
Kobe University Repository : Kernel

PDF issue: 2024-05-25

Design and implementation of linear logic
programming languages

(Degree)
博士（工学）

(Date of Degree)
2002-09-20

(Date of Publication)
2007-08-09

(Resource Type)
doctoral thesis

(Report Number)
乙2637

(URL)
https://hdl.handle.net/20.500.14094/D2002637

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

番原, 睦則

Doctoral Dissertation

Design and Implementation of Linear Logic
Programming Languages

Mutsunori Banbara

September 2002

The Graduate School of Science and Technology
Kobe University, Japan

Supervisor: Prof. Yuzuru Kakuda
Co-supervisor: Prof. Yukio Kaneda
Co-supervisor: Prof. Toshiyasu Arai
Co-supervisor: Assoc. Prof. Naoyuki Tamura
Department of Computer and Systems Engineering
Faculty of Engineering
Kobe University
1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501 Japan

Copyright c© 2002 by Mutsunori Banbara

to my wife, Megumi

iii

Acknowledgments

I would like to thank Prof. Naoyuki Tamura for his advice, help, patience, and understanding. I would
also like to thank Prof. Yuzuru Kakuda who have encourage me to make a great effort since I was an
undergraduate student at Kobe University. I would like to thank Prof. Yukio Kaneda and Prof. Toshiyasu
Arai for their advice.

I would like to thank Prof. Kenichi Aragane, Masaru Teranishi, and Naoshi Kanazawa at Nara National
College of Technology for their kindness.

I would like to thank Eiji Sugiyama and Kyoung-Sun Kang who had spent pleasant days together at the
Graduate School of Science and Technology of Kobe University.

I would like to thank Kenichiro Shii who attracted me by his remarkable programming sense.

I would like to thank Makoto Kikuchi for his great deal of advice, Christopher Barney for his English support,
and CS32 laboratory.

I thank my parents Yoshiyuki and Yuko, my younger sister Yoshiko, and my wife Megumi. I could not finish
this dissertation without their emotional support. In particular, I thank my grandfather Masayoshi in heaven,
who said me you must give up trying to get a Ph.D.

Finally, I would also like to thank my friends for sharing interesting times.

Mutsunori Banbara
Kobe, Japan

September, 2002

v

Abstract

Linear logic was introduced by J.-Y.Girard in 1987 as a resource-conscious refinement of classical logic.
Linear logic has found many applications in computer science because it allows elegant solutions to many
problems that are difficult to represent in traditional logics. The expressive power of linear logic is shown
by some natural encoding of computational models, such as Petri nets, counter machines, andπ-calculus.
One key topic of linear logic was the development of new programming languages. A number of logic
programming languages based on linear logic have been proposed: LO, LinLog, Lolli, ACL, Lygon, Forum,
and Linear LF. These languages suggest a direction to extend logic programming to be more expressive and
more efficient.

In spite of a great deal of theoretical works, there have been very few practical tools for developing
resource-conscious applications based on linear logic. It is therefore very important to develop efficient
compiler system for linear logic programming languages. However, the implementation of such languages
meets many difficulties not arise in traditional logic programming languages. In particular efficientresource
managementis a serious problem for the implementors.

In this dissertation, we propose new compilation methods to develop efficient implementation for linear
logic programming languages. Main contributions are summarized as follows:

1. A compiler system for a linear logic programming language:
Compiling resources is an important issue on implementation for linear logic programming languages.
We present a method for compiling resources and provide an extension of the WAM for a linear logic
programming language. In performance, our compiler provides 40% speedup for a theorem proving
application of classical logic, relative to its Prolog implementation.

2. A translator system from a linear logic programming language into Java:
There has been no 100% pure Java implementation for linear logic programming languages so far. We
present a method for translating a linear logic programming language into Java. In performance, our
translator is 1.7 times faster for a set of classical Prolog benchmarks, than an existing Prolog-to-Java
translator jProlog.

3. A compiler system for a temporal linear logic programming language:
We present theory, language design, an abstract machine and its instruction set for compiler system of
a temporal linear logic programming language. In addition to resource sensitive features, it is possible
to express time-dependent properties of resources, in particular, the precise order of the moments when
some resources are consumed.

Our compiler has already applied to a theorem proving application of first-order classical logic, in which
linear logic operators were elegantly used for specifying the problems. Furthermore it gives significantly
nice performance relative to its famous Prolog implementation. Our results should be equally well applied
to other resource-conscious applications based on linear logic.

vii

Contents

Acknowledgments v

Abstract vii

1 Introduction 1

2 The Lolli Language and its Resource Management Models 5
2.1 A Brief Introduction to Linear Logic . 5
2.2 Uniform Proofs in Intuitionistic Linear Logic . 7
2.3 Resource Management Models . 10

2.3.1 TheI/O Implementation Model . 10
2.3.2 TheRM3 Implementation Model . 11
2.3.3 TheIOL Implementation Model . 13
2.3.4 TheLRM Implementation Model . 15

2.4 The Syntax of the Lolli Language . 17

3 A Collection of Lolli Programming Examples 19
3.1 A Brief Introduction to Lolli Programming . 19

3.1.1 Resource Addition . 19
3.1.2 Resource Consumption . 20

3.2 Using Free Variables in Resources . 21
3.2.1 Reversing a List . 21
3.2.2 Filtering a List . 21

3.3 Using Resources as Limited-Use Data . 22
3.3.1 N-Queens . 22
3.3.2 Knight Tour . 23
3.3.3 Kirkman’s School Girl Problem . 23
3.3.4 Cryptarithmetic Puzzle . 24

3.4 Using Resources as Limited-Use Clauses . 24
3.4.1 Path Finding . 24
3.4.2 Tiling Board with Dominoes . 25

3.5 A Lean Connection Theorem Prover for First-Order Classical Logic 26

4 Towards a Efficient Implementation for a Linear Logic Programming Language 29
4.1 Implementation Design . 29
4.2 Compiling Resource Formulas . 31
4.3 LLP: A Compiled Linear Logic Programming Language 32

4.3.1 The Definition of LLP . 32
4.3.2 Pre-Compilation of LLP . 32

ix

5 The LLPAM Abstract Machine 33
5.1 New Registers . 33
5.2 New Data Areas . 34

5.2.1 The Resource Table . 34
5.2.2 The Hash and Symbol Tables . 35

5.3 LLPAM Code Generation . 35
5.3.1 Code forG1 ⊗G2 . 35
5.3.2 Code forR−◦G . 36
5.3.3 Code forR⇒G . 36
5.3.4 Code for Resource Addition . 37
5.3.5 Code forG1 & G2 . 38
5.3.6 Code for! G . 40
5.3.7 Code for> . 40
5.3.8 Code for Atomic Goals . 40

5.4 Backtracking . 43
5.5 Optimizing the Design . 43

5.5.1 Optimizing Resource Selection . 43
5.5.2 Successive Addition of Linear Resources . 44

5.6 LLPAM Code Example . 45
5.7 Performance Evaluation of LLP Compiler System . 46
5.8 Performance Evaluation of Hodas and Tamura’slolliCoP 48

6 Translating a Linear Logic Programming Language into Java 51
6.1 Demoen and Tarau’s jProlog Approach . 51
6.2 The LLPj Approach . 53
6.3 The Prolog Café Approach . 54

6.3.1 Translating Prolog into Java . 54
6.3.2 Implementingassert andretract . 56
6.3.3 Translating LLP into Java . 56

6.4 Performance Evaluation . 58

7 TLLP: A Temporal Linear Logic Programming Language 59
7.1 Intuitionistic Temporal Linear Logic . 59
7.2 Language Design . 60
7.3 TLLP Programming Examples . 63

7.3.1 Path Finding . 63
7.3.2 Conway’s Life Game . 63
7.3.3 Timed Petri Net . 64

7.4 Resource Management Model . 64
7.5 Level-Based Resource Management Model . 66
7.6 Implementation Design . 68

7.6.1 TLLP Interpreter . 68
7.6.2 Translating TLLP into LLP . 68
7.6.3 TLLPAM: An Extension of LLPAM for the TLLP language 70

7.7 Performance Evaluation . 71

8 Conclusion and Future Work 73

x

A The LLPAM at a Glance 75
A.1 The LLPAM Instructions . 75
A.2 The LLPAM Auxiliary Procedures and Functions . 84
A.3 The LLPAM Memory Layout and Registers . 90

xi

List of Figures

2.1 The Proof SystemILL for Intuitionistic Linear Logic . 6
2.2 A Linear Logic Encoding of a Petri Net . 7
2.3 Proof Search for the Reachability of a Petri Net in Figure 2.2 7
2.4 The Proof SystemL for the Lolli Language . 8
2.5 Backchaining for the Proof SystemL′ . 8
2.6 TheI/O System for Propositional Fragment of Lolli . 11
2.7 TheRM3 System for Propositional Fragment of Lolli . 12
2.8 Residuation Rules for the Proof SystemRM3 . 12
2.9 TheIOL System for Propositional Fragment of Lolli . 14
2.10 TheLRM System for Propositional Fragment of Lolli . 16

3.1 A Prolog Program for Reversing a List . 21
3.2 A Lolli Program for Reversing a List . 21
3.3 A Lolli Program for Filtering a List . 21
3.4 A Lolli Program for N-Queens . 22
3.5 A Prolog Program for N-Queens in Prolog Programming for Artificial Intelligence [11] . . . 22
3.6 Resources for 8-Queens . 22
3.7 A Lolli Program for Knight Tour . 23
3.8 A Lolli Program for Kirkman’s School Girl Problem . 24
3.9 A Lolli Program for Cryptarithmetic Puzzle . 25
3.10 A Lolli Program for Path Finding . 25
3.11 A Lolli Program for Tiling Board with Dominoes . 26
3.12 TheleanCoP Theorem Prover of Otten and Bibel . 27
3.13 ThelolliCoP Theorem Prover of Hodas and Tamura . 27

4.1 A I/O Model-Based Lolli Interpreter in Prolog . 30
4.2 Closure Structure . 31

5.1 Resource Table After Adding the Linear Resource(p(1) &(q(X)−◦ p(X)))⊗ ∀Y.r(Y). . . 35
5.2 Symbol Table After Adding the Resource(p(1) &(q(X)−◦ p(X)))⊗ ∀Y.r(Y) 35
5.3 Code Generated for the Goal((p(1)&(q(X)−◦ p(X)))⊗ ∀Y.r(Y))−◦G. 39
5.4 Thecall Instruction of the LLPAM . 41
5.5 Naive Code Generation for an Atomic Goalp/n . 42
5.6 Code Generated for an Atomic Goalp/n . 42
5.7 Optimized Code Generation for an Atomic Goalp/n . 44
5.8 Optimized Code Generated for the Goal((p(1) &(q(X)−◦ p(X)))⊗ ∀Y.r(Y))−◦G. 45
5.9 LLPAM Code Generated for the Predicatechoose and the Resourcetest in Figure 3.3 . . 46

6.1 Term Structure of Prolog Café . 54

xiii

6.2 An Implementation ofassert andretract in Prolog Caf́e 56

7.1 The Proof SystemITLL for Intuitionistic Temporal Linear Logic 60
7.2 T L: A Proof System for the Connectives>, &,−◦,⇒, ∀, 1, !,⊗,⊕, ∃, ©, and2. 61
7.3 Backchaining for the Proof SystemT L′ . 62
7.4 A TLLP Example of Conway’s Life Game . 64
7.5 A TLLP example of Timed Petri Net . 65
7.6 IOT : An I/O Model for Propositional TLLP . 66
7.7 IOT L: A Level-BasedI/O Model for Propositional TLLP 67
7.8 A IOT Model-Based TLLP Interpreter in Prolog . 69
7.9 Translating a TLLP Example of Timed Petri Net into LLP 70

xiv

List of Tables

2.1 The Mapping Between Linear Logic Operators and Lolli Syntax 17

5.1 Performance Results ofN -Queens . 47
5.2 Performance Results of Knight Tour (5× 5) . 47
5.3 Performance Results of Tiling Board with Dominoes . 48
5.4 Performance Results of Prolog Benchmarks . 48
5.5 Overall Performance ofOTTER, leanCoP, andlolliCoP 49
5.6 Performance ofOTTER leanCoP andlolliCoP Classified by Problem Rating 49
5.7 Comparison ofOTTER, leanCoP, andlolliCoP . 50

6.1 Comparison for Prolog Café vs jProlog vs SWI-Prolog . 58

7.1 Performance Results of Timed Petri Net . 71

xv

Chapter 1

Introduction

In this dissertation, we propose new compilation methods to develop efficient implementation for linear logic
programming languages. Main contributions are summarized as follows:

1. A compiler system for a linear logic programming language:
We present an abstract machine and its instruction set for compiler system of a linear logic program-
ming language.

2. A translator system from a linear logic programming language into Java:
We present a method for translating a linear logic programming language into Java.

3. A compiler system for a temporal linear logic programming language:
We present theory, language design, an abstract machine and its instruction set for compiler system of
a temporal linear logic programming language.

Linear logic [19] was introduced by J.-Y.Girard in 1987 as a resource-conscious refinement of classical
logic. Linear logic has found many applications in computer science because it allows elegant solutions
to many problems that are difficult to represent in traditional logics. The expressive power of linear logic
is shown by some natural encoding of computational models, such as Petri nets, counter machines, andπ-
calculus. In recent years, linear logic have been applied to operational semantics of security protocols [12]
and specifying read-time finite-state systems [37].

One key topic of linear logic was the development of new programming languages. A number of logic
programming languages based on linear logic have been proposed: LO [3], LinLog [2], Lolli [25, 26], ACL
[32, 33], Lygon [20, 21], Forum [27, 41], and Linear LF [14]. These languages suggest a direction to extend
logic programming to be more expressive and more efficient. For example, Lolli was used to develop a
filler-gap parser [24] in natural language processing. Forum was used to specify the operational semantics
of a pipelined RISC processor [15]. More about linear logic programming has been well-summarized in
Miller’s papers [39, 40].

Most early works on logic programming had been based on Horn clauses (a simple logic underlying pure
Prolog) and SLD-resolution (Prolog’s execution model). However, it is very hard to extend this traditional
approach for new logic programming languages based on richer logics, rather than Horn clauses. Many
researcher recently have used proof-theoretical approaches,goal-directed proof searchin Gentzen-style se-
quent calculus. One design principle, calleduniform proofs[38] proposed by Milleret al., is a simple and
powerful notion for designing logic programming languages. A logical system is anabstract logic program-
ming languageif restricting it to uniform proofs retains completeness. The logics of pure Prolog,λProlog
[44], Lolli, and Forum are examples of abstract logic programming language.

In spite of a great deal of theoretical works, there have been very few practical tools for developing linear-
logic-based applications. It is therefore very important to develop efficient compiler systems for linear logic

1

2 CHAPTER 1. INTRODUCTION

programming languages. However, the implementation of such languages meets many difficulties not arise
in traditional logic programming languages. In linear logic programming languages, it is possible to add and
delete resources (limited-use clauses) dynamically as logical formulas. The efficientresource managementis
therefore an important issue for the implementors. This issue has been discussed from the earliest proposals
[26], and several papers have focused on these issues [13] [30, 49] [22] [29].

Recently, only one compiling effort has been made. N. Tamura and Y. Kaneda [49] have developed an
extension of the Warren Abstract Machine (WAM) [1, 56] and a compiler system for a useful fragment of
Lolli. J. Hodaset al. proposed a refinement [29] with the complete treatment of>. However, the compiler
supported only limited forms of resources. Furthermore, the resources were stored as terms in a heap memory
and were not compiled. This inefficiency is clearly unacceptable for resource-conscious applications based
on linear logic.

This dissertation is the latest step in a course of research begun by N. Tamura and Y. Kaneda towards ef-
ficient implementation for linear logic programming languages. We discuss several theoretical and practical
issues on implementation in the case of Lolli proposed by J. Hodas and D. Miller [26]. After that we present
the following systems:

1. A compiler system for a linear logic programming language:
Compiling resources is an important issue on implementation for linear logic programming languages.
To solve this problem, we introduce the idea ofclosureand present a method for compiling resources.
We also present an extension of the WAM for a linear logic programming language LLP. In per-
formance, our compiler provides 40% speedup for a theorem proving application of classical logic,
relative to its Prolog implementation.

This part of dissertation is based on joint work with N. Tamuraet al. in the paper [6, 9, 47].

2. A translator system from a linear logic programming language into Java:
A number of Java implementations for logic programming languages have been developed. However,
there has been no 100% pure Java implementation for linear logic programming languages. We present
a LLP-to-Java source-to-source translator system. Our translation method is based on continuation
passing style compilation [54]. In performance, our translator is 1.7 times faster for a set of classical
Prolog benchmarks, than an existing Prolog-to-Java translator jProlog.

This part of dissertation is based on joint work with N. Tamuraet al. in the paper [5, 8, 10].

3. A compiler system for a temporal linear logic programming language:
We present theory and design of a logic programming language based on intuitionistic temporal lin-
ear logic, called TLLP. In addition to resource sensitive features of LLP, TLLP can express time-
dependent properties of resources, in particular, the precise order of the moments when some resources
are consumed. We also present an abstract machine and its instruction set for TLLP compiler system,
and a method for translating TLLP into LLP. In performance, our compiler is 1.7 times faster for a
simple example of Timed Petri Net, than translating TLLP into LLP.

This part of dissertation is based on joint work with N. Tamuraet al. in the paper [4, 7]

Our compiler has already applied to a theorem proving application [28] of first-order classical logic, in
which linear logic operators were elegantly used for specifying the problems. Furthermore it gives signif-
icantly nice performance relative to its famous Prolog implementation. Our results should be equally well
applied to other resource-conscious applications based on linear logic.

Our translator has already been applied to a Prolog-to-C# translator [17] and a tool that generates wrap-
pers for command line programs [58].

Finally, we give the outline of this dissertation. Chapter 2 gives a brief introduction to linear logic. After
that we present language design of a linear logic programming language Lolli proposed by J. Hodas and
D. Miller. We also discusses an issue on resource management in proof search of Lolli, a serious problem
for the implementors.

3

Chapter 3 shows several example programs in Lolli so that the reader easily understand a sense ofre-
source programming.

Chapter 4 discusses some basic issues on implementation of the Lolli language. We present a method
for compiling resources intoclosure, a reference of compiled code and a set of bindings for free variables,
widely used in implementations of functional programming languages.

Chapter 5 presents the detail of LLP abstract machine: registers, data areas, instructions, code generation,
and optimization. Appendix A summarizes the instruction set including auxiliary procedures and functions.

Chapter 6 discusses three approaches for translating Prolog into Java. After that we present a method for
translating LLP into Java.

Chapter 7 presents theory, language design, an abstract machine and its instruction set for compiler
system of a temporal linear logic programming language.

Chapter 8 concludes this dissertation and presents our future works.

Chapter 2

The Lolli Language and its Resource
Management Models

Most early works on logic programming had been based on Horn clauses, a simple logic underlying pure
Prolog. In recent years, many researcher have used proof-theoretical approaches to design and implement
new logic programming languages based on richer logics, rather than Horn clauses.

One design principle, calleduniform proofs[38] proposed by Milleret al., is a simple and powerful
notion for designing logic programming languages. A logical system is anabstract logic programming
languageif restricting it to uniform proofs retains completeness. The logics of pure Prolog,λProlog, and
Lolli are examples of abstract logic programming language.

In this chapter, we will give a brief introduction to Linear Logic [19] and present the logic of a linear
logic programming language Lolli [25, 26]. We will also discuss the issue ofresource management, one of
the most serious problem for the implementor.

2.1 A Brief Introduction to Linear Logic

Linear logic was introduced by J.-Y.Girard in 1987 [19] as a resource-conscious refinement of classical logic.
Linear logic has found many applications in computer science because it allows elegant solutions to many
problems that are difficult to represent in traditional logics. The expressive power of linear logic is shown
by some natural encoding of computational models, such as Petri nets, counter machines,π-calculus, and
others.

In traditional logic, thestructural rulesof weakening and contraction allow formulas to be discarded and
duplicated respectively. In linear logic, these rules are removed, but the modalities are added instead. Thus
we have not lost anything: both classical and intuitionistic logic can be faithfully embedded into linear logic.
In the absence of weakening and contraction, many of the logical operators split into two variants.

• There are two conjunctions, “⊗” (tensor) and “&” (with), two disjunctions, “℘” (par) and “⊕”
(o-plus). The operators⊗ and℘ are dual to each other, also& and⊕ are dual.

• There are two truth, “>” (top) and “1” (one), two falsehoods “0” (zero) and “⊥” (bottom). Each of
these constants is a unit:> is the unit of&, 1 is the unit of⊗, ⊥ is the unit of℘, and0 is the unit of
⊕. The constants> and0 are dual to each other, also1 and⊥ are dual.

• The implication operator is written “−◦” and calledlinear implication.
• The negation ofA is written “A⊥” and calledlinear negation.
• There are two modalities, “!” (of course) and “?” (why not), that are dual to each other. These modal-

ities are very similar to the modal operators2 and¦ in the usual modal logics. The role of these

5

6 CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

B −→ B
(Identity)

∆1 −→ B ∆2, B −→ C

∆1, ∆2 −→ C
(Cut)

∆, 0 −→ C
(L0)

∆ −→ > (R>)

∆ −→ C
∆, 1 −→ C

(L1) −→ 1
(R1)

∆, Bi −→ C

∆, B1 & B2 −→ C
(L &i)

∆ −→ C1 ∆ −→ C2

∆ −→ C1 & C2
(R &)

∆, B1, B2 −→ C

∆, B1 ⊗B2 −→ C
(L⊗)

∆1 −→ C1 ∆2 −→ C2

∆1, ∆2 −→ C1 ⊗ C2
(R⊗)

∆, B1 −→ C ∆, B2 −→ C

∆, B1 ⊕B2 −→ C
(L⊕)

∆ −→ Ci

∆ −→ C1 ⊕ C2
(R⊕i)

∆1 −→ C1 ∆2, B −→ C2

∆1, ∆2, C1−◦B −→ C2
(L−◦) ∆, B −→ C

∆ −→ B−◦C
(R−◦)

∆, B −→ C

∆, ! B −→ C
(L !)

!∆ −→ C
!∆ −→ ! C

(R !)

∆ −→ C
∆, ! B −→ C

(W !)
∆, ! B, ! B −→ C

∆, ! B −→ C
(C !)

∆, B[t/x] −→ C

∆,∀x.B −→ C
(L∀) ∆ −→ C[t/x]

∆ −→ ∃x.C
(R∃)

∆, B[y/x] −→ C

∆,∃x.B −→ C
(L∃) ∆ −→ C[y/x]

∆ −→ ∀x.C
(R∀)

provided, in each case,y does not appear free in the conclusion.

Figure 2.1: The Proof SystemILL for Intuitionistic Linear Logic

modalities is to reintroduce weakening and contraction.
• The first-order quantifiers “∀” and “∃” are the same as those in traditional logic.

On the other hand, these operators can be classified into four groups:multiplicativeoperators (⊗, ℘, −◦, 1,
⊥), additiveoperators (&, ⊕, >, 0), exponentials(!, ?), and quantifiers (∀, ∃). It is noted that there are two
major notations for linear logic operators: Girard’s notation [19] that we use and Troelstra’s notation [55].

As traditional logical systems, linear logic has been studied both from classical (multiple conclusion)
and intuitionistic (single conclusion) points of view. We will focus on an intuitionistic variant in Figure 2.1.
TheILL system does not include the operators℘, ?, and⊥. This is because we are interested only in cut-free
proofs of Gentzen-style sequent calculus in intuitionistic linear logic. The sequent ofILL is an expression of
the form∆ −→ C where∆ is a multiset of formulas.

Linear logic treats logical assumptions as consumable resources. InILL, the weakening and contraction
rules are available only for assumptions marked with the modality!. This means that, in general, a assump-
tion not thus marked can only be used once in a branch of the search for a proof. Limited-use formulas can
represent limited resources in some domain.

To illustrate thisformulas-as-resourcesnotion, we show an example for encoding Petri net reachability
in Figure 2.2. In linear logic the formula!(p−◦(p ⊗ q)) can be used to encode the transitiont1 taking one
token from placep and adding tokens to placep andq. Similarly, the formula!((q ⊗ q)−◦ r) represents
the transitiont2 taking two tokens fromq and adding one token to placer. Petri net transitions can be
encoded as (reusable)!-marked linear implication. Tokens are represented as (limited-use) atomic formulas.

2.2. UNIFORM PROOFS IN INTUITIONISTIC LINEAR LOGIC 7

� � ���� ��� places : p, q, r (atomic formulas)
t1 : ! (p−◦(p⊗ q))
t2 : ! ((q ⊗ q)−◦ r)

Figure 2.2: A Linear Logic Encoding of a Petri Net

p −→ p

p −→ p

q −→ q q −→ q

q, q −→ q ⊗ q
(R⊗)

p −→ p r −→ r

p, r −→ p⊗ r
(R⊗)

p, q, q, (q ⊗ q)−◦ r −→ p⊗ r
(L−◦)

!((q ⊗ q)−◦ r), p, q, q −→ p⊗ r
(L !)

!((q ⊗ q)−◦ r), p⊗ q, q −→ p⊗ r
(L⊗)

!((q ⊗ q)−◦ r), p, p−◦(p⊗ q), q −→ p⊗ r
(L−◦)

!(p−◦(p⊗ q)), !((q ⊗ q)−◦ r), p, q −→ p⊗ r
(L !)

!(p−◦(p⊗ q)), !((q ⊗ q)−◦ r), p⊗ q −→ p⊗ r
(L⊗)

!(p−◦(p⊗ q)), !((q ⊗ q)−◦ r), p, p−◦(p⊗ q) −→ p⊗ r
(L−◦)

!(p−◦(p⊗ q)), !(p−◦(p⊗ q)), !((q ⊗ q)−◦ r), p −→ p⊗ r
(L !)

!(p−◦(p⊗ q)), !((q ⊗ q)−◦ r), p −→ p⊗ r
(C !)

Figure 2.3: Proof Search for the Reachability of a Petri Net in Figure 2.2

A reachability problem from the initial marking (one token inp) to the final marking (one token in bothp
andr) can be represented as a sequent:!(p−◦(p ⊗ q)), !((q ⊗ q)−◦ r), p −→ p ⊗ r. Figure 2.3 presents a
ILL proof that corresponds to a sequence of Petri net from initial marking{p} to the final marking{p, r}.

Linear logic has been applied to several other areas in computer science. One key application of
formulas-as-resources aspect was the development of new programming languages. Recently, a number of
logic programming languages based on linear logic have been proposed: LO [3], LinLog [2], Lolli [25, 26],
ACL [32, 33], Lygon [20, 21], Forum [27, 41], and Linear LF [14]. These languages suggest a direction to
extend logic programming to be more expressive and more efficient. The treatment of formulas-as-resources
gives us not only powerful expressiveness, but also efficient access to a large set of data. More about linear
logic programming has been well-summarized in Miller’s papers [39, 40].

2.2 Uniform Proofs in Intuitionistic Linear Logic

The idea ofuniform proofs[38], proposed by Milleret al., is a simple and powerful notion for designing logic
programming languages. Uniform proof search is a cut-free,goal-directed proof searchin which a sequent
Γ −→ G denotes the state of the computation trying to solve the goalG from the programΓ. Uniform
proof is characterized operationally by the bottom-up construction of proofs in which right-introduction
rules are applied first and left-introduction rules are applied only when the right-hand side is atomic. This
means that the operators in the goalG are executed independently from the programΓ, and the program
is only considered when its goal is atomic. A logical system is anabstract logic programming languageif
restricting it to uniform proofs retains completeness. The logics of pure Prolog,λProlog [44], and Lolli are
examples of abstract logic programming language.

Clearly, intuitionistic linear logic (even over the connectives:>, &, ⊗, −◦, !, and∀) is not an abstract
logic programming language. For example, the sequentsa⊗b −→ b⊗a and! a& b −→ ! a are both provable
in ILL (see Figure 2.1) but do not have uniform proofs.

8 CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

Γ; B −→ B
(Identity)

Γ, B;∆, B −→ C

Γ, B;∆ −→ C
(absorb)

Γ;? −→ 1
(R1)

Γ;∆ −→ > (R>)

Γ;∆, Bi −→ C

Γ;∆, B1 & B2 −→ C
(L &i)

Γ;∆ −→ C1 Γ;∆ −→ C2

Γ;∆ −→ C1 & C2
(R &)

Γ;∆1 −→ C1 Γ;∆2, B −→ C2

Γ;∆1, ∆2, C1−◦B −→ C2
(L−◦) Γ;∆, B −→ C

Γ;∆ −→ B−◦C
(R−◦)

Γ;? −→ C1 Γ;∆, B −→ C2

Γ;∆, C1−◦B −→ C2
(L⇒)

Γ, B;∆ −→ C

Γ;∆ −→ B⇒C
(R⇒)

Γ;∆, B[t/x] −→ C

Γ;∆, ∀x.B −→ C
(L∀) Γ;∆ −→ C[y/x]

Γ;∆ −→ ∀x.C
(R∀)

provided thaty is not free in the conclusion.

Γ;? −→ C

Γ;? −→ ! C
(R !)

Γ;∆1 −→ C1 Γ;∆2 −→ C2

Γ;∆1, ∆2 −→ C1 ⊗ C2
(R⊗)

Γ;∆ −→ C[t/x]

Γ;∆ −→ ∃x.C
(R∃) Γ;∆ −→ Ci

Γ;∆ −→ C1 ⊕ C2
(R⊕i)

Figure 2.4: The Proof SystemL for the Lolli Language

Γ;? −→ G1 · · · Γ;? −→ Gn Γ; ∆1 −→ G′1 · · · Γ;∆m −→ G′m
Γ;∆1, . . . , ∆m, R −→ A

(BC)

providedn, m ≥ 0, A is atomic, and〈{G1, . . . , Gn}, {G′1, . . . , G′m}, A〉 ∈ ‖R‖

Figure 2.5: Backchaining for the Proof SystemL′

Hodas and Miller have designed the linear logic programming language Lolli [25][26] by restricting
formulas so that the above counterexamples do not appear, although it retains desirable features of linear
logic connectives such as! and⊗. The Lolli language is based on the fragment of linear logic freely generated
by the connectives:>, &,⇒,−◦, and∀. The connective⇒ is calledintuitionistic implicationand is defined
asB⇒C ≡ (! B)−◦C. Lolli also allows the use of positive occurrences of1, ⊗, !, ⊕, and∃, since they
does not cause any problems with the completeness of uniform provability. The Lolli language is formally
defined as follows:

R ::= > | A | R1 &R2 | G−◦R | G⇒R | ∀x.R

G ::= 1 | > | A | G1 ⊗G2 | G1 & G2 | G1 ⊕G2 | R−◦G | R⇒G | ! G | ∀x.G | ∃x.G

Here,R-formulas are calledresource formulas, andG-formulas are calledgoal formulas.
The sequent of Lolli is an expression of the formΓ;∆ −→ G whereΓ and∆ are multisets of resource

formulas, andG is a goal formula.Γ and∆ are calledintuitionistic contextandlinear contextrespectively,
and they correspond to theprogram. G is called thegoal.

Hodas and Miller developed a series of proof systemsL andL′ in [25]. The entire set ofL sequent rules
is given in Figure 2.4. The sequentΓ;∆ −→ G can be mapped to the linear logic sequent! Γ, ∆ −→ G.
Thus, the right introduction rule for−◦ adds its assumption (called alinear resource) to the linear context,
in which every formula can be used exactly once. The right introduction rule for⇒ adds its assumption

2.2. UNIFORM PROOFS IN INTUITIONISTIC LINEAR LOGIC 9

(called anintuitionistic resource) to the intuitionistic context, in which every formula can be used arbitrarily
many times (including zero times). They proved thatL is sound and complete with respect to theILL rules
restricted to the Lolli language. They also provedL preserves completeness even if probability is restricted
to uniform proofs.

Proposition 2.2.1 (Hodas and Miller) Let G be a goal formula,Γ and∆ multisets of resource formulas.
Let D∗ be the result of replacing all occurrences ofB⇒C in D with (! B)−◦C, and letΓ∗ = {B∗ | B ∈
Γ}. Then the sequentΓ;∆ −→ G is provable inL if and only if !(Γ∗),∆∗ −→ G∗ is provable inILL.

Proposition 2.2.2 (Hodas and Miller) Let G be a goal formula,Γ and∆ multisets of resource formulas.
Then the sequentΓ; ∆ −→ G has a proof inL if and only if it has a uniform proof inL.

Hodas and Miller have simplifiedL by the fact that in uniform proofs left-hand rules and Identity are
used only when the right-hand side is atomic. LetR be a resource formula.‖R‖ is defined as the smallest
set of triples of the form〈Γ,∆, R′〉 whereΓ and∆ are multisets of goal formulas, such that:

1. 〈∅,∅, R〉 ∈ ‖R‖,
2. if 〈Γ, ∆, R1 &R2〉 ∈ ‖R‖ then both〈Γ,∆, R1〉 ∈ ‖R‖ and〈Γ, ∆, R2〉 ∈ ‖R‖,
3. if 〈Γ, ∆,∀x.R′〉 ∈ ‖R‖ then for all closed termst, 〈Γ, ∆, R′[t/x]〉 ∈ ‖R‖,
4. if 〈Γ, ∆, G⇒R′〉 ∈ ‖R‖ then〈Γ] {G}, ∆, R′〉 ∈ ‖R‖ (“]” is multiset union), and
5. if 〈Γ, ∆, G−◦R′〉 ∈ ‖R‖ then〈Γ,∆] {G}, R′〉 ∈ ‖R‖.

L′ is the proof system that results from replacing the Identity, L−◦, L⇒, L&, and L∀ rules inL with a single
rule, calledbackchaining(BC) in Figure 2.5. Roughly speaking, the‖ · ‖ function translates a resource
formula in the program into a set of program clauses.

Proposition 2.2.3 (Hodas and Miller) Let G be a goal formula, and letΓ and∆ be multisets of resource
formulas. The sequentΓ;∆ −→ G has a proof inL if and only if it has a proof inL′.

Lolli can be seen as an extension of pure Prolog andλProlog. Lolli allows resource formulas in the pro-
gram to be used either only once or arbitrarily many times. In Lolli program, resource formulas correspond
to program clauses, but their structure seems to be rather complicated than Prolog andλProlog. Frequently,
it is very convenient for the implementors to view a resource formula∀x.(G1⇒(G2−◦A)) as a resource
formula∀x.((! G1 ⊗G2)−◦A) whose head is an atomic formula such as Prolog clause.

G⇒R ≡ ! G−◦R

G1−◦(G2−◦R) ≡ (G1 ⊗G2)−◦R

G−◦(R1 & R2) ≡ (G−◦R1)&(G−◦R2)
G−◦(∀x.R) ≡ ∀x.(G−◦R) (wherex is not free inG)

∀x.(R1 & R2) ≡ (∀x.R1) &(∀x.R2)

By rewriting formulas using above logical equivalences in the forward direction, it is possible to simplify
the definition of resource formulas:

R ::= S1 & · · ·& Sm

S ::= > | A | G−◦A | ∀x.S

whereA stands for a atomic formula andm ≥ 1. S-formulas are calledresource clausesin which the form
∀x.(G−◦A) corresponds toA:- G in Prolog. This simplification does not change expressiveness of the
Lolli language. From a theoretical point of view, it makes the presentation of backchaining (especially the
definition of‖ · ‖) simpler. From a practical point of view, it makes the development of compiler systems
(especially the compilation of resource formulas) easier.

10 CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

2.3 Resource Management Models

The issue ofresource managementhas been discussed from the earliest proposals [26], and recently several
papers have focused on these issues [13] [30, 49] [22] [29].

In this section, we discuss some of the basic issues in resource management in the case of propositional
fragment of Lolli. It is noted that we use rather restrictive form of resource formulas mentioned in previous
section to make the presentation simpler.

2.3.1 TheI/O Implementation Model

The resource management during a proof search inL′ is a serious problem for the implementor. Let us
consider, for example, the rule for proving the goalG1 ⊗G2:

Γ;∆1 −→ G1 Γ;∆2 −→ G2

Γ;∆1, ∆2︸ ︷︷ ︸
∆

−→ G1 ⊗G2
R⊗

When the system applies this rule during bottom-up search of a proof, the linear context∆ has not yet been
divided into∆1 and∆2. If the generate-and-test algorithm were used to find an appropriate partition of∆,
this non-determinism is clearly unacceptable since all2n possibilities might need to be tested if∆ contains
n resource formulas.

Hodas and Miller solved this problem by splitting resources lazily, and they proposed a new resource
management model called theI/O model [25, 26].

In this model, theIO-context is a lists of formulas, each of which is either a resource formula (linear
resource), or a!-marked resource formulas (intuitionistic resource), or new constant1 1 that denotes a place
where a formula has been consumed. TheIO-sequent is an expression of the form:

I {G}O

whereI andO areIO-contexts, andG is a goal formula. The intuitive meaning ofI {G}O is that the goal
G can be proved giveninput contextI so that theoutput contextO remains.

Figure 2.6 presents the set of sequent rules of theI/O model. For example, the rule for the operator⊗
is as follows:

I {G1}M M {G2}O

I {G1 ⊗G2}O
(⊗)

First, the system triesI {G1}M proving the goalG1 given input contextI. If this succeeds, the output
contextM is forwarded to the goalG2, and thenM {G2}O is attempted. If this second attempt fails, the
system retriesI {G1}M looking for some different pattern of consumption, before retryingM {G2}O.

TheBCi rules handles the selection of resource clauses for backchaining. ThepickR(I, O, R) relation
selects an available clauseR from its input contextI matching the atomA. The output contextO is the same
asI, except that the occurrence ofR is replaced with1 if it is a linear resource (O is exactly the same asI if it
is a intuitionistic resource). The> rule consumes any formulas from its input context. Thesubcontext(O, I)
relation holds ifO arises from replacing arbitrarily many (including zero) occurrences of linear resources in
I with 1.

Hodas and Miller proved that theI/O model is logically equivalent toL′. Let I andO beIO-contexts.
Only whensubcontext(O, I) holds, the differenceI −O is defined as a pair〈Γ,∆〉, whereΓ is the multiset
of all formulasR such that! R is an element of the listI (andO), and∆ is the multiset of all formulasR
which occur inI and the corresponding place inO is the constant1.

1The new constantdel is used instead in Hodas’s dissertation [25].

2.3. RESOURCE MANAGEMENT MODELS 11

I {1} I
(1)

subcontext(O, I)

I {>}O
(>)

I {G1}M M {G2}O

I {G1 ⊗G2}O
(⊗)

I {G1}O I {G2}O

I {G1 & G2}O
(&)

I {Gi}O

I {G1 ⊕G2}O
(⊕i)

I {G} I

I {! G} I
(!)

[R | I] {G} [1 |O]

I {R−◦G}O
(−◦) [! R | I] {G} [! R |O]

I {R⇒G}O
(⇒)

pickR(I, O, A)

I {A}O
(BC1)

pickR(I, M, G−◦A) M {G}O

I {A}O
(BC2)

Figure 2.6: TheI/O System for Propositional Fragment of Lolli

Proposition 2.3.1 (Hodas and Miller) Let I andO beIO-contexts that satisfysubcontext(O, I). Let I−O
be the pair〈Γ, ∆〉 and letG be a goal formula.I {G}O is provable in theI/O model if and only if
Γ;∆ −→ G is provable inL′.

2.3.2 TheRM3 Implementation Model

TheI/O model succeeds to eliminate the most serious problem, non-determinism from the treatment of⊗.
However, there are some points to be improved. Let us consider the rules for proving the goalG1 & G2 and
>:

I {G1}O I {G2}O

I {G1 &G2}O
(&)

subcontext(O, I)
I {>}O

(>)

This& rule means that the goalG1 andG2 must use the same set of resources. In a naive implementation,
the system first copies the input context and proves the two conjuncts separately, and then it compares their
output contexts. This leads to unnecessary backtracking. The> rule means that the output contextO is
reconstructed from the contextI by replacing any linear resources with1. If O containsn linear resources,
2n possibilities might need to be tested.

Cervesato, Hodas, and Pfenning solved these problems and proposed a refinement of theI/O model,
called theRM3 model [13]. This model pays particular attention to the management of resources across&
and to the occurrence of>. The main difference from theI/O model is that the idea of>-flag is introduced,
linear context is divided into two part, and intuitionistic context is separated out.

TheRM3-sequent is an expression of the form:

Γ;Ξ; ∆I \∆O −→v G

where each of Greek lettersΓ, Ξ, ∆I , and∆O denotes a set of uniquely labelled resource formulas,G is a
goal formula, andv is a boolean flag (called>-flag) that indicates whether a> was seen in the goalG.

Γ is an intuitionistic context.Ξ and∆I on the left-hand side of “\” are calledinput linear context,
∆O on the other side is calledoutput linear context. The input linear context is divided into two parts: the
strict contextΞ that must be entirely consumed during the proof search of the goalG, and thelax context
∆I in which the contents might be consumed during the proof search ofG. It is therefore possible for
only the lax context∆I to transmit unused resources to the output context∆O. The intuitive meaning of
Γ;Ξ; ∆I \∆O −→v G is thatΞ and∆I are the linear contexts that are given as input to proveG. The proof
of G will consume all ofΞ and part of∆I and return unused resources as the output context∆O.

12 CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

Γ;?;∆I \∆I −→0 1
(1)

Γ; Ξ;∆I \∆I −→1 >
(>)

Γ;?; (Ξ, ∆I) \∆′ −→0 G1 Γ; (Ξ ∩∆′); (∆I ∩∆′) \∆O −→v G2

Γ;Ξ;∆I \∆O −→v G1 ⊗G2

(⊗0v)

Γ;?; (Ξ, ∆I) \∆′ −→1 G1 Γ;?;∆′ \∆O −→v G2

Γ;Ξ; ∆I \∆I ∩∆O −→1 G1 ⊗G2

(⊗1v)

Γ; Ξ; ∆I \∆O −→0 G1 Γ; (Ξ, ∆I −∆O);? \ −→v G2

Γ;Ξ;∆I \∆O −→0 G1 & G2

(&0v)

Γ; Ξ;∆I \∆′ −→1 G1 Γ; (Ξ, ∆I −∆′);∆′ \∆O −→v G2

Γ;Ξ;∆I \∆O −→v G1 & G2

(&1v)

Γ; Ξ; ∆I \∆O −→v Gi

Γ;Ξ;∆I \∆O −→v G1 ⊕G2

(⊕i)
Γ;?;? \ −→v G

Γ;?;∆I \∆I −→0 ! G
(!)

Γ; (Ξ, R);∆I \∆O −→v G

Γ;Ξ;∆I \∆O −→v R−◦G
(−◦) (Γ, R); Ξ; ∆I \∆O −→v G

Γ;Ξ; ∆I \∆O −→v R⇒G
(⇒)

Γ;?;∆I \∆I −→0 A
.
= A

(
.
=)

R À A \G (Γ, R); Ξ; ∆I \∆O −→v G

(Γ, R); Ξ; ∆I \∆O −→v A
(BCint)

R À A \G Γ;Ξ; ∆I \∆O −→v G

Γ;Ξ; (∆I , R) \∆O −→v A
(BClax)

R À A \G Γ;Ξ;∆I \∆O −→v G

Γ; (Ξ, R);∆I \∆O −→v A
(BCstrict)

Figure 2.7: TheRM3 System for Propositional Fragment of Lolli

A′ À A \A′
.
= A

(dec atom) > À A \ 0
(dec >)

A′ À A \G′

G−◦A′ À A \G′ ⊗G
(dec −◦) R1 À A \G1 R2 À A \G2

R1 & R2 À A \G1 ⊕G2
(dec &)

Figure 2.8: Residuation Rules for the Proof SystemRM3

Figure 2.7 presents the set ofRM3 sequent rules. For example, the rule for& is split into two rules,
differing in whether a> is seen in the left conjunct:

Γ;Ξ;∆I \∆O −→0 G1 Γ; (Ξ, ∆I −∆O);∅ \ −→v G2

Γ;Ξ; ∆I \∆O −→0 G1 &G2

(&0v)

Γ; Ξ; ∆I \∆′ −→1 G1 Γ; (Ξ, ∆I −∆′);∆′ \∆O −→v G2

Γ; Ξ;∆I \∆O −→v G1 & G2

(&1v)

When the left conjunct does not encounter a> (in the&0v case), the goalG2 must consume all resources
that has been consumed inG1. That is,G2 must consume not onlyΞ (strict context) but also∆I −∆O, all
the resources in lax context thatG1 has consumed. The right conjunct has empty lax context sinceG2 may
not consume any resources thatG1 did not. When the left conjunct encounters a> (in the&1v case), the
goalG2 must consume all resourcesΞ, ∆I − ∆′ that has been consumed inG1, but the unconsumed part
of the lax context∆′ is transmitted to the lax context in the right conjunct. It is therefore possible for the

2.3. RESOURCE MANAGEMENT MODELS 13

goalG2 to consume any resources in∆′, since they are considered to have been also consumed in the left
conjunct by the> goal.

When the goal formula is atomic, a resource formulaR is selected from either the intuitionistic context
(BCint), lax context (BClax), or strict context (BCstrict). In either case, the resource formulaR and atomic
goalA are passed to theresiduationprocedureR À A \ G for producing a continuation subgoalG. Fig-
ure 2.8 shows the residuation rules2 for restrictive definition of resource formulas. It is noted that the symbol
“

.=” means the syntactic equality between atomic formulas.
Cervesato, Hodas, and Pfenning have proved thatRM3 is logically equivalent toL′. The techniques

used inRM3 have been already applied to resource management systems [27][35] for Miller’s Forum [41].

2.3.3 TheIOL Implementation Model

Besides theRM3 model, one significant effort has been made towards developing compiler systems. The
I/O model removes the most serious non-determinism from the treatment of⊗ by splitting the linear con-
texts lazily. However, its formulation requires the copying of large structures. This makes it more suited
to implementation via interpreters written in high-level languages. Lolli has been actually implemented
as interpreters in Prolog,λProlog, and standard ML. Let us consider again the rules for proving the goal
G1 &G2:

I {G1}O I {G2}O

I {G1 &G2}O
(&)

This rule means that the goalG1 andG2 must use the same set of resources. In a naive implementation,
the system first copies the input context and proves the two conjuncts separately, and then it compares their
output contexts. It is therefore impossible to change the contexts destructively during the proof search.

Tamuraet al. solved this problem usinglevel indicesto control the consumption of resources [30][49]
and proposed a refinement of theI/O model, called theIOL model. The main difference is that all re-
sources are kept in only one single context during the proof search, and the consumption of resources can be
easily achieved by changing their consumption level destructively.

The IOL model makes use of two level indicesL andU to manage the consumption of resources.
In particular, these indices are used to quickly enable and disable consumption of resources in the con-
text, and to keep track of when they have been consumed, respectively. The sequent is an expression of
the form`L,U I {G}O 3 whereI andO areIOL-contexts, andG is a goal formula.L, a positive inte-
ger, is thecurrent consumption level. At a given point in the proof, only linear resources labeled with that
consumption level (and intuitionistic resources labeled with0) can be used.U , a negative integer, is the
current consumption maker. When a linear resource is consumed, its consumption level is changed to the
value ofU . TheIOL-context is a list of pairs of the form〈R, `〉, whereR is a resource formula and̀is its
consumption level. Each formula in theIOL-context can be classified by the value of this field:

Linear unconsumedformulas have the form〈R, `〉, where` is the value ofL at which the resource may be
consumed.

Linear consumedformulas have the form〈R, u〉, whereu is the value ofU at the time when the resource
was consumed.

Intuitionistic formulas in the context always take the form〈R, 0〉.
Figure 2.9 presents the set of sequent rules of theIOLmodel. As withI/Omodel, theBCi rules handles

the selection of resource clauses for backchaining. The relationpickRL,U (I,M,R) selects an available
(linear unconsumed or intuitionistic) clauseR from the input contextI. The output contextM is the same

2The rules for full fragment of Lolli have been shown in Cervesato’s paper [13].
3In original paper [49], Tamura and Kaneda use the sequent of the fromΓ −→L,U I {G}O in which intuitionistic contextΓ is

separated out.

14 CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

`L,U I {1} I
(1)

subcontextU,L(O, I)

`L,U I {>}O
(>)

`L,U I {G1}M `L,U M {G2}O

`L,U I {G1 ⊗G2}O
(⊗)

`L,U−1 I {G1}M changeU−1,L+1(M, N) `L+1,U N {G2}O thinableL+1(O)

`L,U I {G1 & G2}O
(&)

`L,U I {Gi}O

`L,U I {G1 ⊕G2}O
(⊕i)

`L+1,U I {G}O

`L,U I {! G}O
(!)

`L,U [〈R, L〉 | I] {G} [〈R, U〉 |O]

`L,U I {R−◦G}O
(−◦) `L,U [〈R, 0〉 | I] {G} [〈R, 0〉 |O]

`L,U I {R⇒G}O
(⇒)

pickRL,U (I, O, A)

`L,U I {A}O
(BC1)

pickRL,U (I, M, G−◦A) `L,U M {G}O

`L,U I {A}O
(BC2)

Figure 2.9: TheIOL System for Propositional Fragment of Lolli

asI, except that the consumption level of the selected clause is changed to the value ofU if it is a linear
resource. In the> rule, the relationsubcontextU,L(O, I) consumes any linear unconsumed resources from its
input contextI. The output contextO is the same asI, except that the consumption levels of the consumed
resources inI are changed to the value ofU , if they are linear unconsumed resources.

`L,U−1 I {G1}M changeU−1,L+1(M, N) `L+1,U N {G2}O thinableL+1(O)

`L,U I {G1 & G2}O
(&)

The following two relations are used in the& rule. Each can be implemented destructively in one pass
through the context.

• Thechangè,`′(M, N) relation modifies the contextM so that any resources inM with level ` have
their level changed tò′ in the contextN .

• Thethinablè (O) relation checks whether none of resources inO have` as their consumption level.

Let us show the outline of the rule for provingG1 &G2:

1. `L,U−1 I {G1}M
DecrementsU so that we know which resources are consumed during the proof search ofG1, and then
it proves the goalG1.

2. changeU−1,L+1(M,N)
Changes the level of resources that have been consumed inG1 to L + 1.

3. `L+1,U N {G2}O
IncrementsL andU and proves the goalG2.

4. thinableL+1(O)
DecrementsL and checks whether none of resources inO haveL + 1 as their consumption level.

Tamuraet al. have proved thatIOL is logically equivalent toL′. The techniques used inIOL have
been already applied to a prototype compiler [49] for a significant subset of first-order Lolli. In the prototype
compiler, the singleIOL-context in which all resources are kept is implemented as an array structure, and
the speed access to resources is achieved using hash tables.

2.3. RESOURCE MANAGEMENT MODELS 15

2.3.4 TheLRM Implementation Model

TheRM3 model provides an efficient resource management for Lolli and related systems. However,RM3

is still more suited to implementation via interpreters in high-level languages rather than compilers, since it
requires copying and scanning large dynamic data structures to control the consumption of linear resources.
For example, most of rules needs complex operations on the linear context for moving formulas between
strict and lax context and taking intersection of two context.

On the other hand,IOL provides an enriched formulation that is suited to implementation via not only
interpreters but also compilers. However, aIOL-based prototype compiler does not treat the goal> com-
pletely sinceIOL still depends on thesubcontextU,L relation and have not removed non-determinism from
the treatment of>.

More recently, Hodaset al. solved these problems and have proposed new level-based resource manage-
ment system, called theLRM model [29]. This model is a refinement ofRM3 with IOL’s level indices.

TheLRM -sequent is an expression of the form̀vL,U I {G}O whereL andU are level indices,v is a
>-flag, I andO areLRM -contexts, andG is a goal formula. The main difference fromIOL is thatL is
also used to set adeadlineby which newly added resources must be used. TheLRM -context is a list of
triples of the form〈R, `, d〉 4, whereR is a resource formula,̀is its consumption level, andd is its deadline.
Each formula in theLRM -context can be classified by the values of these two fields:

Linear unconsumedformulas have the form〈R, `, d〉, where` is the value ofL at which the resource may
be consumed, andd is thesmallestvalue ofL at which the resource may exist without having been
consumed. This index can be seen as a kind of deadline, since if any resources exist withd = L when
it is time to decrement the level counter toL− 1, the solver will either backtrack (in the strict case) or
consume those resources immediately (in the lax case).

Linear consumedformulas have the form〈R, u, 0〉, whereu is the value ofU at the time when the resource
was consumed.

Intuitionistic formulas in the context always take the form〈R, 0, 0〉.
Figure 2.10 presents the set ofLRM sequent rules. Each of the rules can be used in an implementation

which destructively modifies the context, without copying (as long as some trailing mechanism exists to
reverse the destructive modifications when backtracking).

As same withIOL, thepickRL,U (I, O,R) relation inBCi rules selects an available (linear unconsumed
or intuitionistic) clause from the contextI matching the atomA. The output contextO is the same asI, but
with the selected clause marked as linear consumed if it was linear unconsumed (O is exactly the same asI
if it was intuitionistic).

The twoRM3 rules for& are split into four rules, differing in whether> is seen in the right conjunct.
The following three relations are used in the rule for&:

• consumed̀(O)
Let ` be an integer with0 < `. This is a relation on aLRM -context that is true if none of resources in
the contextO have` as their deadline.

•
change

`→`′
(I,O)

Let ` and`′ be integers. This is a relation between an input and outputLRM -context that modifies
the input contextI so that any resources inI with its level`, has the level changed tò′ in the output
O.

•
changepair
(`,d)→(`′,d′)

(I, O)
Let `, `′, d, andd′ be integers. This is a relation between an input and outputLRM -context that
modifies the input contextI so that any resources inI with its level`, and its deadlined, has the level
changed tò ′ and its deadline changed tod′ in the outputO.

4In original paper [29], Hodaset al. use the the fromRd
` instead.

16 CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

`0
L,U I {1} I

(1) `1
L,U I {>} I

(>)

`v1
L,U I {G1}M `v2

L,U M {G2}O

`v1orv2
L,U I {G1 ⊗G2}O

(⊗)

`0
L,U−1 I {G1}M

changepair
(U−1,0)→(L+1,L+1)

(M, M ′) `0
L+1,U M ′ {G2}O consumedL+1(O)

`0
L,U I {G1 & G2}O

(&00)

`0
L,U−1 I {G1}M

changepair
(U−1,0)→(L+1,L+1)

(M, M ′) `1
L+1,U M ′ {G2}O′

changepair
(L+1,L+1)→(U,0)

(O′, O)

`0
L,U I {G1 & G2}O

(&01)

`1
L,U−1 I {G1}M

changepair
(U−1,0)→(L+1,L+1)

(M, M ′) change
L→L+1

(M ′, M ′′)

`0
L+1,U M ′′ {G2}O′ consumedL+1(O

′)
change
L+1→L

(O′, O)

`0
L,U I {G1 & G2}O

(&10)

`1
L,U−1 I {G1}M

changepair
(U−1,0)→(L+1,L+1)

(M, M ′) change
L→L+1

(M ′, M ′′)

`1
L+1,U M ′′ {G2}O′′

changepair
(L+1,L+1)→(U,0)

(O′′, O′) change
L+1→L

(O′, O)

`1
L,U I {G1 & G2}O

(&11)

`v
L,U I {Gi}O

`v
L,U I {G1 ⊕G2}O

(⊕i)
`v

L+1,U−1 I {G}O

`0
L,U I {! G}O

(!)

`v
L,U [〈R, L, L〉 | I] {G} [〈R, U, 0〉 |O]

`v
L,U I {R−◦G}O

(−◦)
`1

L,U [〈R, L, L〉 | I] {G} [〈R, L, L〉 |O]

`1
L,U I {R−◦G}O

(−◦1)

`v
L,U [〈R, 0, 0〉 | I] {G} [〈R, 0, 0〉 |O]

`v
L,U I {R⇒G}O

(⇒)

pickRL,U (I, O, A)

`v
L,U I {A}O

(BC1)
pickRL,U (I, M, G−◦A) `v

L,U M {G}O

`v
L,U I {A}O

(BC2)

Figure 2.10: TheLRM System for Propositional Fragment of Lolli

The outline for proving the sequent`v
L,U I {G1 & G2}O is as follows:

1. `v1
L,U−1 I {G1}M

DecrementsU so that we can tell which linear resources are consumed during the proof search ofG1,
and those resources will have the new value ofU as the value of their consumption level. After that it
proves the goalG1. The>-flagv1 is set to1 if G1 encounters a>, otherwisev1 is set to0.

2.
changepair

(U−1,0)→(L+1,L+1)
(M,M ′)

Changes both the consumption level and deadline of all of the resources that have been consumed in
G1 to L + 1, to whichL will be set during the proof search ofG2. This is because those resources
(strict context ofRM3) can and must be consumed inG2.

3. If the value ofv1 is 1,
change
L→L+1

(M ′,M ′′)

Changes the consumption level of all unconsumed resources inG1 (identified by having a consumption
level with the same value asL) toL+1, so that resources (lax context ofRM3) that were not explicitly
consumed but are considered to have been also consumed by>, are also available forG2.

2.4. THE SYNTAX OF THE LOLLI LANGUAGE 17

4. `v2
L+1,U M ′′ {G2}O′′

IncrementsL andU and proves the goalG2. DecrementsL. The>-flagv2 is set to1 if G2 encounters
a>, otherwisev2 is set to0.

5. If the value ofv2 is 1,
changepair

(L+1,L+1)→(U,0)
(O′′, O′)

Changes the consumption level and deadline of resources that have been consumed inG1 but not in
G2 to U and0 respectively, since those resources are considered to have been also consumed by>.
Otherwise,consumedL+1(O′) checks whether none of resources haveL + 1 as their deadline, since
all the resources that have been consumed inG1 must be consumed inG2. If this fail, fail.

6. If the value ofv1 is 1,
change
L+1→L

(O′, O)

Put back the consumption level of those resources that were made available toG2 becauseG1 en-
counter a>, but were not consumed inG2, to their original level,L.

7. The>-flagv is set tov1 ∩ v2.

Hodaset al. have proved that theLRM model is logically equivalent toRM3. It is theLRM model
that we shall use to design an extension of standard WAM (Warren Abstract Machine) for the Lolli language
described in chapter 4 and 5.

2.4 The Syntax of the Lolli Language

As with λProlog, the full language of Lolli allows nested quantification and the use ofLλ higher-order
quantification and unification ofλ-term. In original Lolli syntax, terms and atoms are written in curried
form such as the functional programming language ML, since such notation is more suitable for higher-
order programming features.

Although these features are important aspects of Lolli, we use conventional Prolog syntax since our focus
is on efficient implementation of the first-order Lolli language. The syntax of Lolli operators that we use in
this dissertation is summarized in Table 2.1. The order of operator precedence is “forall ”, “ exists ”,
“ \ ”, “ :- ”, “ <=”, “ ; ”, “ &”, “ , ”, “ -<> ”, “ =>”, “ ! ” from wider to narrower. The main difference from
original Lolli syntax is that linear implication is written as-<> instead of-o , and bang operator is written
as! instead of{. . .}.

Lolli Syntax Linear Logic Operator
true 1

erase >
B, C B ⊗ C
B&C B & C
B; C B ⊕ C

B-<> C B−◦C
C:- B B−◦C
B=>C B⇒C
C<=B B⇒C

! B ! B
forall X\ B ∀x.B
exists X\ B ∃x.B

Table 2.1: The Mapping Between Linear Logic Operators and Lolli Syntax

Chapter 3

A Collection of Lolli Programming
Examples

We have presented the theoretical aspect of the Lolli language so far. In this chapter, we will give a brief
introduction to Lolli programming. We will also presents several example programs so that the reader easily
understand a sense ofresource programmingin Lolli. Compared with Prolog, the biggest difference of Lolli
is its resource consciousness. In Lolli, it is possible to add resources (limited-use clauses) to the program
and consume them dynamically.

Other useful applications of Lolli, such as a propositional theorem prover, a database query, and a natural
language parser are described in Hodas and Miller’s paper [26].

3.1 A Brief Introduction to Lolli Programming

3.1.1 Resource Addition

The linear implication-<> is used to add resources which can be consumed exactly once. A query adds a
resourcer(1) to the program and then executes a goalr(X) :

?- r(1) -<> r(X).

which succeeds by lettingX = 1. It is noted that added resources must be consumed during the execution
of the subgoal on the right-hand side of the implication. Thus, the following query fails sincer(1) is not
consumed.

?- r(1) -<> true.

If a resource clauseA:- G (orG-<> A) is added, the subgoalG will be executed just on the consumption
of A. Thus, the following query succeeds and displays1.

?- (r(X) :- write(X)) -<> r(1).

Informally, we allow a⊗-product of multiple resources to appear on the left-hand side of linear implica-
tion. The following query adds resourcesr(1) andr(2) and then executes a goalr(X), r(Y) :

?- (r(1), r(2)) -<> (r(X), r(Y)).

which also succeeds by lettingX = 1 andY = 2, or X = 2 andY = 1. It is noted that such a query should
be written with successive uses of the linear implication formally.

19

20 CHAPTER 3. A COLLECTION OF LOLLI PROGRAMMING EXAMPLES

?- r(1) -<> r(2) -<> (r(X), r(Y)).

The resourceR1&R2 means a selective resource. Whenr(1)&r(2) is added to the program, either
r(1) or r(2) can be consumed, but not both of them. The following query succeeds by lettingX = 1 or
X = 2.

?- (r(1) & r(2)) -<> r(X).

The intuitionistic implication=> is used to add infinitely reusable resources, which can be consumed
arbitrarily many times (including zero times). The following query succeeds by lettingX = 1 or X = 2.

?- r(1) => r(2) => (r(X), r(X)).

In Lolli, the two implication operators add resources to the program dynamically during the execution
time. However, they are not the same as the Prologassert mechanism. First, the addition is scoped over
the subgoal on the right-hand side of the implication, but anassert ed clause in Prolog remains until it is
retract ed. So, the following query will fail:

?- (r(1) => r(X)), r(Y).

Second, although Prolog’sassert automatically universalizes any free variables in an added clause, in
Lolli clauses added with implication can contain free variables, which may get bound when the clause is
consumed. For example, the following Prolog query will succeed, since the variableX is universalized.

?- assert(r(X)), r(1), r(2).

In contrast, the similar Lolli query:

?- r(X) => (r(1), r(2)).

will fail, since the execution ofr(1) causes the variableX to be instantiated to1. If we desire the other
behavior, we must quantify explicitly:

?- (forall X\ r(X)) => (r(1), r(2)).

3.1.2 Resource Consumption

In Lolli, the execution of atomic goals means resource consumption and program invocation. All possibilities
are attempted by backtracking. For example, the following query displays1 and2.

r(2).
?- r(1) => r(X), write(X), nl, fail.

The goalG1&G2 behaves as well asG1, G2, but the same resources must be consumed inG1 andG2.
The following query succeeds by lettingX = Y = 1 andZ = 2, or X = Y = 2 andZ = 1, becauser(X)
andr(Y) must consume the same resources.

?- (r(1), r(2)) -<> ((r(X) & r(Y)), r(Z)).

The goal! G is just likeG except that only infinite resources can be consumed during the execution of
G. The following query succeeds by lettingX = 1 andY = 2.

?- r(1) => r(2) -<> (!r(X), r(Y)).

The goalerase (or top) means the consumption of some consumable resources. In the following
queries:

?- (r(1), r(2)) -<> (r(X), erase).
?- (r(1), r(2)) -<> r(X).

the first one succeeds, but the second one fails.

3.2. USING FREE VARIABLES IN RESOURCES 21

reverse(Xs, Zs) :-
reverse(Xs, [], Zs).

reverse([], Zs, Zs).
reverse([X|Xs], Ys, Zs) :-

reverse(Xs, [X|Ys], Zs).

Figure 3.1: A Prolog Program for Reversing a List

reverse(Xs, Zs) :-
result(Zs) -<> rev(Xs, []).

rev([], Zs) :- result(Zs).
rev([X|Xs], Zs) :- rev(Xs, [X|Zs]).

Figure 3.2: A Lolli Program for Reversing a List

% choose(Xs, Y, Zs)
% Zs is a list of elements greater thanY in Xs.
choose(Xs, Y, Zs) :-

(forall X\ test(X) :- X >Y) => filter(Xs,Zs).
% filter(Xs, Zs)
% Zs is a list of elements satisfyingtest/1 in Xs.
filter([],[]).
filter([X|Xs],[X|Zs]) :- test(X),!,filter(Xs,Zs).
filter([_|Xs],Zs) :- filter(Xs,Zs).

Figure 3.3: A Lolli Program for Filtering a List

3.2 Using Free Variables in Resources

3.2.1 Reversing a List

Let us consider an example program for reversing a list. In Prolog, we need one extra argument (the second
argument) inreverse/3 to store a list that have been reversed during the execution time. In Lolli, we
do not need it since the resourceresult(Zs) is used to receive the result from the deepest recursive call
of rev/2 . The free variablesZs will get bound to the reversed list when the goalresult(Zs) is called
from rev/2 .

For example, the goalreverse([1,2,3],Zs) adds the resourceresult(Zs) and executes the
subgoalrev([1,2,3],[]) . On the third recursive call,rev([],[3,2,1]) consumesresult(Zs) ,
andZs is unified with[3,2,1] .

The same technique can be used to describe “accumulators”. A program calculating the summation of a
given list can be written as follows.

sum(List, Sum) :- result(Sum) -<> s(List, 0).
s([], S) :- result(S).
s([X|Xs], S0) :- S is X+S0, s(Xs, S).

3.2.2 Filtering a List

Figure 3.3 shows a simple example for filtering a list with a given condition. For example, when the goal
choose([1,2,3],2,Z) is executed, the reusable clause “forall X\ test(X) :- X>2 ” is added
to the program, and the subgoalfilter([1,2,3],Z) is executed. The added resource is used in the
second clause offilter/2 to check whether each element satisfies the condition or not.

It is noted that the addition is not the same as the Prologassert mechanism. This is because the free
variableY in the added clause is instantiated to2, and the added clausetest/1 is scoped over the subgoal
filter/2 .

22 CHAPTER 3. A COLLECTION OF LOLLI PROGRAMMING EXAMPLES

3.3 Using Resources as Limited-Use Data

3.3.1 N-Queens

queen(N, Q) :-
n(N) -<> result(Q) -<> place(N).

place(1) :-
n(N),
c(1) -<> u(2) -<> d(0) -<> solve(N, []).

place(I) :-
I > 1,
I1 is I-1,
U1 is 2*I, U2 is 2*I-1,
D1 is I-1, D2 is 1-I,
c(I) -<>
u(U1) -<> u(U2) -<>
d(D1) -<> d(D2) -<> place(I1).

solve(0, Q) :- result(Q), erase.
solve(I, Q) :-

I > 0, c(J),
U is I+J, u(U),
D is I-J, d(D),
I1 is I-1,
solve(I1, [J|Q]).

Figure 3.4: A Lolli Program for N-Queens

queens(N,Q) :-
gen(1,N,Js),
N2 is 2*N-1, gen(2,N2,Us),
D0 is 1-N, gen(D0,N2,Ds),
sol(N,Js,Us,Ds,Q).

sol(0,_,_,_,[]).
sol(I,Js0,Us0,Ds0,[J|Q]) :-

I > 0, del(J,Js0,Js),
U is I+J, del(U,Us0,Us),
D is I-J, del(D,Ds0,Ds),
I1 is I-1, sol(I1,Js,Us,Ds,Q).

del(X,[X|Xs],Xs).
del(X,[Y|Ys],[Y|Zs]) :- del(X,Ys,Zs).

gen(_,0,[]).
gen(I,N,[I|Ns]) :-

N>0, I1 is I+1, N1 is N-1,
gen(I1,N1,Ns).

Figure 3.5: A Prolog Program for N-Queens in
Prolog Programming for Artificial Intelligence
[11]

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

2

16

7

-7

I

J
U=I+J

D=I-J

Figure 3.6: Resources for 8-Queens

Let us consider the N-Queens problem in Figure 3.5. TheJs , Ds andUs in sol/5 are lists indicating
columns and diagonals (see Figure 3.6). Thus, the safety check of the place(i, j) on the board is done by
deletingj from Js , i − j from Ds, andi + j from Us. However, this program heavily rely on significant
manipulation and construction of list structures.

The same technique can be used in Lolli program in Figure 3.4. In Lolli, resources can be used to
represent columns (c/1), and diagonals (d/1 andu/1), rather than list structures. Thus, the safety check

3.3. USING RESOURCES AS LIMITED-USE DATA 23

knight5(Tour) :-
(k(1,1), k(1,2), k(1,3), k(1,4), k(1,5),

k(2,1), k(2,2), k(2,3), k(2,4), k(2,5),
k(3,1), k(3,2), k(3,3), k(3,4), k(3,5),
k(4,1), k(4,2), k(4,3), k(4,4), k(4,5),
k(5,1), k(5,2), k(5,3), k(5,4), k(5,5))
-<> tour(1, 1, Tour).

tour(I, J, [(I,J)|Tour]) :-
k(I, J),
next(I, J, I1, J1),
tour(I1, J1, Tour).

tour(I, J, [(I,J)]) :- k(I, J).

next(I, J, I1, J1) :- I1 is I-2, J1 is J-1.
next(I, J, I1, J1) :- I1 is I-2, J1 is J+1.
next(I, J, I1, J1) :- I1 is I-1, J1 is J-2.
next(I, J, I1, J1) :- I1 is I-1, J1 is J+2.
next(I, J, I1, J1) :- I1 is I+1, J1 is J-2.
next(I, J, I1, J1) :- I1 is I+1, J1 is J+2.
next(I, J, I1, J1) :- I1 is I+2, J1 is J-1.
next(I, J, I1, J1) :- I1 is I+2, J1 is J+1.

Figure 3.7: A Lolli Program for Knight Tour

of the place(i, j) on the board is done quickly by consuming the resourcesc(j) , u(i + j) , andd(i− j) .
For example, when the goalqueen(8,Q) is executed, the subgoalplace(8) adds the resources:

c(1) ,. . . ,c(8) , u(2) ,. . . ,u(16) , d(-7) ,. . . ,d(7) , and thensolve(8,[]) is called. Thesolve/2
predicate tries to find a solution by consumingc(j) , u(i + j) , andd(i− j) for each rowi = 1..8 and
columnj. It is noted that unused resources are consumed implicitly by theerase .

3.3.2 Knight Tour

Figure 3.7 shows a Lolli example for finding a Hamilton path on the5 × 5 chess board. In Hamilton path,
all vertices are visited exactly once. This constraint can be represented easily by using linear resources as
vertices.

The goalknight5(Tour) adds the resourcesk(1,1) ,. . . ,k(5,5) that indicate 25 vertices and then
executes subgoaltour(1, 1, Tour) . The subgoal tries to find a Hamilton path starting from the po-
sition (1, 1). Since visited vertices are consumed during the execution time, the goalknight5(Tour)
succeeds only when all vertices are visited exactly once.

3.3.3 Kirkman’s School Girl Problem

In 1850, Kirkman posed the following problem, which relates to a BIBD (Balanced Incomplete Block De-
sign) problem in mathematics.

How 15 school girls can walk in 5 rows of 3 each for 7 days so that no girl walks with any other
girls in the same triplet more than once.

The Lolli program in Figure 3.8 behaves as follows.

24 CHAPTER 3. A COLLECTION OF LOLLI PROGRAMMING EXAMPLES

kirkman(Groups) :-
(cont :- arrange(35, Groups)) -<> gen_res(15).

gen_res(0) :- cont.
gen_res(N) :-

N > 0,
(g(N),g(N),g(N),g(N),g(N),g(N),g(N)) -<> gen_res(1, N).

gen_res(N, N) :-
N1 is N-1,
gen_res(N1).

gen_res(I, N) :-
I < N,
I1 is I+1,
meet(I, N) -<> gen_res(I1, N).

arrange(0, []).
arrange(I, [[G1,G2,G3]|Groups]) :-

I > 0,
g(G1), g(G2), g(G3), % select 3 girls
% check if they have not yet met each other
meet(G1, G2), meet(G1, G3), meet(G2, G3),
I1 is I-1,
arrange(I1, Groups).

Figure 3.8: A Lolli Program for Kirkman’s School Girl Problem

1. Thegen_res creates resources of seveng(i)’s for eachi = 1..15 and meet (i, j) for eachi =
1..14, j = (i + 1)..15. Seveng(i)’s correspond to seven attendances ofi-th girl. Each of resources
meet (i, j) corresponds to the pair of girls.

2. Then, thegen_res calls a goalcont , which calls the goalarrange(35, Groups) because
cont is a rule-type resource.

3. Thearrange finds 35 groups, so that each group consists of three girls, each girl appears in seven
groups, and any pair of girls is included in exactly one group.

3.3.4 Cryptarithmetic Puzzle

Figure 3.9 shows a Lolli program to solve a cryptarithmetic puzzle: “SEND+MORE=MONEY”. Each digit
i is represented as a linear resourced(i) . The goalerase is used to express the condition a digit can be
used at most once since it consumes unused resources implicitly.

3.4 Using Resources as Limited-Use Clauses

3.4.1 Path Finding

Figure 3.10 shows a Lolli example for finding a path through a directed graph. Since the arcs are added as
rule-type linear resources, the conditions can be elegantly expressed.

• Each arc can be used at most once.

3.4. USING RESOURCES AS LIMITED-USE CLAUSES 25

crypt([S,E,N,D]+[M,O,R,E]=[M,O,N,E,Y]) :-
(d(0), d(1), d(2), d(3), d(4),

d(5), d(6), d(7), d(8), d(9)) -<>
(add(0, D, E, Y, C1),

add(C1, N, R, E, C2),
add(C2, E, O, N, C3),
add(C3, S, M, O, C4),
add(C4, 0, 0, M, 0),
S \== 0,
M \== 0,
erase).

add(C0, X, Y, Z, C1) :-
digit(X), digit(Y), digit(Z),
Sum is C0+X+Y,
Z is Sum mod 10,
C1 is Sum//10.

digit(X) :- var(X), d(X).
digit(X) :- nonvar(X).

Figure 3.9: A Lolli Program for Cryptarithmetic Puzzle

path :-
(a -<> b) -<> % add the arc froma to b
(b -<> c) -<> % add the arc fromb to c
(c -<> a) -<> % add the arc fromc to a
(c -<> d) -<> % add the arc fromc to d
(d -<> b) -<> % add the arc fromd to b

a -<> (d, erase). % find a path from a to d

Figure 3.10: A Lolli Program for Path Finding

• A path is the transitive closure of the arc connected relation.

3.4.2 Tiling Board with Dominoes

Dominoes are puzzle pieces. Each piece consists of two equal squares. There are exactly two possible
shapes. The goal of the puzzle is to place the dominoes so that they fit into the board of given dimension. Let
the board size be(m,n). A Lolli program in Figure 3.11 can elegantly expressed the following conditions:

• All m× n units of the board can be used exactly once.
This can be represented easily by mapping each unit to a resourceb(, ,) .

• All m×n
2 dominoes can be used and placed anywhere on the board.

This condition can be expressed by mapping each domino to a&-product of rule-type resources which
havedomino() as their head parts. Placing a domino at(i, j) is done by consumingb(i, j,) and
b(i, j + 1,) (or b(i, j,) andb(i + 1, j,)) in body parts.

26 CHAPTER 3. A COLLECTION OF LOLLI PROGRAMMING EXAMPLES

%Solver
solve_domino(M, N) :-

D is M*N/2,
row(M) => column(N) => num_of_dominos(D) =>
%(cont :- place_domino(D) & write_board(1,1)) -<> gen_res(M, N),
(cont :- place_domino(D)) -<> gen_res(M, N), fail.

solve_domino(_, _).

place_domino(0).
place_domino(N) :- N > 0, !, domino(N), N1 is N-1, place_domino(N1).

%Create Resources
gen_res(0) :- cont.
gen_res(N) :- N > 0, !,

(
(domino(N) :- d(I, J, N), J1 is J+1, d(I, J1, N))

&
(domino(N) :- d(I, J, N), I1 is I+1, d(I1, J, N))

)
-<> (N1 is N-1, gen_res(N1)).

gen_res(I, J) :- I < 1, !, num_of_dominos(D), gen_res(D).
gen_res(I, J) :- J < 1, !, I1 is I-1, column(N), gen_res(I1, N).
gen_res(I, J) :- J1 is J-1, d(I, J, _) -<> gen_res(I, J1).

Figure 3.11: A Lolli Program for Tiling Board with Dominoes

3.5 A Lean Connection Theorem Prover for First-Order Classical
Logic

We have discussed simple examples of Lolli so far. Now we have shown a more sophisticated application of
Lolli.

Recently Hodas and Tamura have reimplemented theleanCoP connection-calculus theorem prover of
Otten and Bibel [46] in Lolli. This “lean” theorem prover has been shown to have remarkably good perfor-
mance relative to state-of-the-art systems, particularly considering that it is implemented in just a half-page
of Prolog code in Figure 3.12.

The reimplemented prover,lolliCoP [28], is of comparable size, and, when compiled under LLP (the
reference Lolli compiler), provides a speedup of 40% overleanCoP. Figure 3.13 shows the source code of
lolliCoP. Performance evaluation oflolliCoP is shown in chapter 5.

Here, we point out only the biggest differences between two implementations, and omit their whole
behavior in detail. InleanCoP, the technique used to select literals from clauses and clauses from matrices
relies on significant manipulation and construction of list structures on the heap. However, inlolliCoP, that
technique can be replaced by the efficient resource management base onLRM at the formula level in Lolli.

3.5. A LEAN CONNECTION THEOREM PROVER FOR FIRST-ORDER CLASSICAL LOGIC 27

prove(Mat) :- prove(Mat,1).

prove(Mat,PathLim) :-
append(MatA,[Cla|MatB],Mat), \+member(-_,Cla),
append(MatA,MatB,Mat1), prove([!],[[-!|Cla]|Mat1],[],PathLim).

prove(Mat,PathLim) :-
\+ground(Mat), PathLim1 is PathLim+1, prove(Mat,PathLim1).

prove([],_,_,_).
prove([Lit|Cla],Mat,Path,PathLim) :-

(-NegLit=Lit; -Lit=NegLit) ->
(member_oc(NegLit,Path) ;

append(MatA,[Cla1|MatB],Mat), copy_term(Cla1,Cla2),
append_oc(ClaA,[NegLit|ClaB],Cla2), append(ClaA,ClaB,Cla3),
(Cla1==Cla2 -> append(MatB,MatA,Mat1)

; length(Path,K), K<PathLim,
append(MatB,[Cla1|MatA],Mat1)

), prove(Cla3,Mat1,[Lit|Path],PathLim)
), prove(Cla,Mat,Path,PathLim).

Figure 3.12: TheleanCoP Theorem Prover of Otten and Bibel

prove(Mat) :- reverse(Mat,Mat1),
(ground(Mat) -> propositional => pr(Mat1)

; pr(Mat1)
).

pr([]) :- p(1).
pr([Cla|Mat]) :- (ground(Cla) -> (cl(Cla) -<> pr(Mat))

; (cl(Cla) => pr(Mat))
).

p(PathLim) :- cl(Cla), \+member(-_,Cla),
copy_term(Cla,Cla1), prove(Cla1,PathLim).

p(PathLim) :- \+propositional,
PathLim1 is PathLim+1, p(PathLim1).

prove([],_) :- erase.
prove([Lit|Cla],PathLim) :-

(-NegLit=Lit; -Lit=NegLit) ->
(path(NegLit), erase ;

cl(Cla1), copy_term(Cla1,Cla2), append(ClaA,[NegLit|ClaB],Cla2),
append(ClaA,ClaB,Cla3), (Cla1==Cla2 -> true ; PathLim>0),
PathLim1 is PathLim-1, path(Lit) => prove(Cla3,PathLim1)

) & prove(Cla,PathLim).

Figure 3.13: ThelolliCoP Theorem Prover of Hodas and Tamura

Chapter 4

Towards a Efficient Implementation for
a Linear Logic Programming Language

In recent years, a number of logic programming languages based on linear logic have been proposed: LO [3],
LinLog [2], Lolli [25, 26], ACL [32, 33], Lygon [20, 21], Forum [27, 41], and Linear LF [14]. In addition,
BinProlog [51, 52] allows the use of linear implications of affine logic (a variant of linear logic). In these
languages, it is possible to add and consume resources (limited-use clauses) dynamically as logical formulas.
The efficient treatment of resources is therefore an important issue for the implementor.

In this chapter we discuss some basic issues on implementation of the Lolli language, especialy compil-
ing resources.

4.1 Implementation Design

There seem to be at least three approaches to implement efficient Lolli systems:

1. Lolli interpreter in high-level languages,
2. Translating Lolli into existing languages: Prolog,λProlog, C, C++, Java, and others,
3. Compiling Lolli into WAM-like abstract machine code.

The approach (1) is the simplest. So far Lolli has been implemented as interpreters in Prolog,λProlog,
and standard ML. Figure 4.1 shows aI/O model-based Lolli interpreter written in pure Prolog. However,
resources are represented as list structures, and their management heavily relies on significant manipulation
and construction of list structures. This leads to slowdown in performance for large-scaled applications.

For the approach (2), let us consider translating Lolli into similar languages, Prolog andλProlog. This
approach might provide better performances, but meet some problems in resource management. In Prolog,
resources might be still represented as list structures. Even if we use theassert mechanism for han-
dling resources, there are two difficulties. First, the addition of resources is scoped over the subgoal on
the right-hand side of the implication, but anassert ed clause remains until it isretract ed. Second,
the added resources can contain free variables that may get bound when the clause is consumed, but the
assert automatically universalizes any free variables of added clauses. UsingλProlog instead might solve
these problems since it allows the use of intuitionistic implication (⇒ in Lolli) in goals. However,λProlog
have not supported linear implication. To handle the consumption of linear resources, we need to add an
extra argument to all resources for checking if they are linear or intuitionistic. This leads to unnecessary
backtracking.

29

30CHAPTER 4. TOWARDS A EFFICIENT IMPLEMENTATION FOR A LINEAR LOGIC PROGRAMMING LANGUAGE

:- op(1060, xfy, (&)).
:- op(950, xfy, (-<>)).
:- op(950, xfy, (=>)).
:- op(900, fy, (!)).

prove(G) :- I = [], O = [], prove(G, I, O).

prove(true, I, I) :- !.
prove(erase, I, O) :- !, subcontext(O, I).
prove((G1,G2), I, O) :- !, prove(G1, I, M), prove(G2, M, O).
prove((G1&G2), I, O) :- !, prove(G1, I, O), prove(G2, I, O).
prove((G1;G2), I, O) :- !, (prove(G1, I, O) ; prove(G2, I, O)).
prove(!G, I, I) :- !, prove(G, I, I).
prove((R -<> G), I, O) :- !, prove(G, [R|I], [1|O]).
prove((R => G), I, O) :- !, prove(G, [!R|I], [!R|O]).
prove(A, I, O) :- pick(I, O, A). % A is an atomic formula
prove(A, I, O) :- pick(I, M, (G -<> A)), % A is an atomic formula

prove(G, M, O).

subcontext([], []).
subcontext([1|O], [R|I]) :- \+ (R = !(_)), subcontext(O, I).
subcontext([R|O], [R|I]) :- subcontext(O, I).

pick(I, I, S) :- rule(S).
pick([R|I], [1|I], S) :- \+ (R = !(_)), pick_S(R, S).
pick([!R|I], [!R|I], S) :- pick_S(R, S).
pick([R|I], [R|O], S) :- pick(I, O, S).

pick_S((R1&R2), S) :- !, (pick_S(R1, S) ; pick_S(R2, S)).
pick_S(S, S).

rule(append([], Zs, Zs)).
rule((append(Xs, Ys, Zs) -<> append([X|Xs], Ys, [X|Zs]))).

Figure 4.1: AI/O Model-Based Lolli Interpreter in Prolog

For the approach (2), let us consider translating Lolli into C and Java. First, using C might have the
advantage of giving nice speedup in performance, avoiding the overhead of emulators, and producing stand-
alone executable code. For Prolog, Philippe Codognet and Daniel Diaz have developed theWAMCCsystem
[16], that translates Prolog into C via the WAM. Second, using Java might have the advantages of portability,
extensibility, and interactivity with Java. For Prolog, Bart Demoen and Paul Tarau have developed the
jProlog system [18], that translates Prolog into Java via the WAM. Note that, both of them is based on the
WAM (or its variant). It is therefore very important to design an abstract machine for Lolli.

The approach (3), compiling Lolli into WAM-like abstract machine code, might give nice speedup in
performance and became the basis of the approach (2). Recently, N. Tamura and Y. Kaneda proposed the
LLPAM [49], an extension of the standard WAM [1, 56] for significant subset of Lolli. However LLPAM was
logically incomplete in the treatment of> since it was based on theIOL model. More recently, Hodaset
al. solved this problem and proposed a refinement [29] based on theLRMmodel. However, the refinement
supported only a small fragment of resources:A andR1 & R2. Furthermore they were stored as terms in
heap memory, rather than compiled into LLPAM code.

4.2. COMPILING RESOURCE FORMULAS 31

CLO Address of the compiled LLPAM code

n (the number of free variables)

S

P

reference to first free variable

reference to n-th free variable

Compiled

LLPAM

code

Figure 4.2: Closure Structure

4.2 Compiling Resource Formulas

The compilation of resources without free variables is straightforward. They can be compiled just as usual
Prolog clauses because they don’t require a set of bindings of free variable. For example, the resource
formula∀X.∀Y.(q(X, Y)−◦ p(f(X), Y)) can be compiled just like Prolog clausep(f(X), Y):- q(X,Y):

get_structure f/1, A1
unify_variable A1
execute q/2

We now discuss compiling resources which contain free variables. For example, let us consider the
resource∀Y.(q(X,Y)−◦ p(f(X), Y)), whereX is a free variable. This resource can not be compiled like a
usual Prolog clause since we should know the value ofX at run-time for the consumption of the resources.
To solve this problem, we introduce a new data structure calledclosure. The closure structure consists of
a reference of compiled code and a set of bindings for free variables (see Figure 4.2). The new instruction
put_closure is used to create a closure structure:

put_closure L, 1, A5
unify_value A4

This code creates new closure cell tagged byCLOin A5, sets the labelL of compiled code for the resource
∀Y.(q(X,Y)−◦ p(f(X), Y)), and sets the mode to write. Theunify_value sets the free variableX.

When the closure is called, the WAM registerS is set to point to the third cell of the closure structure,
the mode is set to read, and the instruction pointerP is set to the address of the compiled code. To retrieve
the values of free variables, the compiled coded will begin withunify_variable instructions.

The code generated for the resource∀Y.(q(X, Y)−◦ p(f(X), Y)) is as follows:

L: unify_variable A3
get_structure f/1, A1
unify_value A3
put_value A3, A1
execute q/2

The idea of closure has been widely used in implementation of functional programming languages. In
λProlog [42, 43, 45], G. Nadathuret al. have used it for compiling a clauseD in the goalD ⊃ G where the
⊃ operator corresponds to⇒ in Lolli.

32CHAPTER 4. TOWARDS A EFFICIENT IMPLEMENTATION FOR A LINEAR LOGIC PROGRAMMING LANGUAGE

4.3 LLP: A Compiled Linear Logic Programming Language

4.3.1 The Definition of LLP

The LLP language is based on the following fragment of linear logic:

C ::= ∀x.A | ∀x.(G−◦A)
R ::= A | R1 & R2 | G−◦R | G⇒R | ∀x.R

G ::= 1 | > | A | G1 ⊗G2 | G1 & G2 | G1 ⊕G2 | R−◦G | R⇒G | ! G

The lettersC, G andR stand for “clause”, “goal” and “resource” respectively. Compared with the fragment
used in the original LLPAM papers,G−◦R, G⇒R, and∀x.R are newly added to resource formulas. LLP
supports the full fragment of first-order Lolli except of universal quantifiers in goal (∀x.G). It is beyond the
scope of this dissertation to deal with higher-order quantification and unification ofλ-terms in Lolli. In spite
of these limitations, LLP is expressive enough to cover the example programs in chapter 3.

4.3.2 Pre-Compilation of LLP

It is very convenient for the implementors to view a resource formula∀x.(G1⇒(G2−◦A)) as a resource
formula∀x.((! G1 ⊗G2)−◦A) whose head is an atomic formula such as Prolog clause.

G⇒R ≡ ! G−◦R

G1−◦(G2−◦R) ≡ (G1 ⊗G2)−◦R

G−◦(R1 & R2) ≡ (G−◦R1)&(G−◦R2)
G−◦(∀x.R) ≡ ∀x.(G−◦R) (wherex is not free inG)

∀x.(R1 & R2) ≡ (∀x.R1)&(∀x.R2)

By rewriting formulas using above logical equivalences in the forward direction, it is possible to simplify
the definition of resource formulas:

R ::= S1 & · · ·& Sm

S ::= > | A | G−◦A | ∀x.S

whereA stands for a atomic formula andm ≥ 1. S-formulas are calledresource clausesin which the form
∀x.(G−◦A) corresponds toA:- G in Prolog. Since the above translation is done during the compilation
time, we can write LLP programs in the original definition.

Chapter 5

The LLPAM Abstract Machine

LLP is implemented as a compiler to the LLP Abstract Machine (LLPAM), an extension of the Warren
Abstract Machine (WAM) [1][56]. The extension is mainly for compiling resources and efficient resource
management based on theLRM model.

In this chapter, we present the detail of LLPAM, particularly the differences from the WAM. Further-
more, we summarize the LLPAM instruction set and memory layout in Appendix A.

5.1 New Registers

LLPAM has four new registers:R, L, U, andT in addition to the standard WAM registers:P (program
pointer), CP (continuation program pointer),S (structure pointer),H (top of heap),HB (heap backtrack
pointer),E (last environment),B (last choice point),B0 (cut pointer), andTR (top of trail).

• R (top of resource table)
is a non-negative integer index indicating the current top of resource table, a new data area which is
described below. The value ofR increases as resource clauses are added to the table by implicational
goals, and decreases on backtracking. Its initial value is 0.

• L (consumption level)
is a positive integer indicating the current consumption level, which are assigned to resources when
they are added to the table. This corresponds to the current value ofL as used inLRM. Its initial
value is 1.

• U (consumption maker)
is a negative integer indicating the current consumption maker, which are assigned to resources as they
are consumed. This corresponds to the current value ofU as used inLRM. Its initial value is−1.

• T (> flag)
is a boolean flag indicating whether> has been seen as a subgoal at the current level. Its initial value
is false.

The values of these registers must be recorded in each choice point frame regardless of whether LLP
programs make use of the resource management features or not.

Besides of these registers, LLPAM makes use of four auxiliary registers:R0, R1, R2, andRLIST . Every
time when the resource of the formS1 & · · ·& Sn (&-product of resource) is added by linear implication−◦,
R0 is set to the index value of first resource clause (S1). Every time acall procedure is invoked,R1 and
R2 are set to the lists that contain the indices of possibly consumable resources in the resource table.RLIST
is always set to the list that contains the indices of linear resources, not intuitionistic resources.

33

34 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

5.2 New Data Areas

LLPAM has three new data areas:RES(the resource table),HASH(the hash table), andSYMBOL(the symbol
table) in addition toCODE, HEAP, STACK, TRAIL , andPDL in the WAM.

5.2.1 The Resource Table

The resource tableRESis an array of records with the following structure:

record
s1: Integer;
s2: Integer;
level: Integer;
deadline: Integer;
out_of_scope: Boolean;
pred: symbol;
closure: closure;
head: term;
body: term;

end;

RESgrows when resources are added by−◦ or⇒, and shrinks on backtracking. A entry inRESrepre-
sents either a linear resource or intuitionistic resource, depending on which implication was used to add it.
Each entry corresponds to a single resource clause.

The fields of the record are assigned as follows:

• When the resource of the formS1 & · · ·&Sn (&-product of resource clauses) is added by linear im-
plication−◦, newn entries are created because the individualSi are added individually. Nevertheless,
we must remember that only one of them may be consumed. The fields1 of their entries is set to the
index value of the first resource clauseS1 (the value ofR0). The fields2 is set to the current top of
the resource table (the value ofR). These fields are used to maintain the exclusivity of&-producted
resource. If one resource clauseSi is consumed, alln entries are so marked and become unavailable.
It is noted that when added by⇒ we need not to set these fields since intuitionistic resource can be
used infinitely.

• The fieldslevel anddeadline correspond to thel andd values attached to resources inLRM.
They give the level at or below which the resource may be used, and the level by which the resource
must be used. For linear resources the initial values of both fields are taken from the value of theL
register at the time the entry is added. For intuitionistic resources, the two fields are set to 0.

• Theout of scope flag is initially false. It is set to true when the subgoal (on the right side of the
implication that added this resource) is completed, and the resource becomes out of scope. This flag
is used because the resource table shrinks only on backtracking.

• The fieldpred is set to the predicate symbol of head of added resource clause. The fieldclosure
contains a pointer to the closure structure of added resource. It is noted that the fieldshead andbody
are used to contain the head and body term respectively only when the resource clause are added as
term level from an interpreter.

Figure 5.1 shows the contents of the resource table after adding the resource(p(1) &(q(X)−◦ p(X))) ⊗
∀Y.r(Y) by the implication−◦.

5.3. LLPAM CODE GENERATION 35

s1 s2 level deadline outof scope pred closure head body
RES[0] 0 2 1 1 false p/1 closure ofp(1) nil nil
RES[1] 0 2 1 1 false p/1 closure ofq(X)−◦ p(X) nil nil
RES[2] 2 3 1 1 false r/1 closure of∀Y.r(Y) nil nil

Figure 5.1: Resource Table After Adding the Linear Resource(p(1)&(q(X)−◦ p(X)))⊗ ∀Y.r(Y).

print name arity codeaddr res res2
SYMBOL[p/1] p 1 code of predicatep/1 [0,1] [1]
SYMBOL[r/1] r 1 code of predicater/1 [2] [2]

Figure 5.2: Symbol Table After Adding the Resource(p(1)&(q(X)−◦ p(X)))⊗ ∀Y.r(Y)

5.2.2 The Hash and Symbol Tables

The LLPAM has also a symbol tableSYMBOLwith the following structure:

record
print_name: Char;
arity: Integer;
hash_value: Integer;
codeaddr: code address;
res: term;
res2: term;

end;

The fieldres contains a list of indices of all resources that its predicate symbol isprint name/arity .
The fieldres2 contains a list of indices of resources that its predicate symbol isprint name/arity and
its first argument is an unbound logical variable.

The hash tableHASHis used to speed access to the resources. The entries are hashed on the predicate
symbol and the first argument. Looking-up a resource is done through the hash table and the symbol table.
We can’t always rely on the hash table for access to the resources. When the atomic goal withp/n has
a logical variable as its first argument, we must access all entries forp/n, regardless of first argument.
In this case, we will use the value ofSymbol[p/n].res . Similarly, since those resources in which
the first argument is a logical variable must be examined for every call onp/n, we will use the value of
Symbol[p/n].res2 . Figure 5.2 shows a contents ofSYMBOLcorresponding to the Figure 5.1.

5.3 LLPAM Code Generation

The code generated for each operator in a goal represents an imperative implementation of theLRM rule
for the operator.

5.3.1 Code forG1 ⊗G2

The code generated forG1 ⊗G2 is simply as follows:

Code for G1

Code for G2

36 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

5.3.2 Code forR−◦G

An implicational goalR−◦G requires adding the linear resourceR to the resource table and then executing
the goalG. Further, the resourceR must be used during the proof ofG. It is noted thatR has been already
converted into a resource clause (or&-product of resource clauses) during the compilation time.

Suppose thatR is converted to&-product of resource clausesS1 & · · ·&Sm, the code generated for
R−◦G is as follows:

begin_imp Yi

Code for the addition ofS1
...

Code for the addition ofSm

mid_imp Yj , Yk

Code for G
end_imp Yi, Yj , Yk

The following new instructions are used in the code generated for the goalR−◦G. The code generation
of resource addition will be described in section 5.3.4.

• begin imp Yi

Store the current value ofR in a new permanent variableYi. Save the current value ofR in R0.

• mid imp Yj , Yk

Store the current values ofR (the top of the resource table) andT (>-flag) to the permanent variables
Yj andYk, respectively. Set the value ofT to false. It is noted that the newly added resource clauses lie
in positionsYi throughYj − 1. Set thes1 ands2 fields of all records fromYi to Yj − 1 to the current
values ofR0 andR, respectively.

• end imp Yi, Yj , Yk

If there are any resources in positions fromYi to Yj − 1 that have not been consumed, fail. Otherwise,
set theout of scope flags of all records fromYi to Yj − 1 to true (trailing so that they may be reset
on backtracking), and set the registerT to Yk ∨ T. In order to account for the use of> at the top level
of the subgoal, the check for unconsumed resources is made as follows:

– If T is false, thelevel anddeadline of each resource should beU and 0 respectively. Oth-
erwise, the resource is unconsumed.

– If T is true, thelevel anddeadline of each resource should be eitherU and 0, orL andL
respectively. Otherwise, the resource is unconsumed.

5.3.3 Code forR⇒G

An implicational goalR⇒G requires adding the intuitionistic resourceR to the resource table and then
executing the goalG.

Suppose thatR is converted to&-product of resource clausesS1 & · · ·& Sm, the code generated for
R⇒G is as follows:

begin_exp_imp Yi

Code for the addition ofS1
...

Code for the addition ofSm

mid_exp_imp Yj , Yk

Code for G
end_exp_imp Yi, Yj , Yk

5.3. LLPAM CODE GENERATION 37

The following new instructions are used in the code generated for an implication of the formR⇒G. If
the goal used⇒ rather than−◦, then the behavior of generated code would be the almost same. Thus, we
point out the only differences fromR−◦G. The code generation of resource addition will be described in
section 5.3.4.

• begin exp imp Yi

Behaves the same asbegin imp except thatR0 need not to be set.

• mid exp imp Yj , Yk

Behaves the same asmid exp imp except that thes1 ands2 fields of all records fromYi to Yj − 1
need not be set.

• end exp imp Yi, Yj , Yk

Behaves the same asend imp except that the added resource entries need not be examined. Only set
theout of scope flags of all records fromYi to Yj − 1 to true (trailing so that they may be reset on
backtracking), and set registerT to Yk ∨ T.

5.3.4 Code for Resource Addition

Let us consider the addition of a resource clause∀x.(G−◦A), which contains free variablesX1, . . . , Xm,
in which A is an atom with predicate symbolp/n. As mentioned in the previous chapter, this clause is
compiled into the following code:

L: unify_variable An+1

unify_variable An+2

...
unify_variable An+m

Code for the headA
Code for the bodyG

This code will be executed after the WAM registerS is set to the top of the references to free variables,
and the mode is set toread . Thus, each “unify variable An+i” instruction retrieves the value of free
variableXi.

The code generated for adding the clause by−◦ is as follows (If the clause is added by⇒ rather than−◦,
theadd res instruction is replaced byadd exp res):

put_structure p/n, Ai

Code for the 1st argument
...

Code for then-th argument
put_closure L, m, Aj

Code for the free variableX1
...

Code for the free variableXm

add_res Ai, Aj

The following new instructions are used in the code generated for resource addition:

• put closure L, m, Ai

38 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

Create a closure structure on the heap. Set reg-
isterAi to a newCLOcell pointing to the cur-
rent top of the heap. PushL (code address) and
m (the number of free variables) on the heap.
Set mode towrite . Theunify_value (or
unify_variable) instruction that follows
this instruction, pushes them references to
free variables on the heap.

Ai := 〈CLO, H〉;
HEAP[H] := L;
H := H + 1;
HEAP[H] := m;
H := H + 1;
mode := write;
P := P + instruction size(P);

• add res Ai, Aj

Used when the implication operator is−◦.
Add a record for a (linear) resource clause of
the form∀x.A or ∀x.(G−◦A) as a new en-
try at the top of the resource table,RES. The
value ofL is stored in thelevel field and the
deadline field, theout of scope flag is
set to false.Ai andAj are pointers to structures
previously built on heap holding the head and
closure of the clause respectively.

RES[R].level := L;
RES[R].deadline := L;
RES[R].out_of_scope := false;
RES[R].head := Ai;
RES[R].body := undef ;
RES[R].closure := Aj ;
RES[R].pred := register resource(Ai);
R := R + 1;
P := P + instruction size(P);

• add exp res Ai, Aj

Used when the implication operator is⇒. Add
a record for an (intuitionistic) resource clause
of the form∀x.A or ∀x.(G−◦A) as a new en-
try at the top of the resource table,RES. Be-
haves the same asadd res , except that the
level anddeadline fields are set to zero.

RES[R].level := 0;
RES[R].deadline := 0;
RES[R].out_of_scope := false;
RES[R].head := Ai;
RES[R].body := undef ;
RES[R].closure := Aj ;
RES[R].pred := register resource(Ai);
R := R + 1;
P := P + instruction size(P);

In theadd res andadd exp res instructions, theregister resource(Ai) function registers the value of
R (the index of added clause) to the hash and symbol tables for speed access to the resources inRES. The
return value, the index of the predicate symbol ofAi in the symbol table, is set to thepred field. The head
structureAi is used to calculate the hash value of added clause, since the entries are hashed on the predicate
symbol and the first argument in current implementation.

Figure 5.3 shows the code generated for the goal((p(1)&(q(X)−◦ p(X)))⊗∀Y.r(Y))−◦G, where the
free variableX is stored inA1.

5.3.5 Code forG1 & G2

The goalG1 & G2 requires careful coordination of the consumption of resources between the two conjuncts.
The code generated for a conjunction of the formG1 &G2 is, structurally, quite simple:

begin_with Yi

Code for G1

mid_with Yj

Code for G2

end_with Yi, Yj

5.3. LLPAM CODE GENERATION 39

begin_imp Y3
put_ground p(1), A2
put_closure L1, 0, A3
add_res A2, A3
put_structure p/1, A4
unify_local_value A1
put_closure L2, 1, A5
unify_local_value A1
add_res A4, A5
mid_imp Y2, Y1
begin_imp Y6
put_structure r/1, A6
unify_void 1
put_closure L3, 0, A7
add_res A6, A7
mid_imp Y5, Y4
Code for G
end_imp Y6, Y5, Y4
end_imp Y3, Y2, Y1

% code for p(1)
L1: get_integer 1, A1

proceed

% code for q(X)−◦p(X)
L2: unify_variable A2

get_value A2, A1
execute q/1

% code for ∀Y.r(Y)
L3: proceed

Figure 5.3: Code Generated for the Goal((p(1) &(q(X)−◦ p(X)))⊗ ∀Y.r(Y))−◦G.

However, in order to faithfully reproduce the behavior described in theLRM for the& operator, the three
new LLPAM instructions are, individually, more complex than those seen so far.

• begin with Yi

DecrementU so that we can tell which resources are consumed inG1. Those resources will have the
new value ofU as the value of theirlevel field. Store the current value of theT register in a new
permanent variableYi and set theT register to false.

• mid with Yj

Perform
changepair

(U,0)→(L+1,L+1) . This marks all of the resources that were used in the left conjunct (identi-
fied by having alevel with the same value as registerUand adeadline of 0) so that they can, and
must, be used in the right conjunct (by setting both those fields toL+1, to whichL will be set during

the execution of the right conjunct). If the value ofT is true, then perform
change
L→L+1 so that resources

that were available but not explicitly used, but which> can be thought of as having used, are also
available for use in the right conjunct. IncrementL andU. Store the current value of theT register to
a new permanent variableYj . Set theT register to false.

• end with Yi, Yj

Decrement registerL. If the value of registerT is true, then perform
changepair

(L+1,L+1)→(U,0) (> was seen
in this conjunct, so we can set all the resources that should have been consumed, but weren’t, as
though they were). Otherwise, performconsumedL+1 to check whether all the resources that should

have been consumed, were. If this fails, fail. Otherwise, ifYj is true, then perform
change
L+1→L (Those

resources that were made available to the right conjunct because the left conjunct included a>, but
weren’t used in the right conjunct either, are put back to their original level). SetT to Yi ∨ (Yj ∧ T).

The latter two must examine or manipulate thelevel anddeadline of all of the in-scope entries in the
resource table. To find out them, it is clearly inefficient to scan all entries in the resource table. To solve

40 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

this problem, we use the registerRLIST , which is always set to the list that contains the indices of linear
resources (the values ofR0). RLIST grows when resources are added by−◦, and shrinks on backtracking.
Thus, all we have to do is to check the elements ofRLIST , rather than all of entries in the resource table.

5.3.6 Code for! G

Only intuitionistic resources can be used in the execution of!G. As in LRM the consumption level is
manipulated to enforce this constraint. The code generated for!G is as follows:

begin_bang Yi

Code for G
end_bang Yi

The following new instructions are used in the code generated for the goal!G:

• begin bang Yi

IncrementL (so that it is higher than the value of thelevel field in all the entries inRES. Now, only
intuitionistic resources can be used during the proof ofG). Store the value ofT in a new permanent
variableYi.

• end bang Yi

DecrementL. Set the value of the registerT from the variableYi (since it does not matter whether a
> was seen inG or not).

5.3.7 Code for>
The use of> as a goal is compiled to the instruction:

• top
Set the registerT to true.

5.3.8 Code for Atomic Goals

An atomic goal means resource consumption or an ordinary program invocation. The execution of an atomic
goalA with predicate symbolp/n proceeds as follows:

1. Extract the list of indices of the possibly consumable resource clauses in the resource table,RES, by
referring to the hash and symbol table. The two registersR1 andR2 are used to store the extracted
lists of indices.

2. For eachRESentryR with predicate symbolp/n in the extracted listsR1 andR2, attempt the follow-
ing:

(a) If R is out of scope, or is linear and has been consumed, fail.

(b) Mark the entryR as consumed.

(c) Execute the closure (compiled code followed by a variable bindings) ofR.

3. After the failure of all trials,call the ordinary code for predicateA.

The step 1 are added between the point that acall (or execute) is issued, and the point that the code
block for the predicate is entered.

Looking-up a resource is done through the hash table and the symbol table. In the current implemen-
tation, the entries are hashed on the predicate symbol and the first argument. However, we can not always

5.3. LLPAM CODE GENERATION 41

num of args := SYMBOL[@(P)].arity;
CP := P + instruction size(P);
B0 := B;
if SYMBOL[@(P)].codeaddr = undef then

backtrack;
if tag(SYMBOL[@(P)].res) 6= LIS then

begin R1 := []; R2 := [] end
else

lookup hash(@(P));
P := SYMBOL[@(P)].codeaddr;

Figure 5.4: Thecall Instruction of the LLPAM

rely on the hash table for access to the resources. When the goal has an unbound variable as the first argu-
ment, we must access all entries for the given predicate symbol, regardless of the first argument. Similarly,
those resources in which the first argument is an unbound variable must be examined for every call on that
predicate symbol.

Figure 5.4 show thecall instruction of the LLPAM where@(P) stands for the index value ofP in
the symbol table. This instruction saves the current choice point’s addressB in B0, the value of current
continuation inCP. If the predicateP is defined, then perform thelookup hash function (described in
Appendix A). Thelookup hash function extracts the list of indices of the possibly consumable resource
clauses in the resource table by referring to the hash and symbol tables, and set them inR1 andR2 (Set[]
if there are no consumable resources). When the goal has an unbound variable as the first argument,R1 is
set to the list of indices of all resources with that predicate name/arity (Symbol[@(P)].res), andR2 is
set to an empty list. Otherwise,R1 is set to the list of indices of all resources with that predicate name/arity
and the same first argument through the hash table,R2 is set to the list of the indices of all resources which
have that predicate name/arity, but the first argument was an unbound variable when the resource was added
(Symbol[@(P)].res2).

For steps 2 and 3, the following new instructions are used:

• try resource L
Allocate a new choice point frame on the stack. Behaves the same astry L, except thatR1 andR2
are also saved.

• restore resource
Having backtracked to the current choice point, reset all the necessary information from it.

• retry resource else L
Update the next clause field (BP) to L. Update theR1 andR2 fields in the current choice point frame
with their current values.

• trust resource L
Discard the current choice point frame by resettingB to its predecessor. Continue execution with the
following instruction labeledL.

• pickup resource p/n, Ai, L
Find an index of consumable resource with predicate symbolp/n from R1 andR2. Set that index to
Ai. Continue execution with the following instruction. If there are no consumable resources, jump to
the instruction labeledL.

42 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

p/n: try_resource L1

L0: restore_resource
L1: pickup_resource p/n, An+1, L2

retry_resource_else L0

consume An+1, An+2

execute_closure An+2

L2: trust_resource L′

L′: an ordinary program code ofp/n

Figure 5.5: Naive Code Generation for an Atomic Goalp/n

p/n: pickup_resource p/n, An+1, L′

try_resource L1

L0: restore_resource
pickup_resource p/n, An+1, L2

retry_resource_else L0

L1: consume An+1, An+2

execute_closure An+2

L2: trust_resource L′

L′: an ordinary program code ofp/n

Figure 5.6: Code Generated for an Atomic Goalp/n

• consume Ai, Aj

Mark the entryRES[Ai] as consumed (setlevel to the current value ofU, anddeadline to 0).
SetAj to the value ofclosure field.

• execute closure Ai

Save the current choice pointB in B0. Let Ai be a closure structure〈CLO, c〉. Set the registerS to
c + 2 pointing to the top of the references to free variables. Set mode toread . Continue execution
with instruction onHEAP[c] .

Figure 5.5 shows a naive code generated for an atomic goalp/n. This code contains an obvious in-
efficiency. Even if there is not any consumable resource, it allocates a new choice point frame by the
try resource instruction.

Figure 5.6 shows an improved code, which begin with thepickup resource instruction to check
whether there are any consumable resources or not. If there are no consumable resources, it executes the
ordinary program code (labeledL′) immediately.

In figure 5.6, thepickup resource instruction checks whether there are any consumable resources
or not. It first finds an index of consumable resource withp/n from R1 andR2, and then sets that index
to An+1. R1 andR2 are updated to have the remaining resources. If there are no consumable resources, it
quickly jumps to the ordinary program code labeledL′.

Thetry resource instruction allocates a new choice point frame on the stack and continue execution
with the instruction labeledL1. It behaves the same as WAM instruction “try L1”, but R1 andR2 are also
saved. It is noted that, in the LLPAM, thetry instruction always saves the values of new registersR, L, U,
andT in the choice point frame.

5.4. BACKTRACKING 43

Theconsume instruction marks the resourceRES[An+1] as as consumed (by changing itslevel to
the current value ofU, and itsdeadline to 0), and sets itsclosure in An+2.

Let An+2 be〈CLO, c〉. Theexecute closure instruction first saves the current choice pointB in B0.
It then sets the registerS to c + 2 pointing to the top of the references to free variables. It finally sets mode
to read and continues execution with instruction onHEAP[c] .

Having backtracked to the current choice point labeledL0, therestore resource instruction resets
all the necessary information from it, and thepickup resource instruction is invoked again. If there
are not any more consumable resources, it jumps to the instruction labeledL2, and thetrust resource
instruction discards the current choice point and jumps to the ordinary program code labeledL′. Otherwise,
The retry resource else instruction updates theR1 andR2 fields in the current choice point frame
with their current values and continues execution with the following instruction.

5.4 Backtracking

In order to be able to recover the correct state on backtracking, we need to take the following additional
bookkeeping measures:

• The values of registersR, L, U, andT are stored in choice point frames.

• Changes to theHASHtable should be trailed.

• Moving entries inRESout of scope, and changing theirlevel or deadline should be trailed.

• Changes to the registerRLIST should be trailed.

5.5 Optimizing the Design

5.5.1 Optimizing Resource Selection

We now discuss the optimization of the code for atomic goals. For every execution of an atomic goal, the
resource consumption must be examined, regardless of whether there exists an ordinary program invoca-
tion or not. However, when there is no ordinary program invocation, an atomic goal means only resource
consumption. Our optimization design is limited to this case, and the essence of it is as follows:

• If there is only one consumable resource, all we have to do is consume it immediately without creating
a choice point.

• It is safe to discard the current choice point before consuming the last consumable resource.

The following new instruction is used in the optimized code generated for an atomic goal:

• if no resource L
Scans whether there are any consumable resources inR1andR2. If there are no consumable resources,
jump to the instruction labeledL.

Our optimization can be achieved quite easily by inserting the above new instruction just after the
pickup resource instructions. Figure 5.7 shows an optimized code corresponding to the Figure 5.6.

44 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

p/n: pickup_resource p/n, An+1, fail
if_no_resource L1

try_resource L1

L0: restore_resource
pickup_resource p/n, An+1, L2

if_no_resource L3

retry_resource_else L0

L1: consume An+1, An+2

execute_closure An+2

L2: trust_resource fail
L3: trust_resource L1

Figure 5.7: Optimized Code Generation for an Atomic Goalp/n

5.5.2 Successive Addition of Linear Resources

The goal of the formR1−◦(R2−◦ · · · (Rn−◦G) · · ·) or (R1 ⊗ R2 ⊗ · · · ⊗ Rn)−◦G adds each individual
Ri successively and then executes the goalG. Such goal is frequently used to add multiple resources in LLP
programs. The code generated for the goalR1−◦(R2−◦ · · · (Rn−◦G) · · ·) is as follows:

begin_imp Yi1

Code for the addition ofR1

mid_imp Yj1 , Yk1

begin_imp Yi2

Code for the addition ofR2

mid_imp Yj2 , Yk2

...
begin_imp Yin

Code for the addition ofRn

mid_imp Yjn , Ykn

Code for G
end_imp Yin , Yjn , Ykn

...
end_imp Yi2 , Yj2 , Yk2

end_imp Yi1 , Yj1 , Yk1

However this code contains an obvious inefficiency. This code requires nestedn begin imp , mid imp
, andend imp instructions respectively, and 3n permanent registers. In particular, each of theend imp
instructions needs to scan all of the in-scope entries in the resource table.

Our optimization design for solving this problem is as follows:

• It is possible to add whole resources without using nested instructions.

• Only oneend imp instruction is used to check whether all added resources are consumed or not.

The following new instruction is used in the optimized code generated forR1−◦(R2−◦ · · · (Rn−◦G) · · ·):
• more imp

Set thes1 ands2 fields of added resource clauses inRi to the current values ofR0 (the index of first
resource clause) andR (the top of the resource table), respectively. Update the value ofR0 with R.

5.6. LLPAM CODE EXAMPLE 45

begin_imp Y3
put_ground p(1), A2
put_closure L1, 0, A3
add_res A2, A3
put_structure p/1, A4
unify_local_value A1
put_closure L2, 1, A5
unify_local_value A1
add_res A4, A5
more_imp
put_structure r/1, A6
unify_void 1
put_closure L3, 0, A7
add_res A6, A7
mid_imp Y2, Y1
Code for G
end_imp Y3, Y2, Y1

% code for p(1)
L1: get_integer 1, A1

proceed

% code for q(X)−◦p(X)
L2: unify_variable A2

get_value A2, A1
execute q/1

% code for ∀Y.r(Y)
L3: proceed

Figure 5.8: Optimized Code Generated for the Goal((p(1) &(q(X)−◦ p(X)))⊗ ∀Y.r(Y))−◦G.

Our idea can be achieved quite easily by using the above new instruction. The optimized code generated
for the goalR1−◦(R2−◦ · · · (Rn−◦G) · · ·) is as follows:

begin_imp Yi

Code for the addition ofR1

more_imp
Code for the addition ofR2

more_imp
...

more_imp
Code for the addition ofRn

mid_imp Yj , Yk

Code for G
end_imp Yi, Yj , Yk

This optimized code requires only onebegin imp , mid imp , andend imp instructions respectively,
and only 3 permanent registers. Then − 1 successive use ofbegin imp andmid imp are replaced with
n− 1 more imp . Then end imp are replaced with only oneend imp .

Note that, such optimization can be applied to the goalR1⇒(R2⇒· · · (Rn⇒G) · · ·). However, in this
case, we do not need themore imp instruction since that goal is converted into(R1 & R2 & · · ·&Rn)⇒G
in compilation time.

For example, Figure 5.8 shows the optimized code corresponding to the Figure 5.3.

5.6 LLPAM Code Example

Figure 5.9 shows the partial code generated for Lolli program of filtering a list in in Figure 3.3.

46 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

% choose(Xs,Y,Zs)
choose/3:

allocate 3
begin_exp_imp Y3
put_structure test/1, A4 % creates test(X) in A4
unify_void 1
put_closure L, 1, A5 % creates a closure
unify_local_value A2 % sets the free variableY
add_exp_res A4, A5 % adds the resource
mid_exp_imp Y2 Y1
put_value A3, A2
call filter/2 % call filter(Xs,Zs)
end_exp_imp Y3 Y2 Y1
deallocate
proceed

% forall(X, (test(X) :- X >Y))
L: unify_variable A2 % retrieves the free variableY

execute ’>’/2 % executeX > Y

test/1:
pickup_resource test/1, A2, fail
if_no_resource L1
try_resource L1

L0: restore_resource
pickup_resource test/1, A2, L2
if_no_resource L3
retry_resource_else L0

L1: consume A2, A3
execute_closure A3

L2: trust_resource fail
L3: trust_resource L1

Figure 5.9: LLPAM Code Generated for the Predicatechoose and the Resourcetest in Figure 3.3

5.7 Performance Evaluation of LLP Compiler System

We have developed a LLPAM-based compiler system, called LLP. In this section, we present the perfor-
mances of the LLP compiler system.

LLP is a first generation compiler system for a linear logic programming language. The system consists
of a LLP to LLPAM compiler (written in Prolog) and a emulator (written in C), but it does not incorporate
well-known optimizations, register allocation, last-call-optimization, global analysis, and so on.

The newest package (version is 0.5.1) is available from:

http://bach.cs.kobe-u.ac.jp/llp/ .

First, we compare the execution speeds of twoN -Queen programs. One is a prolog program in Figure 3.5
compiled under a SICStus Prolog 3.7.1 (WAM code), where resources are represented by list structures.
Another is a Lolli program in Figure 3.4 compiled under LLP 0.5.1 (LLPAM code), where resources are
compiled into closures and kept in the resource table.

Table 5.1 shows the performance results for all solutions of8 ≤ N ≤ 14. At N = 8, LLP is 2.67 times
faster than Prolog, and the speedup of LLP is getting larger and larger asN increases. AtN = 14, LLP is

5.7. PERFORMANCE EVALUATION OF LLP COMPILER SYSTEM 47

Table 5.1: Performance Results ofN -Queens

N Runs Averaged SICStus 3.7.1 LLP 0.5.1 Speedup Ratio
8 10 40 15 2.67
9 10 186 68 2.74
10 10 902 292 3.09
11 10 4762 1432 3.33
12 10 26849 7558 3.55
13 5 159856 42292 3.78
14 5 1013514 252846 4.01

Table 5.2: Performance Results of Knight Tour (5× 5)

Runs Averaged SICStus 3.7.1 LLP 0.5.1 Speedup Ratio
5 60416 25392 2.38

4 times faster than Prolog. Table 5.2 shows the performance results of similar test for Knight Tour program
(all solutions) in Figure 3.7. LLP is 2.38 times faster than Prolog.

Second, we show an improvement in performance by compiling resources rather than storing resources
as terms on heap memory. We compare the execution speeds of two Lolli programs for tiling board with
dominoes, and both of them are compiled under LLP 0.5.1.

One is a program in Figure 3.11 where resources are compiled into closures. Another is the same program
except that all occurrences of resources are replaced with metavariables as resources. For example, the code
for adding resources:

gen_res(N) :- N > 0, !,
(

(d(I, J, N), J1 is J+1, d(I, J1, N)) -<> domino(N)
&

(d(I, J, N), I1 is I+1, d(I1, J, N)) -<> domino(N)
)
-<> (N1 is N-1, gen_res(N1)).

is replaced with

gen_res(N) :- N > 0, !,
Domino = ((d(I, J, N), J1 is J+1, d(I, J1, N)) -<> domino(N)

&
(d(I, J, N), I1 is I+1, d(I1, J, N)) -<> domino(N)),

Domino -<> (N1 is N-1, gen_res(N1)).

where resources are not compiled and stored as terms.
Table 3.11 shows the performance results for all solutions on 5 different shaped boards. Compiling

resources (LLP) is 1.5 times faster than representing resources as terms in a heap memory (LLPT). The
speedup is due to the compilation of resource clauses, in which their bodies consist of compound goal
formulas, rather than only atoms.

To measure the overhead incurred by the new structures of the LLPAM, we compare our compiler with
high performance Prolog compilers, SICStus Prolog version 3.7.1 and SWI-Prolog (with-O option) version
3.4.1. Table 5.4 shows the performance results of classical Prolog benchmarks. LLP is 1.47 times faster than
SWI-Prolog, but twice slower than SICStus. When we take into consideration that the factor of slowdown

48 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

Table 5.3: Performance Results of Tiling Board with Dominoes

(Row, Column) Runs Averaged LLPT LLP Speedup Ratio
(2, 5) 5 62 42 1.48
(3, 4) 5 698 460 1.52
(2, 7) 5 8474 5830 1.45
(4, 4) 5 145062 95934 1.51
(3, 6) 5 2167058 1457346 1.49

Table 5.4: Performance Results of Prolog Benchmarks

Prolog Programs Runs Averaged LLP 0.5.1 SWI 3.4.1 SICStus 3.7.1
boyer 5 1772 520 162
browse 5 414 650 210
cal 5 78 100 44
chat parser 5 8 14 6
ham 5 262 380 156
poly 10 5 18 34 10
queens 10 (all sol.) 5 680 1060 330
tak 5 60 148 26
zebra 5 18 18 10
Average of Ratio 5 1.00 1.47 0.51

from SICStus seems to be due to the difference between a optimized Prolog compiler and our relative naive
compiler, new structures incur only a sufficiently small overhead.

All times in Table 5.1–5.4 were collected on Linux system (Pentium III 850MHz, 128M memory).

5.8 Performance Evaluation of Hodas and Tamura’slolliCoP

Now we shows the performance of a more sophisticated application oflolliCoP in Figure 3.13. The results
(Table 5.5–5.7) are taken from a paper [28] by Hodas and Tamura.

They testedlolliCoP on the 2200 clausal form problems in the TPTP library version 2.3.0 [48, 34].
TPTP consist of 2193 problems known to be unsatisfiable (or valid using positive representation) and 7
propositional problems known to be satisfiable (or invalid). Each problem is rated from 0.00 to 1.00 relative
to its difficulty. A rating of “?” means the difficulty is unknown. No reordering of clauses or literals has
been done.

The tests were performed on a Linux system with a 550MHz Pentium III processor and 128M bytes
of memory. The programs were compiled with LLP compiler version 0.5.0. The time limit for all proof
attempts was 300 seconds.

The overall performance ofOTTER 3.1 (with MACE 1.4) [34, 36],leanCoP [46], andlolliCoP, in terms
of the number of problems solved, are shown in Table 5.5. The table also includes data for an improved
version oflolliCoP, called lolliCoP2. The results forleanCoP were obtained in the same environment as
those forlolliCoP, using SICStus Prolog 3.7.1, and are better than those reported by the authors [46]. The
results forOTTER 3.1 (with MACE 1.4), which is not publicly available, are taken from a report by its
developers [34]. These results were produced on a 400MHz Pentium II, which is somewhat slower than the

5.8. PERFORMANCE EVALUATION OF HODAS AND TAMURA’SLOLLICOP 49

Table 5.5: Overall Performance ofOTTER, leanCoP, andlolliCoP

Total OTTER leanCoP lolliCoP lolliCoP2

Solved 2200 1602 (73%) 810 (37%) 822 (37%) 880 (40%)
0 to< 1 second 1209 541 554 614
1 to< 10 seconds 142 135 124 117
10 to<100 seconds 209 93 91 94
100 to<200 seconds 31 18 25 34
200 to<300 seconds 11 23 28 21
Problems rated 0.00 1308 1230 (94%) 713 (55%) 716 (55%) 737 (56%)
Problems rated>0.00 733 249 (34%) 76 (10%) 83 (11%) 118 (16%)
Problems rated ? 159 123 (77%) 21 (13%) 23 (14%) 25 (16%)

Table 5.6: Performance ofOTTER leanCoP andlolliCoP Classified by Problem Rating

Otter

lolliCoP2

lolliCoP

leanCoP

497

9 695 9

65

11 1

18 3

1308 TPTP Problems rated 0.00

Otter

lolliCoP2

lolliCoP

leanCoP

194

 33

421

 3 4

19 16

733 TPTP Problems rated >0.00

43

machine Hodas and Tamura used. Figure 5.6 depicts the overlap of problems solved by each system.
Table 5.7a compares the performance of all four systems on the 33 problems that they can all solve.

Total CPU time is shown, along with a speedup ratio relative toleanCoP (under SICStus). On just these
problems,lolliCoP provides a speedup of 40% overleanCoP, and it has almost the same performance as
OTTER. However, comparing the result of 36 problems solved by bothOTTER andlolliCoP, OTTER is 71%
faster as shown in Table 5.7b. Finally, Table 5.7c shows a similar analysis for the 76 problems thatlolliCoP
andleanCoP can both solve.

50 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

Table 5.7: Comparison ofOTTER, leanCoP, andlolliCoP

(a) 33 problems solved byOTTER, leanCoP, andlolliCoP

OTTER leanCoP lolliCoP lolliCoP2

Total CPU time 1143.03 1590.66 1139.41 338.47
Average CPU time 34.64 48.20 34.53 10.26
Speedup Ratio 1.39 1.00 1.40 4.70

(b) 36 problems solved byOTTER andlolliCoP

OTTER lolliCoP lolliCoP2

Total CPU time 1152.40 1969.67 450.57
Average CPU time 32.01 54.71 12.52
Speedup Ratio 1.71 1.00 4.37

(c) 76 problems solved byleanCoP andlolliCoP

leanCoP lolliCoP lolliCoP2

Total CPU time 2757.83 2038.58 853.24
Average CPU time 36.29 26.82 11.23
Speedup Ratio 1.00 1.35 3.23

Chapter 6

Translating a Linear Logic
Programming Language into Java

In recent years, a number of Java implementations for logic programming languages have been developed:
CKI Prolog, JavaLog, Jinni [53], JIP, JLog, JP, jProlog [18], Kernel Prolog, KLIJava, LL, LLPj, MINERVA,
NetProlog, tuProlog, and W-Prolog [57]. However, there has been no Java implementation for linear logic
programming languages.

In this chapter, we present the Prolog Café system, that translates LLP into Java via the LLPAM. The
system has the advantages of portability, extensibility, and interactivity with Java. It is portable to any
platform supporting a Java compiler. It is easily expandable with several extensions using a lot of Java class
libraries, such as multi-threaded and distributed system. It also provides smooth bi-directional interaction
between LLP and Java.

There seem to be at least three approaches to implement efficient LLP system in Java.

1. Compiling LLP into Java Bytecodes

2. LLPAM emulator in Java

3. Translating LLP into Java

The approach (1) might be the fastest, but compiling to Java bytecodes is certainly not a simple task and is
sensitive to Java version dependency. The approach (2) might be the simplest, but emulation has not nice
performances if unoptimized and is not possible to produce an independent executable program as output.
Thus, we decided to investigate the approach (3): translating LLP into Java. This has the advantage of giving
nice speedup in performance, avoiding the overhead of emulators, and producing stand-alone executable
codes.

First, we describe how jProlog, LLPj, and Prolog Café translate Prolog control flow into Java. After that
we describe how Prolog Café translates LLP into Java.

6.1 Demoen and Tarau’s jProlog Approach

The jProlog system, developed by Demoen and Tarau, is a first generation Prolog-to-Java translator via the
WAM. It is based on binarization transformation [54], a continuation passing style compilation technique
used in BinProlog.

First, each Prolog clause is translated into a binary clause by binarization, and then translated into Java
code.

51

52 CHAPTER 6. TRANSLATING A LINEAR LOGIC PROGRAMMING LANGUAGE INTO JAVA

Each term is translated into a certain Java object. Each clause is translated into one Java class. Each
predicate is translated a set of classes; there is one class for entry point, and other classes for clauses. Each
continuation goal is translated at term level, that is executed by referring to the hash table to transform it into
its corresponding predicate object.

Let us consider a simple example:

p :- q, r.
q.

First, each clause is translated into a binary clause:

p(Cont) :- q(r(Cont)).
q(Cont) :- call(Cont).

and then each of them is translated into the following Java code, where some codes are omitted to retrieve
the essence of control flow:

public class pred_p_0 extends Code { % entry point of p/0
static Code cl1 = new pred_p_0_1() ;
static Code q1cont ;

void init(PrologMachine mach) {
q1cont = mach.LoadPred("q",0) ; % get continuation goalq/0
}

Code Exec(PrologMachine mach) {
return cl1.Exec(mach) ; % call the clausep(Cont) :- q(r(Cont))
}

}

class pred_p_0_1 extends pred_p_0 { % p(Cont) :- q(r(Cont)).
Code Exec(PrologMachine mach) {
PrologObject continuation = mach.Areg[0]; % get Cont
mach.Areg[0] = new Funct("r".intern(), continuation) ; % create r(Cont)
mach.CUTB = mach.CurrentChoice ;
return q1cont ; % call q/0
}

}

public class pred_q_0 extends Code { % entry point of q/0
static Code cl1 = new pred_q_0_1() ;
Code Exec(PrologMachine mach) {
return cl1.Exec(mach) ; % call the clauseq(Cont) :- call(Cont).
}

}

class pred_q_0_1 extends pred_q_0 { % q(Cont) :- call(Cont).
Code Exec(PrologMachine mach) {
mach.CUTB = mach.CurrentChoice ;
return UpperPrologMachine.Call1 ; % call Cont
}

}

Translated code is executed in the following supervisor function:

code = code for target predicate;
while (ExceptionRaised == 0) {

code = code.Exec(this) ; % this indicates Prolog engine
}

6.2. THE LLPJ APPROACH 53

jProlog is a good starting point to study of translating Prolog into Java. jProlog supports intuitionistic as-
sumption, backtrackable destructive assignment, and delayed execution. However, jProlog is an experimen-
tal implementation, that does not incorporate well-known optimizations such as indexing and specialization
of head unification, and so on. It is this system that we optimize and extend for linear logic programming
language.

The newest package of jProlog (version is 0.1) is available from:

http://www.cs.kuleuven.ac.be/˜bmd/PrologInJava/

The system consists of a Prolog to Java translator (written in Prolog) and a run-time system (written in Java).

6.2 The LLPj Approach

The LLPj system [8] is a first generation, LLP-to-Java translator via LLPAM. This system was also based
on binarization, but it took a different approach from jProlog for translating Prolog into Java.

In this approach, each predicate is translated into only one class, in which each clause is translated into
a single Java method. Each continuation goal is translated at predicate level rather than term level, that is
directly executed by invoking itsexec method. The previous example is translated as follows:

public class PRED_p_0 extends Predicate {
public PRED_p_0 (Predicate cont) {

this.cont = cont; % get Cont
}

public void exec() {
if(clause1()) return; % call the clausep(Cont) :- q(r(Cont))

}

private boolean clause1() { % p(Cont) :- q(r(Cont)).
try {

Predicate new_cont = new PRED_r_0(cont); % create r(Cont)
(new PRED_q_0(new_cont)).exec(); % call q/0

} catch (CutException e) {
if(e.id != this) throw e;
return true;

}
return false;

}
}

public class PRED_q_0 extends Predicate {
public PRED_q_0 (Predicate cont) {

this.cont = cont; % get Cont
}

public void exec() {
if(clause1()) return; % call the clauseq(Cont) :- call(Cont).

}

private boolean clause1() { % q(Cont) :- call(Cont).
try {

cont.exec(); % call Cont
} catch (CutException e) {

if(e.id != this) throw e;
return true;

}
return false;

}
}

54 CHAPTER 6. TRANSLATING A LINEAR LOGIC PROGRAMMING LANGUAGE INTO JAVA

Translated code is executed without a supervisor function:

code = code for target predicate;
code.exec();

In this approach, we do not have to care the choice point stack. The trail stack is maintained in each
predicate locally. The cut mechanism is easily implemented by Java exception handling functions:try and
catch . In performance, our translator generated slight faster code for some Prolog benchmarks compared
with jProlog.

The main drawback of this approach is that the invocation ofexec will invoke other nestedexec
methods, and never return until the system reaches the first solution. This leads to a memory overflow for
large programs. As with jProlog, the system did not incorporate well-known optimizations such as indexing,
specialization of unification, and so on. In addition, LLPj support the LLP language, but resources are not
compiled and stored at term level in the resource table. This slows down the execution speed of resources.

6.3 The Prolog Caf́e Approach

The Prolog Caf́e system is a refinement of LLPj. The main differences from LLPj is as follows:

• As with jProlog, each predicate is translated into a set of classes, but each continuation goal is trans-
lated at predicate level, which is executed by a supervisor function to avoid memory overflows in
LLPj.

• It is possible to treat Java objects as Prolog terms, invoke their methods, and access to their fields using
reflection based Java interface:java constructor/2 , java method/3 , java set field/3 ,
andjava get field/3 .

• Prolog Caf́e incorporates the optimization of indexing(only first level) and specialization of head uni-
fication, built-in predicates for error and exception handling, and floating point numbers.

• To execute resources efficiently, resource are compiled intoclosureswhich consist of a reference of
compiled code and a set of bindings for free variables.

6.3.1 Translating Prolog into Java

Each term is translated into a Java object of classes in Figure 6.1:VariableTerm , IntegerTerm ,
DoubleTerm , SymbolTerm , ListTerm , andStructureTerm . The Term class, with an abstract
methodunify , is a common superclass of these classes.

TheJavaObjectTerm class is used to treat Java objects as terms. TheClosureTerm class is used
to create closure structures for compiling resources in LLP.

Term

NumberTerm SymbolTerm StructureTermListTermVariableTerm

{abstract}

DoubleTermIntegerTerm

JavaObjectTerm ClosureTerm

Figure 6.1: Term Structure of Prolog Café

6.3. THE PROLOG CAF́E APPROACH 55

Each predicate is translated a set of classes; there is one class for entry point, and other classes for clauses
and choice instructions. ThePredicate class is a common superclass of these classes, and has an abstract
methodexec and the fieldcont for continuation goal. Each continuation goal is translated at predicate
level, that is is executed by a supervisor function. The previous example is translated as follows:

import jp.ac.kobe_u.cs.prolog.lang.*;

public class PRED_p_0 extends Predicate {
public PRED_p_0(Predicate cont) {

this.cont = cont; % get Cont
}

public Predicate exec() { % p(Cont) :- q(r(Cont)).
engine.setB0();
Predicate p1 = new PRED_r_0(cont); % create r(Cont)
return new PRED_q_0(p1); % call q/0

}
}

public class PRED_q_0 extends Predicate {
public PRED_q_0(Predicate cont) {

this.cont = cont; % get Cont
}

public Predicate exec() { % q(Cont) :- call(Cont).
return cont; % call Cont

}
}

Translated code is executed by a supervisor function:

code = code for target predicate;
while (code == null) {

code.setEngine(engine); % engine indicates Prolog engine
code = code.exec();

}

This translation method is an integration of jProlog and LLPj approaches. In performance, our translator
generated 1.7 times faster code for a set of classical Prolog benchmarks compared with jProlog. This speedup
is entirely almost due to the optimization of indexing and specialization of head unification.

In Prolog Caf́e, it is possible to treat Java objects as Prolog terms, invoke their methods, and access to
their fields using reflection based Java interface.

The predicatejava constructor/2 is used to create a Java object as term, calledJava term. Java
term is implemented as an instance of theJavaObjectTerm class. The predicatejava method/3 is
used to invoke the methods of Java terms. The predicatejava get field/3 is used to get the values
of specified fields of Java terms. The predicatejava set field/3 is used to set the values to specified
fields of Java terms.

main :-
java_constructor(’java.awt.Frame’, X),
java_method(X, setSize(200,200), _),
java_get_field(’java.lang.Boolean’, ’TRUE’, True),
java_method(X, setVisible(True), _).

For example, the above code will display an empty Java frame on your display.

56 CHAPTER 6. TRANSLATING A LINEAR LOGIC PROGRAMMING LANGUAGE INTO JAVA

assert(Clause) :- assertz(user, Clause).
retract(Clause) :- retract(user, Clause).

assertz(Hash, Clause) :-
canonical_clause(Clause, Key, Cl),
get_term(Hash, Key, Cls0),
copy_term([Cl|Cls0], Cls),
put_term(Hash, Key, Cls).

retract(Hash, Clause) :-
canonical_clause(Clause, Key, Cl),
get_term(Hash, Key, Cls0),
copy_term(Cls0, Cls1),
select_in_reverse(C, Cls1, Cls),
C = Cl,
put_term(Hash, Key, Cls).

Figure 6.2: An Implementation ofassert andretract in Prolog Caf́e

6.3.2 Implementingassert and retract

Prolog Caf́e is easily expandable with increasing Java class libraries since all data structures are represented
as Java objects. Here, we present an implementation of Prolog’sassert and retract by using Java
hash table. In our design, each entry in the hash table contains a list of clauses. The entry is hashed on the
predicate name/arity of the head part of clause.

The following built-in predicates for handling a hash table are used to implementassert andretract
easily.

• put_term(+Hash, +Key, ?Term)
Maps the key to the value ofTerm in the hash table.Key is a ground term for the hash key. Note that
any unbound variables inTerm are not replaced by new private variables.

• get_term(+Hash, +Key, ?Term)
Retrieves the value to which the key is mapped in the hash table and unifies it withTerm. Term is
unified with empty list if the key is not mapped to any value in the hash table.

The first argumentHash must be a Java term which has a hash table on the inside. Since such Java terms can
be created byjava constructor/2 , it is possible to maintain multiple hash tables in Prolog. Figure 6.2
shows source code forassert andretract , whereuser represents the standard hash table in Prolog
Caf́e. The behavior ofassert/2 is straightforward. First, it takes the hash key of clause and extracts the
list of clauses by referring to the hash table (get term/3). Then, it creates a new list by inserting the
target clause to the extracted list and registers a copy of the created list in the hash table (put term/3).
We note that we need to make a copy because unbound variables in clauses might be instantiated after the
assert ion, or variable bindings might be canceled on backtracking. The behavior ofretract/2 is also
straightforward, so we omit the explanation.

6.3.3 Translating LLP into Java

We have presented the Prolog aspect of the Prolog Café system so far. We now describe how Prolog Café
translates LLP into Java.

6.3. THE PROLOG CAF́E APPROACH 57

First, each clause including linear logic operators is translated into a Prolog clause, in which those
operators are replaced with built-in predicates that correspond to certain LLPAM instructions. After that it
is binarized and then translated into Java code.

p(X, Y) :- q(X) -<> r(Y).
p(X, Y) :- q(X) & r(Y).
p(X, Y) :- !((q(X), r(Y))).

For example, the above clauses are translated into:

p(X, Y) :-
begin imp(A),
add res(q(X), [q/1,[X]]),
mid imp(B, C),
r(Y),
end imp(A, B, C).

p(X, Y) :-
begin with (A),
q(X),
mid with (B),
r(Y),
end with (A, B).

p(X, Y) :-
begin bang(A),
q(X),
r(Y),
end bang(A).

in which each built-in predicate (written by bold face) corresponds to certain LLPAM instruction. The
second argument[q/1,[X]] of add res is used to create the closure structure for the resourceq(X) .
After that these clauses are translated into binary clauses and then translated into Java code.

Let us show the partial code generated for the first clause “p(X, Y) :- q(X) -<> r(Y) ”.

import jp.ac.kobe_u.cs.prolog.lang.*;
public class PRED_p_2 extends Predicate { % Code for the predicatep/2

static Predicate res_q_1 = new RES_q_1();
static SymbolTerm sym_q_1 = SymbolTerm.makeSymbol("q", 1);

public PRED_p_2(Term a1, Term a2, Predicate cont) {
arg1 = a1;
arg2 = a2;
this.cont = cont;

}

public Predicate exec() {
engine.setB0();
a1 = arg1.dereference(); % Get the value of 1st argumentX
a2 = arg2.dereference(); % Get the value of 2nd argumentY

x = {a1};
a4 = new StructureTerm(sym_q_1, x); % Create the headq(X)
a5 = new ClosureTerm(res_q_1, x); % Create the closure ofq(X)
p1 = new PRED_end_imp_2(a3, a6, a7, cont);
p2 = new PRED_r_1(a2, p1);
p3 = new PRED_mid_imp_1(a6, a7, p2);
p4 = new PRED_add_res_2(a4, a5, p3); % Add the resourceq(X)
return new PRED_begin_imp_1(a3, p4);

}
}

public class RES_q_1 extends Predicate { % Code for the resourceq/1
public Predicate exec() {

a1 = engine.aregs[1].dereference(); % Get the value of 1st argument
a2 = engine.aregs[2].dereference(); % Get the value of free variableX
this.cont = engine.cont;

if (! a1.unify(a2, engine.trail)) % Unify the 1st argument withX
return engine.fail(); % backtrack

return cont;
}

}

58 CHAPTER 6. TRANSLATING A LINEAR LOGIC PROGRAMMING LANGUAGE INTO JAVA

Table 6.1: Comparison for Prolog Café vs jProlog vs SWI-Prolog

Prolog Programs Runs Averaged Prolog Café 0.5.0 jProlog 0.1 SWI 3.4.1
boyer 5 6600.6 13995.8 634.0
browse 5 1866.4 16129.4 654.0
ham 5 1929.4 3391.8 384.0
nrev (300 elem.) 5 243.8 1520.8 48.0
query 5 64.6 46.2 4.0
tak 5 2327.2 2963.0 11180.0
zebra 5 75.2 127.6 18.0
cal 5 492.4 ? 192.0
chat parser 5 226.8 ? 18.0
poly 10 5 450.4 ? 38.0
queens 10 (all sol.) 5 2348.0 ? 1892.0
sendmore 5 236.0 ? 72.0
Average of Ratio 5 1.00 1.71 0.16

Theengine indicates an Prolog Café engine which is activated currently. Theengine.aregs and
engine.cont fields indicate the argument registers and the continuation register respectively. Closure
structures can be implemented easily by using theClosureTerm class.

6.4 Performance Evaluation

We now present the performances of the Prolog Café system. The system consists of two Java packages:

• jp.ac.kobe u.cs.prolog.lang for runtime system,
• jp.ac.kobe u.cs.prolog.compiler for translator.

We compare Prolog Café with jProlog version 0.1 and SWI-Prolog version 3.4.1. jProlog is a first
generation, Prolog-to-Java translator system. SWI-Prolog is a popular Prolog compiler system, that compile
Prolog into WAM.

Table 6.1 shows the performance results of a set of classical Prolog benchmarks. A time of “?” means we
met some errors during the compilation of generated Java code using Java compiler. All times in Table 6.1
were collected on Linux system (Pentium III 850MHz, 128M memory). withJavaTM 2 SDK Standard
Edition version 1.4.0.

Prolog Caf́e generates 1.7 times faster code than jProlog. This speedup is entirely almost due to indexing
and specialization of head unification. Compared with SWI-Prolog, Prolog Café is 6.3 times slower.

Prolog Caf́e is a first generation, Java implementation for a linear logic programming language. It does
not incorporate well-known optimizations, such as register allocation, last-call-optimization, global analysis,
and so on. The newest package (version is 0.5.0) is available from:

http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/

Chapter 7

TLLP: A Temporal Linear Logic
Programming Language

Recent development of logic programming languages based on linear logic suggests a successful direction to
extend logic programming to be more expressive and more efficient. The treatment of formulas-as-resources
gives us not only powerful expressiveness, but also efficient access to a large set of data. However, in
linear logic, whole resources are kept in one context, and there is no straight way to represent complex data
structures as resources. For example, in order to represent an ordered list and time-dependent data, we need
to put additional indices for each resource formula.

Temporal Linear Logic (TLL) is an extension of linear logic with some features of temporal logic. TLL
was first studied by Kanovich and Itoh [31], and a cut-free sequent system has been proposed by Hirai [23].
The semantics model of TLL consists an infinite number of phase spaces linearly ordered by the time clock.
Each phase space is the same as that of linear logic.

In this chapter, we describes a logic programming language, called TLLP, based on intuitionistic tempo-
ral linear logic. This logic, an extension of linear logic with some features from temporal logics, allows the
use of the modal operators ‘©’(next-time) and ‘2’(always) in addition to the operators used in intuitionistic
linear logic. The intuitive meaning of modal operators is as follows:©B means thatB can be used exactly
once at the next moment in time;2B means thatB can be used exactly once any time;! B means thatB
can be used arbitrarily many times (including 0 times) at any time.

We first give a proof theoretic formulation of the logic of the TLLP language. We then present a series
of resource management systems designed to implement not only interpreters but also compilers based on
an extension of the standard WAM model. Finally, we describe some implementation methods based on our
systems.

7.1 Intuitionistic Temporal Linear Logic

In this section, we will focus on the sequent systemITLL [23] of intuitionistic temporal linear logic developed
by Hirai. The expressive power ofITLL is shown by a natural encoding of Timed Petri Net. It is this logic
that we shall use to design and implement the logic programming language described below.

ITLL allows the use of the modal operators ‘©’(next-time) and ‘2’(always) in addition to the operators
used in intuitionistic linear logic. Compared with the sequent systemILL (see Figure 2.1) of intuitionistic
linear logic, three rules (L 2), (R 2), and (©) are added. The entire set ofITLL sequent rules is given in
Figure 7.1. Here, the left-hand side of sequents are multisets of formulas, and the structural rule for exchange
need not be explicitly stated. The structural rule for weakening (W !) and contraction (C !) are available only
for assumptions marked with the modal operator ‘!’. This means that, in general, formulas not!-marked can

59

60 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

(Rules ofILL in Figure 2.1)

∆, B −→ C

∆, 2 B −→ C
(L 2)

! Γ, 2 Σ −→ C

! Γ, 2 Σ −→ 2 C
(R 2)

! Γ, 2 Σ, ∆ −→ C

! Γ, 2 Σ,©∆ −→ ©C
(©)

Figure 7.1: The Proof SystemITLL for Intuitionistic Temporal Linear Logic

be used exactly once. Limited-use formulas can represent time-dependent resources inITLL. The intuitive
meaning of these modal operators is as follows:

• ©B means thatB can be used exactly once at the next moment in time.

• 2B means thatB can be used exactly once any time.

• !B means thatB can be used arbitrarily many times (including 0 times) at any time.

By combining these modalities with binary operators in linear logic, several resources can be expressed.
For example,B &©B means thatB can be used exactly once either at the present time or at the next
moment in time.©(1& B) means thatB can be used at most once at the next moment in time.

Two formulasB andC are equivalent, denotedB ≡ C, if the sequentsB −→ C andC −→ B are
provable inITLL. The notation©n meansn multiplicity of ©. We note the following sequents that are
provable inITLL.

! B ≡ ! ! B, 2B ≡ 22 B, !B ≡ 2 ! B,
! B −→ 2B ⊗ · · · ⊗2 B, 2B −→ ©n B (n ≥ 0)

The main differences from other temporal linear logic systems [31][50] are thatITLL includes the modal
operator ‘!’, and it satisfies a cut elimination theorem. Both of these additions are very important for the
design of a language based on the notion ofUniform Proofs.

7.2 Language Design

The idea of uniform proofs [38], proposed by Miller et. al, is a simple and powerful notion for designing
logic programming languages. Uniform proof search is a cut-free,goal-directed proof searchin which a
sequentΓ −→ G denotes the state of the computation trying to solve the goalG from the programΓ. Goal-
directed proof search is characterized operationally by the bottom-up construction of proofs in which right-
introduction rules are applied first and left-introduction rules are applied only when the right-hand side is
atomic. This means that the operators in the goalG are executed independently from the programΓ, and the
program is only considered when its goal is atomic. A logical system is anabstract logic programming language
if restricting it to uniform proofs retains completeness. The logics of Prolog,λProlog, and Lolli are examples
of abstract logic programming language.

Clearly, intuitionistic linear logic (even over the connectives:>, &, ⊗, −◦, !, and∀) is not an abstract
logic programming language. For example, the sequentsa⊗b −→ b⊗a and! a& b −→ ! a are both provable
in ILL but do not have uniform proofs.

Hodas and Miller have designed the linear logic programming language Lolli [25][26] by restricting
formulas so that the above counterexamples do not appear, although it retains desirable features of linear
logic connectives such as! and⊗. The Lolli language is based on the following fragment of linear logic:

R ::= > | A | R1 & R2 | G−◦R | G⇒R | ∀x.R

G ::= 1 | > | A | G1 ⊗G2 | G1 & G2 | G1 ⊕G2 | R−◦G | R⇒G | ! G | ∀x.G | ∃x.G

7.2. LANGUAGE DESIGN 61

(Rules ofL in Figure 2.4)

Γ;∆, B −→ C

Γ;∆, 2B −→ C
(L 2)

Γ;2Σ, ∆ −→ C

Γ;2Σ,©∆ −→ ©C
(©)

Figure 7.2:T L: A Proof System for the Connectives>, &,−◦,⇒, ∀, 1, !,⊗,⊕, ∃, ©, and2.

Here,R-formulas andG-formula are calledresourceandgoal formulasrespectively. The connective⇒ is
calledintuitionistic implication, and it is defined asB⇒C ≡ (! B)−◦C.

The sequent of Lolli is of the formΓ;∆ −→ G whereΓ is a set of resource formulas,∆ is a multiset of
resource formulas, andG is a goal formula.Γ and∆ are calledintuitionisticandlinear contextrespectively,
and they correspond to theprogram. G is called thegoal. The sequentΓ;∆ −→ G can be mapped to the
linear logic sequent! Γ,∆ −→ G. Thus, the right introduction rule for−◦ adds its assumption (called a
linear resource) to the linear context, in which every formula can be used exactly once. The right introduc-
tion rule for⇒ adds its assumption (called anintuitionistic resource) to the intuitionistic context, in which
every formula can be used arbitrarily many times (including 0 times).

Hodas and Miller developed a series of proof systemsL (see Figure 2.4) andL′ in [25]. They proved that
L is sound and complete with respect to theILL rules restricted to the Lolli language. They also provedL
preserves completeness even if provability is restricted to uniform proofs.L′ is the proof system that results
from replacing the Identity, L−◦, L⇒, L&, and L∀ rules inL with a single rule, calledbackchaining.

In this chapter, we will use a more restrictive definition for resource and goal formulas. LetA be atomic
andm ≥ 1:

R ::= S1 & · · ·& Sm

S ::= > | A | G−◦A | ∀x.S

G ::= 1 | > | A | G1 ⊗G2 | G1 & G2 | G1 ⊕G2 | R−◦G | S⇒G | ! G | ∀x.G | ∃x.G

Here,S-formulas are calledresource clausesin whichA andG are called theheadand thebodyrespectively.
S-formulas correspond to program clauses. Although this simplification does not change expressiveness of
the language, it makes the presentation ofbackchainingsimpler, as is discussed below.

Since full intuitionistic linear logic is not an abstract logic programming language, it is obvious that
intuitionistic temporal linear logic is not as well. For example, in addition to the counterexamples inILL,
the sequents2© a −→ © a, !© a −→ © a, anda&© a −→ © a are all provable inITLL, but they do not
have uniform proofs.

Figure 7.2 presents a proof systemT L for the connectives>, &,−◦,⇒, ∀, 1, !,⊗,⊕, ∃, ©, and2. Two
rules, L2 and©, are added in addition to those that arise inL. This system has been designed to support the
logic programming language TLLP over the following formulas: IfA is atomic andm ≥ 1,

R ::= S1 & · · ·& Sm | 2(S1 & · · ·& Sm) | ©R

S ::= > | A | G−◦A | ∀x.S

G ::= 1 | > | A | G1 ⊗G2 | G1 & G2 | G1 ⊕G2 | R−◦G | S⇒G | ! G | ∀x.G | ∃x.G | ©G

Let D be a&-product of resource clausesS1 & · · ·& Sm. Compared with Lolli,©n D and©n
2 D are

added to resource formulas, and©G is added to goal formulas. The intuitive meaning of these formulas is
as follows:©n D means that the resource clauseSi (1 ≤ i ≤ m) in D can be used exactly once at timen;
©n

2D means that the resource clauseSi (1 ≤ i ≤ m) in D can be used exactly once any time at and after
timen; ©G adjusts time one clock ahead and then executesG.

The proofs of propositions in this chapter are based on Hodas and Miller’s results in [25] for the Lolli
language, and we will only give proof outlines.

62 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

Γ; D −→ A
(BC1)

Γ, D; ∅ −→ A
(BC!1)

provided, in each case,A is atomic andA ∈ ‖D‖.
Γ;∆ −→ G

Γ;∆, D −→ A
(BC2)

Γ, D;∆ −→ G

Γ, D;∆ −→ A
(BC!2)

provided, in each case,A is atomic andG−◦A ∈ ‖D‖.

Figure 7.3: Backchaining for the Proof SystemT L′

Proposition 7.2.1 Let G be a goal formula,Γ a set of resource clauses, and∆ a multiset of resource
formulas. LetD∗ be the result of replacing all occurrences ofB⇒C in D with (! B)−◦C, and let
Γ∗ = {B∗ | B ∈ Γ}. Then the sequentΓ;∆ −→ G is provable inT L if and only if !(Γ∗), ∆∗ −→ G∗ is
provable inITLL.

Proof [sketch] The proof of this proposition can be shown by giving a simple conversion between proofs in
the two systems. The cases of© and L2 are also immediate. 2

Proposition 7.2.2 Let G be a goal formula,Γ a set of resource clauses, and∆ a multiset of resource formu-
las. Then the sequentΓ;∆ −→ G has a proof inT L if and only if it has a uniform proof inT L.

Proof [sketch] The proof in the reverse direction is immediate, since a uniform proof inT L is a proof in
T L. The forward direction can be proved by showing that any proof inT L can be converted to a
uniform proof of the same endsequent by permuting the rules to move occurrences of the left-rule up,
though, and above instances of the right-rule. We explicitly show one case, that is when L2 occurs
below R&:

Ξ1

Γ;∆, B −→ C1

Ξ2

Γ;∆, B −→ C2

Γ;∆, B −→ C1 & C2
(R &)

Γ;∆, 2 B −→ C1 & C2
(L 2)

whereΞ1 andΞ2 are uniform proofs of their endsequents respectively. The above proof structure can
be converted to the following:

Ξ1

Γ;∆, B −→ C1

Γ; ∆, 2 B −→ C1
(L 2)

Ξ2

Γ;∆, B −→ C2

Γ;∆, 2 B −→ C2
(L 2)

Γ;∆, 2 B −→ C1 & C2
(R &)

2

As with L andL′, the left-hand rules can be restricted to a form of backchaining. Let us consider the
following definition: LetR be a resource formula.‖R‖ is defined as a set of resource clauses (S-formulas):

1. if R = A then‖R‖ = {A},
2. if R = G−◦A then‖R‖ = {G−◦A},
3. if R = ∀x.S then for all closed termst, ‖R‖ = ‖S[t/x]‖,
4. if R = S1 & · · ·& Sm then‖R‖ = ‖S1‖ ∪ · · · ∪ ‖Sm‖,
5. if R = 2R′ then‖R‖ = ‖R′‖,
6. if R = ©R′ then‖R‖ = ∅．

7.3. TLLP PROGRAMMING EXAMPLES 63

Let T L′ be a proof system that results from replacing the Identity, absorb, L−◦, L⇒, L&, L∀, and L2
rules inT L with the backchaining rules in Figure 7.3. These backchaining rules (especially the definition of
‖ · ‖) are simpler than the original rule for Lolli because of the restrictive definition of resource formulas. It
is noticed that the absorb rule is integrated into (BC !1) and (BC !2).

Proposition 7.2.3 Let G be a goal formula,Γ a set of resource clauses, and∆ a multiset of resource formu-
las. Then the sequentΓ;∆ −→ G has a proof inT L if and only if it has a proof inT L′.

Since uniform proofs are complete forT L, this proposition can be proved by showing that there is a
uniform proof inT L if and only if there is a proof inT L′. We do not present the proof here. A similar proof
has been given by Hodas and Miller in [25] for the Lolli language.

7.3 TLLP Programming Examples

We new present simple TLLP examples. For the syntax, we use ‘@’ for © and ‘#’ for 2.

7.3.1 Path Finding

We first consider a Lolli program that finds a Hamilton path through the complete graph of four vertices.
Since each vertex is represented as a linear resource, the constraints such that each vertex must be used
exactly can be expressed.

p(V,V,[V]) :- v(V).
p(U,V,[U|P]) :- v(U), e(U,W), p(W,V,P).
e(U,V).
goal(P) :- v(a) -<> v(b) -<> v(c) -<> v(d) -<> p(a,d,P).

When the goalgoal(P) is executed, the vertices are added as resources, and the goalp(a,d,P) will
search a path froma to d by consuming each vertex exactly once.

In addition to the resource-sensitive features of Lolli, TLLP can describe the time-dependent properties
of resources, in particular, the precise order of the moments when some resources are consumed. For exam-
ple, #v(a) denotes the vertexa that can be used exactly once at and after present.@ #v(c) denotes the
vertexc that can be used exactly once at and after the next moment in time.

p(V,V,[V]) :- v(V).
p(U,V,[U|P]) :- v(U), e(U,W), @p(W,V,P).
e(U,V).
goal(P) :- #v(a) -<> @ @v(b) -<> @ #v(c) -<> #v(d) -<> p(a,d,P).

So, the above program finds a Hamilton path that satisfies such constraints. It is noticed that time is adjusted
one clock ahead every time the path crosses an arc.

7.3.2 Conway’s Life Game

TLLP is suitable to write programs in which the dynamical state changes with depending on time. In Fig-
ure 7.4, we show a TLLP program of Conway’s Life Game, but the code for output is omitted. The resource
b(I,J) means that there is a life on(I,J) at present. The predicatenext(I,J) checks whether a new
life will be born on(I,J) at the next moment in time. If this succeeds, the resource@b(I,J) is added. It
is noted that the double negation\+ \+ is used to executenext(I,J) without consuming any resources.

64 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

life :- N = 20,
b(1, 2) -<> b(2, 3) -<> b(3, 1) -<> b(3, 2) -<> b(3, 3) -<>
n(N) => loop.

loop :- loop(1, 1).
loop(I, J) :- n(N), I > N, !, @loop.
loop(I, J) :- n(N), J > N, !, I1 is I+1, loop(I1, 1).
loop(I, J) :- \+ \+ next(I, J), !, J1 is J+1, @b(I, J) -<> loop(I, J1).
loop(I, J) :- J1 is J+1, loop(I, J1).
next(I, J) :- b(I, J), !, count(I, J, C), 2 =< C, C =< 3.
next(I, J) :- count(I, J, C), C = 3.
count(I1, J1, C) :-

I0 is I1-1, I2 is I1+1, J0 is J1-1, J2 is J1+1,
count_b([(I0,J0),(I0,J1),(I0,J2),

(I1,J0), (I1,J2),
(I2,J0),(I2,J1),(I2,J2)], C).

count_b([], 0) :- !.
count_b([(I,J)|IJs], C) :- b(I, J), !, count_b(IJs, C1), C is C1+1.
count_b([(I,J)|IJs], C) :- count_b(IJs, C).

Figure 7.4: A TLLP Example of Conway’s Life Game

7.3.3 Timed Petri Net

Our next example is a simple Timed Petri Net reachability emulator. Figure 7.5 shows the program that
checks the reachability of a Timed Petri Net from the initial marking (one token inp) to the final marking
(one token inp and two tokens inr). Eachdi, a non-negative integer, is the delay time for the transitionti.

Since the proof search of TLLP is depth-first and is not complete, we use aiterative deepeningsearch,
a combination of depth-fisrt and breadth-first search. First, the predicatetpn(Dep, Lim) checks the
reachability at depth1, and then it increases the depth by one if the check fails.

7.4 Resource Management Model

The resource management during a proof search inT L′ is a serious problem for the implementor. Let us
consider, for example, the execution of the goalG1 ⊗G2:

Γ;∆1 −→ G1 Γ;∆2 −→ G2

Γ;∆1, ∆2︸ ︷︷ ︸
∆

−→ G1 ⊗G2
R⊗

When the system applies this rule during bottom-up search, the linear context∆ must be divided into∆1

and∆2. If ∆ containsn resource formulas, all2n possibilities might need to be tested to find a desirable
partition.

For Lolli, Hodas and Miller solved this problem by splitting resources lazily, and they proposed a new
execution model called theI/O model [26].

In this model, the sequentI {G}O means that the goalG can be executed given theinput contextI
so that theoutput contextO remains. The input and output context, together calledIO-context, are lists of
resource formulas,!-marked resource formulas, or the special symbol1 that denotes a place where a resource
formula has been consumed. In the the execution of the goalG1 ⊗G2:

I {G1}M M {G2}O

I {G1 ⊗G2}O
(⊗)

7.4. RESOURCE MANAGEMENT MODEL 65

� � ���� ���

� �
	�� � ��	�

tpn :- #p -<> (goal :- p, r, r) => tpn(1, 100).

tpn(Dep, Lim) :- Dep =< Lim, fire(Dep).
tpn(Dep, Lim) :- Dep =< Lim, Dep1 is Dep + 1, tpn(Dep1, Lim).

next(D) :- D1 is D - 1, D1 > 0, fire(D1).

fire(D) :- goal.
fire(D) :- p, @ #p -<> @ #q -<> next(D).
fire(D) :- q, q, q, @ #r -<> next(D).
fire(D) :- @next(D).

Figure 7.5: A TLLP example of Timed Petri Net

First, I {G1}M tries to executeG1 given the input contextI. If this succeeds, the output contextM is
forwarded toG2, and thenM {G2}O is attempted. If this second attempt fails,I {G1}M retries to find a
different, more desirable consumption pattern.

We will extend theI/Omodel for the TLLP language. The additional problem here is that the bottom-up
application of the rule for© in T L′ requires manipulating large dynamic data structures.

Γ;2Σ,∆ −→ G

Γ;2Σ,©∆ −→ ©G
(©)

For example, when the system executes the goal©G given input contextI = [p,© q,©© r, ! s], we need to
reconstruct and create a new input contextI ′ = [1, q,© r, ! s] before the execution of the goalG.

We introduce atime indexto solve this problem. Figure 7.6 presents an extension of theI/O model for
the TLLP language, calledIOT . IOT makes use of a time indexT . The sequent is of the formI {G}T O.
T , non-negative integer, is thecurrent time. At a given point in the proof, only resources that can be used at
that time may be used.T is also used to set aconsumption timeof newly added resources.

Each element inIOT -context is a pair〈R, t〉 whereR is a resource formula or!-marked resource for-
mula, andt is its consumption time, or the special symbol1. Linear resources have the form〈S1 & . . . & Sm, t〉
or 〈2(S1 & . . . & Sm), t〉, wheret is its consumption time calculated from the value ofT , and its multiplicity
of ©. Intuitionistic resources have the form〈!S, 0〉, whereS is a resource clause. For example, the consum-
able resources at timeT have the following forms in the context:〈S1 & . . . &Sm, T 〉, 〈2(S1 & . . . & Sm), t〉
wheret ≤ T , and〈! S, 0〉

The relationpickRT (I, O, S) holds if S occurs in the contextI and is consumable at timeT , andO
results from replacing that occurrence ofS in I with 1. The relation also holds if!S occurs inI, andI and
O are equal. The relationsubcontextT (O, I) holds ifO arises from replacing arbitrarily many (including 0)
non-!-marked elements ofI that are consumable any time at and after timeT with 1.

To prove thatIOT is logically equivalent toT L′, we need to define the notion of differenceI −T O
for two IOT -contextI andO that satisfy the relationsubcontextT (O, I). I −T O is a pair〈Γ, ∆〉, where
Γ is a set of all formulasS such that〈! S, 0〉 is an element ofI (andO), and∆ is a multiset of all formulas
©max(0,t−T) R such that〈R, t〉 occur inI (If R is of the formS1 & · · ·&Sm, thent ≥ T . If R is of the form
2(S1 & · · ·& Sm), thent is arbitrary), and the corresponding place inO is the symbol1.

66 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

I {1}T I
(1)

subcontextT (O, I)
I {>}T O

(>)

I {G1}T M M {G2}T O

I {G1 ⊗G2}T O
(⊗)

I {G1}T O I {G2}T O

I {G1 & G2}T O
(&)

I {Gi}T O

I {G1 ⊕G2}T O
(⊕)

[〈!S, 0〉 | I] {G}T [〈! S, 0〉 |O]
I {S⇒G}T O

(⇒)

[〈R, T + n〉 | I] {G}T [1 |O]
I {©n R−◦G}T O

(−◦)
provided thatR is a formula of the form:S1 & · · ·&Sm or 2(S1 & · · ·& Sm).

I {G}T I

I {! G}T I
(!)

I {G}T+1 O

I {©G}T O
(©)

pickRT (I, O,A)
I {A}T O

(BC1)
pickRT (I,M, G−◦A) M {G}T O

I {A}T O
(BC2)

Figure 7.6:IOT : An I/O Model for Propositional TLLP

Proposition 7.4.1 LetT be a non-negative integer. LetI andO beIOT -contexts that satisfysubcontextT (O, I).
Let I −T O be the pair〈Γ,∆〉 and letG be a goal formula.I {G}T O is provable inIOT if and only if
Γ;∆ −→ G is provable inT L′.

Proof [sketch] This proposition, in both directions, can be proved by induction on proof structure.2

7.5 Level-Based Resource Management Model

TheI/O model provides an efficient computation model for proof search. TheI/O model has been re-
fined several times. Cervesato et. al recently have proposed a refinement designed to eliminate the non-
determinism in management of linear context involving& and> [13]. However, theI/O model and its
refinements still require copying and scanning large dynamic data structures to control the consumption
of linear resources. Thus, they are more suited to develop interpreters in high-level languages rather than
compilers.

We point out two problems here. First, during the execution ofI {G}O (especiallypickR), the context
O is reconstructed from the contextI by replacing linear consumed resources with1. This will slow down
the execution speed. Secondly, let us consider the execution of the goalG1 & G2:

I {G1}O I {G2}O

I {G1 &G2}O
(&)

This rule means that the goalG1 andG2 must use the same resources. In a naive implementation, the system
first copies the input context and executes the two conjuncts separately, and then it compares their output
contexts. This leads to unnecessary backtracking.

To solve these problems, Tamura et. al have introduced a refinement of theI/O model withlevel indices
[30][49], called theIOL model1. Hodas et. al recently proposed the refinement ofIOL for the complete
treatment of> in [29].

1In this dissertation, we use the notation in [30] to explain theIOLmodel.

7.5. LEVEL-BASED RESOURCE MANAGEMENT MODEL 67

`T
L,U I {1} I

(1)
subcontextTU,L(O, I)

`T
L,U I {>}O

(>)

`T
L,U I {G1}M `T

L,U M {G2}O

`T
L,U I {G1 ⊗G2}O

(⊗)

`T
L,U−1 I {G1}M changeU−1,L+1(M, N) `T

L+1,U N {G2}O thinableL+1(O)

`T
L,U I {G1 & G2}O

(&)

`T
L,U I {Gi}O

`T
L,U I {G1 ⊕G2}O

(⊕i)
`T

L,U [〈S, 0, 0〉 | I] {G} [〈S, 0, 0〉 |O]

`T
L,U I {S⇒G}O

(⇒)

`T
L,U [〈R, T + n, L〉 | I] {G} [〈R, T + n, U〉 |O]

`T
L,U I {©n R−◦G}O

(−◦)

provided thatR is a formula of the form:S1 & · · ·& Sm or 2(S1 & · · ·& Sm).

`T
L+1,U I {G}O

`T
L,U I {! G}O

(!)
`T+1

L,U I {G}O

`T
L,U I {©G}O

(©)

pickRT
L,U (I, O, A)

`T
L,U I {A}O

(BC1)
pickRT

L,U (I, M, G−◦A) `T
L,U M {G}O

`T
L,U I {A}O

(BC2)

Figure 7.7:IOT L: A Level-BasedI/O Model for Propositional TLLP

IOL makes use of two level indicesL andU to manage the consumption of resources. The sequent is
of the form`L,U I {G}O. L, a positive integer, is thecurrent consumption level. At a given point in the
proof, only linear resources labeled with that consumption level (and intuitionistic resources labeled with0)
can be used.U , a negative integer, is thecurrent consumption maker. When a linear resource is consumed,
its consumption level is changed to the value ofU .

Each element inIOL-context is a pair〈R, `〉, whereR is a resource formula, and̀is its consumption
level. Linear resources have the form〈R, `〉, wherè is the value ofL at which the resource can be consumed.
Intuitionistic resources have the form〈S, 0〉 whereS is a resource clause.

`L,U−1 I {G1}M changeU−1,L+1(M, N) `L+1,U N {G2}O thinableL+1(O)

`L,U I {G1 & G2}O
(&)

For example, the outline of the execution of the goalG1 &G2 is as follows:

1. `L,U−1 I {G1}M DecrementU so that we know which resources are consumed during the execution
of G1, and then executeG1.

2. changeU−1,L+1(M,N) Change the level of resources that have been consumed inG1 to L + 1.

3. `L+1,U N {G2}O IncrementL andU , and then executeG2.

4. thinableL+1(O) Check whether none of resources inO haveL + 1 as their consumption level.

IOL is logically equivalent toL′. In IOL, all resources are kept in a single table, calledresource table,
during execution. The consumption of resources can be achieved easily by changing their consumption level
destructively. The idea of this model has already been used as a basis for a compiler system for a useful
fragment of first-order Lolli, in which the resource table is implemented as an array, and the speed access to
resources is achieved by using a hash table.

For TLLP, we give a refinement ofIOT , calledIOT L in Figure 7.7, with level indices ofIOL. The
sequent ofIOT L is of the form`T

L,U I {G}O, whereT is the current time,L is the current consumption
level, andU is the current consumption maker.

68 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

Each element inIOT L-contexts is a tuple〈R, t, `〉, whereR is a resource formula,t is its consumption
time, and̀ is its consumption level. Linear resources have the form〈S1 & . . . & Sm, t, `〉 or 〈2(S1 & . . . &Sm), t, `〉,
wheret is calculated from the value ofT and its multiplicity of©, and` is the value ofL at which the re-
source can be consumed. Intuitionistic resources have the form〈S, 0, 0〉, whereS is a resource clause.

When the system executes`T
L,U I {G}O, the consumable resources in the contextI have the following

forms: 〈S1 & . . . &Sm, T, L〉, 〈2(S1 & . . . & Sm), t, L〉 wheret ≤ T , and〈S, 0, 0〉.
The relationpickRT

L,U (I, M, S) selects a consumable resource clauseS from the input contextI. The
output contextM is the same asI, except that the consumption level of the selected clause is changed to
the value ofU if it is a linear resource. The relationchangè,`′(M, N) modifies the contextM so that any
resources inM with level` have their level changed tò′ in the contextN . The relationthinablè (O) checks
whether none of resources inO have` as their consumption level. The relationsubcontextTU,L(O, I) then
consumes some resources. The output contextO is the same asI, except that the consumption levels of
some resources are changed to the value ofU , if they are linear resources.

We will not explain the rules in detail here, butIOT L is logically equivalent toT L′.

7.6 Implementation Design

In this section, we discuss implementation issues for the TLLP language.

7.6.1 TLLP Interpreter

It is easy to implement a TLLP Interpreter based on theIOT model in Prolog (see Figure 7.8). This
interpreter is good at splitting resources lazily, but they are managed by list structure. This slow down the
execution speed.

7.6.2 Translating TLLP into LLP

It is possible to translate TLLP programs into LLP programs by adding a new argument for the current time
T of IOT to each predicate. Translated code is compiled into LLPAM code and efficiently executed under
LLP compiler system.

The goalG not including the form ofR−◦G′ andS⇒G′ is easily translated into LLP’s goal by using
the following transformationG[T], whereT indicates the current time:

1[T] = 1
>[T] = >

p(~x)[T] = p(~x, T)
(G1 ⊗G2)[T] = G1[T]⊗G2[T]
(G1 & G2)[T] = G1[T] & G2[T]
(G1 ⊕G2)[T] = G1[T]⊕G2[T]

(©G)[T] = G[T + 1]

The goalG of the formR-<> G′ andS=>G′ is translated into LLP’s goal as follows:

(©n(S1 & · · ·&Sm)−◦G)[T] = (S1{T + n}1 & · · ·& Sm{T + n}1)−◦G[T]
(©n

2(S1 & · · ·&Sm)−◦G)[T] = (S1{T + n}2 & · · ·& Sm{T + n}2)−◦G[T]
(S⇒G)[T] = S{T}3⇒G[T]

7.6. IMPLEMENTATION DESIGN 69

:- op(1060, xfy, (&)).
:- op(950, xfy, [-<>, =>]).
:- op(900, fy, [!, @, #]).

prove(G) :- prove(G, 0, [], []).

prove(true, _T, I, I) :- !.
prove(erase, T, I, O) :- !, subcontext(T, O, I).
prove((G1, G2), T, I, O) :- !, prove(G1, T, I, M), prove(G2, T, M, O).
prove((G1 & G2), T, I, O) :- !, prove(G1, T, I, O), prove(G2, T, I, O).
prove((G1 ; G2), T, I, O) :- !, (prove(G1, T, I, O) ; prove(G2, T, I, O)).
prove((R -<> G), T, I, O) :- !,

count_next(R, N, R1), T1 is T + N, prove(G, T, [(R1,T1)|I], [1|O]).
prove((S => G), T, I, O) :- !, prove(G, T, [(!S,0)|I], [(!S,0)|O]).
prove(!G, T, I, I) :- !, prove(G, T, I, I).
prove(@G, T, I, O) :- !, T1 is T + 1, prove(G, T1, I, O).
prove(A, T, I, O) :- pick(T, I, O, A).
prove(A, T, I, O) :- pick(T, I, M, (G -<> A)), prove(G, T, M, O).

count_next(@R, N, R1) :- !, count_next(R, N1, R1), N is N1 + 1.
count_next(R, 0, R).

pick(T, I, O, S) :- pick1(T, I, O, S).
pick(_T, I, I, S) :- rule(S).
pick(_T, I, I, (G -<> A)) :- rule((A :- G)).

pick1(_T, [(!S,0)|I], [(!S,0)|I], S).
pick1(T, [(#R,T0)|I], [1|I], S) :- T >= T0, select(R, S).
pick1(T, [(R,T)|I], [1|I], S) :-

\+(R = (!_)), \+(R = (#_)), select(R, S).
pick1(T, [R|I], [R|O], S) :- pick1(T, I, O, S).

select((R1 & R2), R) :- !, (select(R1, R) ; select(R2, R)).
select(R, R).

subcontext(_T, [], []).
subcontext(T, [(!S,0)|O], [(!S,0)|I]) :- subcontext(T, O, I).
subcontext(T, [R1|O], [(#R,T0)|I]) :-

(R1 = (#R,T0) ; R1 = 1), subcontext(T, O, I).
subcontext(T, [R1|O], [(R,T0)|I]) :-

\+(R = (!_)), \+(R = (#_)),
T0 >= T,
(R1 = (R,T0) ; R1 = 1),
subcontext(T, O, I).

subcontext(T, [(R,T0)|O], [(R,T0)|I]) :- subcontext(T, O, I).

rule((p(V,V,[V]) :- v(V))).
rule((p(U,V,[U|P]) :- v(U), e(U,W), @p(W,V,P))).
rule((e(_U,_V))).
rule((goal(P) :- #v(a) -<> @ @v(b) -<> @ #v(c) -<> #v(d) -<> p(a,d,P))).

Figure 7.8: AIOT Model-Based TLLP Interpreter in Prolog

70 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

tpn :- tpn(0).

tpn(A) :- (forall B\ B >= A -<> p(B)) -<>
(forall C\ (p(C),r(C),r(C)) -<> goal(C)) => tpn(1, 100, A).

tpn(A,B,C) :- A =< B, fire(A, C).
tpn(A,B,C) :- A =< B, D is A+1, tpn(D, B, C).

next(A, B) :- C is A-1, C > 0, fire(C, B).

fire(A, B) :- goal(B).
fire(A, B) :- p(B),

(forall C\ C >= B+1 -<> p(C)) -<>
(forall D\ D >= B+1 -<> q(D)) -<> next(A, B).

fire(A, B) :- q(B), q(B), q(B),
(forall C\ C >= B+1 -<> r(C)) -<> next(A, B).

fire(A, B) :- C is B+1, next(A, C).

Figure 7.9: Translating a TLLP Example of Timed Petri Net into LLP

TheS{t}1 transformation is defined as follows since the resourceS can be consumed at timet:

p(~x){t}1 = p(~x, t)
(G−◦ p(~x)){t}1 = G[t]−◦ p(~x, t)

(∀x.S){t}1 = ∀x.S{t}1
TheS{t}2 transformation is defined as follows since the resourceS can be consumed any time at and

after timet:

p(~x){t}2 = ∀t′.(t′ ≥ t−◦ p(~x, t′))

(G−◦ p(~X)){t}2 = ∀t′.((t′ ≥ t⊗G[t′])−◦ p(~x, t′))
(∀x.S){t}2 = ∀x.S{t}2

TheS{t}3 transformation is defined as follows since the resourceS can be consumed at any time:

p(~x){t}3 = ∀t′.p(~x, t′)
(G−◦ p(~x)){t}3 = ∀t′.(G[t′]−◦ p(~x, t′))

(∀x.S){t}3 = ∀x.S{t}3
Figure 7.9 shows the translated LLP code for a TLLP example of Timed Petri Net in Figure 7.5.
The drawback of this approach is that the rule>[T] = >, translating TLLP’s> into LLP’s>, is logically

incomplete. The goal> in TLLP consumes some of consumable resources any time at and after present.
Thus, letT be the current time, it can not consume the resources with consumption levelt < T . However
LLP’s > might consume those resources since it can not check their consumption time.

7.6.3 TLLPAM: An Extension of LLPAM for the TLLP language

We extend the LLPAM for the TLLP language here. Our extension is summarized as follows:

• Two new fieldstime andbox is added to each entry inRES. Thetime field denotes the consumption
time inIOT L. Thebox flag is set to false if the newly added resource is not prefixed by2, otherwise
true.

7.7. PERFORMANCE EVALUATION 71

Table 7.1: Performance Results of Timed Petri Net

Runs Averaged LLP 0.5.1 TLLP 0.1.3 Speedup Ratio
5 1330 776 1.71

• A new registerTI is added. TI denotes the current timeT in IOT L. The value of this register
must be recorded in each choice point frame regardless of whether TLLP programs make use of the
resource management features or not.TI is used to set thetime field of newly added resource.TI is
also used for hash key for speed access to the resources.

• In the LLPAM, the instruction “add_res Ai, Aj” is used to add linear resource clauses, whereAi is
its head,Aj is its closurethat consists of the compiled code and a set of bindings for free variables.
We replaced this instruction with two new instructions “add_exact_timed_res Ai, Aj , n” and
“add_timed_res Ai, Aj , n”. The former is used to add a resource clauseSi (1 ≤ i ≤ m) in
©n(S1 & · · ·& Sm), whereAi is its head,Aj is its closure, andn is the multiplicity of©. The latter is
used to add a resource clauseSi (1 ≤ i ≤ m) in ©n

2(S1 & · · ·&Sm), Ai is its head,Aj is its closure,
andn is the multiplicity of©.

• In the LLPAM, the instruction “pickup_resource p/n, Ai, L” finds a consumable resource with
predicate symbolp/n by checking its consumption level, and then it sets its index value toAi. If there
are no consumable resources, it jumps toL. We need to improve this instruction so that it checks not
only the level condition but also the time condition by comparing the consumption time (thetime
field) of resources with the current time (the current value ofTI).

7.7 Performance Evaluation

We have developed a TLLPAM-based compiler system, called TLLP. TLLP is a first generation compiler
system for a temporal linear logic programming language. The system consists of a TLLP to TLLPAM com-
piler (written in Prolog) and a emulator (written in C), but it does not incorporate well-known optimizations,
register allocation, last-call-optimization, global analysis, and so on.

We compare the execution speeds of two Timed Petri Net programs. One is a TLLP program in Figure 7.5
compiled under TLLP 0.1.3 (TLLPAM code), where time-dependent resources are compiled into closures
and kept in the resource table. Another is a LLP program in Figure 7.9 compiled under a LLP compiler
0.5.1, where time-dependent resources are translated into corresponding LLP resources that include time
information as arguments.

Table 7.1 shows the performance results. All times in the Table were collected on Linux system (Pentium
III 850MHz, 128M memory).

TLLP is 1.7 times faster than translating TLLP into LLP. The speedup is due to quick access to con-
sumable resources without creating redundant choice point frames. In TLLP, thepickup_resource
instruction is used to find consumable resources by checking not only the level condition but also the time
condition. However, in LLP, thepickup_resource instruction checks only level condition to find them,
and time condition will be checked in the body of the added resources.

The newest package of TLLP (version is 0.1.3) is available from:

http://kaminari.scitec.kobe-u.ac.jp/tllp/ .

Chapter 8

Conclusion and Future Work

In this dissertation, we proposed new compilation methods to develop efficient implementation for linear
logic programming languages. Main contributions are summarized as follows:

1. A compiler system for a linear logic programming language:
We presented a method for compiling resources and provided an extension of the WAM for a linear
logic programming language LLP. In performance, our compiler provided 40% speedup for a theorem
proving application of classical logic, relative to its Prolog implementation.

2. A translator system from a linear logic programming language into Java:
We presented a LLP-to-Java source-to-source translator system. Our translation method is based on
continuation passing style compilation. In performance, our translator is 1.7 times faster for a set of
classical Prolog benchmarks, than an existing Prolog-to-Java translator jProlog.

3. A compiler system for a temporal linear logic programming language:
We presented theory and design of a logic programming language based on intuitionistic temporal
linear logic, called TLLP. We also presented an abstract machine and its instruction set for TLLP
compiler system, and a method for translating TLLP into LLP. In performance, our compiler is 1.7
times faster for a simple example of Timed Petri Net, than translating TLLP into LLP.

The latest packages of those systems are available through WWW:

• LLP version 0.5.1

http://bach.cs.kobe-u.ac.jp/llp/ ,

• Prolog Caf́e version 0.5.0

http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/ ,

• TLLP version 0.1.3

http://kaminari.scitec.kobe-u.ac.jp/tllp/ .

This dissertation is the latest step in a course of research begun by N. Tamura and Y. Kaneda towards
efficient implementation for linear logic programming languages. Our compiler has already applied to a
theorem proving application of first-order classical logic, in which linear logic operators were elegantly
used for specifying the problems. Furthermore it gives significantly nice performance relative to its famous
Prolog implementation. We believe that our results will be equally well applied to other resource-conscious
applications based on linear logic.

73

74 CHAPTER 8. CONCLUSION AND FUTURE WORK

However, it is not a full story, and there are many points yet to be investigated. There are at least two
directions on the future work.

First, we want to improve the resulting systems presented in this dissertation:

• LLP does not include well-known optimizations such as register allocation, last-call-optimization,
global analysis, and shallow backtracking, and so on.

• LLP does not support the universal quantifiers in goal, and dynamic compilation of resources.

• TLLP does not support>-flag for eliminating non-determinism of the treatment of>.

Second, we want to implement the followings using our results:

• A Forum-to-Lolli translator
Forum is a presentation of full fragment of linear logic. By translating Forum into Lolli, it might be
possible to develop an efficient linear logic theorem prover. Translated Lolli programs can be compiled
and executed under LLP compiler system.

• A system for specifying real-time finite-state systems in linear logic
M. I. Kanovich, M. Okada and A. Scedrov proposed a logical formalization for specifying real-time
finite-state systems in linear logic. By using LLP, it might be possible to efficiently check the important
properties such assafetyfor given specifications.

• A compiler system for a full fragment of Lolli.
As with λProlog, Lolli allows nested quantification, the use ofLλ higher-order quantification, and
unification of λ-term. It might be possible to develop a compiler that supports such higher-order
features by extending Teyjus (λProlog compiler) with LLPAM instructions.

Finally, we outline an on-going research using Prolog Café. We are extending Prolog Café for multi-
threaded and distributed execution, and are developing interfaces for several constraint solvers such as Math-
ematica. The goal of this research is to develop a heterogeneous constraint solving system for Java, in which
the solvers run on individual threads, and exchange their answers with each other.

Appendix A

The LLPAM at a Glance

A.1 The LLPAM Instructions

In addition to all the instructions of the WAM, the LLPAM includes the instructions listed below. We use
the following notations:

• tag(x) stands for the tag field of tagged data cellx.
• car(x) stands for the first element of list cellx.
• cdr(x) stands for the entire list (except for the first element) of list cellx.
• @(f/n) stands for the index value off/n in the symbol table.

L INEAR IMPLICATION INSTRUCTIONS

begin_imp Yi

add_res Ai, Aj

more_imp
mid_imp Yj , Yk

end_imp Yi, Yj , Yk

INTUITIONISTIC IMPLICATION INSTRUCTIONS

begin_exp_imp Yi

add_exp_res Ai, Aj

mid_exp_imp Yj , Yk

end_exp_imp Yi, Yj , Yk

WITH INSTRUCTIONS

begin_with Yi

mid_with Yj

end_with Yi, Yj

BANG INSTRUCTIONS

begin_bang Yi

end_bang Yi

TOP INSTRUCTION

top

CLOSURE INSTRUCTIONS

put_closure L, m, Ai

execute_closure Ai

RESOURCECONTROL INSTRUCTIONS

pickup_resource f/n, Ai, L
consume Ai, Aj

if_no_resource L

CHOICE INSTRUCTIONS

try_resource L
restore_resource
retry_resource_else L
trust_resource L

CONTROL INSTRUCTIONS

call P , N
execute P

75

76 APPENDIX A. THE LLPAM AT A GLANCE

L INEAR IMPLICATION INSTRUCTIONS

begin imp Yi

Used when the implication operator is−◦.
Store the current value ofR in a new per-
manent variableYi. Save the current value
of R in R0. Continue execution with the
following instruction.

Yi := 〈RES, R〉;
R0 := R;
P := P + instruction size(P);

add res Ai, Aj

Used when the implication operator is−◦.
Add a record for a (linear) resource clause
of the form ∀~x.A or ∀~x.(G−◦A) as a
new entry at the top of the resource ta-
ble, RES. The value ofL is stored in the
level field and thedeadline field, the
out of scope flag is set to false. Ai

andAj are pointers to structures previously
built on the heap holding the head part
and closure of the clause respectively. Per-
form register resource(Ai). This regis-
ters the value ofR (the index of added re-
source clause) to the hash and symbol ta-
bles for speed access to the resources in
RES. The return value, the index of the
predicate symbol ofAi in the symbol table,
is set to thepred field. IncrementR by
one. Continue execution with the follow-
ing instruction.

RES[R].level := L;
RES[R].deadline := L;
RES[R].out_of_scope := false;
RES[R].head := Ai;
RES[R].body := undef ;
RES[R].closure := Aj ;
RES[R].pred := register resource(Ai);
R := R + 1;
P := P + instruction size(P);

more imp

Used between the codes that load the (lin-
ear) resourceRi in the goal of the form
R1−◦(R2−◦ · · · (Rn−◦G) · · ·) or (R1 ⊗
R2 ⊗ · · · ⊗ Rn)−◦G. Set thes1 ands2
fields of added resource clauses inRi to
the current values ofR0 (the index of first
resource clause) andR (the top of the re-
source table), respectively. Add the current
value ofR0 to RLIST , a list of indices of
all linear resources. Trail this change by
pushing a constant[] onto the trail stack.
Update the value ofR0 with R. Continue
execution with the following instruction.

for i := R0 to R-1 do begin
RES[i].s1 := R0;
RES[i].s2 := R

end;
HEAP[H] := 〈RES, R0〉;
HEAP[H+1] := RLIST;
RLIST := 〈LIS, H 〉;
H := H + 2;
TRAIL[TR] := 〈CON, []〉;
TR := TR + 1;
R0 := R;
P := P + instruction size(P);

A.1. THE LLPAM INSTRUCTIONS 77

mid imp Yj , Yk

Used between the code that loads the re-
source and the code for the subgoal when
the implication operator is−◦. Store the
current values ofR (the top of the resource
table) andT (>-flag) to the permanent vari-
ablesYj andYk, respectively. Set the value
of T to false. Set thes1 and s2 fields
of added resource clauses inR to the cur-
rent values ofR0 andR, respectively. Add
the current value ofR0 to RLIST , a list
of indices of all linear resources. Trail this
change by pushing a constant[] onto the
trail stack. Continue execution with the
following instruction.

Yj := 〈RES, R〉;
Yk := 〈TOP, T〉;
T := false;
for i := R0 to R-1 do begin

RES[i].s1 := R0;
RES[i].s2 := R

end;
HEAP[H] := 〈RES, R0〉;
HEAP[H+1] := RLIST;
RLIST := 〈LIS, H 〉;
H := H + 2;
TRAIL[TR] := 〈CON, []〉;
TR := TR + 1;
P := P + instruction size(P);

end imp Yi, Yj , Yk

Used after the code for the subgoal when the implication operator is−◦. If there are any resources in
positions fromYi to Yj − 1 that have not been consumed, fail. Otherwise, set theout of scope
flags of all records fromYi to Yj − 1 to true (trailing so that they may be reset on backtracking), and
set the registerT to Yk ∨ T. In order to account for the use of> at the top level of the subgoal, the
check for unconsumed resources is made as follows:

• If T is false, thelevel anddeadline of each resource should beUand 0 respectively.
Otherwise, the resource is unconsumed.

• If T is true, thelevel anddeadline of each resource should be eitherUand 0, orL andL
respectively. Otherwise, the resource is unconsumed.

〈RES, m〉 := Yi;
〈RES, n〉 := Yj ;
for r := m to n - 1 do begin

` := RES[r].level;
d := RES[r].deadline;
consumed := ((` = U) ∧ (d = 0)) ∨ (T ∧ (` = L) ∧ (d = L));
if ¬ consumed then

backtrack
end;
for r := m to n - 1 do

RES[r].out_of_scope := true;
TRAIL[TR] := 〈RES, m〉;
TR := TR + 1;
TRAIL[TR] := 〈RES, n〉;
TR := TR + 1;
〈TOP, flag〉 := Yk;
T := flag ∨ T;
P := P + instruction size(P);

78 APPENDIX A. THE LLPAM AT A GLANCE

INTUITIONISTIC IMPLICATION INSTRUCTIONS

begin exp imp Yi

Used when the implication operator is⇒.
Store the current value ofR in a new per-
manent variableYi. Continue execution
with the following instruction.

Yi := 〈RES, R〉;
P := P + instruction size(P);

add exp res Ai, Aj

Used when the implication operator is
⇒. Add a record for an (intuitionis-
tic) resource clause of the form∀~x.A or
∀~x.(G−◦A) as a new entry at the top of
the resource table,RES. Behaves the same
as add res , except that thelevel and
deadline fields are set to zero. Continue
execution with the following instruction.

RES[R].level := 0;
RES[R].deadline := 0;
RES[R].out_of_scope := false;
RES[R].head := Ai;
RES[R].body := undef ;
RES[R].closure := Aj ;
RES[R].pred := register resource(Ai);
R := R + 1;
P := P + instruction size(P);

mid exp imp Yj , Yk

Used between the code that loads the re-
source and the code for the subgoal, when
the implication operator is⇒. Store the
current values ofR (the top of the resource
table) andT (>-flag) to the permanent vari-
ablesYj andYk, respectively. Set register
T to false. Continue execution with the fol-
lowing instruction.

Yj := 〈RES, R〉;
Yk := 〈TOP, T〉;
T := false;
P := P + instruction size(P);

end exp imp Yi, Yj , Yk

Used after the code for the subgoal, when
the implication operator is⇒. The added
resource entries need not be examined. Set
the out of scope flags of all records
from Yi to Yj − 1 to true (trailing so that
they may be reset on backtracking). Set
registerT to Yk ∨ T. Continue execution
with the following instruction.

〈RES, m〉 := Yi;
〈RES, n〉 := Yj ;
for r := m to n - 1 do

RES[r].out_of_scope := true;
TRAIL[TR] := 〈RES, m〉;
TR := TR + 1;
TRAIL[TR] := 〈RES, n〉;
TR := TR + 1;
〈TOP, flag〉 := Yk;
T := flag ∨ T;
P := P + instruction size(P);

A.1. THE LLPAM INSTRUCTIONS 79

WITH INSTRUCTIONS

begin with Yi

Used when the conjunction operator is&.
DecrementU so that we can tell which re-
sources are consumed in the left conjunct.
Store the current value ofT in a new per-
manent variableYi and set registerT to
false. Continue execution with the follow-
ing instruction.

U := U - 1;
Yi := 〈TOP, T〉;
T := false;
P := P + instruction size(P);

mid with Yj

Used between the code for the left and right
conjuncts when the conjunction operator is
&. Performchangepair. This marks all of
the resources that were used in the left con-
junct so that they can, and must, be used in
the right conjunct. IfT is true, then per-
form change so that resources that were
available but not explicitly used, but which
> can be thought of as having used, are
also available for use in the second con-
junct. IncrementL andU. Store the cur-
rent value of theT register to a new perma-
nent variableYj . Set theT register to false.
Continue execution with the following in-
struction.

changepair(U, 0, L+1 , L+1);
if T then

change(L, L+1);
L := L + 1;
U := U + 1;
Yj := 〈TOP, T〉;
T := false;
P := P + instruction size(P);

end with Yi, Yj

Used after the code for the right con-
junct when the conjunction operator is
&. Decrement registerL. If T is true,
then performchangepair (> was seen in
this conjunct, so we can set all the re-
sources that should have been consumed,
but weren’t, as though they were). Other-
wise, performconsumed to check whether
all the resources that should have been con-
sumed, were consumed. If this fails, back-
track. Otherwise, IfYj is true, then per-
form change (Those resources that were
made available to the second conjunct be-
cause the first conjunct included a>, but
weren’t used in the second conjunct either,
are put back to their original level). SetT
to Yi ∨ (Yj ∧ T). Continue execution with
the following instruction.

〈TOP, flag1〉 := Yi;
〈TOP, flag2〉 := Yj ;
L := L - 1;
if T then

changepair(L+1 , L+1 , U, 0)
else if ¬ consumed(L+1) then

backtrack;
if flag2 then

change(L+1 , L);
T := flag1 ∨ (flag2 ∧ T);
P := P + instruction size(P);

80 APPENDIX A. THE LLPAM AT A GLANCE

BANG INSTRUCTIONS

begin bang Yi

IncrementL. Store the value ofT in a new
permanent variableYi. Continue execution
with the following instruction.

L := L + 1;
Yi := 〈TOP, T〉;
P := P + instruction size(P);

end bang Yi

DecrementL. Set the value of the register
T from the variableYi. Continue execution
with the following instruction.

〈TOP, flag〉 := Yi;
L := L - 1;
T := flag;
P := P + instruction size(P);

TOP INSTRUCTION

top

Set the registerT to true. Continue execu-
tion with the following instruction.

T := true;
P := P + instruction size(P);

CLOSURE INSTRUCTIONS

put closure L, m, Ai

Set registerAi to a newCLO cell point-
ing to the current top of the heap. Push
L (code address) andm (the number of
free variables) on the heap. Set mode to
write . Continue execution with the fol-
lowing instruction. Theunify_value
(or unify_variable) instruction that
follows this instruction, pushes them ref-
erences to free variables on the heap.

Ai := 〈CLO, H〉;
HEAP[H] := L;
H := H + 1;
HEAP[H] := m;
H := H + 1;
mode := write;
P := P + instruction size(P);

execute closure Ai

Save the current choice pointB in B0. Set
the registerS to c+2 pointing to the top of
the references to free variables. Set mode
to read . Continue execution with instruc-
tion onHEAP[c] .

〈CLO, c〉 := Ai;
B0 := B;
S := c + 2;
mode := read;
P := HEAP[c];

A.1. THE LLPAM INSTRUCTIONS 81

RESOURCECONTROL INSTRUCTIONS

pickup resource f/n, Ai, L

Find an index of consumable resource with predicate symbolf/n from R1 andR2. Set that index to
Ai. Continue execution with the following instruction. If there are no consumable resources, jump to
the instruction labeledL.

found := false;
while (tag(R1) = LIS) ∧ (¬ found) do begin

〈RES, r〉 := car(R1); R1 := cdr(R1);
found := (RES[r].pred = @(f/n))

∧ (¬ RES[r].out_of_scope)
∧ (RES[r].level = 0 ∨ RES[r].level = L)

end;
while (tag(R2) = LIS) ∧ (¬ found) do begin

〈RES, r〉 := car(R2); R2 := cdr(R2);
found := (RES[r].pred = @(f/n))

∧ (¬ RES[r].out_of_scope)
∧ (RES[r].level = 0 ∨ RES[r].level = L)

end;
if found then Ai := 〈RES, r〉 else P := L;

if no resource L

Check whether there are any consumable resources inR1 andR2. If there are no consumable
resources, jump to the instruction labeledL.

found := false;
while (tag(R1) = LIS) ∧ (¬ found) do begin

〈RES, r〉 := car(R1);
found := (¬ RES[r].out_of_scope)

∧ (RES[r].level = 0 ∨ RES[r].level = L);
if found then break;
R1 := cdr(R1)

end;
while (tag(R2) = LIS) ∧ (¬ found) do begin

〈RES, r〉 := car(R2);
found := (¬ RES[r].out_of_scope)

∧ (RES[r].level = 0 ∨ RES[r].level = L);
if found then break;
R2 := cdr(R2)

end;
if R1 = [] then

begin R1 := R2; R2 := [] end;
if tag(R1) 6= LIS then

P := L
else

P := P + instruction size(P);

82 APPENDIX A. THE LLPAM AT A GLANCE

consume Ai, Aj

Mark the entryRES[Ai] as con-
sumed (setlevel to the current
value of U, anddeadline to 0).
Set Aj to the value ofclosure
field. Continue execution with the
following instruction.

〈RES, r〉 := Ai;
if RES[r].level 6= 0 then begin

changelevel(r, U);
changedeadline(r, 0)

end;
Aj := RES[r].closure;
P := P + instruction size(P);

CHOICE INSTRUCTIONS

try resource L

Allocate a new choice point frame
on the stack. Behaves the same
as try L, except thatR1 andR2
are also saved. Continue execu-
tion with the following instruction
labeledL.

newB := bottom of stack;
STACK[newB] := num of args;
n := STACK[newB];
for i := 1 to n do STACK[newB+i] := Ai;
STACK[newB+n+1] := E;
STACK[newB+n+2] := CP;
STACK[newB+n+3] := B;
STACK[newB+n+4] := P + instruction size(P);
STACK[newB+n+5] := TR;
STACK[newB+n+6] := H;
STACK[newB+n+7] := B0;
STACK[newB+n+8] := R;
STACK[newB+n+9] := L;
STACK[newB+n+10] := U;
STACK[newB+n+11] := T;
STACK[newB+n+12] := R1;
STACK[newB+n+13] := R2;
B := newB;
HB := H;
P := L;

restore resource

A.1. THE LLPAM INSTRUCTIONS 83

Having backtracked to the current
choice point, reset all the necessary
information from it. Continue ex-
ecution with the following instruc-
tion.

n := STACK[B];
for i := 1 to n do Ai := STACK[B+ i];
E := STACK[B+ n+1];
CP := STACK[B+n+2];
unwind trail(STACK[B+n+5] , TR);
TR := STACK[B+n+5];
H := STACK[B+ n+6];
R := STACK[B+ n+8];
L := STACK[B+ n+9];
U := STACK[B+ n+10];
T := STACK[B+ n+11];
R1 := STACK[B+ n+12];
R2 := STACK[B+ n+13];
P := P + instruction size(P);

retry resource else L

Update the next clause field toL.
Update theR1 and R2 fields in
the current choice point frame with
their current values. Continue ex-
ecution with the following instruc-
tion.

n := STACK[B];
STACK[B+n+4] := L;
STACK[B+n+12] := R1;
STACK[B+n+13] := R2;
HB := H;
P := P + instruction size(P);

trust resource L

Discard the current choice point
frame by resettingB to its prede-
cessor. Continue execution with the
following instruction labeledL.

n := STACK[B];
B := STACK[B+ n+3];
HB := STACK[B+STACK[B]+6];
P := L;

CONTROL INSTRUCTIONS

call P , N

Save the current choice point’s ad-
dressB in B0. Save the value of
current continuation inCP. If the
predicateP is defined, then per-
form lookup hash. This extracts
the list of indices of the possibly
consumable resource clauses in the
resource table by referring to the
hash and symbol tables. Set the
extracted lists toR1 and R2 (Set
[] if there are no consumable re-
sources). Continue execution with
the instruction labeled byP .

num of args := SYMBOL[@(P)].arity;
CP := P + instruction size(P);
B0 := B;
if SYMBOL[@(P)].codeaddr = undef then

backtrack;
if tag(SYMBOL[@(P)].res) 6= LIS then

begin R1 := []; R2 := [] end
else

lookup hash(@(P));
P := SYMBOL[@(P)].codeaddr;

84 APPENDIX A. THE LLPAM AT A GLANCE

execute P

Save the current choice point’s ad-
dress B in B0. If the predi-
cate P is defined, then perform
lookup hash. This extracts the
list of indices of the possibly con-
sumable resource clauses in the re-
source table by referring to the hash
and symbol tables. Set the extracted
lists to R1 and R2 (Set [] if there
are no consumable resources). Con-
tinue execution with the instruction
labeled byP .

num of args := SYMBOL[@(P)].arity;
B0 := B;
if SYMBOL[@(P)].codeaddr = undef then

backtrack;
if tag(SYMBOL[@(P)].res) 6= LIS then

begin R1 := []; R2 := [] end
else

lookup hash(@(P));
P := SYMBOL[@(P)].codeaddr;

A.2 The LLPAM Auxiliary Procedures and Functions

We summarize auxiliary operations used in the LLPAM instructions. We use the notation&(x) to stand for
the address ofx.

Thederef function

function deref(a: address) : address;
begin

〈tag, val〉 := STORE[a];
if (tag = REF) ∧ (val 6= a) then

return deref(val)
else

return a
end {deref};

Thebacktrack procedure

procedure backtrack;
begin

if B = bottom of stack then
exit program

else begin
B0 := STACK[B+STACK[B]+7];
P := STACK[B+STACK[B]+4]

end
end {backtrack};

Theregister resource function

Registers the current value ofR (the index of added resource clause) to the symbol and hash tables to
speed access to the resources in the resource table.

A.2. THE LLPAM AUXILIARY PROCEDURES AND FUNCTIONS 85

function register resource(a: address): Integer;
begin

〈tag, val〉 := STORE[a];
case tag of

CON : idx := @(val);
STR : idx := @(STORE[val]);

end;
if SYMBOL[idx].res = undef then SYMBOL[idx].res := [];
HEAP[H] := 〈RES, R〉;
HEAP[H+1] := SYMBOL[idx].res;
SYMBOL[idx].res := 〈LIS, H 〉;
H := H + 2;
TRAIL[TR] := 〈LIS, &(SYMBOL[idx].res)〉;
TR := TR + 1;
if SYMBOL[idx].res2 = undef then SYMBOL[idx].res2 := [];
h := hash(a, hashsize);
if h = undef then begin

HEAP[H] := 〈RES, R〉;
HEAP[H+1] := SYMBOL[idx].res2;
SYMBOL[idx].res2 := 〈LIS, H 〉;
H := H + 2;
TRAIL[TR] := 〈LIS, &(SYMBOL[idx].res2)〉;
TR := TR + 1;

end
else begin

HEAP[H] := 〈RES, R〉;
HEAP[H+1] := HASH[h];
HASH[h] := 〈LIS, H 〉;
H := H + 2;
TRAIL[TR] := 〈LIS, &(HASH[h])〉;
TR := TR + 1;

end;
return idx

end {register resource};

Thehash andhash one level functions

In current implementation, the entries of the resource table are hashed on the predicate symbol/arity
and the first argument.

function hash(a: address, hashsize:Integer): Integer;
begin

case STORE[a] of
〈REF, _ 〉: return undef ;
〈INT, _ 〉, 〈CON, _〉: return (hash one level(a) mod hashsize);
〈STR, addr〉: arg1 := STORE[addr+1];
〈LIS, addr〉: arg1 := STORE[addr];

end;
arg1 := deref(arg1);
〈tag, val〉 := arg1;

86 APPENDIX A. THE LLPAM AT A GLANCE

if tag = REF then return undef ;
h := hash one level(a);
h := add hash(h, hash one level(arg1));
return (h mod hashsize)

end {hash};

function hash one level(a: address): Integer;
begin

case STORE[a] of
〈REF, _ 〉: return undef ;
〈INT, i〉: return i;
〈CON, c〉: return SYMBOL[@(c)].hash_value;
〈STR, addr〉: return SYMBOL[@(STORE[addr])].hash_value;
〈LIS, _ 〉: return SYMBOL[@(.)].hash_value;

end
end {hash one level};

Thechangelevel procedure

procedure changelevel(i, `: Integer);
begin

if RES[i].level 6= ` then begin
TRAIL[TR] := 〈TOP, true〉;
TR := TR + 1;
TRAIL[TR] := 〈RES, i〉;
TR := TR + 1;
TRAIL[TR] := 〈INT, RES[i].level 〉;
TR := TR + 1;
for k := RES[i].s1 to (RES[i].s2) - 1 do

RES[k].level := `;
end

end {changelevel};

Thechangedeadline procedure

procedure changedeadline(i, `: Integer);
begin

if RES[i].deadline 6= ` then begin
TRAIL[TR] := 〈TOP, false〉;
TR := TR + 1;
TRAIL[TR] := 〈RES, i〉;
TR := TR + 1;
TRAIL[TR] := 〈INT, RES[i].deadline 〉;
TR := TR + 1;
for k := RES[i].s1 to (RES[i].s2) - 1 do

RES[k].deadline := `;
end

end {changedeadline};

A.2. THE LLPAM AUXILIARY PROCEDURES AND FUNCTIONS 87

Thechangepair procedure

procedure changepair(`1, d1, `2, d2: Integer);
begin

p := RLIST;
while tag(p) = LIS do begin

〈RES, i〉 := car(p);
found := (¬ RES[i].out_of_scope)

∧ (RES[i].level = `1)
∧ (RES[i].deadline = d1);

if found then begin
changelevel(i, `2);
changedeadline(i, d2)

end;
p := cdr(p)

end
end {changepair};

Thechange procedure

procedure change(`1, `2: Integer);
begin

p := RLIST;
while tag(p) = LIS do begin

〈RES, i〉 := car(p);
found := (¬ RES[i].out_of_scope) ∧ (RES[i].level = `1);
if found then

changelevel(i, `2);
p := cdr(p)

end
end {change};

Theconsumed function

function consumed(`: Integer): Boolean;
begin

p := RLIST;
while tag(p) = LIS do begin

〈RES, i〉 := car(p);
not consumed := (¬ RES[i].out_of_scope) ∧ (RES[i].level = `);
if not consumed then

return false;
p := cdr(p)

end;
return true

end {consumed};

Thelookup hash procedure

88 APPENDIX A. THE LLPAM AT A GLANCE

procedure lookup hash(s: Integer);
begin

if num of args = 0 then begin
h := (SYMBOL[s].hash_value mod hashsize);
R1 := HASH[h];
R2 := []

end
else begin

addr := deref(A1);
〈tag, _ 〉 := STORE[addr];
if tag = REF then begin

R1 := SYMBOL[s].res;
R2 := []

end
else begin

h := SYMBOL[s].hash_value;
h := (add hash(h, hash one level(addr)) mod hashsize);
R1 := HASH[h];
R2 := SYMBOL[s].res2

end
end

end {lookup hash};

Theunwind trail procedure

procedure unwind trail(a1, a2: address);
begin

p := a2 - 1;
while p >= a1 do begin

case TRAIL[p] of
〈REF, _ 〉: begin

STORE[TRAIL[p]] := 〈REF, TRAIL[p] 〉;
p := p - 1 end;

〈CON, _〉: begin
RLIST := cdr(RLIST);
p := p - 1 end;

〈INT, n〉: begin {undo changelevel and changedeadline}
p := p - 1;
〈RES, m〉 := TRAIL[p];
p := p - 1;
〈TOP, flag〉 := TRAIL[p];
if flag then

for k := RES[m].s1 to RES[m].s2 - 1 do
RES[k].level := n

else
for k := RES[m].s1 to RES[m].s2 - 1 do

RES[k].deadline := n;
p := p - 1
end;

〈LIS, a〉: begin

A.2. THE LLPAM AUXILIARY PROCEDURES AND FUNCTIONS 89

STORE[a] := cdr(STORE[a]);
p := p - 1
end;

〈RES, m〉: begin {undo end imp and end exp imp}
p := p - 1;
〈RES, k〉 := TRAIL[p];
for ` := k to m - 1 do

RES[`].out_of_scope := false;
p := p - 1
end;

end
end

end {unwind trail};

90 APPENDIX A. THE LLPAM AT A GLANCE

A.3 The LLPAM Memory Layout and Registers

���������
	���

�������������������

� ����

 "!#��$&%

' 	���(�)

*
+-,

P

CP

S

HB

H

B0

B

E

TR

n .�/�0 132

465�7 0 4�8�9:7 0 ;�1

8 ;=<>0 / 7 ;�? 8 ;�1

A

An

CE

CP

B

BP

TR

H

B0

A1

R

L

U

T

R1

R2

@�A 1B.�/�C>D�? 8 ;�1

;�1 5 .�/�C>D�? 8 ;�1
4�7 ;�13E 8 ;�<>0 / 7 ;�? 8 ;�1
4�7 ;�13E 4�7�F:8
9 / 8 <>0 7 D A 4�5�7 0 4�8�9:7 0 ;�1
; 8�G 1 4�H .�D A 8

13/�.�0 HI9I7 0 ;�1 8 /
5�8 . 9J9I7 0 ;�1 8 /
4 D�1 9:7 0 ;�1 8 /
1 7�9J7�K / 8 A 7 D�/ 4�8 13.�L H 8
4�7 ; A D�? 9 130 7 ; H 8 < 8�H
4�7 ; A D�? 9 130 7 ;"?".�M 8 /
1 7�9JKNH .�C

CE 4�7 ;�13E 8 ;�<>0 / 7 ;�? 8 ;�1
A

Yn

CP 4�7 ;�13E 4�7�F:8

;�1 5"H 7�4 . H <>.�/�0 .�L H 8

Y1
@�A 1 H 7�4 . H <�.�/�0 .�L H 8

O�PRQ �TS��VU Q ��WR�YXZ��[�\��B�

]�WR^=�T� Q WR\�W_�:�YXZ��[�\��B�

/ 8 A 7 D�/ 4�8�H 0 A 1
/ 8 A 7 D�/ 4�8�H 0 A 1

A.3. THE LLPAM MEMORY LAYOUT AND REGISTERS 91

����������	

�����������������

����� ���! #" �

$&%��('

R

print_name

Aarity

��)�+*),-��.��0/21-����3�4(��5�67�8�

9 3�67:�*�;8/21-����3�4(��5�67�8�

<>=@?�A�B�CED�F�GIH�=

HJD�<KB�L�H�M�D#D�F�GIH�=

hash_value

codeaddr

res

res2

s1

s2

level

deadline

out_of_scope

head

body

closure

pred

N F�GID�O@D�H
N F�GID�O@D�H

N F�GID�O@D�H

PRQ�S H

N F�GID�O@D�H

S�T)T H�D�<><

H�D�<>B�L�H�M�D#C U <>G
H�D�<>B�L�H�M�D#C U <>G

N F�GID�O@D�H
N F�GID�O@D�H
V B�B�C D S F

GID�H�?
GID�H�?
M�C B�<>L�H�D
N F�GID�O@D�H

Bibliography

[1] Hassan Äıt-Kaci. Warren’s Abstract Machine. MIT Press, 1991.

[2] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic.Journal of Logic and
Computation, 2(3):297–347, 1992.

[3] Jean-Marc Andreoli and Remo Pareschi. Linear objects: Logical processes with built-in inheritance.
New Generation Computing, 9:445–473, 1991.

[4] Mutsunori Banbara, Kyoung-Sun Kang, Takaharu Hirai, and Naoyuki Tamura. Logic programming in
a fragment of intuitionistic temporal linear logic. In Philippe Codognet, editor,Proceedings of the 17th
International Conference on Logic Programming (ICLP’01), pages 315–330. Springer-Verlag LNCS
2237, November 2001.

[5] Mutsunori Banbara, Kyoung-Sun Kang, and Naoyuki Tamura. Java implementation of a linear logic
programming language.Information Processing Society of Japan Transactions on Programming,
40(SIG 10 (PRO 5)):1–16, December 1999. (in Japanese).

[6] Mutsunori Banbara, Kyoung-Sun Kang, and Naoyuki Tamura. An abstract machine for a compiler sys-
tem of a linear logic programming language.Computer Software, Japan Society for Software Science
and Technology, 18(1):39–60, 2001. (in Japanese).

[7] Mutsunori Banbara, Kyoung-Sun Kang, and Naoyuki Tamura. An abstract machine for a compiler
system of a temporal linear logic programming language.Information Processing Society of Japan
Transactions on Programming, 42(SIG 11 (PRO 12)):52–66, November 2001. (in Japanese).

[8] Mutsunori Banbara and Naoyuki Tamura. Java implementation of a linear logic programming language.
In Proceedings of the 10th Exhibition and Symposium on Industrial Applications of Prolog, pages 56–
63, October 1997.

[9] Mutsunori Banbara and Naoyuki Tamura. Compiling resources in a linear logic programming lan-
guage. In Konstantinos Sagonas, editor,Proceedings of the JICSLP’98 Post Conference Workshop
7 on Implementation Technologies for Programming Languages based on Logic, pages 32–45, June
1998.

[10] Mutsunori Banbara and Naoyuki Tamura. Translating a linear logic programming language into Java.
In M. Carro, I .Dutra, et al., editors,Proceedings of the ICLP’99 Workshop on Parallelism and Imple-
mentation Technology for (Constraint) Logic Programming Languages, pages 19–39, December 1999.

[11] Ivan Bratko.Prolog programming for artificial intelligence. Addison-Wesley, 1986.

[12] Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and Andre Scedrov. A meta-
notation for protocol analysis. In R. Gorrieri, editor,Proceedings of the 12th IEEE Computer Security
Foundations Workshop — CSFW’99, pages 55–69, Mordano, Italy, 28–30 June 1999. IEEE Computer
Society Press.

93

94 BIBLIOGRAPHY

[13] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource management for linear
logic proof search. In R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors,Proceedings of the
Fifth International Workshop on Extensions of Logic Programming — ELP’96, pages 67–81, Leipzig,
Germany, 28–30 March 1996. Springer-Verlag LNAI 1050.

[14] Iliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke, editor,Proceedings
of the Eleventh Annual Symposium on Logic in Computer Science — LICS’96, pages 264–275, New
Brunswick, New Jersey, 27–30 July 1996. IEEE Computer Society Press. This work also appeared as
Preprint 1834 of the Department of Mathematics of Technical University of Darmstadt, Germany.

[15] Jawahar Chirimar.Proof Theoretic approach to specification language. PhD thesis, University of
Pennsylvania, February 1995.

[16] Philippe Codognet and Daniel Diaz.WAMCC: Compiling Prolog to C. In Leon Sterling, editor,Pro-
ceedings of International Conference on Logic Programming, pages 317–331. The MIT Press, Jun
1995.

[17] Jon Cook. P#: Using prolog within the .net framework. Technical report, University of Edinburgh, to
appear.

[18] Bart Demoen and Paul Tarau. jProlog home page.
http://www.cs.kuleuven.ac.be/˜bmd/PrologInJava/ .

[19] Jean-Yves Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.

[20] James Harland and David Pym. A uniform proof-theoretic investigation of linear logic programming.
Journal of Logic and Computation, 4(2):175–207, April 1994.

[21] James Harland, David Pym, and Michael Winikoff. Programming in Lygon: An overview. In M. Wirs-
ing and M. Nivat, editors,Algebraic Methodology and Software Technology, pages 391–405, Munich,
Germany, July 1996. Springer-Verlag LNCS 1101.

[22] James Harland and Michael Winikoff. Implementing the linear logic programming language Lygon. In
J. Lloyd, editor,Proceedings of the 1995 International Logic Programming Symposium, pages 66–80,
Portland, Oregon, 1995.

[23] Takaharu Hirai. An application of temporal linear logic to Timed Petri Nets. InProceedings of the
Petri Nets’99 Workshop on Applications of Petri Nets to Intelligent System Development, pages 2–13,
June 1999.

[24] Joshua S. Hodas. Specifying filler-gap dependency parsers in a linear-logic programming language. In
K. Apt, editor,Proceedings of the Joint International Conference and Symposium on Logic Program-
ming, pages 622–636, Washington, DC, November 1992.

[25] Joshua S. Hodas.Logic Programming in Intuitionistic Linear Logic: Theory, Design and Implemen-
tation. PhD thesis, University of Pennsylvania, Department of Computer and Information Science,
1994.

[26] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear logic.
Information and Computation, 110(2):327–365, 1994. Extended abstract in the Proceedings of the
Sixth Annual Symposium on Logic in Computer Science, Amsterdam, July 15–18, 1991.

[27] Joshua S. Hodas and Jeffrey Polakow. Forum as a logic programming language: Preliminary results
and observations. In M. Okada, editor,Proceedings of the Linear Logic ’96 Meeting, volume 3, Tokyo,
Japan, 1996. Elsevier Electronic Notes in Theoretical Computer Science.

BIBLIOGRAPHY 95

[28] Joshua S. Hodas and Naoyuki Tamura. Lollicop - a linear logic implementation of a lean connection-
method theorem prover for first-order classical logic. In Rajeev Goré, Alexander Leitsch, and Tobias
Nipkow, editors,Proceedings of First International Joint Conference on Automated Reasoning (IJ-
CAR’01), pages 670–684. Springer-Verlag LNCS 2083, 2001.

[29] Joshua S. Hodas, Kevin Watkins, Naoyuki Tamura, and Kyoung-Sun Kang. Efficient implementation
of a linear logic programming language. In Joxan Jaffar, editor,Proceedings of the 1998 Joint Interna-
tional Conference and Symposium on Logic Programming, pages 145–159. MIT Press, June 1998.

[30] Kyoung-Sun Kang, Mutsunori Banbara, and Naoyuki Tamura. Efficient resource management model
for linear logic programming languages.Computer Software, Japan Society for Software Science and
Technology, 18(0):138–154, 2001. (in Japanese).

[31] Max I. Kanovich and Takayasu Ito. Temporal linear logic specifications for concurrent processes
(extended abstract). InProceedings of 12th Annual IEEE Symposium on Logic in Computer Science
(LICS’97), pages 48–57, 1997.

[32] Naoki Kobayashi and Akinori Yonezawa. ACL — A concurrent linear logic programming paradigm.
In D. Miller, editor, Proceedings of the 1993 International Logic Programming Symposium, pages
279–294, Vancouver, Canada, October 1993. MIT Press.

[33] Naoki Kobayashi and Akinori Yonezawa. Asynchronous communication model based on linear logic.
Formal Aspects of Computing, 3:279–294, 1994. Short version appeared in Joint International Confer-
ence and Symposium on Logic Programming, Washington, DC, November 1992, Workshop on Linear
Logic and Logic Programming.

[34] Argonne National Laboratory. Otter and MACE on TPTP v2.3.0. Web page at
http://www-unix.msc.anl.gov/AR/otter/tptp230.html , May 2000.

[35] Pablo Ĺopez and Ernesto Pimentel. A lazy splitting system for forum. In M.Falaschi, M.Navarro, and
A.Policriti, editors,Proceedings of the Joint Conference on Declarative Programming, pages 247–258,
1997.

[36] W. MacCune.OTTER 3.0 reference manual and guide. Technical Report ANL-94/6, Argonne National
Laboratory, 1994.

[37] M. Okada M.I. Kanovich and A. Scedrov. Specifying real-time finite-state systems in linear logic. In
Frank S. de Boer and Maurizio Gabbrielli, editors,Electronic Notes in Theoretical Computer Science,
volume 16. Elsevier Science Publishers, 2000.

[38] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic pro-
gramming.Annals of Pure and Applied Logic, 51:125–157, 1991.

[39] Dale Miller. An overview of linear logic programming. In Thomas Ehrhard, Jean-Yves Girard, Paul
Ruet, and Phil Scott, editors,Submitted as a chapter for a book on linear logic. Cambridge University
Press.

[40] Dale Miller. A survey of linear logic programming.Computational Logic: The Newsletter of the
European Network in Computational Logic, 2(2):63–67, December 1995.

[41] Dale Miller. A multiple-conclusion specification logic.Theoretical Computer Science, 165(1):201–
232, 1996.

96 BIBLIOGRAPHY

[42] Gopalan Nadathur. The metalanguageλprolog and its implementation. In Herbert Kuchen and
Kazunori Ueda, editors,Proceedings of the Fifth International Symposium on Functional and Logic
Programming (FLOPS’01), pages 1–20. Springer-Verlag LNCS 2024, March 2001.

[43] Gopalan Nadathur, Bharat Jayaraman, and Keehang Kwon. Scoping constructs in logic programming:
Implementation problems and their solution.Journal of Logic Programming, 25(2):119–161, Nov.
1995.

[44] Gopalan Nadathur and Dale Miller. An overview ofλProlog. In Robert A. Kowalski and Kenneth A.
Bowen, editors,Logic Programming: Proceedings of the Fifth International Conference and Sympo-
sium, Volume 1, pages 810–827, Cambridge, Massachusetts, August 1988. MIT Press.

[45] Gopalan Nadathur and Guanshan Tong. Realizing modularity inλprolog. Journal of Functional and
Logic Programming, 9, April 1999.

[46] J. Otten and W. Bibel. leanCoP: lean connection-based theorem proving. InProceedings
of the Third International Workshop on First-Order Theorem Proving, pages 152–157. Univer-
sity of Koblenz, 2000. Electronically available, along with submitted journal-length version, at
http://www.intellektik.informatik.tu-darmstadt.de/˜jeotten/leanCoP/ .

[47] Mutsunori Banbara Eiji Sugiyama, Kyoung-Sun Kang, and Naoyuki Tamura. Towards a logic pro-
gramming based on linear logic. InProceedings of the Symposium on Industrial Applications of Prolog
1995, pages 65–72, October 1995. (in Japanese).

[48] G. Sutcliffe and C. Suttner. The TPTP problem library—CNF release v1.2.1.Journal of Automated
Reasoning, 21:177–203, 1998.

[49] Naoyuki Tamura and Yukio Kaneda. Extension of WAM for a linear logic programming language.
In T. Ida, A. Ohori, and M. Takeichi, editors,Second Fuji International Workshop on Functional and
Logic Programming, pages 33–50. World Scientific, November 1996.

[50] Makoto Tanabe. Timed petri nets and temporal linear logic. InLecture Notes in Computer Science
1248: Proceedings of Application and Theory of Petri Nets, pages 156–174, June 1997.

[51] P. Tarau, V. Dahl, and A. Fall. Backtrackable State with Linear Assumptions, Continuations and Hidden
Accumulator Grammars. InILPS’95 Workshop on Visions for the Future of Logic Programming, Nov.
1995.

[52] Paul Tarau. BinProlog 5.40 User Guide. Technical Report 97-1, Département d’Informatique,
Universit́e de Moncton, Apr. 1997. Available fromhttp://clement.info.umoncton.ca/
BinProlog .

[53] Paul Tarau. Jinni: a Lightweight Java-based Logic Engine for Internet Programming. In Kostis Sago-
nas, editor,Proceedings of JICSLP’98 Implementation of LP languages Workshop, Manchester, U.K.,
jun 1998. invited talk.

[54] Paul Tarau and Michel Boyer. Elementary Logic Programs. In P. Deransart and J. Maluszyński,
editors,Proceedings of Programming Language Implementation and Logic Programming, number 456
in Lecture Notes in Computer Science, pages 159–173. Springer, August 1990.

[55] Anne S. Troelstra.Lectures on Linear Logic. CSLI Lecture Notes 29, Center for the Study of Language
and Information, Stanford, California, 1992.

[56] David H. D. Warren. An abstract Prolog instruction set. Technical Report Technical Note 309, SRI
International, Menlo Park, CA, Oct. 1983.

BIBLIOGRAPHY 97

[57] Michael Winikoff. W-Prolog home page.
http://goanna.cs.rmit.edu.au/˜winikoff/wp/ .

[58] Eric Wohlstadter, Stoney Jackson, and Premkumar T. Devanbu. Generating wrappers for command line
programs: The cal-aggie wrap-o-matic project. InInternational Conference on Software Engineering,
pages 243–252, 2001.

