinear sampled-data control systems described by
z(t) = az(t) + bu(t)
y(t) = cz(t) (2.23)
u(t) = g(r —y(kT)), kT <t<(k+ 1T,

where z € R! is the state variable, y € R' is the observation data and u € R' is the

control input, r is a constant representing the desired state, a,b and c are constants, T is
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sampling

r(t)=r . period T zero | . _ y(kT) Control
e —w= order Element
- hold g()

u=g(r - y(kT))

Linear System
T =az + bu

y=cz

(a) The block diagram

9(z)
/
2r //
/
/
1+
/
-2 -1 ‘ z
[l | 1 | I,
s 1 2
//
r—1
7}
7/
// - 2
, —

(b) The shape of the nonlinear function g(-)

Figure 2.3: The sampled-data control system (2.23)
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the sampling period, and g : R' — R!is a nonlinear function representing the nonlinearity
of the control element. Figure 2.3(a) shows the block diagram of the sampled-data control
system (2.23).

Due to the existence of the nonlinearity of the control element, the asymptotic behav-
ior of the sampled-data control system (2.23) depends on the initial condition. In this
example, we consider the case where parameters a, b, c and the desired state r in Eq.(2.23)

are set as

and the nonlinear function g(-) is given by

3
g(z) = 2z — —Tan""2z.
v

Figure 2.3(b) shows the shape of the nonlinear function g(-). Furthermore the sampling
period is set as 7' = 0.075. In this case, the state variable z(¢) of the system (2.23) with
the initial condition z(0) = 0.1 converges to the equilibrium z. = —0.04973 ---. On the
other hand, the state variable z(¢) with the initial condition z(0) = 0.3 diverges to the
infinity. Therefore, in order to indicate the final state of the system from initial conditions,

the basin of the equilibrium z. is needed.

2.4.2 Derivation of Discrete Dynamical Systems

In order to investigate the structure of the basin of the sampled-data control system
(2.23) by using theoretical results presented in the section 2.3, we derive the difference
equation describing the time evolution of the state variable z(¢) of the sampled-data

control system (2.23). First, calculating

(n+1)T J
p(t)dt,
[ e

the following equation is derived from Eq.(2.23):

z((n+ 1)T) = exp(aT)z(nT) + exp(aT)/OT exp(—ar)dr - bg(r — cz(nT)). (2.24)
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The straightforward calculation of the integral included in (2.24) yields
z((n+ 1)T) = exp(aT)z(nT) + s—{exp(aT) — 1}g(r — cz(nT)). (2.25)
Finally, by using the transformation defined by
z, =1 — cz(nT), (2.26)

we obtain the following difference equation describing the time evolution of the state

variable of the sampled-data control system (2.23):
Tnt1 = fol(zn), n=0,1,2,---, (2.27)

where

fi(z) = az + Bg(z) + 7,

a = exp(aT),

he (2.28)
B= {1 -exp(al)},

v = r{1 — exp(aT)}.

2.4.3 Stability of Equilibriums and Structure of Fractal Basin
Boundaries

As shown in Eqgs.(2.28), parameters «, f and v include the sampling period 7'. Hence,
the shape of the nonlinear function f,(-) depends on the sampling period 7. Figure 2.4
plots the shape of the nonlinear function f,(-) with the sampling period 7' = 0.075. From
Fig.2.4, it can be seen that the discrete dynamical system (2.27) has the following three

equilibriums:

s = —0.4486- -, 2P = —0.3222- -, 2{¥ =1.0210- - ..
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Figure 2.4: The shape of the nonlinear function f,(-) with 7" = 0.075

The derivatives of the function f,(-) at these equilibriums are given by

df

—_— =0.3824 .- .
dCE I=I(1) ’
df

7 1.6508 - -,
d

dfs = —2.6146-- -
dCL‘ I=I£3)

Hence, z{!) is an asymptotically stable equilibrium. On the other hand, equilibriums z{?
and z{3 are unstable. Therefore, in order to predict the asymptotic behavior of the system

(2.27), it is needed to obtain the basin of the equilibrium z{!) defined by
A(z) = {zo: Jim d(z,(z0), ) = 0} = {z¢ : lim z, = (M}, (2.29)
In Fig.2.4, consider an interval I; on the z-axis, which is given by
Iy = [htn, Tl (2.30)
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where

22 = min{z : fiz) =z}, 22 =max{z: f(z) = z}.

It is easy to see that if an initial condition is not included in the interval I, then the

absolute value of the solution process diverges. For example, the solution process with

zo = 2 exhibits the oscillation and its amplitude infinitely increases as follows:
To=2< —11 = —f(SC()) < Zg = f2($0) < —T3= —fs(wo) LRI

From this fact, it follows that
A(Z‘S)) C If.

On the other hand, there exists an interval I, defined by

I ={z: f(z) >z

max )

(2.31)

From the definition of :cﬁf,}m

it is clear that I, ¢ A(z("). Hence, ]p, r[¢ Az)).

In the sequel, from the above two facts such that
e an equilibrium z(} €]p, r[ is asymptotically stable.
e an interval Iy C]p, [ is not included in the basin of the equilibrium z{"),

it is shown that the assumption (A2.7) in Theorem 2.2 holds.

The nonlinear function f,(-) is continuous and differentiable. Furthermore, as shown in
Fig.2.4, there exist extended periodic points p, ¢, with period three. Hence, it is shown
that, in the case where 7' = 0.075, the nonlinear function f,(-) satisfies assumptions
(A2.5) to (A2.7) in Theorem 2.2, and fractal basin boundaries appear. In order to show
the shape of fractal basin boundaries, numerical calculations have been carried out, which

are demonstrated in the following subsection.

2.4.4 Numerical Experiments

(a) Shape of Fractal Basin Boundaries
In numerical calculations for demonstrating the shape of fractal basin boundaries, the

following procedures are carried out:
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500 segments

A
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2.0 / 0 2.

Figure 2.5: Dividing points of an interval

. An interval [—2, 2] is divided into 500 segments and each dividing point is selected

as an initial condition of the difference equation (2.27). (See Fig.2.5.)
. For an initial condition, the solution process z, is calculated by using Eq.(2.27).

. After 400 times iterations, if |x(el) — T400| < 107°, then we conclude that the initial

condition is included in the basin of the equilibrium z{) and the segment

{z : 20 <z < 20+ 0.008}

is blackened. (See Fig.2.5.)

In Fig.2.6, the basin of the equilibrium z{ is plotted by black stripes. For example,
in Fig.2.6(a), the initial condition z(, located under a black stripe, converges to the
equilibrium z{!. On the other hand, the solution process with the initial condition zJ,

located in the blank region, diverges to the infinity. Namely, black stripes in Fig.2.6

demonstrate the shape of the basin of the equilibrium z{V.

Figure 2.6(b) is a magnification of Fig.2.6(a) and furthermore Fig.2.6(c) is a magnifi-
cation of Fig.2.6(b). These magnification reveals that the basin of the equilibrium z(! has
extremely complicated structure and the magnification does not decrease the complexity
of the fractal structure of the basin. Hence, in the neighborhood of the basin boundaries,

it is difficult to decide whether an initial condition is included in the basin or not, and it

is impossible to preassign the final state of the system.
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(b) A magnificaton of an interval [-0.7, —0.68]
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— 0.684 — 0.683 —0.682

(c) A magnificaton of an interval [—0.684, —0.682]
Figure 2.6: Fractal basin boundaries of a sampled-data control system (2.23)

(b) Onset of Fractal Basin Boundaries and its Disappearance in Numerical

Experiments

For various values of the sampling period T, solution processes and the basin of
the sampled-data control system (2.23) are numerically calculated by using the differ-
ence equation (2.27). Figure 2.7(a) plots the relation between the sampling period T
and the asymptotic behavior of the system. For example, if the sampling period T
is set as T" = 0.075, the solution processes starting from the basin A of the equilib-
rium z() = —0.4486--- converge to the equilibrium z{!, then the position (T,z) =
(0.075,—0.4486 - - -) is marked with a black point. The relation between the basin and the
sampling period 7' is shown in Fig.2.7(b). From these numerical experiments, we obtain

the following facts:
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—0.3

1

— 0.4

state variable

- 0.5
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0.075 0.1 0.125 0.15

sampling period T

(a) Asymptotic behavior of the system vs sampling period T

state variable

1 I | |
0.075 0.1 0.125 0.15

sampling period T
(b) Basin vs sampling period T

Figure 2.7: Bifurcation diagram and fractal basin boundaries of a sampled-data control
system (2.23) with A =20, B=5 C =5 and r = —0.2
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1. From Fig.2.7(a),

(a) For T < 0.1253---, there exists an asymptotically stable equilibrium z{V =
—0.4486 - - - and solution processes starting from its basin converge to the equi-
librium z (V.

(b) For T > 0.1253 - - -, the period doubling bifurcation is observed. Furthermore
if the sampling period T increases, then the solution process exhibits chaotic

behavior.
2. From Fig.2.7(b),

(a) For the sampling period 7" = 0.07, the interval I, defined by (2.31) does not
exist and numerical calculations do not exhibit fractal basin boundaries. More

exactly, the closure of the basin is an interval I; defined by (2.30).

(b) In the case where T' > 0.0742 - - -, the interval I; appears and the basin bound-

ary exhibits fractal structure. These basin have the positive Lebesgue measure.

(c) For T > 0.1439---, the basin with positive Lebesgue measure can not be
observed. For almost all initial conditions, solution processes to Eq.(2.27)

diverge to infinity.

2.5 Coexisting Final States and Fractal Basin Bound-
aries of a Class of Sampled-Data Control Sys-
tems

2.5.1 Coexisting Phenomenon of Final States

Recently, it has been shown that different final states coexist and a slightly different
initial conditions yield quite different final states of the system [HH87],[HA88],[Hir90].

In this section, existing conditions of fractal basin boundaries, shown in Theorem 2.2
of Sec.2.3, are applied to explore the coexistence phenomenon of final states with fractal

basin boundaries, in a class of nonlinear sampled-data control systems (2.23), where it is
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p= f(r) T
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Figure 2.8: The shape of the nonlinear function f,(-) with 7" = 0.0614

assumed that parameters a,b, ¢ and the desired state r are set as
a=130,b=5 c=5 r=—028

Under these assumptions, the nonlinear function f,(-), included in the difference equa-
tion (2.27), is plotted in Fig.2.8, where the sampling period is set as ' = 0.0614. As shown

in Fig.2.8, the discrete-time system (2.27) has a stable equilibrium
z.= —0.7615- -
“and stable periodic points with period three
p=—1.9164---, g=—0.7950---, r = 3.7322- - -

For example, the solution process with the initial condition zo = 1.0985 converges to the
equilibrium z, = —0.7615---. On the other hand, the solution process with the slightly
different initial condition zq = 1.09851 exhibits the periodic behavior with period three.
(See Figs.2.9(a) and (b).)

Therefore, in order to predict the asymptotic behavior of the system (2.27), we need
the basin of the equilibrium z, = —0.7615- - -:

A(z.) = {zo : lim f™(zo) = z.}. (2.32)

n—oo
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Figure 2.9: The solution processes of the discrete dynamical system (2.27)

2.5.2 Shape of Basin with Fractal Boundaries

The nonlinear function f,(-) is continuous and there exist periodic points p, ¢, with
period three, as shown in Fig.2.8. Furthermore, taking into account that, as mentioned in
Subsec.2.5.1, a stable equilibrium z. and stable periodic point with period three coexist,

we obtaln

Ip, 7[N0A(.) # 2.

From these discussions, in the case where T' = 0.0614, it is clear that the nonlinear func-

tion f,(-) satisfies conditions (A2.5) to (A2.7) of Theorem 2.2. Hence, the basin A(z.)
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Figure 2.10: The fractal basin boundary of a discrete dynamical system (2.27)

exhibits fractal boundaries.

In Fig.2.10, the basin of the equilibrium z. is plotted by black stripes. The solution
processes starting from the black region of Fig.2.10 converge to the equilibrium z.. On
the other hand, if the initial condition is included in the white region of Fig.2.10, then

the solution process exhibits periodic behavior with period three.

Figure 2.10(b) and (c) are respectively a magnification of Fig.2.10(a) and (b). Figures
2.10 reveal that the magnification does not decrease the complexity of the fractal structure
of the basin. Hence, it is extremely difficult to decide whether an initial condition is
included in the basin of the equilibrium z. or not, namely, to predict whether the solution

process converges to the equilibrium z, or not.
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2.5.3 Bifurcation Diagram of Attractors

For various values of the sampling period T, final states and the basin of the sampled-
data control system (2.23) are calculated by using the difference equation (2.27). The rela-
tion between the sampling period T" and final states of the system is plotted in Fig.2.11(a),
which shows that, in the case where the sampling period T satisfies 0.06133--- < T' <
0.06154 - - -, attractors A and B coexist, namely, final states coexist. The relation between

the sampling period T' and the basin of the attractor B is demonstrated in Fig.2.11(b).

2.6 Concluding Remarks

In this investigation, it has been demonstrated that the existence of the periodic point
with period three implies the existence of fractal basin boundaries, concerned with a class
of one-dimensional discrete dynamical systems. Furthermore, by using the results ob-
tained by theoretical analyses, fractal basin boundaries of a class of sampled-data control
systems were investigated. In illustrative examples, it was shown that if the sampling
period is long, then fractal basin boundaries appear. Hence, it is difficult to predict
the asymptotic behavior of the system. Approaches for detecting fractal basin bound-
aries, demonstrated in this chapter, are useful for preventing the existence of fractal basin
boundaries, when we determine the sampling period of the sampled-data control system.

The fractal set generated by the contraction mapping was already investigated and
the excellent results were obtained [Huc81]. However, in the previous results [Huc81], the
set itself is fractal, hence the Lebesgue measure of the fractal set is zero. In engineering
dynamical systems, including control systems, this fact means that the fractal basin of
an equilibrium has the zero Lebesgue measure and for almost all initial conditions, state
variables do not converge to the equilibrium. Therefore, in engineering systems, the
existing conditions of fractal basin boundaries are valuable, rather than those of the

fractal set.
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Figure 2.11: Bifurcation diagram and fractal basin boundaries of a sampled-data control
system (2.23) with A =30, B=5, C =5 and r= —0.28
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Appendix 2A: Proof of Lemma 2.1

From the definition of the inverse mapping f~!(-), if z € f~!(A(S,)), then f(z) €
A(S,). Furthermore, from the definition of the basin A(S,), if f(z) € A(S, ), then

lim d(f*(f(z)), S.) = 0. (2.33)

n—oo

By using Eq.(2.33), we obtain that

lim d(f"(z),S.) = lim d(f"*}(z), S,) = lim d(f*(f(z)), S.) =0,

n—oo n—+00 n— oo

which indicates that z € A(S,). Based on these discussions, it is concluded that, if
z € f71(A(S,)), then z € A(S,), i.e.,

FTHA(SL)) € A(SL). (2.34)

Next, by using the contradiction, it is shown that f~!(A(S,)) D A(S,). Assume that
z € A(S,) and z ¢ f~}(A(S,)). Then, from the second condition z & f~*(A(S,)), it
follows that

f(z) & A(S.)- (2.35)

However, from the first condition z € A(S,),

lim d(f"(f(z)),S.) = lim d(f*(z), S.) = 0,

n=-+00 n—+oo

which indicates that f(z) € A(S,). Hence, the contradiction occurs. Therefore, if z €
A(S,), then z € f71(A(S.)), ie.,

FTHALSL)) D A(SL). (2.36)

Combining (2.34) and (2.36), the proof of the Lemma 2.1 has been completed.
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Appendix 2B: Proof of Lemma 2.2

First of all, two lemmas, which are needed for the proof of Lemma 2.2, are shown:

Lemma 2.4 Under assumptions (A2.2) and (A2.3), for any Q € {30SN (AU B)}, it
follows that

FFHRINANOS D

and

FQ)NBNaS#4.
(Proof) Let B,.(z) be the neighborhood of a point z, defined by

B.(z)={y: |y —z| <e}.

If the assumption (A2.3) holds, then the function f(-) is continuous on the interval
A. Therefore, from the condition f(4) D (AU B) in (A2.2), for any boundary Q €
{85 N (AU B)} and for any constant ¢ > 0, there exists a point z € (f~1(Q) N A)
satisfying that the image f(B.(z)) is the neighborhood of a point Q = f(z).

From the definition (2.3) of the invariant set S, it can be derived that
f(S)=25. (2.37)
Now assume that B,(z) C S. Then, from Eq.(2.37),
f(B.(z)) C f(5) = 5. (2.38)

However, the condition (2.38) is inconsistent with the fact that f(B.(z)) is a neighborhood

of a boundary @ € 3S. Hence, we obtain that, for any ¢,
B.(z) ¢ S. (2.39)

Next, assume that B.(z) NS = &. In this case, for any z € B,(z), it holds that
f(z) ¢ S. (If f(z) € S, then, from definitions of the inverse mapping f~! and the
invariant set S, z € f~*(S) =S, i.e., B,(z)NS # I.)
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Hence, if B,(z) NS = &, then
f(Bz)NnS =4 (2.40)

However, the condition (2.40) is inconsistent with the fact that f(B.(z)) is a neighborhood
of @ € 8S. Therefore, it is derived that

B.(z)NS# . (2.41)

From (2.39) and (2.41), it is stated that, if f(B.(z)) is a neighborhood of the boundary
Q € {8SN (AU B)} with Q = f(z), then, for any ¢ > 0, the set B,(z) usually includes
points which are included in the set S and points which are not included in the set S.
This fact indicates that a point z is a boundary of the set S. Therefore, it has been
concluded that
FFUQINANGS +# L.

The proof of another proposition that f~1(Q)N BN 8S # &, in Lemma 2.4, is given
by the similar procedures. (Q.E.D.)

Lemma 2.5 If assumptions (A2.1) to (A2.3) hold and a set of points {P;: P, € {0SN
(AU B)}, 1< i< n} satisfies that

min{|P, - P| :i # j} > 8,
%2

then, in order to cover a set fiz({P}), at least 2 n — 1 intervals with the length c&' are

needed.
(Proof) From the assumption (A2.3), for any v;,v, € (AU B),
inf{|u1 - U2| U € (f_l('Ul) N A),Ug € (f_l('Ug) ﬂA)} Z C|'Ul - 'Ugl (242)

holds. Noting the assumption of Lemma 2.5 such that |P, — P;| > &', i # j, and further-

more using (2.42), we obtain

inf{|Q: — Q; : Qi € (fT(R)NA),Q; € ST (P)NA} 2 c|Pi— P > 8. (243)
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Taking into account that, from Lemma 2.4,
FFUP)NANAS £
and using (2.43), it is obtained that, for any ¢ and j with 1 < i< j < n,
inf{lz—y|: z€(fFUR)NANDS), ye (fTHP)NANSS)} > cb'. (2.44)

The condition (2.44) indicates that, in order to cover a set of points

Ut (Pyn4nas),

at least n intervals with the length cé’ are needed. Similarly, in order to cover a set of

points
UL (R)n BN os},
i=1

at least n intervals with the length c§’ are needed.

However, since the distance between intervals A and B is not determined, an interval
with the length c§’ may cover a point included in the set | J{/™'(P)N AN &S} and a
i=1

point included in the set | J{f'(P:) N BN 8S}. Therefore, it has been shown that, in
i=1
order to cover a set of points

(7 (P)nAanasyuJ{f(R) N BNoS),

1 1=1

at least 2 n — 1 intervals with the length cé’ are needed. (Q.E.D)

s

13

(Proof of Lemma 2.2) Consider the set P; defined by
P = ZE(P)a

where P is a point satisfying P € {0S N (AU B)}. From Lemma 2.4, there always exist

points P4 and Py respectively satisfying
Pae{f"(P)NANSS}C P,

and

Pz e {f"{P)NBNA3S} C P,.
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Taking into account that P4 € A and Py € B, and furthermore, noting that A and B are
open set, there exists a positive constant § > 0 such that

|P4 — Pg| > 6. (2.45)

Hence, in order to cover a set P, at least N; = 2 intervals with the length § are needed.
From the inequality (2.45) and Lemma 2.5, in order to cover a set f;5({Pa, P5}), at
least N; = 2 x N; — 1 = 3 intervals with the length cé are needed. Now, noting that

Py = f35(P) = f25({P1}) O fa5({P4, Ps}),
it is stated that, in order to cover a set P;, at least N, = 3 intervals with the length cé
are needed.
Selecting a point including each intervals with the length c6, we can construct a set

Pj including 3 points as follows:
Pl={z;,i=1,2,3: |z, —a;| >cb 1<i<j<3}

From the definition of the set P, and Lemma 2.5, in order to cover a set f75(Py), at least

N3 =2 x Ny — 1 =5 intervals with the length ¢ are needed. Noting that
Py = f35(P) = f35(P2) D fa5(F3),
it is obtained that, in order to cover a set Pj3, at least N3 = 5 intervals with the length

c26 is needed.

Repeating these procedures, we obtain the following equation:
Npyr=2N,—1, N, =2, (2.46)

where N, is an infimum of the number which is needed, in order to cover the set P, =
fag(P),n=1,2,3,- - by using intervals with the length c"~'§. From Eq.(2.46), we obtain
that

N,=2""1+1

These discussions indicate that, for any integer n > 1, in order to cover a set
P, = f15(P),

at least 27! + 1 intervals with the length c®~'§ are needed. (Q.E.D)
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Chapter 3

Mechanisms Yielding Fractal
Boundaries of Invariant Sets in
One-Dimensional Discrete
Dynamical Systems

3.1 Introductory Remarks

In Chap.2, existing conditions of fractal boundaries of the invariant set have been
discussed by calculating a lower bound of the Hausdorff dimension of boundaries, in

connection with a class of one-dimensional nonlinear discrete dynamical systems described

by

Tp41 = f(xn); n= 0; 1)2) Tty (31)

where z,, € R and f(-) is a nonlinear function f : R' — R!. The purpose of this chapter
is to investigate mechanisms yielding fractal boundaries of the invariant set, by using the

notation of symbolic dynamics [SY89].

For simplicity of discussions, throughout this chapter, it is assumed that, for any
Zo ¢ [0’ 1]>

: n —_— M J—
lim [f™(z0)| = lim |z,| = o0

and we consider the set A defined by

A ={z¢: 2, = f"(20) €]0,1], n > 0}. (3.2)
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In this case, without loss of generality, we can consider that the nonlinear function f(-)
in Eq.(3.1) is defined on the normalized interval [0,1]. Hence, the nonlinear discrete

dynamical system, described by the difference equation (3.1), can be converted into

Tpe1 = f(zn), n=0,1,2,---,

(3.3)
z, €R', f:]0,1] — R,
Definition 3.1 (Invariant Set) The set A, C RY, satisfying
f(AL) C A, (3.4)

is called the invariant set of the nonlinear function f(-) [GH83].

The definition 3.1 of the invariant set is given by modifying the strict definition,.
provided by Eq.(2.3) in Chap.2. Namely, the invariant set, treated in Chap.2, satisfies
the condition (3.4).

Lemma 3.1 The set A, defined by (3.2), satisfies that
f(A) CA, (3.5)

that is, the set A is an invariant set of the nonlinear function f(-) describing the discrete

dynamical system (3.3).
(Proof) From the definition (3.2) of the set A, if z € A, then, for any n > 1,
f"(f(2)) = f"*(z) €]0,1[. (3.6)

The relation (3.6) indicates that if z € A, then f(z) € A, namely, f(A) C A. (Q.E.D.)
The motivation of investigations, discussed in this chapter, arises as follows: In engi-
neering systems, it is often required that the state variable of the system is bounded, i.e.,

for a positive constant M < oo,
|zn| < M, n=0,1,2,---.

In ecological systems, it is required that the population does not disappear, i.e.,
z, >0, n=0,1,2,---.
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However, due to the existence of the nonlinearity, the asymptotic behavior of nonlin-
ear dynamical systems depends on the initial condition. Hence, in order to predict the

asymptotic behavior, it is necessary to obtain a set of initial conditions,
Ay ={z0: |z < M,n=0,1,2,---}

or
A0={:1:0::cn>0,n=0,1,2,~-}.

From the definition of the set A, if an initial condition of the discrete dynamical system

(3.1) is included in the set Ay, i.e.,
zg € Ay,
then, at any time step n, the state variable of the system is finite, i.e.,
Tn = fM(z0) € Apr, n=1,2,3,---.

Hence, it follows that

f(AM) CAp.

Similarly, if an initial condition is included in the set Ag, then the population size z, of
the ecological system is larger than 0 at any generation n. Therefore, the set Ay also

satisfies

f(Ao) C A,.

Based on these facts, in this chapter, the structure of the invariant set A, defined by (3.2),
is discussed.

There exist various engineering or ecological systems modeled by the simple difference
equation (3.1), and numerous important nonlinear phenomena have been studies, for
example, bifurcation phenomena, chaos, fractal and so on [Lor63] [May76] [LY75] [Dev89]
[M0092]. In addition to these phenomena, the structure of the invariant set is also an

important subject of the nonlinear dynamical system (3.3)
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In Sec.3.2, the notation of the symbolic dynamics [CE80] [Dev89] is introduced and
the mechanism yielding the fractal structure of the invariant set is investigated, associ-
ated with a class of nonlinear functions possessing periodic points with period three. It
has been shown in Chap.2 that fractal boundaries of the invariant set generated by the
mechanism, demonstrated in Sec.3.2, has non-integer Hausdorff dimension. In Sec.3.3,
under more strict conditions for the nonlinear function describing the system dynamics,
mechanisms yielding the fractal invariant set are discussed in detail. In each Secs.3.2 and

3.3, illustrative examples are also demonstrated.

3.2 Mechanism Yielding Fractal Boundaries of In-
variant Sets and Periodic Points with Period-
Three

3.2.1 Notation of Symbolic Dynamics

In this section, the following assumptions, concerned with the nonlinear function f(-)

describing the dynamical system (3.3), are accepted:

(A3.1) the nonlinear function f(-) is continuous on [0, 1].
(C) there exist points p, ¢ and r satisfying
0<flr)<p<g=flp)<r=flg) <1
(A3.2) there exists a set Sy defined by
So={z: f(z) > 1, z €0,1[} (3.7)

and satisfying
SoNp, r[# L.

In order to discuss the yielding mechanism of fractal structures of the invariant set A
defined by (3.2), first of all, it is necessary to remark that if there exists an integer £ > 1
such that

2o € f75(So) = {z : f¥(z) € Sp}, (3.8)
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then the initial condition z, satisfies

fk(xo) € SO;
and furthermore, in the next step, it follows that
i (zo) 2 1.
Therefore, sets f~%(S;), k = 0,1,2,--- are not included in the invariant set A and the
invariant set A is produced by the operation described by
A =10, 1[- U f7(S0)- (3.9)
k=0
From Eq.(3.9), in order to discuss the yielding mechanism of the fractal structure of the
invariant set A, it is necessary to clarify the yielding rules of sets f~%(S;), k = 1,2,3,---.

Thus, the following notations of symbolic dynamics are introduced: Inverse images Spo

and Sp; of the set Sy are defined by

SOO = f_l(SO)ﬂ]py Q[)
Sor = f7H(So)N]g, r[-
In general, for any subscript sysy--- sk, k > 1 with s; € {0,1}, 1 < i <k, inverse images
Ssys3--s,0 and Sg 4,..,1 of the set S; ;.. are defined by
SS]SZ"'SkO - f—1(56132"'3k)n]p) q[)

Sslsz'“skl = f~1(55182"'sk)m]q’ S['

Noting that, from the definition of sets S, ;...,, k > 1,

[:jf-k(so)a Lj U Sasses

k=0 s;=0,1
1<:<k

it can be shown that

A= =U ) 0= U Susea (3.10)
k=0 k=0 ;,;05,]1c

These discussions indicate that, in order to clarify the mechanism yielding the fractal

structure of the invariant set A, it is valuable to investigate the mechanism yielding sets

Siysps-
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3.2.2 Mechanism Yielding Fractal Boundaries

By using the notation of the symbolic dynamics, defined in the previous subsection,
we obtain the following theorem, which gives the mechanism yielding fractal boundaries

of the invariant set A [YS91b].

Theorem 3.1 If assumptions (A3.1), (A3.2) and (C) hold, then sets S, ,...s, are gen-

erated under the following rules:

(R1) If SoNlp,q[# & and SoN|g, r[= &, then a set So; exists. On the other hand, if
SoN]g, r[# &, then sets Soo and So; exist.

(R2) For any k > 2, if s, =0, then a set S, 4,51 exists.

R3) For any k > 2, if sp = 1, then sets S, ,..5,0 and Sy 5y..5,1 €TISL.
182 k 182 k

(Proof) The proof is divided into three parts.
i) Existence of S, ,,...;,1: From assumptions (A3.1) and (C),
152 k

fg,rD 21£(r), S (@p, . (3.11)

The relation (3.11) indicates that, for any S,,,..s, Clp, [,

{z: f(z) € S4yspspy ¢ €lg, [} # . (3.12)

From (3.12), it is concluded that there always exists one of the inverse image described

by
Sslszr"skl = f—l(Sslsgwsk)m]q) T[

= {z: f(z) € S5 555, }N]g, 7]
= {z: f(z) € Ss 55, T €lg, [}
+ .
Thus, the existence of Sg; in (R1) (See Fig.3.1.) and S;,,,..5,1 in (R2) and (R3) is

shown.

(ii) Existence of Sgp in (R.1): From assumptions (A3.1) and (C),

f(p, qD) D1f (), F(@)[=lg, r[. (3.13)
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Figure 3.1: The existence of Sgy and Sp; of the nonlinear function f(z) satisfying condi-
tions (A3.1),(A3.2) and (C)
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Therefore, from (3.13), it is obtained that if SoN]q, r[# &, then, as shown in Fig.3.1(b),

there exist

SOO = f—l(SO)n]pa Q[: {IE : f(CE) € SO"T € [p> Q[} # @

(iii) the existence of S,,,...,0 in (R3): From the definition of the set S;,,..,, if sx =1,
then

Seyspsx Cla, [ (3.14)
Relations (3.13) and (3.14) show that, for any s;s;- -+ sx with sy = 1, the inverse image
53152'”31:0 = f—1(55152“'5k)n]p’ Q[

exists. (See Fig.3.2) (Q.E.D)

A
/]

|
|
1
/ ! |
0 1 f(r) p/

SslsgwskO 53132-"3,‘1

I
I
|
O T T I
|
I
q

\ r1 Figure 3.2: The existence of inverse
z

images S, ;.50 and Sy, 4. 5,1
Theorem 3.2 For any s152- - 8p # tita -+ tm,

Syiegsn N Stitytr, =, (3.15)

(Proof) Theorem 3.2 is proved by using a reduction to absurdity.

(i) Case where n = m: First, assume that there exists a point z satisfying that

T € {55152"'371 n Stth“'tm} = {55152"'5n N Stlt2"‘tn})
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where, for an integer A with 1 < h < n,
Sp = 0, th = 1.
From the hypothesis that z € S;,,...;, with s, =0,

") e Ssyspsn TPy ql- (3.16)

On the other hand, from the hypothesis that z € S;4,..., with t, = 1,

fn—h(w) € Stxtz'“th C]q,’l“[ (317)

(3.16) is incompatible with (3.17). Hence, there does not exist a point z € {S; 4.5, N
Stlt2...tn}.

(ii) Case where n < m: Assume that there exists a point z satisfying
z € {Ss 5550 NV Stytytm }-
From the hypothesis that z € S, ...,
frz) > L. (3.18)
However, from the hypothesis that z € S,¢,..,,,
f(z) € Sttytm-n CJ0,1[. (3.19)

(3.18) is incompatible with (3.19). (Q.E.D)

Points p, ¢ and r satisfying the condition (C) are called the extended periodic point
with period three [LY75]. Theorem 3.1 demonstrates the mechanism yielding fractal
boundaries of the invariant set, in the case where there exist periodic points with period
three of the nonlinear function. Figure 3.3 illustrates the rules described in Theorem 3.1.
For example, it can be seen that a set Spo; yields inverse images Spo10 and Sgp11, and that
a set Spio yields an inverse image Spi0; only.

Theorems 3.1 and 3.2 reveal that infinite numbers of inverse images S are suc-

$182° Sk

cessively produced through rules (R1) to (R3) in Theorem 3.1 and are not the empty
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Figure 3.3: Rules described in Theorem 3.1

set. Therefore, the invariant set A, satisfying

8

A =10, 1= ) 7*(So) CJo, 1] CH.
k=0

k=0

=
KA
INS

,1
k

exhibits the fractal structure of boundaries.

3.2.3 Example

(a) Definition of Capacity Dimension

In this example, a nonlinear discrete dynamical system with the fractal invariant

set is demonstrated, where the fractal structure of the invariant set A is generated by

the mechanism presented in Theorem 3.1 [YS91a]. Furthermore, the fractal dimension,

concretely the capacity dimension, of the fractal invariant set is calculated. The capacity

dimension, which is one of the fractal dimension, is defined as follows:

Definition 3.2 (Capacity Dimension) [Fed88] If, for a set S in the one-dimensional
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space, the number N(£) of intervals of length £ needed to cover the set S increases like

N(£) < £7P for £ — 0,

then D = dimg(S) is called the capacity dimension of the set.

(3.20)

From (3.20), we obtain the equation, which is useful for calculating the capacity di-

mension dimg(S), of the form

dimg(S) = D = lim w.
{—0 log Z

(b) System Model

Consider the one-dimensional discrete non-linear system described by

In+1 = fc(mn)a

where the nonlinear function f. : [0,1] — R! is defined by

1 3
2ct+ -, 0<z< -
2 8
fc(m)= 3
2(1 - z), §<x§1

(3.21)

(3.22)

Figure 3.4 shows the shape of the nonlinear function f.(-) describing the system (3.22).

fe(z) |

Figure 3.4: The shape of the nonlinear function f.(-)
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In the nonlinear system (3.22), points p, ¢ and r in Theorem 3.1 are respectively given
by p = 0,¢g = 0.5 and r = 1. Furthermore, the set Sy defined by (3.7) is given by
So = [1/4,1/2]. Hence, assumptions of Theorem 3.1 hold and the invariant set A, defined
by (3.2), exhibits the fractal structure. The generating procedure of the fractal structure
of A is illustrated in Table 3.1.

(c) Number of Intervals Covering Invariant Set A
In order to calculate the capacity dimension of the invariant set A, note that the

invariant set A of the system (3.22) is given by

A =10,10= 0 5740 =, 11-

51827 8k"

T8
i

-

= o
IA
o~
IANL
=

Now, define

n—1
A, =10,1[— | f75(Se), n=1,2,3,--
k=0

n+1

and consider the number of intervals of length (1/2)**! needed to cover the set A,, which

is denoted by

s (3"

As shown in Table 3.1, the series {a,} satisfies that

Opis = Qni1 + Ay, ag =2, a; = 3. (3.23)

By introducing the new variable ¢,, defined by

Vv5—1

tn = Quy1 + PGy, p = 5 (3.24)
Equation (3.23) is converted into

V5 +1
tn+1 = qtn) q= 2 ’ (325)
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to = a1 + pag = \/_ .

2
Now, we consider the variable S,, defined by

Sns1 = tna1 + (=p)tn + (=p)tar + -+ (=) o (3.26)
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Substituting (3.24) into (3.26), it is obtained that

Snt1 = Gnyz P41
+(=p)an+1 +(=p)pa,
+(-p)2a, +(—p)*pan-1

+(=p)"a2  +(-p)"pas
+(=p)"* as + (—p)"*pag,
hence,

Sn+1 = Ap42 — (—p)"+2a0. (327)

On the other hand, Equation (3.25) brings us
tn = q"to. (3.28)

Substituting (3.28) into (3.26), it follows that
Snt1 = ¢" o+ (=p)g"to + -+ + (—p)* 0. (3.29)

Furthermore, multiplying both sides of (3.29) by —p/q, we obtain

P n 2 n-—1 n+1 (_p)n+2
- 5Sn+1 = (=p)g"to + (=p)“¢" to+ -+ (=p)" to + to. (3.30)
Equations (3.29) and (3.30) yield
—pn\nt2
Sn1 + ES‘n+1 = q"*t 1 — %tm
q q
Hence,
qn+2 _ (_p)n+2 qn+2 _ (_p)n+2
Sn 1 = to = (a1 +pa0). (331
¥ q+p g+p )
Comparing Eqs.(3.27) and (3.31), we have
n+2 _ (__ \n+2
Any2 — (—p)"ay = 1 (=p) (a1 + pao). (3.32)

g+p

Substituting ap = 2 and a; = 3 into (3.32), we obtain

Ao = 2+ \/gqn+2 _ 2 - ﬁ(_p)nn
" V5 V5

)
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namely,

24v5 , 2-V5, .,
Ap = \/g qg — \/5 (_p)

(3.33)

(d) Capacity Dimension
Noting that
lim A, = A

and by using Eq.(3.21), the capacity dimension of the invariant set A of the system (3.22)
is calculated by

dimg(A) = D = lim 28%
n—ooog 27
2+v5 , 2-V5,
q" — (=p)
_ L V5 V5
= 1im
n—00 nlog2
'2+\/§n{ 2—\/3( p)"H
log gnel— —=
— lim L V5 24+v5\ ¢

n—oo nlog 2

lim (—B) = lim (—V‘F’"l) =0,
n—+00 q n— oo \/g_{_l

in the sequel, the capacity dimension of the invariant set A of the system (3.22) is calcu-

log

From the fact that

lated as
dimg(A) s s
. 1 2+ V5 2-v5( p\"
= o2 log( V5 )+nlogq+log{1 2+\/5(_Q) H
log Y311
logg _ ™ " _ g0a2....
log 2 log 2

3.3 Mechanisms Yielding Fractal Invariant Sets of
Unimodal Mappings

3.3.1 Notation of Symbolic Dynamics

In Sec.3.2, under assumptions (A3.1),(A3.2) and (C), a mechanism yielding fractal

boundaries of the invariant set has been shown. In this section, more detailed discus-
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sions are demonstrated under the following assumptions for the nonlinear function f(.),

describing the discrete dynamical system (3.3):
(A3.3) The nonlinear function f(-) is continuous on the closed interval [0, 1].

(A3.4) The nonlinear function f(-) is unimodal on the closed interval [0, 1], i.e., there

exists a point z,, €]0, 1] satisfying that
if z € [0, z,,[, then the function f(-) is uniformly increases,

and

if z € [z, 1], then the function f(-) is uniformly decreases.

(A3.5) The nonlinear function f : [0, 1] — R satisfies the following conditions:

(a) 0<f(0) <1,
(b) flzm)>1,
() f(1)=0.

Figure 3.5 plots the nonlinear function satisfying assumptions (A3.3) to (A3.5). As

f(=z)
A

1

x P

7 <
min{f~!(1)} max{f(z)} 1 *

(a) Shape of the nonlinear function (b) Interval I

0

Figure 3.5: The shape of a unimodal function f(-) satisfying assumptions (A3.3),(A3.4)
and (A3.5)
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shown in Fig.3.5(b), under assumptions (A3.3) to (A3.5), there exists an interval I
defined by

Iy ={z €]0,1]: f(z) > 1} (3.34)

and the invariant set A is given by

(@

A =10,1[— | ) f7*(1o). (3.35)

k=0

The principal technique used in this section is also provided by the notation of the
symbolic dynamics, which is introduced as follows: First of all, noting that the interval

Iy defined by Eq.(3.34) is given by

Io = [min{f (1)}, max{f 7 (1)}],

two open intervals Jy and J; are introduced by
Jo =10, min{f (O}, iy =Jmax{f~ (D)}, 11
(See Fig.3.6(a).) Secondly, inverse images of the interval I is defined by
Io = [~ o) N o,  Tor = f'(Jo) N 1.

of the interval I

In general, inverse images I, 1828k

are defined by

152°"8kSk41
‘[3152"'3k3k+1 = f_1(15132“‘8k) N Jsk+1' (3'36)

(See Fig.3.6.)
By using the notation defined by Eq.(3.36), it becomes that

U f—k(lo) = U Islsg~~~sk)
k=0 k=0 =

i=0,1
<<k

—

and the invariant set A, defined by (3.2), is given by

s

A =)0, 1~

k=0 s

i=0,1
1<i<k
Hence, in order to clarify the mechanism yielding fractal boundaries of the invariant set

A, we investigate the mechanism yielding intervals I, ..,
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T O [.sls;msko Islszmskl

(a) Ioo and I, (b) Iy, 6350 and I, 5601

Figure 3.6: Inverse images I, ,,.;,0 and I, 4,..;,1 of an interval [,

18275k

3.3.2 Mechanisms Yielding Fractal Boundaries

It is already well-known that if f(0) = 0, then intervals I, are generated under

1828k

the following rule [Dev89]:
(RO) For any s, with k > 1, intervals I, ,,..s,0 and I, ,,..,,1 always exist.

[t is well-known that the Cantor middle third set is a typical example of the invariant set
with the fractal structure [Dev89], generated under the rule (R0). Figure 3.7 illustrates
the rule (RO).

The following Theorems 3.3a to 3.3d newly demonstrate mechanisms yielding fractal
boundaries of the invariant set A, which are different from that yielding the Cantor middle

third set.
Theorem 3.3a If assumptions (A3.3) to (A3.5) and

(Ca) max{f~!(min{ /71 (1)})} > f(0) 2 max{f~"(max{f7'(1)})}

hold, then intervals I, are generated under the following rules:

1828

(R1a) For any k > 1, if sy =0, then an interval I ,..s,1 exists and an interval Iy 5,50

does not exist.
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Figure 3.7: The Rule generating the Cantor middle third set described in (RO)

(R2a) For any k > 1, if sp = 0 and sg4q = 1, then intervals I 6pmsiqy0 and 1

1827 skl

exist.

(R3a) For any k > 1, if s = 1 and sgq1 = 1, then an interval Iy, .., 1 exists and an

interval I, ,,..q,,,0 does not erist.

The proof of Theorem 3.3a is demonstrated in Appendix 3A. Similarly, proofs of the
following Theorems 3.3b to 3.3d are also demonstrated in Appendix 3B to 3D respectively.

. Theorem 3.3b If assumptions (A3.3) to (A3.5) and

(Cb) max{f~ (max{f7(1)})} > f(0) > max{f~'(1)}

hold, then intervals I, ,,..,, are generated under the following rules:

(R1b) Forany k > 1, if s = 0, then an interval I, ,...,1 exists and an interval I, ,,..5,0

does not ezist.

(R2b) For any k > 1, if s = 0 and sxy1 = 1, then intervals I, 5, o, 0 and Ig o 01

exist.

(R3c) For any k > 1, if sp =1 and sg41 = 1, then an interval I 1 always exists

182 " Sk41

and an interval Iy, o, 0 does not always erist.
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Theorem 3.3c If assumptions (A3.3) to (A3.5) and

(Ce) max{f~}(1)} > f(0) > min{f~(1)}

hold, then intervals I, ,..,, are generated under the following rules:
(R1lc) There exist intervals Iog and Io;.

(R2c¢) For any k > 2, if s, = 0, then an interval I ,,..s,1 exists and I, ;.50 does not

exist.

(R3c) For any k > 2, if s, = 1, then intervals I, ,,. 5,0 and I 1 exist.

851828k

Theorem 3.3d If assumptions (A3.3) to (A3.5) and

(Cd) min{ (1)} > f(0)

hold, then intervals I, ,,..,, are generated under the following rules:

(R1d) There exist intervals Iog and Ip;.

(R2d) For any k > 2, if s, = 0, then an interval I, ;,...;,1 always exists and an interval

I

s155--s,0 does not always exist.

(R3d) For any k > 2, if sy = 1, then intervals I, s;..00 and Iy 4.1 €ist.

Figures 3.8 show rules described in Theorems 3.3a and 3.3c. For example, in Fig.3.8(a),
it can be seen that an interval Iyg; yields inverse images Ipo10 and Ipg11, and that an interval
Ip1o yields an inverse image Ipj0; only. Furthermore, the self-similarity of the generating
mechanism is observed as follows: the generating mechanism of inverse images of an
interval Ip; is similar to that of inverse images of an interval Ioo; or o101 and so on.

Theorem 3.4 For any s183---Sp # t1ta - tm,
15182"'371 N It1t2~~~tm - Q
(Proof) The proof of Theorem 3.4 is similar to that of Theorem 3.2, hence, is omitted.
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(a) Rules in Theorem 3.3a
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. . . . L]

(b) Rules in Theorem 3.3¢

Figure 3.8: Rules yielding inverse images I, ,,..s, in Theorems 3.3a and 3.3c
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3.3.3 Example

In this subsection, results, presented in the subsection 3.3.2, are applied to the logis-
tic system, which is well studied as the mathematical model exhibiting the population

dynamics in ecology:
Tnt+1 = fA(mn)) n=20,12,---,

fa(z) = Az(1 - z),

where z, represents the population density of the n-th generation and A is a constant

(3.37)

representing the growth rate of the species.
Consider a set of initial conditions, under which, for any generation n > 0, the popu-

lation density is larger than a preassigned lower bound C| that is,
Ac ={z0: 2, = f3(z0) > C, n>0}. (3.38)

From the shape of the nonlinear function f4(:) plotted in Fig.3.9, if z, > max{f;'(C)},

then, in the next generation, z,4+; < C. Hence, in order to satisfy the condition that

2, >C, n=012 -,

fa(z)

max{f;'(C)}

f4(C)

Figure 3.9: The shape of the nonlinear function f4(-)
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it is necessary that

C < z, < max{f7!(C)}, n>0.

From this fact, the set of initial conditions A¢, defined by Eq.(3.38), is converted into
Ac = {:L'o RS f:&l(mO) G]Ca max{f;l(C)[, n2 0}'

By regarding an interval ]C, max{f;'(C)[ as a unit interval ]0, 1], theoretical results,
presented in subsection 3.3.2, can be applied to the generating mechanism of fractal
structures of the set Ag. It is clear that the function fa(-) satisfies the assumption

(A3.3). Furthermore, if inequalities

C < fa(C) < max{f7'(C)} < f4(0.5)

hold, then a function f4(-) is a unimodal mapping on a closed interval [C, max{f;'(C)}],

satisfying the assumption (A3.5). An interval Iy, defined by Eq.(3.34), is converted into

and the generating mechanism of the invariant set A is also converted into

o =16, max{ (3 (O)}- ) f34(1e)
For example, the assumption (Ca) in Theorem 3.3a is rewritten by
max{ 5 (min{ £ (max{/7*(C)) D)}
> fa(C)
> max{ " (max{ f3* (max{fz* (C)H})}
Hence, in the case where the growth rate A is assigned, we can obtain conditions for a
constant C, under which Theorems 3.3a to 3.3d are respectively hold. For example, in
the case where the growth rate A is set as A = 3.9, the following results are obtained:
(a) If 0.359--- > C > 0.289 - - -, then Theorem 3.3a holds.
(b) If 0.289--- > C > 0.181- - -, then Theorem 3.3b holds.
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(c) If0.181--- > C >0.133- - -, then Theorem 3.3c holds.
(d) If 0.133--- > C' > 0.052- - -, then Theorem 3.3d holds.

In Fig.3.10, conditions of Theorems 3.3 are summarized on the A~C parameter space,

by the aid of numerical calculations.

0.4

0.3

0.2

0.1

0

fa(C) = max{f (min{f7"(max{f7}(C)})})}

f4(C) = max{ f3" (max{ f7*(max{ 7 (C)})})}

Theorem 3.3a7%

fa(€) = max{f ! (max{ f;(C)})}

fa(€) = min{f* (max{f7'(C)})}

Figure 3.10: The A-C parameter space for conditions of Theorems 3.3a to 3.3d associated
with the logistic mapping

(Remark) The Lebesgue measure of the set A¢ is zero. Hence, for almost all initial

conditions z, €]C, max{f;'(C)}|, there exists n such that z, < C. However, in practical

point of view, the Lebesgue measure of the set

Aoy ={z0: 2, = fi(z0) >C, 0<n< N}

is not zero. Hence, in view of Theorems 3.3a to 3.3d, it is concluded that, for a large N,
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the structure of the set A¢ y is extremely complicated and it is difficult to predict whether

the population density z, is larger than C for any n with 0 <n < N.

3.4 Concluding Remarks

In this chapter, mechanisms yielding fractal boundaries of the invariant set of nonlinear
functions were investigated by using the notation of the symbolic dynamics, concerned
with a class of one-dimensional discrete dynamical systems.

First, the mechanism yielding the fractal structure of the invariant set has been clar-
ified, concerned with the nonlinear function possessing periodic points with period three
and a typical example of the fractal invariant set with non-integer capacity dimension has
been shown.

Furthermore, associated with a class of one-dimensional nonlinear discrete dynamical
systems described by the unimodal mapping, it has been shown that mechanisms yielding
fractal boundaries of the invariant set are classified to the five different mechanisms by
using the notation of the symbolic dynamics.

In the next chapter, by applying results obtained in this chapter, mechanisms yielding
fractal boundaries of the invariant domain will be discussed, concerned with a class of
two-dimensional dynamical system, and the usefulness of results of this chapter will be

shown again.
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Appendix 3A: Proof of Theorem 3.3a

(i) Existence of the inverse image I,,,.,,1: Noting that, under assumptions (A3.3) to

(A3.5),
F(J1) = f(Imax{f~(1)}, 1) =]0, 1],

it can be obtained that, for any interval I,,,,..,, CJ]0, 1[, £ > 1,

{z:f(z) € L4, 2 € 1} # L.

This fact shows that, for any s1s;- - - s, one of the inverse image of the interval I, ,,..,,,
defined by
16152"'-!1;1 = f—l(Isln“'Sk) N J] = {(E : f(CE) € ‘[31&2"'Sk} N J],

always exists. Hence, in the remainder of proofs demonstrated in Appendix 3A to 3D,

our attention is concentrated on the existence of the other inverse image

13132“'3&0 = f—1(16152"'3k) N Jo.

Before proceeding proofs, note that, as shown in Fig.3.11, under assumptions (A3.3)

to (A3.5), the following inequality holds:
max{ £ (min{ f(1)})}
> max{f " (max{f~(1)})}
> max{f-(1)}
> min{f™1(1)}.
(ii) Proof of (R1a): First, as shown in Fig.3.12 which plots the shape of the function f(:)

(3.39)

satisfying the conditions (A3.3) to (A3.5) and (Ca) in Theorem 3.3a,
f(Jo) N Lo = £(10, min{f~}(1)})) N Jo =]£(0), H[N[min{f~*(1)}, max{f~*(1)}] = L.

Hence, it is obtained that the inverse image Ioo = f~!(Jy) N Jy does not exist.
Secondly, the inverse image of the interval I, ,,..,,, & > 2 is considered. From the

definition of the interval I, ,,..,,, if sy = 0, then
I gysr C Jo (3.40)
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f(z)]
1
mas{ f~ win{f(1)})} Nl
7(0) = ,
max{f‘l(ma,x{f_l(l)})} / -
nlax{f_l(l)} / IO // || ]| f'_l(JO)
|
min{f71(1)} g R
// | Lo | !ﬁ!
0 |  ——J1 =z
Jo /1

Figure 3.11: The shape of the nonlinear function f(z) satisfying conditions (A3.3) to
(A3.5)

Under the condition (Ca), as shown in Fig.3.11,
F7HJo) = 7110, min{ fTH(1)}) =] max{f ™ (min{f () }}, 1[ (3.41)
From the inequality (3.39),
J max{f~ (min{f~ ()} }, YT max{f (D}, 1[= /.. (3.42)
From (3.41) and (3.42), it follows that
f7HJo) C . (3.43)
The relation (3.43) indicates that, if I,,,,..,, C Jo, then
F Lasps) C (3.44)

The relation (3.44) shows that if s, = 0, then the inverse image I, ,,..;,1 exists and
however the inverse image [, ,,..s,0 does not exist.

(iil) Existence of I s,..5;,,0 in (R2a): From the definition of the interval I ;. 54y,

f(15132”'3k+1) = 15152“-3;;' (3~45)

69



f(z) IJ]JQ"'SE.H

0 Y z
1
Jo Ji
I

318285410

Figure 3.12: The shape of the nonlinear function f(z) satisfying conditions (Ca)

Therefore, noting that if s, = 0, then I, C Jo, we obtain that

18375k
fUss35551) = Lorsgs0 T Jo. (3.46)
Considering the inverse image of both side of (3.46), it follows that
Liisysiy C F7H(J0). (3.47)
On the other hand, by using the assumption (Ca) and (3.41), we obtain that
f(Jo) = £(J0, min{fH(1)}) =]£(0), 1[D] max{f~ (min{f~H(1)N}, 1[= f (o)

f(Jo) D 71 (Jo). (3.48)

Relations (3.47) and (3.48) show that, if s, = 0, then

f(‘]o) 2 [sls2~'sk+1 . (349)

From (3.49), it is concluded that, if s, = 0, then there exists an interval /,, ,,,0 =

F M1,y s60) N Jo. (See Fig.3.12.)
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(iv) Existence of I,,,,..;,,0 in (R3a): In the case where sp4q = 1,
Ly sysny C V1

From the definition of the interval [

$182° Sk

f(Iswz'“sH.x) = Iswzmu'

Now, noting that if sy = 1, then I, ,,..,, C J;, we obtain

f(Il,lsz.USk_H) = 15132...” C ']1-

Considering the inverse image of both side of (3.52), it follows that

stsz~~3k+1 C f—l(Jl)'

Combining (3.50) and (3.53), we obtain that
‘[5132"‘31:-{»1 C {‘]1 n f_l(Jl)}'

Under the assumption (Ca),

Jin ()
= Jmax{f~ (D)}, 1Nf~ ([ max{f (1)}, 1])

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

= Jmax{f~ (1)}, 1[N{]0, min{f~* (1) }{U] max{f~*(1)}, max{f~ (max{f (1)) }[}

= Jmax{f™(1)}, max{f~* (max{f (1))}

Hence, under the assumption (Ca),

(3.55)

F(Io) n {1 £ (1)} =]£(0), 1[N] max{f (1)}, max{f " (max{f (1)} }[= &. (3.56)

From (3.54) and (3.56), it can be obtained that, if s, = 1 and sg4; = 1, then the interval

Iy 4553410 does not exist. (Q.E.D.)
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Appendix 3B: Proof of Theorem 3.3b

Proofs of rules (R1b) and (R2b) are similar to that of rules (R1a) and (R2a). The

existence of an interval I,,,..,,,,1 in the rule (R3c) is also proved by the same discussions
as shown in the first part of Appendix 3A. Hence, in this Appendix 3B, the existence of

an interval [ o in the rule (R3c) is discussed.

S182° " Sk41

If s, =1 and sx4; = 1, then

Lysyoapn € {0 N (I} =Imax{ {71 (1)}, max{f ™ (max{f~ () })}[

Noting that f(Jo) =]f(0), 1], it can be obtained that, under the assumption (Cb),
Fo) N {71} =1£(0), N max{f (1)}, max{f " (max{f~(1)})}[# &

and
f(Jo) 2A{A N ()}
Hence, if

‘[5132"‘5k+1 n {f(JO) n {Jl N f—l(Jl)}} # @/’

then there exists an interval I, ,,..,, 0 = f‘l(Im?...sHl) N Jo. On the other hand, if
Lyysyoapy N{F (D) N{I1 N 7Y (M)} =4,

then an interval [ o does not exist. (Q.E.D.)

5182 Sk41
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Appendix 3C: Proof of Theorem 3.3c

(i) Existence of Ioo in (R1c): From the assumption (Cc),
FJ) Nl
= f(J0, min{f7(1)}[) N [min{f~*(1)}, max{f~*(1)}]
1£(0), I[N[min{f =} (1)}, max{f~*(1)}] (3.57)
= 1£(0), max{f~(1)}]
.y

Hence, there exist an interval [y defined by f~1(1y) N Jo.

(ii) Existence of I,,,...,,0 in (R2c): Note that, in the case where s, = 0,
Ly 55, C Jo. (3.58)
Under the assumption (Cc),
FHJo) N Jo =] max{min{ f~1(1)}}, 1[N]0, min{ f~1(1)}[= &. (3.59)
From relations (3.58) and (3.59), for any interval I,,,,..,, C Jo with s, = 0, we obtain
F ) NJo =52, (3.60)

“which shows that an inverse image /;,,..,,0 does not exist.

(ili) Proof of (R3c): Note that, in the case where s, = 1,
I 5p6, C U1 (3.61)
Noting that f(Jy) =]f(0), 1], it is obtained that, under the assumption (Cc),

f(Jo) =1£(0), 1[D)max{f 7 (1)}, 1[= /y (3.62)

Hence, from relations (3.61) and (3.62), it is concluded that, for any interval I, ,,..,, C Jy,

there exists an inverse image I, ,,.,,0 C Jo. (Q.E.D.)

73



Appendix 3D: Proof of Theorem 3.3d

Proofs of rules (R1d) and (R3d) are omitted, since discussions for these proofs are
similar to those of (R1c) and (R3c) presented in Appendix 3C. Hence, in this appendix,
the existence of an interval I ,,...,,0 in the rule (R2d) is discussed.

Noting that
£(0) =1 1]
and
Jo =10, min{f (1)},
it is obtained that, under the assumption (Cd),

f(Jo)) N Jo
= 15(0), 1[N0, min{ f~ (1)}
1£(0), min{ /=1 (1)}{
# .

Hence, if

Lysyss N{f(J0) NI} # S,

then there exists an inverse image I, ,,..;,0. On the other hand, if
Isuz'“&k N {f(‘]o) n JO} = Q’

then an inverse image I,,,...,0 does not exist. (Q.E.D.)
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Chapter 4

Fractal Boundaries of the Invariant
Domain of a Discrete Predator-Prey
System

4.1 Introductory Remarks

Theoretical and numerical investigations, demonstrated in Chaps.2 and 3, clarify ex-
isting conditions and yielding mechanisms of fractal boundaries of the invariant set, con-
cerned with a class of one-dimensional discrete nonlinear dynamical systems. In this
chapter, these results are applied to discuss fractal boundaries of the invariant domain,
concerned with a class of two-dimensional dynamical systems [YS90], [YS91c], [Yas91].

The mathematical model, treated in this chapter, is described by a class of two-

dimensional difference equations of the form

Tn+1 = Axn(l — Tp — yn)

., (4.1)
Ynt1 = Byn (_1 + E) )

which gives a model describing the population dynamics of predator-prey systems. In
the system (4.1), z,, and y, represent respectively the population densities of preys and
predators at the n-th generation, A and B are positive constants representing the growth
rates of the prey and predator respectively, and C is a positive constant representing the
interconnected rate between two species. The derivation of the mathematical model (4.1)
is demonstrated in Appendix 4A.

The predator-prey system (4.1) exhibits a rich variety of asymptotic behavior, conver-
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gence to stable equilibriums, periodic oscillations, limit cycles, chaotic behavior and so
on. However, due to the nonlinearity of the system, the asymptotic behavior of solution
processes depends on the initial condition. Furthermore, noting that z,, and y, represent
the population density, if either z,, or y, reaches zero or negative value, then populations
are considered to have been wiped out and the ecological system to have collapsed. Hence,
in order to conserve the ecological system, it is important to find the set of initial condi-
tions, which eventually approach a final state without leaving from the first quadrant of

the phase space R2, described by
D= {(z0,%):2,>0, y, >0, n=0,1,2,---}. (4.2)

In this chapter, it will be shown that the set D, defined by (4.2), often exhibits
complicated boundaries, as shown in Figs.4.1. Initial conditions in the dark region of
Figs.4.1 generate orbits which asymptotically approach an equilibrium, without leaving

from the first quadrant of the phase space R?. On the other hand, solution processes with

1.0 0.67

0.51

0.09 T 0.25

(a) The set D (b) A magnification of (a)

Figure 4.1: Complicated boundaries of the set D observed in the system (4.1) with A =
3.89, B=0.45and C =0.12
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the initial condition included in the white region escape from the first quadrant of the
phase space R?. Figure 4.2 (a) shows a magnification of Fig.4.1 (b). Figure 4.2 (b) and
(c) show respectively magnifications of square regions in Fig.4.2 (a). These magnifications
reveal that boundaries have the self-similarity property and the complexity of boundaries
does not decrease by any magnification. Hence, it is difficult to predict the asymptotic
behavior of the solution whose initial condition is the neighborhood of boundaries.

The purpose of this chapter is to clarify mechanisms yielding complicated boundaries
and to find conditions under which complicated boundaries appear, associated with a class
of discrete predator-prey systems (4.1), by applying results demonstrated in Chaps.2
and 3. In order to examine results of this chapter, obtained by theoretical analysis,
numerical experiments are carried out. Through theoretical investigations and numerical

experiments, fractal properties of complicated boundaries in Figs.4.1 and 4.2 are clarified.

4.2 Nonlinear Mapping and Invariant Domain

First of all, concerned with the system (4.1), the definition of the invariant domain is
shown and a candidate for the invariant domain is derived. For convenience of discussions,

a nonlinear function F : R? — R? defined by

F(z,y) = (Az(l —z—1y), By (—1 + —é—)) (4.3)

is introduced.

Definition 4.1 A subset D, C R? is called the invariant domain of the nonlinear func-

tion F : R* — R? | if the following condition holds:

F(D,) C D.. (4.4)

Now, note that

77



0.195 T 0.204
(a) A magnification of Fig.4.1(b)

0.5520 R

0.5508 A 0.55370
0.19668 z 0.19788 0.20180 T 0.20285

(b) A magnification of a left square of (a) (¢} A magnification of a right square of (a)

Figure 4.2: The self similarity observed in complicated boundaries in Figs.4.1
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(i) From the definition (4.2) of the set D, if (2o, yo) € D, then, forany n > 1, £,41 > 0
and y,41 > 0 which are given by F™*(z¢, yo) = F"(F(z0,y0)). Namely, if (zo, y0) €
D, then F(zo,y0) € D. This fact indicate that the set D satisfies

F(D)cC D,

that is, the set D is a invariant domain of the nonlinear function F : R? — R

(i1) Furthermore, if a set D, is an invariant domain, included in the first quadrant of

the phase space R?, then, from the definition of the invariant domain,
F(D,) C D,.

Hence, F(D,) is included in the first quadrant of the phase space. Namely, if
(z0,Y0) € D,, then solution processes satisfy that z, > 0 and y, > 0. This fact
indicates that

D, CD.

In view of these discussions (i) and (ii), it is obtained that our target set D is the largest
invariant domain of the function F, included in the first quadrant of R?.

A candidate for the invariant domain D is obtained as follows: First, assume that
T, >0, y, > 0. (4.5)
lFrom Eq.(4.1), under the condition (4.5), if and only if conditions
l—z,—y,>0 (4.6)

and

z, > C (4.7)

hold, then z,4,; > 0 and y,4+; > 0. Furthermore, if z,,,; < C, then y,42 < 0. In order to

satisfy the condition

Tp41 > C,
the following condition is needed:
Tpy1 = Azp(l — 2z, — y,) > C. (4.8)

79



From conditions (4.5), (4.7) and (4.8), a candidate for the invariant domain D is obtained
by
D_={(z,y):z2>C,y>0,A4z(1 —z ~y) > C}. (4.9)

Figure 4.3 shows the shape of the candidate D_.

Y

F Az(l—z—-y)=C

N\ D
N

7/

Q
v
!

Figure 4.3: A candidate D_ for the invariant domain D

4.3 Existing Conditions of Fractal Boundaries

In this section, necessary conditions, under which fractal boundaries of the invariant

domain D shown in Figs.4.1 and 4.2, are shown.

4.3.1 Images of Candidate for Invariant Domain

First of all, our attention is concentrated on the image F/(D_-) of the candidate D_, gen-
erated by the two-dimensional noninvertible smooth mapping F : R?* — R? in Eq.(4.3).

Let DF(z,y) be Jacobian of the function F(z,y) and consider a curve L defined by

L={(e,9): 1DF(@,9)] =0} = {(z,9) v = 2= 0) (s - 3) }. (4.10)
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Figure 4.4: A curve defined by |DF(z,y)| =0

As shown in Fig.4.4, the candidate D_ is divided into two parts D; and D, by a curve
L defined by (4.10). Points P,@, R, S and T are set as shown in Fig.4.4. A line with a
starting point P and an ending point Q is denoted by PQ or a curve with a starting point
S and an ending point 7' is also denoted by ST. Furthermore, the image of the point P
is denoted by F(P).

Using these notions, we obtain

(i) A common image of a segment 7'Q and a broken line RPT are given by the nonlinear

function F on z-axis and

(ii) A common image of curves SR and 5Q are given by the nonlinear function F on a

line z = C and

(iii) A image F(S/)\ﬁ(T) of a curve ST also construct boundaries of the image F(D_).

Therefore, the image F(D_) of the candidate D_, generated by the nonlinear function F,
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satisfies that
F(Dy) = F(D;) = F(D_).

Boundaries of the image F(D.) consist of lines F(S)F(R), F(R)F(T) and a curve
F(S/)\F/’(T), as shown in Fig.4.5. Hence,

F(D_)C D-

holds and a candidate D_ with smooth boundaries is the invariant domain of F', if and

only if a curve F(S’)\F(T) is included in D_.

OV Fir), F(@Q)  F(T) z

Figure 4.5: Image F(D-)

4.3.2 Necessary Condition for Existing Fractal Boundaries
In this subsection, it is shown that if F(T') € D_, then the invariant domain with
fractal boundaries appears. If F(T') ¢ D_, then the image F(D_-) has a cross-hatched
region
A={(z,y): (z,9) € F(D-),(z,y) ¢ D_},
which is not included in D_, as shown in Fig.4.6.
Consider inverse images F~*(A), £k =1,2,3, - of A.
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Figure 4.6: Image F(D-) with region A

(step 1) Noting that A is in the neighborhood of F(T'), it can be shown that the inverse
image F~!(A) is in the neighborhood of the point T, as shown in Fig.4.7(a).

(step 2) Taking into account that F~!(A) exists on the segment

F(R)F(P)F(T) = F(Q)F(T),

it is obtained that one of the inverse images F~1(F~1(A)) = F~%(A) of F~1(A)

exists on the segment RP or PT and another inverse image exists on the segment

QT. (See Fig.4.7(b))

(step 3) Similar procedures are repeated infinitely and inverse images F~*(A), k =

3,4,5, - appear successively on the segments RP, PT and QT.

(step 4) Noting that

F(S)F(R) = F(S)F(Q) C RP,

it is easy to see that F~*(4) also appears on the curve RQ.

Now, note that if (z,,y,) € A, then z,,; < C and furthermore y,4> < 0. If (z,,,y,) €
F7*(A), then (Zp4x, Yntx) = F*(zk,yx) € A. Furthermore, if (Z,4k, Ynsx) € A, then
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Figure 4.7: Inverse images F~*(A)

Yn+k+2 < 0. Namely, solution processes starting from F~%(A4), k = 1,2,3,- - eventually
escape from the first quadrant of the x-y plane. Hence, sets F~*(A) are not included in
the invariant domain D. Therefore, the invariant domain D is produced by the mechanism
described by

D=D_- | F™(A). (4.11)

From the definition (4.10) of the line L, the coordinates of the point T is given by
1
T:(i,O). (4.12)
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Substituting (4.12) into (4.3), we obtain
A
F(T) = (Z,O). (4.13)
From the definition of the candidate D_, the coordinates of the point @ is given by
1 1 C
=[z+4/-=2,0].
o= (5+i-57)

Comparing the z coordinates of points F(T') and @Q, it is concluded that the region A in

Fig.4.6 exists, if the condition

1
- 4.14
+1/3 (4.14)

N

25
4

holds. These discussions and the straightforward calculation of (4.14) brings us the fol-

lowing result:

Theorem 4.1 The necessary conditions for the existence of fractal boundaries of the

invariant domain D is given by

A® —4A% —16C >0, A > 4C. (4.15)

4.4 Fractal Boundaries and Symbolic Dynamics

As shown in Fig.4.6, if F(T') ¢ D_, then

F(PQ) = F(Q)F(T) > PQ.

Therefore, a subset S on the segment PQ has its inverse images F~!(S) on the segment
PQ. On the other hand, the inverse image of a subset on the segment RP does not exist
on segments RP and PQ. Hence, our attention is concentrated to inverse images F~*(.A)
on the segment PQ.

The symbolic dynamics are often used for characterizing chaotic behavior [CE80]. In

this study, in order to discuss generating mechanisms of fractal boundaries, the following

85



notation associated with the symbolic dynamics is introduced:

(i) Let Ay be defined by
Ao = F71(A), (4.16)

where A is a cross hatched area depicted in Fig.4.6.

(ii) Let Ag be a subset of the inverse image F~!(Ay) on the segment PT and Ay be
also a subset of F~*(Ap) on segment TQ. (See Fig.4.8(a))

(ii1) Similarly, sets Aj,,..s,0 and A,,q,...;,1 are subsets of F71( A, .,) on segments PT

and TQ respectively. (See Fig.4.8(b))

(a) .Aoo and .A01

F'1 A"l-’?"'-’k F_l

e - T

0 P T [;4132"'5k Q

(b) Ay, sp-s00 and Ay 550601

Figure 4.8: Inverse images F~*(.A) with the notation of the symbolic dynamics
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Now intervals I k=0,1, £ > 1 on the z axis are defined by

s182°8E)

IA = Aslsg'“Sk N {(x)y) $ T 2 C’ y= 0})

8189 Sk

where A, ,, ..., is the closure of the set A,,,,..,, (See Fig.4.8.(b).). From the definition of

the interval I, . and the set A,,,,..,, it can be shown that
U I£32"‘3k3k+1 = F_I(Aslsz"'u) N {(x;y) T2 C) y= 0}
sp41=0,1

=fa' U5y )N {z: 22 CY,

51828k

where the function f4(-) defined by
fa(z) = Az(1 — 2 — y)|y=0 = Az(1 — z). (4.17)
As shown in Fig.4.9, if conditions

£4(C) < max{f7(©)} < (3)

hold, then the function f4(:) satisfies conditions (A3.3) and (A3.5) of Theorems 3.3a
to 3.3d in Chap.3, where the closed unit interval [0, 1] is converted into a closed interval
[C,max{f;'(C)}]. Hence, by applying Theorems 3.3a to 3.3d, we can obtain the gener-

ating mechanism of intervals 72

+153--s,> Namely the generating mechanism of sets A

$182°8k"

Theorem 4.3a If conditions

(U) fa(C) < max{f7(C)} < £4(0.5)

and

max{ fz ' (min{f7 ' (max{/7'(C)D})}
> fa(C) (4.18)
> max{f;'(max{f;" (max{f7'(C)})})}

hold, then sets A,,,,..s, are generated under the following rules:
(R4.1a) For any k > 1, if sg = 0, then a set A, ,;..5,1 exists and a set Ay, ;.50 does not
exist.

(R4.2a) For any k > 2, if sk-1 = 0 and sx = 1, then sets A, 5,501 and Ay y.5,0 €ZISL.
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K ¢  max{f'C)}'1 =

Figure 4.9: The logistic mapping fa(z)

(R4.3a) For any k > 2, if sx_1 = 1 and s = 1, then a set A, ,,..5,1 exists and a set

A, 530500 does not exist.

Theorem 4.3b If conditions (U) and
max{ f3* (max{ f3* (max{f3*(C)}) D}

> fa(C) (4.19)

> max{f} (max{f3"(C)})}
hold, then sets A, ,,..s, are generated under the following rules:
(R4.1b) For any k > 1, if s = 0, then a set A, ,,..5,1 exists and a set A, ;.. 5,0 does
not erist.
(R4.2b) For any k > 2, if sk—; = 0 and sy = 1, then sets A, 4,51 and Ay g, 50 exist.
(R4.3b) For any k > 2, if sx-1 = 1 and s, = 1, then a set A, exists and a set

A, a0 does not always exist.

Theorem 4.3c If conditions (U) and

max{ ;" (max{f7'(C)})}
> fa(C) (4.20)

> min{f;" (max{f;"(C)})}
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hold, then sets A, ;..s, are generated under the following rules:

(R4.1c) Sets Ago and Ag; exist.

(R4.2c) For any k > 2, if sp—1 = 0, then a set A, ;.51 exists and a set Ay, ,,...s,0 does
not exist.

(R4.3c) For any k > 2, if sp—1 = 1, then sets A, 5500 and Ay sy.501 €TiSE.
Theorem 4.3d If conditions (U) and

min{ £ (max{ f7(C) )} > fa(C) (4.21)

hold, then sets A, ,...s, are generated under the following rules:

(R4.1d) Sets Ago and Aoy exist.

(R4.2d) For any k > 2, if sp_1 = 0, then a set A, ,,..s,1 exists and a set A, ,..5,0 does
not always exist.

(R4.3d) For any k > 2, if sy_1 = 1, then sets A, ;.50 and Ay ;.51 €218t

Furthermore, we obtain the following result:

Theorem 4.4 If 51855, # t1t5---t;, 1 < J, then
Agszosi N Ayoe, = 9. (4.22)

Figure 4.10 shows the rules described in Theorem 4.3a. For example, it can be seen
that a set Ago; yields inverse images Ago10 and Ago;1, and that a set Ap;o yields an inverse
image Ap101 only.

As shown in Fig.4.10, the procedure yielding inverse images F~*( Ao ), k= 1,2,3, -
is similar to that yielding inverse images F~*(Ap), k£ = 1,2,3,--- or inverse images
F~*(Ap101), kK = 1,2,3,--- and so on. Namely, the mechanism yielding inverse images
has the self-similarity. Therefore, complicated boundaries, shown in Figs.4.1 and 4.2,
exhibit the self-similarity. In this sense, it can be concluded that complicated boundaries,

generated by mechanism in Theorems 4.3a to 4.3d, is fractal.
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Figure 4.10: The mechanism yielding fractal boundaries in Theorem 4.3a
4.5 Numerical Experiments

Numerical experiments are demonstrated to show the validity of results in sections 4.3

and 4.4.
4.5.1 Numerical Technique for Calculating the Invariant Do-
main

In order to obtain the shape of the invariant domain D by using numerical calculations,

the following procedures are carried out:

(step 1) Interval [0,1] in both the z and y axes are divided equally into 500 segments.
By drawing the vertical and horizontal lines through dividing points, a mesh is
constructed in the z — y plane. Intersections between vertical and horizontal lines

are selected as initial condition (zg,yg). (See Fig.4.11.)

(step 2) Each initial condition is iterated 400 times through the difference equation (4.1).
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(step 3) If, for any n, 0 < n < 400, the solution (z,,y,) is included in the first quadrant
of the x —y plane, then this initial condition (z¢, yo) is regarded as an element of the

invariant domain and the region {(z,y): 2o <z < 2o+0.002, yo < y < yo+0.002}
is blackened.

y }}

10— o [

i

!

:

initial condition I

\

Zg, ]

500 ( ] ?/o) i
segments :l
| !

B E

X

l —
z
0 1.0

|

500 segments

Figure 4.11: Numerical technique for calculating the shape of fractal boundaries

4.5.2 Onset of Fractal Boundaries of the Invariant Domain

In this example, the transition from the smooth boundary to the fractal one is dis-
cussed by using Theorem 4.1 in subsection 4.3.2 and computer experiments. Numerical
calculations are carried out for fixed parameters B = 0.45 and C = 0.12. Figure 4.12(a)
and (b) depict the invariant domain of the system (4.1), where the parameter A is set as
A = 3.85 and A = 3.9 respectively.

In the case where A = 3.85, B = 0.45 and C = 0.12, from Theorem 4.1, the condition
(4.15) does not hold and the invariant domain is the set D_ defined by Eq.(4.9) with

smooth boundaries, which is shown in Fig.4.12(a).
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1.0

(a) A = 3.85

1.0

(b) A =3.89

Figure 4.12: Onset of Fractal Boundaries of the Invariant Domain observed in the system
(4.1) with B=0.45 and C = 0.12
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From Theorem 4.1, if the parameter A is larger than 3.87193 - -, then the condition
(4.15) holds and the invariant domain possesses fractal boundaries. In the case where
A = 3.89 which is slightly larger than the critical value 3.87193 - - -, the invariant domain
of the system (4.1) is depicted in Fig.4.12(b), where A = 3.9, B = 0.45 and C = 0.12. The
boundary is fractal and the onset of fractal boundaries are confirmed. Results presented

above show the validity of analyses demonstrated in this chapter.

4.6 Concluding Remarks

In this chapter, associated with a class of predator-prey systems, it has been shown
that mechanisms yielding complicated boundaries of the invariant domain are discussed
by considering the inverse mapping of the nonlinear function. From the condition, under
which fractal boundaries appear, it has been obtained that complicated boundaries appear
as the growth rate of preys increases.

Furthermore, by using the notation of the symbolic dynamics, mechanisms yield-
ing complicated boundaries are classified to the four different mechanisms and the self-
similarity of the yielding mechanisms are clarified.

Throughout these discussions, it was concluded that complicated boundaries observed

in this chapter are fractal.
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Appendix 4A: Derivation of Predator-Prey
Systems Modeled by Difference Equations

Some biological populations with overlapping generations take the growth rate as
a continuous process, and the appropriate mathematical description involves nonlinear
differential equations. There are other biological systems whose populations consist of
non-overlapping generations, where thelgrowth rate takes place of discrete intervals of
time and is described in terms of nonlinear difference equations [May73].

Although we have two methods stated above for modeling the system behaviors of

biological population, it is well-known that simple nonlinear difference equation

Tpy1 = azn(l —z,) (4.23)

was derived from the continuous-time logistic equation

dz(t) _ 2
— = ax(t) - B2(1), (4.24)

through Euler’s method, and that the solution z, in Eq.(4.23) exhibits a wide vari-
ety of solution behaviors such as convergence, periodicity with any period and chaotic
property (non-periodicity), while z(¢) in Eq.(4.24) only shows a convergent property
[May74],[May76]. It was observed that some kinds of insects oscillate unperiodically,
and a discrete model can explain such oscillation better than continuous one. Chaotic
behaviors can also be observed in discrete systems such as sampled-data control systems
and PWM control systems in engineering field even if the low dimensional case, while, in
general, continuous systems also exhibit chaotic behaviors in higher dimensional case.

In an ecosystem, Volterra considered a continuous-time, predator-prey system which
is an extension of a continuous-time logistic equation to the two-dimensional one. The
discrete version of Volterra-Lotka type predator-prey systems is derived as follows [Hay80]:

Consider a continuous predator-prey system [May73] modeled by

dg;l(tt) = az(t) — bz®(t) — cz(t)y(t)
- (4.25)
_ydt__ = —ey(t) + dz(t)y(t),
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where z(t) and y(¢) denote respectively the size of the prey population and that of the
predator’s at time t, and where parameters a, b, c,c’ and e are positive constants.
Letting At denote the time step, then Eq.(4.25) can be transformed into the following

difference equations by Euler’s method:

z((n + 1)At) — z(nAt)

~ = az(nAt) — bz?(nAt) — cz(nAt)y(nit)

(4.26)
1)At) — At
y((n+1) AZ y(nat) = —ey(nAt) + c'z(nAt)y(nAt).
Defining
bAt
. ’ 4.27
Tn = Traart A (4.27)
and
cAt
n = At), 4.28
= 22yt (4.8
for At > 1/e, Eq.(4.26) is converted into a set of difference equations:
Tpy1 = Azn(1— 2, — )
. (4.29)
Yn+1 = Bya(—1+ _C_)a

where A, B and C are positive constants defined by

bleAt — 1)

A=1+4alAt, B=eAt -1, C= —~.
+aah, ¢ ’ c'(1+ aAt)

On the other hand, for 0 < At < 1/e, Eq.(4.26) is converted into a set of difference

equations:

Tntl = Amn(l - Tnp yn)
(4.30)

Ty
Yn+1 = Byn(l + E))

where A, B and C are positive constants defined by

b(1 — eAt)

A=1+aAt, B=1—eAt, C = 28
ta ¢ (1 + aAt)
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Chapter 5

Chaotic Behavior and Fractal
Boundaries of a Discrete
Predator-Prey System with a
Constant Control

5.1 Introductory Remarks

Motivated by the fact that discrete predator-prey systems often exhibit chaotic be-
havior [May76:|,[BFL75],[Hay80], in this chapter and next one, stabilization problems of a
class of discrete predator-prey systems are studied [SMYN87],[SMYH87],[YS90],[Yas91].

The first aim of chapters 5 and 6 is to find the control scheme which prevents the

oscillation of populations observed in uncontrolled discrete predator-prey systems of the

form:
Tnt+1 = Amn(l —Zp — yn)
Xy Tn (5.1)
Ynt1 = Byn (1 + E’)
and

Tpy1 = Azp,(1— 2, — yy)
iy (5.2)

In
Yn+1 = Byn (_1 + E) )

where, in both systems, z, and y, respectively denote the population (density) of the
prey and the predator at the n-th generation, and where A and B are positive constants
associated with a growth rate of the prey and the predator respectively, and C'is a positive

constant associated with a dependence of the predator on the prey, namely, the more C
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decreases, the more the behavior of the number of predators depends on the number of
preys. From the assumption that if the number of preys is zero, then the predator dies
out, the parameter B satisfies that B < 1. These models have been already derived in
Appendix 4A in Chap.4 and the fractal structure of the invariant domain, observed in the
system Yy, has been already discussed in Chap.4.

The predator-prey systems ¥; and Xy often exhibit the oscillation of populations, for
example, periodic solutions, limit cycles, chaotic behavior and so on. These oscillations
are not desirable from viewpoints of conservation of ecosystems, because these oscillation
often drive the population into such a small number that the population dies out due to
unexpected small perturbing effects, for example, a sudden change of the environment.
On the other hand, if populations converge to an equilibrium with large populations,
then the small perturbation does not collapse the ecosystem. Therefore, it is important
to find the stabilization scheme which converts the system with oscillating behavior into
the system whose solutions converge to an equilibrium.

In this thesis, it is assumed that predator-prey systems are controlled by the harvesting
or supplying of predators. Furthermore, in this chapter, it is assumed that the amount of
harvesting and supplying at the n-th generation is constant. Under these assumptions, the
following mathematical models of controlled predator-prey systems are derived through

the stock-recruitment model approach [Cla76]:
Tpt1 = Amn(l — Ty — yn)

z
=B = H
Yn+1 yn(1+ C)+

Yin

and
Tnt1 = Azp (1 — 2, — yy)

z
w1 = Byn | —1 —ﬁ) H,
Yn+1 y( T +

where H is a constant representing the amount of the harvesting (H < 0) or supplying

XiH (5.4)

(H > 0) at the n-th generation. The derivation of these mathematical models are shown
in Appendix 5A of this chapter.
First, in order to stabilize oscillations of populations observed in systems (5.1) and

(5.2), the relation between the stability of equilibriums and the control input H are dis-
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cussed in controlled systems (5.3) and (5.4). Furthermore, our investigations are extended
to explore the shape of the invariant domain in controlled predator-prey systems and ef-

fects of the constant harvesting of predators on fractal boundaries are discussed.

5.2 Stabilization of Type I Predator-Prey Systems

In this section, the nonlinear dynamics of the controlled system ¥;4, described by

Eq.(5.3), are discussed [SMYN8T7].

5.2.1 Existence of Equilibriums

Dynamical properties of the solution process to Eq.(5.3) are closely related to the
stability of equilibriums of the system (5.3). In order to find the control scheme which
prevents the oscillation of populations, the stability of equilibriums are investigated.

Equilibriums of (5.3) are defined by

Tpnt4l1 = Ty
Ynt+1 = Yn-

From Eq.(5.3), if the condition

z, =0 (5.5)
or
-2 (5.6)
n=1———z, :
v A

holds, then z,4; = z,, . Equations (5.5) and (5.6) give prey isoclines:

£1: z2=0 (5.7)

and
b:y=1-+ (5.8)
2 Y= A—:Z?, .

depicted in Fig.5.1, where the axis of abscissa is the number of preys and the axis of
ordinate is the number of predators. Similarly, from Eq.(5.3), the predator isocline is

determined as follows:

2% y=By(l+%)+H. (5.9)
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Figure 5.1: Predator and prey isoclines and equilibriums
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Equilibriums of the system (5.3) are determined by intersections of prey isoclines and

predator one. Hence, three equilibriums of (5.3) are given by

2=(o l—fﬁ) | (5.10)

1 [, 4CH | 1 ,  ACH

zz=('2‘{01+ ’8+T}’§{ﬁ_ 5+‘"—B }) (5.11)
1 . 4CH | 1 [, 4CH

z3=(-2—{a— ,3+—B—},§{ﬁ+ ﬁ-i-T}) (5.12)

a=1—%+0(%—1),ﬂ:l—%—C(%—l). (5.13)

where

The predator isocline, prey isoclines and equilibriums are illustrated in Fig.5.1.

Noting that z,, and y, present the population, our attention is concentrated on equi-
libriums included in the first quadrant of the z-y plane. In order that each equilibrium
is included in the first quadrant of the z-y plane, it is necessary to impose the following

conditions on parameters A, B,C and H:

Lemma 5.1 (E1) The equilibrium z; is in the first quadrant of the z-y plane under the
following conditions:

0<B<1, 0<H. (5.14)

(E2) The equilibrium 2z, is in the first quadrant of the z-y plane under the following

conditions:
AT < A,
C
<B<K1
1+C =7 (5.15)
—-B 1 1 2
- _c(=- <H<
wli-a-c(z-1))f <<
where
A = 11
1-C ——1)
(3
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(E3) The equilibrium z3 is in the first quadrant of the z-y plane under the following
conditions:

(i) for 1< A< A,

0< B<1,
(5.16)
0< H< (1——) (1- B)
(i) for A* < A,
1 CC =
t (5.17)

2-k-elp-)f (- Hu-n

Lemma 5.1 is derived from coordinates of equilibriums 21, z; and 23 given by Egs.(5.10)

to (5.13). Straightforward calculations are omitted to write here.

5.2.2 Stability of Equilibriums

For simplicity of notations, Eq.(5.3) is rewritten by using a mapping F;yz : R* — R

(xn+1;yn+1) = FIH(xn)yn)a (518)

where

Fiu(z,y) = (Aa:(l—-m—-—y), By (1+—g—) +H) . (5.19)

If every solutions starting from the neighborhood of the equilibrium z; converge to z;,
then the equilibrium z; is said to be locally asymptotically stable. An equilibrium is locally
asymptotically stable, if both eigenvalues of Jacobian DFy(z,y) at the equilibrium is

less than 1 in the absolute value. By solving the equation for eigenvalues A given by

|DFg(z,y) — M|

B
X
Az B<1+5)—>\
32 9. z 9. ﬁ) AB
Y {A(l 2% y)+B(1+C)}A+A(1 2 y)B(l—i—C + ay

= 0,
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it can be obtained that

1 z
A —E[A(I—Zw—y)+B(l+5>

:l:\/{A(l -2z —y)— B (1-{- %) }2— 4jéB:cy

The stability of each equilibrium is determined by studying the condition |[Ai(z;)| <

(5.20)

1, ¢=1,2,3 under constraints (5.14) to (5.17). By carrying out calculations, results are

shown below:

Theorem 5.1 (S-1) The equilibrium 2z is locally asymptotically stable if and only if

0< B<1, (1—%)(1—B)<H<<1+%)(1—B). (5.21)

(S-2) The equilibrium z, is always unstable.
(S-3) The equilibrium z3 is locally asymptotically stable if and only if

(i) for AC > B,
C(B +3)

0<ps< AC_ B’ (5.22)
el (). (-2 o< )
<q3<p3+(0—%)+Aips<%—l). (5.23)
(i) for AC < B,
OSmSig:g, (5.24)
Ps—C(%—l)<q3<p3+(0—%)+A—C];;(—;-—l), (5.25)

where p3 and q3 are the z and y coordinate of the equilibrium z3 respectively.

5.2.3 Stabilizability

No use is made for stabilizing equilibriums z; or z3, because, in the uncontrolled system
(5.1), the convergence to the equilibrium solution z; or z; means the extinction of preys
or predators. Hence, the useful stabilization of the system (5.1) is realized by stabilizing

the equilibrium z;.
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Figure 5.2: The stable area of the equilibrium 23
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By using conditions (5.22) to (5.25), the stable area of the equilibrium z3 is presented
in Fig.5.2. Namely, if the equilibrium z; is included in the hatched region of Fig.5.2, then

the equilibrium z; is asymptotically stable.

Figure 5.3: The relation between the position of z3 and H

Note that the equilibrium z; is always on the prey isocline

and the position of z;3 depends on the value of the control input H. As the control input

H increases, the position of z3 moves toward the y axis. In the case where

H=(1—B)(1——jz>,

the equilibrium z3 is on the y axis (See Fig.5.3). On the other hand, as the control input
H decreases, the position of the equilibrium z; moves toward the intersection of the prey

isocline

and a line



In the case where

v {(-2)-o (3"

the equilibrium reaches the intersection. If H decreases further and

ve-b{s-5)-e (b))

holds, then the equilibrium z; does not exist.
From these discussions and Fig.5.2, it is clear that if H increases, then, under appro-

priate H > 0, the equilibrium z3 is always included in the stable area. Furthermore, if,

as shown in Fig.5.2(a), the condition
the y coordinate of the point P > the y coordinate of the point @,

namely,

> z
s A le=glry

AC-B

(- {e-e (G}

holds, then there exists H < 0 such that the equilibrium z; is included in the stable area.

In the sequel, the following theorem is obtained:

Theorem 5.2 (1) The unstable equilibrium zs of the uncontrolled system (5.1) is always
converted into the stable one by the supplying of predators.
(ii) The unstable equilibrium z3 of the uncontrolled system (5.1) is converted into the

stable one by the harvesting of predators, if the following conditions hold:
(a) for AC > B,

%Z+(C—l)+ u ;f;)((;f;)m > 0. (5.26)
(b) for AC < B,
%+(1—%)+0(%—1)>0. (5.27)

5.2.4 Invariant Domain

Noting that variables z, and y,, are regarded as population sizes, if either z, or y, takes

negative value, then the population is considered to have been wiped out and the system
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is considered to have collapsed. Furthermore, due to the existence of the nonlinearity of
the system, the asymptotic behavior of solution processes depends on the initial condition.
Hence, in order to obtain conditions, under which the solution process (z,,y,) remains
in the first quadrant of the z-y plane for all n > 0, it is necessary to find the set of initial

conditions of the form:
D= {(zo,%): z,.>0, y, >0, n=0,1,2,---}. (5.28)
To proceed discussions, the concept of the invariant domain is introduced:

Definition 5.1 A subset S C R? is called the invariant domain of the function G : R* —
R?, if the set S satisfies that
G(S)CS.

From the definition of the invariant domain, the solution process with an initial con-
dition included in the invariant domain does not leave from the invariant domain. Hence,
it is concluded that the target set D is the largest invariant domain of the function Fjy

included in the first quadrant of the z-y plane.

(a) the case where H > 0 : (Supplying of predators)
Note that, from Eq.(5.3), if

1=z, —yn <0,

then z,4+1 < 0. Hence, a candidate of the invariant domain D is given by
Dy={(z,y): 2>0,y>0, 1 —z—y >0} (5.29)
Figure 5.4 shows the shape of the candidate D,.

Theorem 5.3 (i) In the case where 0 < C < 1, if conditions

4C
(1+C)¥

. A B(1+ C)?
0< R e Sl
_H<m1n{1 4,1 1C }

0<A<4, 0<B<
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Figure 5.4: A candidate D,

hold, then the domain D4 1s the invariant domain of the function Frg.

(11) In the case where 1 < C, if conditions
0<A<4 0<B<I1,

0§H<min{1—§,1—3}
hold, then the domain D, 1s the invariant domain of the function Fyy.
‘(Proof) The determinant of Jacobian of the function Fry(z,y) is given by
|DFp(z,y)| = —AB {é(h -z +C)+ y} :

(1) In the case where 0 < C < 1, as shown in Fig.5.5, the candidate D is divided into

two parts D; and D, by a curve L, defined by
L = {(ﬂi,y) : |DF1H(m)y)| = 0}

= {e9)iy=-F@e -1 +0)}.

Figure 5.6 shows the image F;y (D), which satisfies

Fra(Dy) = Fry(D1) = Fiu(Da).
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Figure 5.5: A candidate D, = D; UD, and a curve L with 0 < C <1

Figure 5.6: the image F;gz(D,) of the candidate D, with H > 0

From Fig.5.6, it is obtain that if the condition

Frg(TS) = Fryg(T)F4(S) C Dy

holds, then

Fig(Dy) C Dy,
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i.e., the candidate D is the invariant domain D. Furthermore, noting that the curve

Fig(T)Fry(S) is concave, if conditions

the y coordinate of the point F;z(7T) < 1 (5.30)

the z coordinate of the point Fiyz(S)<1—H (5.31)

hold, then the candidate D, is the invariant domain D. From

Fiy(T) = (0, 1—3(—1—%—612 + H)

and the condition (5.30), we obtain

B(1+C)?

H<1-
4C

From

Fru(S) = (% - H)

and the condition (5.31), we obtain

A
H<1-2,
ST

Thus the proof of (i) is completed. The proof of (ii) is similar to that of (i). (Q.E.D)

(b) the case where H < 0 : (Harvesting of predators)

In this case, as shown in Fig.5.7, the image F(D,) of the candidate D has the area B,
which is not included in the first quadrant of the z-y plane. Hence, the invariant domain

D is given by

However, it is extremely difficult to obtain the shape of the invariant domain through
theoretical analyses and numerical experiments are useful for demonstrating the shape of

the invariant domain D.
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Fip(M)

Figure 5.7: the image Fygx(D4) of the candidate D, with H < 0
5.2.5 Numerical Experiments

(a) Lyapunov Exponent
An important dynamical information of solution processes is provided by the Lyapunov

exponent [BGS76] [SN79], defined as follows:
Definition 5.2 (Lyapunov Ezponent) In the dynamical system of the form
(Zn+1, Yn+1) = F(zn,¥n), F: R? — Rza

letting d,, be
d, = F"(zo + 620, yo + 6y0) — F™ (0, ¥o),

then Lyapunov exponent A is defined by
1 lida]l

A= lim —log : (5.32)
n—oo 7 ldoll
lIdo]l — 0
where || -|| denotes Euclidean norm in R? and do = (82, 8yo) is a two-dimensional vector.

From the definition (5.32), it can be obtained that, for a sufficiently large n,

|F™(zo + 60, Y0 + 6y0) — F™ (o, yo)|| = ||(6z0, byo)|| - exp(nA).
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Therefore, if A > 0, the difference between F™(zo + 629,90 + 6y0) and F"(z¢,yo) grows
exponentially with increasing n. This phenomenon is called sensitive dependence on initial
condition and is one of qualitative features presented by chaotic behavior.

As shown in Appendix 5B, the Lyapunov exponent A is approximately calculated by

1 n—1
A=~ log||DF(z;, ) - e, (5.33)
i=0
where
DF(mi) yt) <€
€41 =
”DF(:C” yl) ) ei“
and e is a two-dimensional vector satisfying ||eo|| = 1.

(b) Asymptotic Behavior and Invariant Domains

Digital computer experiments are carried out in Eq.(5.3) for a set of fixed parameter
values A, B and C and various values of the control term H. Parameters A, B and C
are set as A = 3.9, B = 0.3 and C = 0.1 respectively and the control term H decreases
from 0 to —0.16. Successive 50000 iterations {(z,,¥,) : 5001 < n < 55000}, produced by
Eq.(5.3), are plotted in Figs.5.8(a) to 5.11(a) for different H < 0, where in each figure the
initial condition (zg, yo) is set as (o, yo) = (0.5,0.25) and where the first 5000 iterations
are regarded as a transient path and are not plotted.

Since, from discussions in subsec.5.2.4, the invariant domain D can not analytically
be obtained expect for H = 0, the numerical procedure shows the shape of the invariant
domain D which is shown in Fig.5.8(b) to 5.11(b) respectively. In Figs.5.8(b) and 5.11(b),
the solution processes, starting from the blank region, eventually escape from the first

quadrant of the z-y plane.

(1) Figure 5.11(a) illustrates the attractor of the system (5.3) with H = 0. The equilibrium
z3 is given by z3 = (0.2333---, 0.5102---) and the absolute value of complex eigenvalues

at z3 are calculated as

I\(z3)| = 1.2177 > 1,

which shows the instability of z;. In this case, Marotto’s Theorem [Mar78] can be applied

and the existence of chaos is assured [SMYN87]. From Eq.(5.33), Lyapunov exponent A
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is numerically calculated from a sample run as A = 0.1394 > 0, which means chaotic
motions appear from Eq.(5.3). Figure 5.8(b) plots the invariant domain D, which is a set
D, defined by Eq.(5.29).

(ii) The existence of negative control input H = —0.07 makes the invariant domain
reduced from Dy = {(z,y): z >0, y >0, 1 —z —y > 0} to the black area shown in
Fig.5.9(b). The equilibrium z3 = (0.2474---,0.4961- - ) is unstable, which is assured by

the absolute value of eigenvalues at z; as follows:
|A(z3)| = 1.1844 > 1.

Lyapunov exponent is numerically calculated as A = 0.0884 > 0. Hence, the (z,,y,)-
process exhibits chaotic motions. It should be noted that since (z,,¥,) starting from
the neighborhood of z3 never return back to 23, namely, there does not exist a snap-
back repeller. Therefore, in this case, chaos is examined through numerically calculated

Lyapunov exponent.

(iii) As H decreases, the invariant domain D becomes smaller, as shown in Fig.5.10(b)
and the asymptotic behavior shows a closed curve called limit cycle, around the equilib-
rium z3 = (0.2602---,0.4833---) (Fig.5.10(a)). In the case where a limit cycle appears,

Lyapunov exponent is numerically calculated as A = 0.

(iv) For H < —0.152394, eigenvalues at the equilibrium 23 is less than 1 in the absolute
value. Therefore the equilibrium z; is asymptotically stable and solution processes starting
from the black region in Fig.5.11(b) converge to equilibrium z;. In the case where H =
—0.16, the position of the equilibrium z3 = (0.2668 - - -/ 0.4766 - - -) is plotted in Fig.5.11(a).
Numerically calculated absolute value of eigenvalues |A(z3)| = 0.9603 < 1 and Lyapunov

exponent A = —0.0404 < 0 both indicate that the equilibrium z;3 is asymptotically stable.
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(a) Asymptotic behavior

Figure 5.8: Asymptotic behavior and invariant domain of the uncontrolled system ¥

with A =39, B=0.3 and C = 0.1

1.0

0 T 1.0
(a) Asymptotic behavior

Figure 5.9: Asymptotic behavior and invariant domain of the controlled system X,y with

A=39, B=03, C=0.1and H=-0.07
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Figure 5.10: Asymptotic behavior and invariant domain of the controlled system X,y
with A =39, B=0.3, C=0.1and H =-0.13
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(a) Asymptotic behavior (b) Invariant domain

Figure 5.11: Asymptotic behavior and invariant domain of the controlled system Xy
with A =39, B=0.3, C=0.1and H = -0.16
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5.3 Stabilization of Type II Predator-Prey Systems

In this section, our attention is concentrated on the nonlinear dynamics of the type

IT predator-prey system, described by Eq.(5.4) [YS90], [Yas91]. A topic of this section

is effects of the constant harvesting of predators on fractal boundaries of the invariant

domain, observed in the system (5.4).

5.3.1 Location of Equilibriums

The controlled system (5.4) has the following three equilibriums

_H
= [0 ——
“ (’1+B>’

where

1 1 1 1
a_l_Z+C(§+l>’ ,3——1———0(-—+1>.

5.3.2 Stability of Equilibriums

(5.34)

(5.35)

The useful stabilization is carried out by using the equilibrium z3. The stability of the

equilibrium z; of the controlled system ¥y is examined by the following theorem:

Theorem 5.4 The equilibrium point z3 of the controlled system gy is locally asymptot-

wcally stable, if and only if
(i) for AC > B,

(5.36)

(5.37)



(ii) for AC < B,
C(B+1)

. . — 5.38
0<p3< B—AC) ( )

1 1 C 1
_cf= ) _ (C —) < (— 1), 5.39
P3 (B+1 <q3<p3 +A +Ap3 B+ (5.39)

where p3 and g3 are the ¢ and y coordinates of z3 respectively.

(Proof) Eigenvalues of Jacobian DFyg(z,y) at the equilibrium 23 are calculated by

1
Ax(z3) = 5

A(1~2p3—q3)+B(—1+%)

2 44B
:I:J{A(l—2p3—q3)—3(—1+%)} - =y

where p; and ¢; are the z and y coordinates of 23 respectively. From Eq.(5.34), it is

(5.40)

)

obtained that p; and g; satisfy that

1
g3=1- 7P (5.41)

Substituting Eq.(5.41) into Eq.(5.40), Equation (5.40) becomes

2 4AB
1—Ap3+B(—1+&>i\/{(l—Apg—B(—lﬁ—%)} o Ps®s

1
Ae(25) = 3 C

(5.42)
Noting that 23 is asymptotically stable, if and only if [Ai(23)| < 1, conditions in this
theorem are derived from Eq.(5.42). (Q.E.D.)

From Theorem 5.4, the equilibrium z3 is asymptotically stable, if and only if z;3 is
included in the hatched region in Fig.5.12. This hatched region, determined by conditions
(5.36) to (5.39), is called the stable area of the equilibrium z;. If the equilibrium

1 1 1
230—23|H=0—(C(§+1);1_Z—C(§+l>>) (543)

of the uncontrolled system ¥ is located outside the stable area as shown in Fig.5.12, then
we need the constant control, by which z3g is transposed into the hatched region. On the
other hand, if the equilibrium z3¢ is included in the stable area, then the system dose not

require any control.
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Figure 5.12: The stable area of the equilibrium z3 of the controlled system ¥y
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5.3.3 Effects of Constant Harvesting on Fractal Boundaries
The system Yy with constant control is described by the nonlinear function,
Fru(z,y) = (Aa:(l——:z:—y), By (—1+%)+H>. (5.44)
For the controlled system ¥y with constant control, the domain
D.={(z,y): 2>C,y>0, Az(1—z —y) > C},
defined by Eq.(4.9), is adopted once again as a candidate of the invariant domain
D={(z0,%) :2,>0, y, >0, n=0,1,2,---}.

In the case where H < 0, instead of Fig.4.6, the image Fyy(D_-) becomes as shown in
Fig.5.13. Due to the existence of the constant control the cross-hatched area A, and the

hatched area Bj, which are not included in D_, appear.

For any k£ > 1, solution processes with initial conditions included in Fyk(Ax) or
Fr5(By) are eventually escape from the first quadrant of the z-y plane. Therefore, the

invariant domain D is given by

y |

Figure 5.13: Image Fyg(D-) with regions Ay, and B,
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Figure 5.14: Inverse image Fy;(As) and Fri(B5)

D =D_ - () Fibdn) - U Fib(Ba)
k=1 k=1

Thus, the following facts are obtained:
(i) For any H > 0, it can be shown that
Fri(An) C FTH(A).

(ii) As shown in Fig.5.14, Fy5(By),k = 1,2,--- produce smooth boundaries and the
tongue F77(Ay) is buried in Fyr(By),m > k.

In view of the above two facts, it is concluded that in the controlled system Xy, if
the amount of the constant harvesting of predators H increases, fractal boundaries of the

invariant domain D become smooth, i.e., the complexity of fractal boundaries decreases.

5.3.4 Numerical Experiments

To show the validity of results presented in the previous subsections 5.3.2 and 5.3.3,
numerical experiments are carried out. As a typical example, parameters A, B and C in

the system X; are selected as A = 3.9, B = 0.5 and C = 0.12. Then, in the uncontrolled
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system Xy, the equilibrium z3 = (0.36, 0.384---) is unstable and the solution process
exhibits chaotic behavior (See Fig.5.15(a)). Furthermore, conditions in Theorem 4.1 hold
and the invariant domain D exhibits fractal boundaries, which is plotted in Fig.5.15(b).
The solution process with the initial condition included in the dark region exhibits chaotic
behavior. The white region of Fig.5.15(b) is the set of points,which eventually escape from
the first quadrant of the z-y plane.

In view of Theorem 5.4, the constant harvesting of predators with the amount of
the harvesting H = —0.142 is considered, in order to stabilize the chaotic behavior of
the uncontrolled system. Under the constant harvesting H = —0.142, the equilibrium
z3 = (0.500---, 0.244--.) is included in the stable area depicted in Fig.5.12 and is
asymptotically stable. Figure 5.16(b) plots the invariant domain D of the controlled sys—r
tem Xy with H = —0.142, where the boundary is smooth. Solution processes originating
in the dark region are attracted to the equilibrium z3 (Fig.5.16(a)). Figure 5.16(b) reveals
that under the constant harvesting, fractal boundaries disappear and the small invariant

domain with smooth boundaries appear.

5.4 Concluding Remarks

In this chapter, solution behavior of controlled predator-prey systems ¥;5 and gy
have been studied. The control term was adopted as the harvesting or supplying of
predators in the system. Dynamics of solution processes were theoretically analyzed
through the stability analysis of equilibriums and, with the aid of the concept of Lyapunov
exponents, chaos, limit cycle and asymptotically stable equilibrium were also numerically
examined. Through these investigation, it has been shown that both constant harvesting
or supplying of predators are useful for preventing the oscillation of populations.

Furthermore, our investigations has been extended to the shape of the invariant do-
main of the system. Especially, the effect of the constant harvesting on fractal boundaries
of the invariant domain, observed in the system ¥y, are discussed and the following re-

sults are demonstrated: under the constant harvesting, fractal boundaries of the invariant
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1.0

(a) Strange attractor

1.0

(b) Invariant domain

Figure 5.15: Strange attractor and invariant domain with fractal boundaries of the un-
controlled system Y; where A =3.9, B =10.5 and C =0.12
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1.0

23

0 z 1.0

(a) Asymptotically stable equilibrium z;

1.0

0 T 1.0
(b) Invariant domain

Figure 5.16: Asymptotically stable equilibrium z3 and invariant domain with smooth
boundaries of the controlled system Xyy where A = 3.9, B = 0.5, C = 0.12 and
H = -0.142
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domain become smooth, but the invariant domain becomes small, as the amount of the
harvesting of predators increases. Hence, it is easy to decide the coexistence or extinc-
tion of population, however there exist many initial conditions led to the extinction of

populations.
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Appendix 5A: Derivation of Controlled Systems

For convenience of descriptions, introducing the nonlinear functions f : R* — R! and
g : R* = R! defined by
flz,y) = Az(1 -z —y), (5.45)

g(z,y) = By (1 + %) , (5.46)

the uncontrolled system (5.1) is rewritten by

{ Zpt1 = f(Zn, Yn) (5.47)

Yn+1 = g(mn) yn)

In the case where, at the n-th generation, the harvesting or supplying of predators H,

changes the population of predators y, into z,:
Zn = Un + Ha, (5.48)

the number of predators at the (n+1)-st generation y,+; is determined by the number of

preys z, and predators z, at the n-th generation:

Yn+1 = g(wn)zn)~ (549)

Furthermore, if the harvesting or supplying of predators are carried out before predators
eat preys, then the population of predators which eat prey is given by z, = y, + H,.

Namely, z,,,, depends on z,, and z,:

Tnt1 = f(Tn, 2n)- (5.50)
Noting that
Zn+1 = yn+l + H71+l - Q(Tm Zn) + Hn+l

and combining Egs.(5.50), we obtain the controlled system of the form

{ Tnt1 = f(xn) Zn)

(5.51)
Zn4+1 = g(:ﬂn, Zn) + Hn+1~
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In this chapter, it has been assumed that the amount of the harvesting or supplying of
predators is constant, i.e., H, = H. In the sequel, by using Eqgs.(5.45) and (5.46) and by

converting z, into y,, Equation (5.51) yields the controlled system of the form:

Tn+1 = Amn(l — Tpn — yn)
YrH

Z,
Yn+1 = Byn (1 + E) + H.

The similar procedure brings us the controlled system Yyy.
In the case where the amount of the harvesting or supplying of predators is propor-

tional to the number of predators y,, i.e., H, = Fy,, substituting
Ho41 = Eyny1 = Eg(zp, 2,) (5.52)

into Eq.(5.51), we obtain

Tnt1 = f(Zn, Zn

+1 = f(2n, zn) (5.53)
Zn41 = (1+ E)g(20, 22)-

By using Eqs.(5.45) and (5.46) and by converting z, into y,, Equation (5.53) yields the

controlled system of the form:

Tps1 = Az (1 =2, — y,)
YIE Ty

%H=Bu+m%@+5)

and
. Tpy1 = Aﬂfn(l — &p T yn)

nss = B+ By (—1+ ).

EIE

These models are explored in the next chapter 6.
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Appendix 5B: Numerical Technique for
Calculating Lyapunov Exponent
Noting that

ldall _ llsll fidall fidall il
Il = oll " [1]] el Tidams T

the definition (5.32) of Lyapunov exponent can be rewritten by

. 1S5 (il
A= lim =) log : (5.54)
D P R TN
lldo|| — 0
From the definition of d,,, it follows that
diy1 = FHI(Q?O + 620, Y0 + 6%0) — F‘+1(x0,y0)
= F(z; + bz, y; + by;) — F(zs, ys
( yi +6y) — F(zi,4i) (5.55)
= F(z; + 62y, yi + 6y:) — F(zi, yi + 6y:)
+F(l‘iayi + 53/1) - F(xi)yi)-
Since 6z, and 6y, are sufficiently small, the following approximations are obtained:
oF
Fe; +bzi,yi + 6y) = Flai, gi + 6y:) = 5—(2i,9:) - 824,
- (5.56)
F(zi,yo + 6y:) — Flai,y:) = a—y(ﬂinyi) -6y,
Substituting Eqgs.(5.56) into Eq.(5.55), it follows that
oF oF
= o ) S (2 ) - Sy = 57
dz+l 9z (.’L‘“ yz) 61:1 + ay (17,, yt) 6yt DF(Z?“ yt) dl (5 5 )
Letting e, = d,/||d:||, Equation (5.57) brings us
ldieall = [1DF (2, ) - di|
= ||DF (z:, y:) - e - [|di] [l (5.58)

= [|DF (2,, 3:) - el - [|ds]l-

Substituting Eq.(5.58) into (5.54), we obtain Eq.(5.33).
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Chapter 6

Chaotic Behavior and Fractal
Boundaries of a Discrete
Predator-Prey System with a

Constant Rate Control

6.1 Introductory Remarks

In this chapter, it is assumed that the predator-prey systems are controlled by the
harvesting or supplying of predators, and furthermore, assumed that the amount of har-
vesting or supplying at the n-th generation is proportional to the number of predators at
the n-th generation. Under these assumptions, in Appendix 5A, the following mathemat-
ical models of controlled predator-prey systems have been already derived through the

stock-recruitment model approach:

T Amn(l — ZTnp — yn)
S { Yns1 = B(1+ E)ya (1 + %) (61
and
Tpt1 = Azn,(1 — 2 — Yp)
mae { Yn+1 = B(1 + Elyn(—1+ %" . (6:2)

If a constant E' is negative, then the predator is harvested, namely, the parameter £
denotes the effort of harvesting and the amount of harvest Ey, is proportional to the
number of predators under a constant effort harvesting. Since the amount of harvest can

not exceed the number of predators, the parameter F satisfies that £ > —1.
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Dynamics of the systems (6.1) and (6.2) depend on a constant E. In this chapter, the
influence of the constant rate harvesting or supplying of predators on the behavior of the
population number is investigated and the control scheme, which prevents oscillations of
population number, is discussed [SMYH87], [YS90].

First, in order to stabilize oscillations of populations observed in systems (6.1) and
(6.2), the relation between the stability of equilibriums and the parameter E is discussed.
Furthermore, our investigations are extended to the shape of the invariant domain corre-
sponding to controlled predator-prey systems and influences of the constant rate harvest-

ing of predators on fractal boundaries are clarified [YS90], [Yas91].

6.2 Stabilization of Type I Predator-Prey Systems
6.2.1 Existence of Equilibriums

Dynamical properties of the solution process to Eq.(6.1) are closely related to the
stability of equilibriums of the system (6.1). In order to find the control scheme which
prevents the oscillation of populations, the stability of equilibriums are investigated.

From Eq.(6.1), the prey isoclines are given by

and

1
by: y=1———1z, 6.4
2 Y A z (6.4)

which are depicted in Fig.6.1, where the axis of abscissa is the number of preys and the

axis of ordinate is the number of predators. Similarly, from Eq.(6.1), the predator isoclines

are given by
l3: y=0 (6.5)

and

e4:m=c{m_1}. (6.6)
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c L -1 4
B(1+E)
Figure 6.1: Predator and prey isoclines and equilibriums

Equilibriums of the system (6.1) are determined by intersections of prey isoclines and

predator ones. Three equilibriums of the system (6.1) are given by

z; = (0,0),
om0 .
o= el -l 1)

Because of the interpretation of the coordinates z and y as population sizes which are

necessarily nonnegative, equilibriums must lie in the first quadrant of the z-y plane.

Lemma 6.1 (E1) The equilibrium z; 1s always in the first quadrant of the z-y plane.

(E2) The equilibrium z, is in the first quadrant of the z-y plane under the following

condition:
A>1. (6.8)

(E3) The equilibrium z3 is in the first quadrant of the z-y plane under the following

conditions:
A>1,
AC 6.9
-1<E ! - 1. (6.9)
B(AC+A-1)

< =
- B

Lemma 6.1 is derived from coordinates of equilibriums given by (6.7).
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6.2.2 Stability of Equilibriums

For economy of notations, a nonlinear function F;z : R?* — R? defined by

Fie(z,y) = (Azz:(l—:l:—y), B(1+ E)y (1+%)) (6.10)

is introduced.

It is well known that the qualitative nature of equilibriums z;,7 = 1,2, 3 of the system
(6.1) is almost completely determined by the eigenvalues of the Jacobian DF;g(z;) about
the equilibrium z;. A straightforward calculation brings us the eigenvalues Ai(z;) of the

Jacobian DFg(z;):

() = %Pﬂ—%rwd+myum@+%)

:t\/{A(l —2p; —q;)— B(1+ E) (1 + %) }2 - 4AB((17—+E)P1‘% ,

(6.11)

where p; and ¢; denote the z and y coordinates of the equilibrium z;, i = 1,2, 3 respec-

tively.

Theorem 6.1 (S1) The equilibrium 2z, is locally asymptotically stable, if and only if the

following conditions hold:

1
A<, E<—§—1. (6.12)

(S2) The equilibrium zy is locally asymptotically stable, if and only if the following con-

ditions hold:

AC
1<A<3, E ~1 6.13
<% U< Blac+a-1) (6.13)

(S3) The equilibrium z3 is locally asymptotically stable, if and only if the following con-
ditions hold:

(1) for 1< A< 3,

AC
B(AC+A—-1)

— 1< £ < min ! 1 24C 1 (6.14)
B T B(AC+A-1) ' '
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(ii) for A > 3,

AC
2B(AC + A —1)

< F < min —1-—1 24¢ -
B T B(AC+A-1) '

In order to prove Theorem 6.1, the following Lemma is useful:

{4AC+A+3—\/(4AC+A+3)2—12AC(AC+A—1)}—1

(6.15)

Lemma 6.2 The equilibrium 23 1s locally asymptotically stable, if and only if the following

conditions hold:

P3>0»

{0 2C (1 2 )} <o < C
max{0, ———— |1 - — —_—
BA+E)\" 4p)f ~® SBI+B)

where ps and g3 denote x and y coordinates of z3 respectively.

(Proof) From (6.7), ps and g¢; satisfy that

1

=C{——— -1
1
Q3=1—Z—P3-

From Eqgs.(6.18) and (6.19), it follows that
Ps3
B(1+ EY1+=)=
A(1—2p3 —g3) = 1— Aps.
Substituting Eqs.(6.20) and (6.21) into

As(z) = % [A(l — 2p3 — g3) + B(1 + E) (1 + %3)

i\/{A(l—QPS—Q3)—B(1+E) (1+@)}2_ 1AB(1+ B)

C

which is derived from (6.11), we obtain

| =

)\i(zs) =
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{(2 — Aps) £ \/(Apa)2 - ﬁ%ﬂpsqs} .

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

P3gs ] )

(6.22)



From Eq.(6.22), if the following conditions hold:

2C 2 AC
{1 - — < ——— 6.23
ma,x{O, B(1+E) (1 Ap3>} SBS IR+ B (6.23)
then A4(z;3) is real and [A4(z3)| < 1 holds. Furthermore, if
A0 (6.24)

iBO+ B “B BI+E)
then A:(z3) is imaginary and |As(23)| < 1 holds. From (6.23) and (6.24), Lemma 6.2 is
obtained. (Q.E.D.)

(Proof of Theorem 6.1) Conditions (S1) and (S2) are derived by substituting the z
and y coordinates of equilibriums z; and z; into Eq.(6.11) and by calculating the condition
under which |A4(z)| <1, i=1,2 holds.

The straightforward derivation of the condition (S3) is very complicated, so that the
Lemma 6.2 is used. Substituting the z coordinate of z3 into (6.16) of Lemma 6.2, we
obtain

1

EF<—=-1. 6.25
<3 (6.25)

Substituting the y coordinate of z3 into the latter half of Ineq.(6.17), we obtain

2AC
E< ~1. 6.26
B(AC + A—1) (6.26)

From Inegs.(6.25) and (6.26), the upper limit of E, described in the condition (S3), is

obtained. Furthermore, noting that

2C 9 0 for 1< A<L3
max{0, ——(1 - —)} = 2C 2 (6.27)
’ 1- for 3< A
B(1+ E) Aps B(l-i—E)( Aps) or 3< A,
the lower limit of E in Ineq.(6.17) becomes
0 < g3, for 1< A <3,
2C 2 (6.28)
(1 - — for 3 < A.
B+ E)\ " dp) <% frd<

Substituting the z and y coordinates of the equilibrium z; into Inegs.(6.28), the lower

limit of E, described in the condition (S3) is obtained. (Q.E.D)
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1 RS m2 R2 = RS

Ry : z; exasts and is unstable.

R, : 2z, exists and is stable.

R, :z; and 2z, exist and are unstable.

R3 : 2z, 2, and z3 exist and are unstable.

Ry : 2, 2o and z; exist and z; and z, are unstable, z; is stable.
Ry : 2z, and z, exist and z; is unstable, z, is stable.

- 2AC .
YT T BACH+ A1)
AC
B = -1
e B(AC+A—1)
AC

: - 2 _ 12AC(AC ,4~1}—1
2BMC+A__1){4AC+A+3 J@EAC + A +3) (AC+ A-1)

Figure 6.2: The A-FE parameter space for existence and stability of equilibriums
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Lemma 6.1 and Theorem 6.2 bring us Fig.6.2, which shows the existence and the
stability of equilibrium solutions in the A-FE parameter space.

If the equilibrium z3 is unstable, then the solution of the system (6.1) goes around
the equilibrium z3 in the z-y plane and exhibits periodic solutions, limit cycles or chaotic
behavior. Hence, in order to prevent oscillations of populations, namely, to make the
solution converge to an equilibrium 23, the equilibrium z3 is stabilized by the harvesting

or supplying of predators.

6.2.3 Stabilizability

No use is made for stabilizing the equilibrium z; or z,, because the convergence to
the equilibrium z; or z, means the extinction of preys or predators. Hence, the useful
stabilization of the system (6.1) is realized by stabilizing the equilibrium z3. The following
theorem presents the control scheme which converts the system with oscillating behaviors

into the one whose solution converges to the equilibrium z;.

Theorem 6.2 (i) The unstable equilibrium z3 of the controlled system (6.1) is converted
into the stable one by decreasing E, if the following conditions hold:

1< A, for C > 1,
9 (6.29)
1< AL T—c’ for C <1
and
B> 24C (6.30)

(1+ E)(AC+A-1)
(11) The unstable equilibrium z3 of the controlled system (6.1) is converted into the stable
one by increasing E, if conditions (6.29) and the following condition hold:

B< !
=21+ E)(AC + A1)

{4AC + A+3 = \J/(4AC + A +3)? — 12AC(AC + A — 1)}.
(6.31)

Corollary 6.2 (i) The unstable equilibrium z3 of the uncontrolled system (5.1) is converted

into the stable one by the harvesting of predators, if conditions (6.29) and the following
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condition hold:

2AC
> —
—“AC+A-1

(1)) The unstable equilibrium z3 of the uncontrolled system (5.1) is converted into the

B (6.32)

stable one by the supplying of predators, if conditions (6.29) and the following conditions
hold:

- 1
= 20AC+A—1)

{4AC+ A+ 3 —\J(4AC + A+ 3)2 — 12AC(AC + A — 1)}. (6.33)

y#

Y= B(1+E) '~ Az
1 I g,

Figure 6.3: Stable area of the equilibrium 23 in the z-y plane

c

B(1+E)

(Proof) If conditions (6.29) hold, then the parameter E satisfying Ineqs.(6.14) or (6.15)
exists. Hence, the unstable equilibrium z; can be stabilized whenever conditions (6.29)
hold.

By using Lemma 6.2, the stable area of the equilibrium z3 is depicted in Fig.6.3.
Namely, the equilibrium z3, included in the shaded area of Fig.6.3, satisfies conditions
(6.16) and (6.17) in Lemma 6.2 and is asymptotically stable. On the other, the unstable
equilibrium z; is contained in intervals I; or I, on the prey isocline ¢;.

Noting that the z coordinate of z; increases as £ decreases, the unstable equilibrium
z3, contained in I, can be stabilized by decreasing E£. On the other hand, the unstable

equilibrium z3, contained in I, can be stabilized by increasing F.
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Inequality (6.30) gives the condition that the equilibrium z3 is contained in the interval
I, and Inequality (6.31) gives the condition that the equilibrium z3 is contained in the

interval 1.

Corollary 6.2 is given by substituting E = 0 into Ineqgs.(6.30) and (6.31). (Q.E.D.)
Theorem 6.2 indicates that:

e If the growth rate B of the predator is large, then the harvesting of predators is

useful for preventing the oscillation of populations.

o If the growth rate B of the predator is small, then the supplying of predators is

useful for preventing the oscillation of populations.

The amount of the effort for the harvesting or supplying, which converts the unstable

equilibrium z; into the stable one, is obtained by Theorem 6.1.

6.2.4 Invariant Domain

Associated with the invariant domain
D={(z0,%):2,>0, 4y, >0, n=0,1,2,---},
the following result is derived:
Theorem 6.3 The set
Dy={(z,y):2>0,y>0, 1 —z—y > 0},

is the invariant domain of a nonlinear function Fig, if the following conditions hold:

(i) for 0< C < 1,

0<A<4,
4C
1< E< ————=-1
SYS Bty
(i1) for 1 < C,
0< A<4,
1
-l1<EF<=-1
B
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The proof of Theorem 6.3 is similar to that of Theorem 5.3.

Except for the case where 0 > 4C/B(1 + C)? — 1, Theorem 6.3 indicates that, for
any harvesting effort £ with —1 < F < 0, the invariant domain D is the set D,. The
invariant set Dy is the largest one. Hence, Theorem 6.3 shows that the population does

not die out under the constant effort harvesting.

6.2.5 Numerical Experiments

Numerical experiments are demonstrated to show the validity of results presented in

Subsecs.6.2.2 to 6.2.4.

Figures 6.4(a) and (b) show the behavior of the uncontrolled system

Tp+1 = Amn(l =Ty — yn)

Ty
Ynt1 = Byn (1 + _CT) y

Xy

calculated by the digital computer, where growth rates of the prey and predator are set as
A =3.9 and B = 0.3 respectively and the dependence of the predator on the prey is set
as C'= 0.1. In Fig.6.4(b), the 50,000 number of successive solutions are plotted in the z-y
plane after 5000 iterations. Figures 6.4 show that the solution process to the uncontrolled

system exhibits chaotic behavior in the case where A =3.9,B=0.3 and C = 0.1.

From Theorem 6.2, if the proportional constant E holds the condition
—0.5111. .. < E < —=0.2097- - -,

then the equilibrium z3 is locally asymptotically stable. Figure 6.5 shows the solution
process to the controlled system (6.1) with a proportional constant of control £ = —0.4,
where A = 3.9,B = 0.3 and C = 0.1. Figure 6.5 indicates that if the predator is
harvested with the proportional constant £ = —0.4, then the solution process converges
to an equilibrium z3 = (0.4555---,0.2880---). Numerical experiments demonstrated in

Figs.6.4 and 6.5 show the validity of Theorem 6.2.
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n’n predator prey

(a) Chaotic behavior

1.0 ] )

1.0

(b) Chaotic attractor

Figure 6.4: Chaotic behavior observed in the uncontrolled predator-prey system ¥; with
A=39 B=03and C =0.1
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Figure 6.5: The Convergence to stable equilibrium 23 observed in the controlled predator-
prey system S;g with A=3.9, B=0.3, C=0.1and £=-04

6.3 Stabilization of Type II Predator-Prey Systems

In this section, nonlinear dynamics of the type II Predator-Prey system Y;g and

the effects of constant rate harvesting on fractal boundaries of the invariant domain are

discussed [YS90], [Yas91].

6.3.1 Location of Equilibriums
The controlled system (6.2) has the following three equilibriums
Z1 = (Oy O),

2= (1 N %’ O) ’ (6.34)

1 1 1
a=(elamrmtipi-a-lamrs )
6.3.2 Stability of Equilibriums

The stability of the equilibrium z3 of the system Yz with the constant rate control

is shown by the following theorem:

Theorem 6.4 The equilibrium z3 1s locally asymptotically stable, if and only if
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(i) for 1< AL 3,

24C 1 2AC
_1<E - —1b. 6.35
BA-AC—-1)  ° <max{3 L BaA—4ac 1) } (6.35)
(11) for 3 < A,
24C
- 2 _12(A- AC — 1)} — 1
B(A_Ac_l){(4AC+A+3) J4AC + A +3)2 — 12(A - AC — 1)}

1 2AC
- — —1p. 6.36
<E<max{B l’B(A—AC’——l) 1} (6.36)

Corollary 6.4 The equilibrium z3 1s locally asymptotically stable, if and only if conditions

ps > 0, (6.37)

2C 2
B(1+E)(1 - Apg)} SB<BA+E)

hold, where p3 and q3 are the z and y coordinates of the equilibrium z3 respectively.

(6.38)

max {0,

6.3.3 Effects of Constant Rate Harvesting on Fractal Bound-
aries

For convenience of discussions, we introduce

Frs(z,y) = (Am(l —z—y), B(1+E)y(—1+ -g-)) (6.39)

For the controlled system Xy, we also adopt the set
D_={(z,y): >C, y>0, Az(1—z —y) > C}

as a candidate of the invariant domain D. Figure 6.6 shows images F(D-), which is
equal to Fyg(D-) with E = 0, and Fyg(D) with E < 0. As shown in Fig.6.6, for any
E < 0, Fre(D) is included in F(D). Namely, the mapping Fyp with £ < 0 squeezes
the domain D_ vertically rather than the mapping F. Hence, the inverse mapping Fyj
stretches the area A, vertically rather than the inverse mapping F~! and the tongue
Fr#(A.) becomes longer than the tongue F~*(A). Therefore, it is proposed that fractal
boundaries produced by

D_ - G Frp(A.)

k=1
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v

Figure 6.6: Images F(D) and Fyp(D)

is more complicated than that by
D. - F75(A).
k=1

Hence, in the controlled system Xyg, as the constant E decreases, the complexity of

fractal boundaries of the invariant domain D increases.

6.3.4 Numerical Experiments

(a) Definition of Capacity Dimension
In order to evaluate the complexity of fractal boundaries, it is useful to calculate the

capacity dimension, which is one of the fractal dimension, defined as follows:

Definition 6.1 [MGOY85a], [Tak86] The capacity dimension dimg(9D) of the boundary
0D of the domain D 1s defined by

dimc(9D) = lim In 55), (6.40)
—0 ln g

where N(6) 1s the minimum number of squares of side 6 required to cover the boundary of

the domain D [MGOY85a], [Tak86] .
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If the boundary is smooth, then the capacity dimension is given by dimg(0D) = 1.
On the other hand, if the boundary is fractal, the the capacity dimension satisfies that

1 < dimg(9D) < 2.

Furthermore, when the complexity of the boundary increases, the capacity dimension of
the boundary also increases [MGOY85a], [Tak86]. Numerical technique calculating the

capacity dimension is demonstrated in Appendix 6A.

(b) Capacity Dimension of Fractal Boundaries

To show the validity of results presented in previous subsections, parameters are se-
lected as A = 3.9, B = 0.5 and C = 0.12 for the uncontrolled system £y. In this case,.
the solution process exhibits chaotic behavior and the invariant domain D exhibits fractal

boundaries, which are already shown in Figs.5.15 of Chapter 5.

1.0

0 Y 1.0

Figure 6.7: The invariant domain with fractal boundaries of the controlled predator-prey
system Y g with A =39 B=0.5 C =0.12 and £ = —0.368

Based on Theorem 6.2, in order to stabilize the chaotic oscillation, the effort for the
harvesting E is set as F = —0.368. Then, the equilibrium 23 = (0.500---,0.244-- )
is asymptotically stable. The invariant domain D of the controlled system Xy with

E = —0.368 is plotted in Fig.6.7, where fractal boundaries of the invariant domain are
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demonstrated. In order to compare the complexity of fractal boundaries observed in the

systems Y7 and Lyg, the capacity dimension is numerically calculated as follows (See

Appendix 6A):
Yr(ie, E=0) : dimg(0D) = 1.576

Yy with E = —0.368 : dimg(dD) = 1.706.

These numerical experiments indicate that, under the constant rate harvesting of preda-

tors, the complexity of fractal boundaries increases.

6.4 Conclusions

It has been shown that chaotic behavior of a class of discrete predator-prey systems
are stabilized by the constant rate harvesting or supplying of predators. For a large B,
namely, when the growth rate of the predator is large, we can stabilize the system by the
harvesting of predators. For a small B, namely, when the growth rate of the predator is
small, we can stabilize the system by the supplying of predators.

From viewpoints of the conservation of ecosystems, the control using the constant
rate harvesting has an advantage rather than that using the constant harvesting, because
the invariant domain of the constant rate harvesting is larger than that of the constant
harvesting.

Theoretical and numerical approach developed here should be useful in pursuing the
answers to stabilization problems in discrete predator-prey systems with a constant rate

harvesting or supplying.
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Appendix 6A: Numerical Technique for
Calculating Capacity Dimension

(a) Capacity Dimension and Uncertain Exponent

In order to calculate the capacity dimension, the concept of final state sensitivity is
introduced [MGOY85a]. Consider a two dimensional phase space, as shown in Fig.6.8.
The region D is the invariant domain and its boundary is denoted by 0D. Now, consider
the situation that initial conditions are measured and the measurement has an uncertainty
¢ in the sense that the actual initial condition might be anywhere in a disc of radius ¢
centered at the measured value. Hence if the measured initial condition is a point p;
in Fig.6.8, then the true initial condition is certainly included in the invariant domain
D and the solution process certainly remains in the invariant domain D. On the other
hand, if the measured initial condition is a point p;, then the true initial condition may
be included in the invariant domain D or may not be included in the invariant domain

D. Hence, the point p; is called the uncertain initial condition.

Y

o

Figure 6.8: The uncertain initial condition
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Assuming that the initial condition is uniformly distributed in the area S depicted
by the broken line in Fig.6.8, we can consider the fraction A(e) that the measured initial
condition is uncertain. The fraction A(e), indeed, depends on the uncertainty e. When
the boundary of the invariant domain is smooth, the fraction A(e) is proportional to ¢,
lLe.,

h(e) ~ e.

On the other hand, when the boundary of the invariant domain is fractal, the fractal A(e)

satisfies

h(e) ~e%, 0<a <l

The constant « is called the uncertain exponent. It has been shown that the capacity

dimension dimg(9D) of the boundary 9D satisfies [MGOY85a]
dimg(0D) =2 — a.

Therefore, in order to obtain the capacity dimension dim¢(8D), it is necessary to calculate

the uncertain exponent o with the aid of digital computer.

(b) Numerical Technique calculating Uncertain Exponent

In order to calculate the uncertain exponent «, the following procedures are carried
out:
(1) The interval [0,1] in z and y axes is equally divided into 200 segments. By drawing
the vertical and horizontal lines through dividing points, the mesh is constructed in the
z-y plane. (See Fig.6.9) The intersection between vertical and horizontal lines included

into the area

{(z,y) :2>0,y>0,1—z—y >0} (6.41)

is selected as the initial condition.
(ii) Each initial condition is iterated two hundred times by Eq.(6.2) and if the solution
process does not leave from the first quadrant until 200 step iteration, then the initial

condition is regarded as a point included in the invariant domain D.
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Figure 6.9: Unperturbed and perturbed initial conditions

(iii) For an initial condition (zo,yo), two perturbed initial conditions (z¢ £ ¢, yo) are made
and are iterated two hundred times by Eq.(6.2), in order to decide whether perturbed
initial conditions are included in the invariant domain or not. This result is compared
with that for the unperturbed initial condition. If either of perturbed initial conditions has
the different result from that for the unperturbed initial condition, then the unperturbed
initial condition is regard as the uncertain initial condition.

(iv) For all 20301 unperturbed initial condition, the procedure presented in (iii) is done

and we record the number of the uncertain initial condition. The fraction A(e) is given

by

the number of the uncertain initial condition
h(e) = 50301 : (6.42)

where 20301 is the total number of the unperturbed initial conditions.
(v) For various values of the error e, the uncertain fraction h(e) is calculated and the
relation between loge and logh(e) are plotted as shown in Fig.6.12. The slope of the

graph indicates the uncertain exponent «.
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Figure 6.10: loge vs log h(e)
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Chapter 7

Conclusions

In this thesis, chaotic and fractal phenomena have been investigated, concerned with
one and two dimensional nonlinear discrete dynamical systems.

A contribution was provided by theoretical analysis using Hausdorff dimension. Namely,
it has been demonstrated that the existence of the periodic point with period three im-
plies the existence of fractal boundaries, concerned with a class of one-dimensional dis-
crete dynamical systems. By applying the results obtained by theoretical analyses, fractal
boundaries, observed in a class of sampled-data control systems, were investigated. In
illustrative examples, the existence of fractal boundaries of the set of initial conditions,
under which solution processes are bounded, was shown and furthermore fractal basin

boundaries of coexisting final state were also discussed.

The fractal set generated by contraction mappings was already investigated and the
excellent results were obtained [Huc81]. However, in the previous results [Huc81], the
set itself is fractal, hence the Lebesgue measure of the fractal set is zero. In engineering
dynamical systems, including control systems, this fact means that the fractal basin of
an equilibrium has the zero Lebesgue measure and, for almost all initial conditions, state
variables do not converge to the equilibrium. Therefore, in engineering systems, the
existing conditions of fractal basin boundaries are valuable, rather than those of the

fractal set.

Secondly, mechanisms yielding fractal boundaries of the invariant set of nonlinear

functions were investigated by using the notation of the symbolic dynamics, and the

148



existence of five different mechanisms were shown.

These results, in one-dimensional dynamical systems, provide a tool for investigating
complicated boundaries of the invariant domain, which is the set of initial conditions
generating nonnegative solution processes, concerned with a class of two-dimensional dy-
namical system describing a class of predator-prey systems. Through a fundamental

approach constructed by the following procedures:
(Step 1) Find a candidate of the invariant domain.

(Step 2) Consider the image of the selected candidate, generated by the nonlinear func-

tion describing the system dynamics.

(Step 3) Consider inverse images of subsets of the image, which are not included in the

candidate.

mechanisms yielding complicated boundaries exhibiting self-similar structures were clar-
ified by using the notation of the symbolic dynamics and existing conditions of fractal

boundaries were obtained.

The other topic of the thesis is concerned with the stabilization scheme of oscillation of
“the population, observed in a class of predator-prey systems, demonstrated in Chaps.5 and
6. The control term was adopted as both harvesting and supplying of predators. Solution
properties were analyzed through the stability analysis of equilibriums and it has been
shown that both constant and constant rate harvesting or supplying of predators are

useful for preventing the oscillation of populations.

Furthermore, investigations has been extended to explore effects of the control input
on fractal boundaries. Under the constant harvesting, fractal boundaries became smooth
but the size of the invariant domain becomes small, as the amount of the harvesting of
predators increases. Hence, it is easy to decide the coexistence or extinction of population,
but there exist many initial conditions led to the extinction of populations by the constant

harvesting. On the other hand, under the constant rate harvesting, as the effort to harvest
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increases, the complexity of fractal boundaries increases. Hence, it is needed to carefully
decide the coexistence or extinction of populations.

From viewpoints of the conservation of ecosystems, the control using the constant rate
harvesting has an advantage rather than that using the constant harvesting, because the
invariant domain under the constant rate harvesting is larger than that under the constant
harvesting.

Nonlinear dynamics, yielding chaotic behavior of the system, often exhibits fractal
phenomena. However, this situation is not usual. An example was shown in Chap.6,
i.e., chaotic oscillations of populations are stabilized by the constant rate harvesting of
predators, on the other hand, the complexity of fractal boundaries of the invariant domain

increases under the constant rate harvesting.
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