<RNEL

;f Kobe University Repository : Kernel

R
S
4oge

PDF issue: 2024-05-25

Design and implementation of linear logic
programming languages

&R, BER

(Degree)
Bt (%)

(Date of Degree)
2002-09-20

(Date of Publication)
2007-08-09

(Resource Type)
doctoral thesis

(Report Number)
22637

(URL)
https://hdl. handle. net/20.500. 14094,/D2002637

X YAVTFUYVIIHRRZOEMBRRTY, BER - FTEFEASE2ELET, ZFEEITROOLNTWREEANT. BNICTFIALCEI W,

\j].\i\'l:lihl'['\'
AN

Doctoral Dissertation

Design and Implementation of Linear Logic
Programming Languages

Mutsunori Banbara

September 2002

The Graduate School of Science and Technology
Kobe University, Japan

Supervisor: Prof. Yuzuru Kakuda

Co-supervisor: Prof. Yukio Kaneda

Co-supervisor: Prof. Toshiyasu Arai
Co-supervisor: Assoc. Prof. Naoyuki Tamura
Department of Computer and Systems Engineering
Faculty of Engineering

Kobe University

1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501 Japan

Copyright(© 2002 by Mutsunori Banbara

to my wife, Megumi

Acknowledgments

| would like to thank Prof. Naoyuki Tamura for his advice, help, patience, and understanding. | would

also like to thank Prof. Yuzuru Kakuda who have encourage me to make a great effort since | was an
undergraduate student at Kobe University. | would like to thank Prof. Yukio Kaneda and Prof. Toshiyasu
Arai for their advice.

| would like to thank Prof. Kenichi Aragane, Masaru Teranishi, and Naoshi Kanazawa at Nara National
College of Technology for their kindness.

| would like to thank Eiji Sugiyama and Kyoung-Sun Kang who had spent pleasant days together at the
Graduate School of Science and Technology of Kobe University.

| would like to thank Kenichiro Shii who attracted me by his remarkable programming sense.

I would like to thank Makoto Kikuchi for his great deal of advice, Christopher Barney for his English support,
and CS32 laboratory.

| thank my parents Yoshiyuki and Yuko, my younger sister Yoshiko, and my wife Megumi. | could not finish
this dissertation without their emotional support. In particular, | thank my grandfather Masayoshi in heaven,
who said me you must give up trying to get a Ph.D.

Finally, I would also like to thank my friends for sharing interesting times.

Mutsunori Banbara
Kobe, Japan
September, 2002

Abstract

Linear logic was introduced by J.-Y.Girard in 1987 as a resource-conscious refinement of classical logic.
Linear logic has found many applications in computer science because it allows elegant solutions to many
problems that are difficult to represent in traditional logics. The expressive power of linear logic is shown
by some natural encoding of computational models, such as Petri nets, counter machinesabmdus.

One key topic of linear logic was the development of nhew programming languages. A number of logic
programming languages based on linear logic have been proposed: LO, LinLog, Lolli, ACL, Lygon, Forum,
and Linear LF. These languages suggest a direction to extend logic programming to be more expressive and
more efficient.

In spite of a great deal of theoretical works, there have been very few practical tools for developing
resource-conscious applications based on linear logic. It is therefore very important to develop efficient
compiler system for linear logic programming languages. However, the implementation of such languages
meets many difficulties not arise in traditional logic programming languages. In particular effesentce
managemens a serious problem for the implementors.

In this dissertation, we propose new compilation methods to develop efficient implementation for linear
logic programming languages. Main contributions are summarized as follows:

1. A compiler system for a linear logic programming language:
Compiling resources is an important issue on implementation for linear logic programming languages.
We present a method for compiling resources and provide an extension of the WAM for a linear logic
programming language. In performance, our compiler provides 40% speedup for a theorem proving
application of classical logic, relative to its Prolog implementation.

2. Atranslator system from a linear logic programming language into Java:
There has been no 100% pure Java implementation for linear logic programming languages so far. We
present a method for translating a linear logic programming language into Java. In performance, our
translator is 1.7 times faster for a set of classical Prolog benchmarks, than an existing Prolog-to-Java
translator jProlog.

3. A compiler system for a temporal linear logic programming language:
We present theory, language design, an abstract machine and its instruction set for compiler system of
a temporal linear logic programming language. In addition to resource sensitive features, it is possible
to express time-dependent properties of resources, in particular, the precise order of the moments when
some resources are consumed.

Our compiler has already applied to a theorem proving application of first-order classical logic, in which
linear logic operators were elegantly used for specifying the problems. Furthermore it gives significantly
nice performance relative to its famous Prolog implementation. Our results should be equally well applied
to other resource-conscious applications based on linear logic.

Vii

Contents

Acknowledgments
Abstract Vi
1 Introduction

2 The Lolli Language and its Resource Management Models

2.1 ABriefiIntroductionto LinearLogic e
2.2 Uniform Proofs in Intuitionistic Linear Logic
2.3 Resource ManagementModels
2.3.1 TheZ/OImplementationModel
2.3.2 TheRM; ImplementationModel
2.3.3 TheZOL Implementation Model
2.3.4 TheLRM ImplementationModel
2.4 The Syntaxofthe LolliLanguage
3 A Collection of Lolli Programming Examples 19
3.1 AnBriefIntroduction to Lolli Programming
3.1.1 Resource Addition
3.1.2 Resource CoNSUMPpiono e
3.2 Using Free Variablesin Resources
3.2.1 ReversingalList
3.2.2 Filteringalist e
3.3 Using Resources as Limited-UseData,
3.3.1 N-QUEENS e e
3.3.2 KnightTour
3.3.3 Kirkman’s School Girl Problem oo
3.3.4 CryptarithmeticPuzzle
3.4 Using Resources as Limited-Use Clauses,
341 PathFinding
3.4.2 Tiling BoardwithDominoes
3.5 A Lean Connection Theorem Prover for First-Order Classical Logic
4 Towards a Efficient Implementation for a Linear Logic Programming Language 29
4.1 Implementation Design e
4.2 Compiling Resource Formulas
4.3 LLP: A Compiled Linear Logic Programming Language
4.3.1 TheDefinitionof LLP
4.3.2 Pre-Compilationof LLP

5 The LLPAM Abstract Machine

51 NewWRegiSters o 33
52 NewDataAreas e e e e e 34
521 TheResourceTable. 34
5.22 TheHashand SymbolTables 35
5.3 LLPAMCode Generation e 35
531 CodefolGi ®@ Gy . . o o o i e e e 35
532 CodefolR—oG e e 36
533 CodefolR=G e 36
5.3.4 Code for Resource Addition 37
535 CodefolGi & G . . . v o i e e e 38
53.6 CodefoltG e 40
5.3.7 Codefofl e 40
5.3.8 CodeforAtomicGoals 40
5.4 Backtracking 43
5.5 Optimizingthe Design e 43
5.5.1 Optimizing Resource Selection. 43
5.5.2 Successive Addition of Linear Resources 44
5.6 LLPAM Code Example e 45
5.7 Performance Evaluation of LLP Compiler System 46
5.8 Performance Evaluation of Hodas and TamuadlgCoP 48
6 Translating a Linear Logic Programming Language into Java 51
6.1 Demoen and Tarau’s jProlog Approach, 51
6.2 TheLLPjApproach e e e 53
6.3 The Prolog C& Approach 54
6.3.1 Translating PrologintoJava 54
6.3.2 Implementingssert andretract, 56
6.3.3 TranslatingLLP intoJava 56
6.4 Performance Evaluation. e 58
7 TLLP: A Temporal Linear Logic Programming Language 59
7.1 Intuitionistic Temporal LinearLogic 59
7.2 Language Design e 60
7.3 TLLP Programming Examples 63
7.3.1 PathFinding 63
7.3.2 ConwayslLifeGame 63
7.3.3 TimedPetriNet. e 64
7.4 Resource ManagementModel 64
7.5 Level-Based Resource ManagementModel 66
7.6 Implementation Design e e 68
7.6.1 TLLP Interpreter e e 68
7.6.2 Translating TLLPintoLLP 68
7.6.3 TLLPAM: An Extension of LLPAM for the TLLP language 70
7.7 Performance Evaluation. 71
8 Conclusion and Future Work 73

A The LLPAM at a Glance
A.1 The LLPAM Instructions

A.3 The LLPAM Memory Layout and Registers

Xi

A.2 The LLPAM Auxiliary Procedures and Functions

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2

51
5.2
53
54
5.5
5.6
5.7
5.8
59

6.1

The Proof SysterbL for Intuitionistic Linear Logic 6
ALinear Logic EncodingofaPetriNet 7
Proof Search for the Reachability of a Petri Netin Figure2.2
The Proof Systerd for the Lolli Language 8
Backchaining for the Proof Systefi 8
TheZ /O System for Propositional FragmentofLolli 11
TheR M3 System for Propositional FragmentoflLolli 12
Residuation Rules for the Proof Syst&mW1; 12
TheZOL System for Propositional FragmentofLolli 14
TheLRM System for Propositional FragmentofLolli 16
A Prolog Program for Reversinga List 21
A Lolli Program for Reversingalist 21
A Lolli Program for Filteringa List 21
A Lolli Program for N-Queens 22
A Prolog Program for N-Queens in Prolog Programming for Artificial Intelligence [11] . . . 22
Resourcesfor8-Queens e 22
A Lolli Program for Knight Tour 23
A Lolli Program for Kirkman’s School Girl Problem 24
A Lolli Program for Cryptarithmetic Puzzle 25
A LolliProgram for PathFinding 25
A Lolli Program for Tiling Board with Dominoes 26
TheleanCoP Theorem Prover of Ottenand Bibel 27
ThelolliCoP Theorem Prover of Hodasand Tamura 27
AZ/O Model-Based Lolli InterpreterinProlog 30
Closure Structure o e 31
Resource Table After Adding the Linear Resougé) &(¢(X) —p(X))) @ VYr(Y). .. 35
Symbol Table After Adding the Resourgg1) &(¢(X) < p(X))) @VY.r(Y) 35
Code Generated for the Gaéh(1) &(¢(X) o p(X))) @VYr(Y)) o G. 39
Thecall Instructionofthe LLPAM 41
Naive Code Generation foran AtomicGegh 42
Code Generated foran Atomic Geally 42
Optimized Code Generation for an Atomic Gpgh 44
Optimized Code Generated for the G@al(1) &(¢(X) < p(X))) @ VY.r(Y)) o G. 45
LLPAM Code Generated for the Predicatmose and the Resourdest in Figure3.3. . 46
Term Structure of Prolog Gaf 54

6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

An Implementation ofissert andretract inPrologCaé 56

The Proof SystenTLL for Intuitionistic Temporal Linear Logic 60

T L: A Proof System for the Connectives &, —,=,V,1,!,®,9,3,O0,andO. 61
Backchaining for the Proof System’ 62
ATLLP Example of Conway'sLifeGame, 64
ATLLP example of Timed PetriNet 65
ZOT: AnZ/O Model for Propositional TLLP 66
ZOTL: A Level-BasedZ /O Model for Propositional TLLP 67
AZOT Model-Based TLLP InterpreterinProlog 69
Translating a TLLP Example of Timed Petri NetintoLLP 70

Xiv

List of Tables

2.1

51
5.2
53
54
55
5.6
5.7

6.1

7.1

The Mapping Between Linear Logic Operators and LolliSyntax 17
Performance Results 8f-Queens e 47
Performance Results of Knight Todr 5) 47
Performance Results of Tiling Board with Dominoes 48
Performance Results of Prolog Benchmarks 48
Overall Performance @TTER, leanCoP, andlolliCoP 49
Performance dDTTER leanCoP andlolliCoP Classified by Problem Rating 49
Comparison 0OTTER, leanCoP, andlolliCoP 50
Comparison for Prolog Cafvs jPrologvs SWI-Prolog 58
Performance Results of Timed PetriNet 71

XV

Chapter 1

Introduction

In this dissertation, we propose new compilation methods to develop efficient implementation for linear logic
programming languages. Main contributions are summarized as follows:

1. A compiler system for a linear logic programming language:
We present an abstract machine and its instruction set for compiler system of a linear logic program-
ming language.

2. Atranslator system from a linear logic programming language into Java:
We present a method for translating a linear logic programming language into Java.

3. A compiler system for a temporal linear logic programming language:
We present theory, language design, an abstract machine and its instruction set for compiler system of
a temporal linear logic programming language.

Linear logic [19] was introduced by J.-Y.Girard in 1987 as a resource-conscious refinement of classical
logic. Linear logic has found many applications in computer science because it allows elegant solutions
to many problems that are difficult to represent in traditional logics. The expressive power of linear logic
is shown by some natural encoding of computational models, such as Petri nets, counter machines, and
calculus. In recent years, linear logic have been applied to operational semantics of security protocols [12]
and specifying read-time finite-state systems [37].

One key topic of linear logic was the development of new programming languages. A number of logic
programming languages based on linear logic have been proposed: LO [3], LinLog [2], Lolli [25, 26], ACL
[32, 33], Lygon [20, 21], Forum [27, 41], and Linear LF [14]. These languages suggest a direction to extend
logic programming to be more expressive and more efficient. For example, Lolli was used to develop a
filler-gap parser [24] in natural language processing. Forum was used to specify the operational semantics
of a pipelined RISC processor [15]. More about linear logic programming has been well-summarized in
Miller's papers [39, 40].

Most early works on logic programming had been based on Horn clauses (a simple logic underlying pure
Prolog) and SLD-resolution (Prolog’s execution model). However, it is very hard to extend this traditional
approach for new logic programming languages based on richer logics, rather than Horn clauses. Many
researcher recently have used proof-theoretical approagbaisdirected proof searcimn Gentzen-style se-
guent calculus. One design principle, calledform proofg38] proposed by Milleret al,, is a simple and
powerful notion for designing logic programming languages. A logical systemasstnact logic program-
ming languagef restricting it to uniform proofs retains completeness. The logics of pure Pralglog
[44], Lolli, and Forum are examples of abstract logic programming language.

In spite of a great deal of theoretical works, there have been very few practical tools for developing linear-
logic-based applications. It is therefore very important to develop efficient compiler systems for linear logic

1

2 CHAPTER 1. INTRODUCTION

programming languages. However, the implementation of such languages meets many difficulties not arise
in traditional logic programming languages. In linear logic programming languages, it is possible to add and
delete resources (limited-use clauses) dynamically as logical formulas. The effisientce managemeist

therefore an important issue for the implementors. This issue has been discussed from the earliest proposals
[26], and several papers have focused on these issues [13] [30, 49] [22] [29].

Recently, only one compiling effort has been made. N. Tamura and Y. Kaneda [49] have developed an
extension of the Warren Abstract Machine (WAM) [1, 56] and a compiler system for a useful fragment of
Lolli. J. Hodaset al. proposed a refinement [29] with the complete treatment.oHowever, the compiler
supported only limited forms of resources. Furthermore, the resources were stored as terms in a heap memory
and were not compiled. This inefficiency is clearly unacceptable for resource-conscious applications based
on linear logic.

This dissertation is the latest step in a course of research begun by N. Tamura and Y. Kaneda towards ef-
ficient implementation for linear logic programming languages. We discuss several theoretical and practical
issues on implementation in the case of Lolli proposed by J. Hodas and D. Miller [26]. After that we present
the following systems:

1. A compiler system for a linear logic programming language:
Compiling resources is an important issue on implementation for linear logic programming languages.
To solve this problem, we introduce the ideactifsureand present a method for compiling resources.
We also present an extension of the WAM for a linear logic programming language LLP. In per-
formance, our compiler provides 40% speedup for a theorem proving application of classical logic,
relative to its Prolog implementation.

This part of dissertation is based on joint work with N. Tametral. in the paper [6, 9, 47].

2. Atranslator system from a linear logic programming language into Java:
A number of Java implementations for logic programming languages have been developed. However,
there has been no 100% pure Java implementation for linear logic programming languages. We present
a LLP-to-Java source-to-source translator system. Our translation method is based on continuation
passing style compilation [54]. In performance, our translator is 1.7 times faster for a set of classical
Prolog benchmarks, than an existing Prolog-to-Java translator jProlog.

This part of dissertation is based on joint work with N. Tametral. in the paper [5, 8, 10].

3. A compiler system for a temporal linear logic programming language:
We present theory and design of a logic programming language based on intuitionistic temporal lin-
ear logic, called TLLP. In addition to resource sensitive features of LLP, TLLP can express time-
dependent properties of resources, in particular, the precise order of the moments when some resources
are consumed. We also present an abstract machine and its instruction set for TLLP compiler system,
and a method for translating TLLP into LLP. In performance, our compiler is 1.7 times faster for a
simple example of Timed Petri Net, than translating TLLP into LLP.

This part of dissertation is based on joint work with N. Tameiral. in the paper [4, 7]

Our compiler has already applied to a theorem proving application [28] of first-order classical logic, in
which linear logic operators were elegantly used for specifying the problems. Furthermore it gives signif-
icantly nice performance relative to its famous Prolog implementation. Our results should be equally well
applied to other resource-conscious applications based on linear logic.

Our translator has already been applied to a Prolog-to-C# translator [17] and a tool that generates wrap-
pers for command line programs [58].

Finally, we give the outline of this dissertation. Chapter 2 gives a brief introduction to linear logic. After
that we present language design of a linear logic programming language Lolli proposed by J. Hodas and
D. Miller. We also discusses an issue on resource management in proof search of Lolli, a serious problem
for the implementors.

Chapter 3 shows several example programs in Lolli so that the reader easily understand a sense of
source programming

Chapter 4 discusses some basic issues on implementation of the Lolli language. We present a method
for compiling resources intolosure a reference of compiled code and a set of bindings for free variables,
widely used in implementations of functional programming languages.

Chapter 5 presents the detail of LLP abstract machine: registers, data areas, instructions, code generation,
and optimization. Appendix A summarizes the instruction set including auxiliary procedures and functions.

Chapter 6 discusses three approaches for translating Prolog into Java. After that we present a method for
translating LLP into Java.

Chapter 7 presents theory, language design, an abstract machine and its instruction set for compiler
system of a temporal linear logic programming language.

Chapter 8 concludes this dissertation and presents our future works.

Chapter 2

The Lolli Language and its Resource
Management Models

Most early works on logic programming had been based on Horn clauses, a simple logic underlying pure
Prolog. In recent years, many researcher have used proof-theoretical approaches to design and implement
new logic programming languages based on richer logics, rather than Horn clauses.

One design principle, calledniform proofs[38] proposed by Milleret al., is a simple and powerful
notion for designing logic programming languages. A logical system iatatract logic programming
languageif restricting it to uniform proofs retains completeness. The logics of pure PralBmlog, and
Lolli are examples of abstract logic programming language.

In this chapter, we will give a brief introduction to Linear Logic [19] and present the logic of a linear
logic programming language Lolli [25, 26]. We will also discuss the issuesdurce managemerdne of
the most serious problem for the implementor.

2.1 A Brief Introduction to Linear Logic

Linear logic was introduced by J.-Y.Girard in 1987 [19] as a resource-conscious refinement of classical logic.
Linear logic has found many applications in computer science because it allows elegant solutions to many
problems that are difficult to represent in traditional logics. The expressive power of linear logic is shown
by some natural encoding of computational models, such as Petri nets, counter macitialesjus, and

others.

In traditional logic, thestructural rulesof weakening and contraction allow formulas to be discarded and
duplicated respectively. In linear logic, these rules are removed, but the modalities are added instead. Thus
we have not lost anything: both classical and intuitionistic logic can be faithfully embedded into linear logic.

In the absence of weakening and contraction, many of the logical operators split into two variants.

e There are two conjunctions,®" (tenso) and “¢” (with), two disjunctions, " (par) and “@”
(o-plug. The operatorsp andg are dual to each other, algpand® are dual.

e There are two truth, 7" (top) and “1” (oné, two falsehoods(” (zerg and “L” (botton). Each of
these constants is a unit: is the unit of&;, 1 is the unit of®, L is the unit ofp, and0 is the unit of
@. The constants” and0 are dual to each other, aldand L are dual.

e The implication operator is written-o" and calledlinear implication

e The negation ofd is written “A+" and calledlinear negation

e There are two modalities]™(of coursg¢ and “?” (why no}, that are dual to each other. These modal-
ities are very similar to the modal operatarsand< in the usual modal logics. The role of these

5

6 CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

. Ay — B Ay, B—C
m (Identlty) A17A2 —_ C (Cut)
A0 — C (L0) A— T (RT)
A—C
Al _C (L1) —7 (R1)
A B — C A—Ci A—C
ABiuB o L&) A—Cigl (RY
A,Bl,BQ—>C A — C Ay — C!
A,B1® By, — C (L) 1A17A21—>C?1®022 (Re)
A,Bl—>C A,BQ—>C A%CZ
ABeB 0 P A —=Ciad, B9
A1—>01 AQ,B%CQ L A,B—>C R
AL A CioB —0;) A —Boc)
A B—C A —C
A7!B—>C(L!) A 10 B
A C AI!B'B—C
A,!B—>—>C(W!) A'B—C (€Y
A, Blt/z] — C A — C[t/x]
AVz.B —C (LY) A oo B
A, Bly/z] — C A — Cly/x]
A, Jx.B — C (L3) A — Vz.C (RY)
provided, in each casg,does not appear free in the conclusion.

Figure 2.1: The Proof SystetL for Intuitionistic Linear Logic

modalities is to reintroduce weakening and contraction.
e The first-order quantifiersv” and “3” are the same as those in traditional logic.

On the other hand, these operators can be classified into four gnowitiplicativeoperators ®, », —o, 1,
1), additiveoperators &, &, T, 0), exponentialg!, 7), and quantifiersy, 3). It is noted that there are two
major notations for linear logic operators: Girard’s notation [19] that we use and Troelstra’s notation [55].

As traditional logical systems, linear logic has been studied both from classical (multiple conclusion)
and intuitionistic (single conclusion) points of view. We will focus on an intuitionistic variant in Figure 2.1.
ThelLL system does not include the operatorg, and_L. This is because we are interested only in cut-free
proofs of Gentzen-style sequent calculus in intuitionistic linear logic. The sequhnit &f an expression of
the formA — C whereA is a multiset of formulas.

Linear logic treats logical assumptions as consumable resourcid.,lthe weakening and contraction
rules are available only for assumptions marked with the modalifis means that, in general, a assump-
tion not thus marked can only be used once in a branch of the search for a proof. Limited-use formulas can
represent limited resources in some domain.

To illustrate thisformulas-as-resourcesotion, we show an example for encoding Petri net reachability
in Figure 2.2. In linear logic the formuldp —(p ® ¢)) can be used to encode the transitidrtaking one
token from placep and adding tokens to plageandgq. Similarly, the formula((¢ ® ¢) —or) represents
the transitiont2 taking two tokens fromy and adding one token to plage Petri net transitions can be
encoded as (reusableinarked linear implication. Tokens are represented as (limited-use) atomic formulas.

2.2. UNIFORM PROOFS IN INTUITIONISTIC LINEAR LOGIC 7

© r places : p,q, r (atomic formulas)

P t1 q
t1 t Hp—o(r®q)
% O——0O =& weg—n

Figure 2.2: A Linear Logic Encoding of a Petri Net

9—49 49—4g p—p T—T

9 — q®q(R®) pvr—>p®r(L(i?)
D¢ q (g®gq)—or — paAT)
(g®q)—or),p, ¢, 4 — poT (L'®)
p—0p (g®q)—or), p®q q — peAT (L)
(g®q)—or), p,po(p®q),q — pOT
(L)
lp—op®q), ((¢g®q) —or),p,qg — peT (L&)
p—p llp—obp®q) (¢®q—or),p®q — poT o)

lp—o(p®q), ((¢g®q)—or), p, po(PV®q — pAT
(p—o(p®@4q)), (p—oPp®q), ((¢g®q) —r),p — pT
lp—o(p®q), ((g®q)—r),p — pAT

(LY
(€

Figure 2.3: Proof Search for the Reachability of a Petri Net in Figure 2.2

A reachability problem from the initial marking (one tokengzinto the final marking (one token in bogh
andr) can be represented as a sequépt—o(p ® ¢)),!((¢ ® ¢) —r),p — p ® r. Figure 2.3 presents a
ILL proof that corresponds to a sequence of Petri net from initial mafgfido the final marking{p, r}.

Linear logic has been applied to several other areas in computer science. One key application of
formulas-as-resources aspect was the development of new programming languages. Recently, a number of
logic programming languages based on linear logic have been proposed: LO [3], LinLog [2], Lolli [25, 26],
ACL [32, 33], Lygon [20, 21], Forum [27, 41], and Linear LF [14]. These languages suggest a direction to
extend logic programming to be more expressive and more efficient. The treatment of formulas-as-resources
gives us not only powerful expressiveness, but also efficient access to a large set of data. More about linear
logic programming has been well-summarized in Miller's papers [39, 40].

2.2 Uniform Proofs in Intuitionistic Linear Logic

The idea oluniform proofd38], proposed by Milleet al,, is a simple and powerful notion for designing logic
programming languages. Uniform proof search is a cut-fyeal-directed proof searcim which a sequent
I’ — G denotes the state of the computation trying to solve the goibm the program™. Uniform
proof is characterized operationally by the bottom-up construction of proofs in which right-introduction
rules are applied first and left-introduction rules are applied only when the right-hand side is atomic. This
means that the operators in the géakre executed independently from the progrBnand the program
is only considered when its goal is atomic. A logical system islastract logic programming language
restricting it to uniform proofs retains completeness. The logics of pure ProRglog [44], and Lolli are
examples of abstract logic programming language.

Clearly, intuitionistic linear logic (even over the connectives: &, ®, —o, !, andV) is not an abstract
logic programming language. For example, the sequeRis — b®a and!a & b — ! a are both provable
in ILL (see Figure 2.1) but do not have uniform proofs.

8 CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

I,B;A,B—C

F;BTB (Identlty) F’B’A —C (absorb)
ro—1 (R1) A —T (RT)
A B — C IA—C ThA— Cs
BABiuB —C (&) A GG Y
F;A1—>01 F;A27B—>Cg L F,A,B—)C R
T2 A9 oB S5 () A SBoc B
e —C T5A,B— Oy rB,A—C
TACG <80 7) A -Boc B
I;A, Bt C A —C
] —C — Cly/

I'AVe.B— C A — Vz.C
provided thaty is not free in the conclusion.
o —C AL —C1 T A2 — Oy

!
o —I1C (RY) TNAL A — CL ®Cy (R®)
A — Clt/x] LA —C;
LA — J2.C (R3) A — Ci @ Cy (R:)
Figure 2.4: The Proof Systerhfor the Lolli Language
e ——G¢ - Iio—G, T'AL—Gy -+ TiA, — Gl
) 1) 1 1 (BC)

AL, A, R— A

providedn, m > 0, A is atomic, and{G1,...,Gn},{G1,...,Gn.}, A) € ||R]|

Figure 2.5: Backchaining for the Proof Systeth

Hodas and Miller have designed the linear logic programming language Lolli [25][26] by restricting
formulas so that the above counterexamples do not appear, although it retains desirable features of linear
logic connectives such dand®. The Lollilanguage is based on the fragment of linear logic freely generated
by the connectivesT, &, =, —o, andV. The connectives- is calledintuitionistic implicationand is defined
asB=C = (! B) - C. Lolli also allows the use of positive occurrenceslof, !, ®, and3, since they
does not cause any problems with the completeness of uniform provability. The Lolli language is formally
defined as follows:

R := T|A|R &Ry|G—oR|G=R|Va.R

Here, R-formulas are calledesource formulasandG-formulas are calledoal formulas

The sequent of Lolli is an expression of the fofmA — G whereIl and A are multisets of resource
formulas, and> is a goal formulaI’ and A are calledntuitionistic contextandlinear contextrespectively,
and they correspond to thmogram G is called thegoal.

Hodas and Miller developed a series of proof systéhasd £’ in [25]. The entire set of sequent rules
is given in Figure 2.4. The sequentA — G can be mapped to the linear logic sequentA — G.
Thus, the right introduction rule foro adds its assumption (callediaear resourcg to the linear context,
in which every formula can be used exactly once. The right introduction rulesf@dds its assumption

2.2. UNIFORM PROOFS IN INTUITIONISTIC LINEAR LOGIC 9

(called anintuitionistic resourcgto the intuitionistic context, in which every formula can be used arbitrarily
many times (including zero times). They proved thas sound and complete with respect to the rules
restricted to the Lolli language. They also provegreserves completeness even if probability is restricted
to uniform proofs.

Proposition 2.2.1 (Hodas and Miller) Let G be a goal formulal’ and A multisets of resource formulas.
Let D* be the result of replacing all occurrences®f- C in D with (! B) o C, and letl'™* = {B* | B €
I'}. Then the sequerit; A — G is provable inC if and only if |(T'*), A* — G* is provable inlLL.

Proposition 2.2.2 (Hodas and Miller) Let G be a goal formulal” and A multisets of resource formulas.
Then the sequent; A — G has a proof inC if and only if it has a uniform proof irC.

Hodas and Miller have simplified by the fact that in uniform proofs left-hand rules and Identity are
used only when the right-hand side is atomic. Rebe a resource formuld\R|| is defined as the smallest
set of triples of the formI", A, R') wherel andA are multisets of goal formulas, such that:

(9,9, R) € |R],

if (T, A, Ry & R2) € ||R|| then both(T', A, Ry) € ||R|| and(T, A, Rs) € || R]|,

if (T, A,Vz.R') € ||R|| then for all closed terms (I, A, R'[t/z]) € ||R||,

if (T,A,G=R') € |R||thenT' ¥ {G},A, R') € |R|| (“&"is multiset union), and
5. if (I',A,G - R') € |R| then(', AW {G},R') € || R|.

hPownhpe

L' is the proof system that results from replacing the Identity,lL=, L&, and LY rules in£ with a single
rule, calledbackchaining(BC) in Figure 2.5. Roughly speaking, thie || function translates a resource
formula in the program into a set of program clauses.

Proposition 2.2.3 (Hodas and Miller) Let G be a goal formula, and lét and A be multisets of resource
formulas. The sequeit A — G has a proof inC if and only if it has a proof in’’.

Lolli can be seen as an extension of pure Prolog ®Pblog. Lolli allows resource formulas in the pro-
gram to be used either only once or arbitrarily many times. In Lolli program, resource formulas correspond
to program clauses, but their structure seems to be rather complicated than Proldtrelnd. Frequently,
it is very convenient for the implementors to view a resource formaldG, = (G2 — A)) as a resource
formulaVz.((! G; ® G2) —o A) whose head is an atomic formula such as Prolog clause.

G=R = !G-—oR
G1 —O(G2 —OR) = (G1 & GQ) —o R
G—o(R1&R2) = (G—oRy)&(G—oRy)

)
G —o(Vz.R) = Vz.(G—oR) (wherezis notfreeinG)

By rewriting formulas using above logical equivalences in the forward direction, it is possible to simplify
the definition of resource formulas:

R = Sl&&Sm
S = T|A|G—oA|Vx.S

where A stands for a atomic formula and > 1. S-formulas are calledesource clausem which the form

Vz.(G —o A) corresponds tod:- G in Prolog. This simplification does not change expressiveness of the
Lolli language. From a theoretical point of view, it makes the presentation of backchaining (especially the
definition of || - ||) simpler. From a practical point of view, it makes the development of compiler systems
(especially the compilation of resource formulas) easier.

10 CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

2.3 Resource Management Models

The issue ofesource managemehas been discussed from the earliest proposals [26], and recently several
papers have focused on these issues [13] [30, 49] [22] [29].

In this section, we discuss some of the basic issues in resource management in the case of propositional
fragment of Lolli. It is noted that we use rather restrictive form of resource formulas mentioned in previous
section to make the presentation simpler.

2.3.1 TheZ/O Implementation Model

The resource management during a proof search iis a serious problem for the implementor. Let us
consider, for example, the rule for proving the g6al® Ga:

AL — G T A — Gy
AL Ay — G ® G
A

R®

When the system applies this rule during bottom-up search of a proof, the linear carftastnot yet been
divided intoA; andA,. If the generate-and-test algorithm were used to find an appropriate partition of
this non-determinism is clearly unacceptable sinc@’afbossibilities might need to be testedifcontains
n resource formulas.

Hodas and Miller solved this problem by splitting resources lazily, and they proposed a new resource
management model called ti¢O model [25, 26].

In this model, thelO-context is a lists of formulas, each of which is either a resource formula (linear
resource), or &marked resource formulas (intuitionistic resource), or new constatttat denotes a place
where a formula has been consumed. Tlesequent is an expression of the form:

1{G}O

wherel andO areIO-contexts, and- is a goal formula. The intuitive meaning 6§ G} O is that the goal
G can be proved giveimput context/ so that theoutput contex remains.
Figure 2.6 presents the set of sequent rules ofth® model. For example, the rule for the operator
is as follows:
I{Gi}M M{G>}0O

I1{G; ® G2} O

First, the system trie$ {G1} M proving the goal; given input context. If this succeeds, the output
context)M is forwarded to the goaks, and thenM {G2} O is attempted. If this second attempt fails, the
system retried {G, } M looking for some different pattern of consumption, before retnifig G-} O.

The BC; rules handles the selection of resource clauses for backchainingoidki&I, O, R) relation
selects an available claugkfrom its input context matching the atorml. The output context is the same
asl, except that the occurrence Bfis replaced with if it is a linear resource® is exactly the same dsif it
is a intuitionistic resource). The rule consumes any formulas from its input context. $hbecontextO, I')
relation holds ifO arises from replacing arbitrarily many (including zero) occurrences of linear resources in
I with 1.

Hodas and Miller proved that t1&/O model is logically equivalent t&’. Let I andO be IO-contexts.
Only whensubcontextO, I') holds, the differencé — O is defined as a paifl’, A), wherel is the multiset
of all formulasR such that R is an element of the list (andO), and A is the multiset of all formulag?
which occur inl and the corresponding placedhis the constant.

(®)

1The new constartel is used instead in Hodas’s dissertation [25].

2.3. RESOURCE MANAGEMENT MODELS 11
subcontextO, I)
Y —1mo
I{Gi\}M M{G2}O I1{G1}O I{G:}O
iedyo @ TGeyo @
I{Gi} O I{G}I
G o Gajo (&) e Y
[RI1]{G}[1]O] (=) [R|I{G}['R|O] (=)
I{R—-G}O I{R=G} O
pickR(Z, O, A) pickRI,M,G - A) M{G}O
1{A}0O (BC) 1{A}0 (BC2)

Figure 2.6: TheZ /O System for Propositional Fragment of Lolli

Proposition 2.3.1 (Hodas and Miller) Let I andO belO-contexts that satisfgubcontexiO, I). Let] — O
be the pair(l’, A) and letG be a goal formula.l {G} O is provable in theZ/©O model if and only if

I'; A — G is provable inl'.

2.3.2 TheRM; Implementation Model

TheZ /O model succeeds to eliminate the most serious problem, non-determinism from the treatment of
However, there are some points to be improved. Let us consider the rules for proving tkig goél, and

T:
I{G1}O I{G2}0O

I{G1 & G2} O

(&)

subcontexio, I)

o

This & rule means that the goél; andG> must use the same set of resources. In a naive implementation,
the system first copies the input context and proves the two conjuncts separately, and then it compares their
output contexts. This leads to unnecessary backtracking. TThde means that the output conteXtis
reconstructed from the contektby replacing any linear resources withlf O containsn linear resources,

2" possibilities might need to be tested.

Cervesato, Hodas, and Pfenning solved these problems and proposed a refinemefy 6f thedel,
called theR M3 model [13]. This model pays particular attention to the management of resources&cross
and to the occurrence df. The main difference from thE/O model is that the idea of -flagis introduced,

linear context is divided into two part, and intuitionistic context is separated out.
The RM3-sequent is an expression of the form:

[AN\NAY —, G

where each of Greek lettels =, A7, andA© denotes a set of uniquely labelled resource formulais a
goal formula, and is a boolean flag (called-flag) that indicates whether&awas seen in the goé&l.

I is an intuitionistic context.=Z and A’ on the left-hand side of\" are calledinput linear context
A9 on the other side is callenutput linear contextThe input linear context is divided into two parts: the
strict context= that must be entirely consumed during the proof search of the@pahd thelax context
AT in which the contents might be consumed during the proof search. oft is therefore possible for
only the lax contextA’ to transmit unused resources to the output conteXt The intuitive meaning of
;2 AT\ A9 —, Gisthat= andA’ are the linear contexts that are given as input to pt@v&he proof
of G will consume all of= and part ofA’ and return unused resources as the output comt€xt

12 CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

1 T

;05 (5,ANH\A —oG1 T;(ENA); (ATNA)\AY —, G
e AT\ A —, G ® Gy
F;@;(E,Al)\A' —1 G1 F;@;A/\AO — Go
5 AT\NATNAY — G ®G:
5 AT\NAY —o G T AT —A%) 3\ —, G
02 AT\ A9 —6 G & G2
OEAT\VA — Gy T (B, AT —A);A'\NA° —, G2
EAT\NAY —, G1 & Go
OEAN\NAY —, G ;o0\ —w G
TS AT\AC ., G @G (®:) Tio AT\AT 0 1G
I;(5,R); AT\ A° —, G (T,R); 2, AT\ A° —, G
[;5;AT\A° —, R—oG (=) [;5,AT\A° —, R=>G =)
‘ R> A\G (I,R);Z;A'\A° —, G
Lo AT\AT g A=A =) (T,R);;E; AT\ A° —, A
R> A\G T;5AT\ A9 —, @ (BOw) R> A\G ;AT\ A° —, G
L2 (AT, R)\A° —, A . I (2, R);AT\A° —, A

(®0'u)

(®lu)

(&Ov)

(&1’1})

O]

(BCint)

(Bcstrict)

Figure 2.7: TheR M3 System for Propositional Fragment of Lolli

———— (dec_at — (dec_T
A,>>A\A,£A(ecaom) _|_>>A\O(ec)

A'> A\ G i) Ri> A\G1 R2>» A\G:
ec_—o
G—oA">A\GRG Ri & R2 > A\G1 @ G2

(dec_&)

Figure 2.8: Residuation Rules for the Proof Systeuivi3

Figure 2.7 presents the setBiM 3 sequent rules. For example, the rule §etis split into two rules,
differing in whether ar is seen in the left conjunct:
05 AT\A? — Gy T(E,AT - A9\ _ —, G
F,E/AI\AO —0 Gl&GQ
S AT\NA — G T5(E,AT - A AT\ A9 —, Gy
5 AT\ A9 —, G &G

(&Ov)

(&11})

When the left conjunct does not encounter &in the &, case), the goal’s must consume all resources
that has been consumeddh . That is,G> must consume not onl§ (strict context) but alsa\’ — A€, alll

the resources in lax context th@; has consumed. The right conjunct has empty lax context giamay

not consume any resources tliat did not. When the left conjunct encounters gin the &1, case), the
goal Go, must consume all resourc&s A’ — A’ that has been consumeddh, but the unconsumed part

of the lax contextA’ is transmitted to the lax context in the right conjunct. It is therefore possible for the

2.3. RESOURCE MANAGEMENT MODELS 13

goal G, to consume any resources4xi, since they are considered to have been also consumed in the left
conjunct by ther goal.

When the goal formula is atomic, a resource formBle selected from either the intuitionistic context
(BCin), lax context BCjay), or strict context BCyyict). In either case, the resource formutaand atomic
goal A are passed to thesiduationprocedureR > A\ G for producing a continuation subgo@l Fig-
ure 2.8 shows the residuation rufder restrictive definition of resource formulas. Itis noted that the symbol
“=" means the syntactic equality between atomic formulas.

Cervesato, Hodas, and Pfenning have proved & is logically equivalent toZ’. The techniques
used inNR M3 have been already applied to resource management systems [27][35] for Miller’s Forum [41].

2.3.3 TheZOL Implementation Model

Besides thdk M3 model, one significant effort has been made towards developing compiler systems. The
Z/0O model removes the most serious non-determinism from the treatmenbwpfsplitting the linear con-
texts lazily. However, its formulation requires the copying of large structures. This makes it more suited
to implementation via interpreters written in high-level languages. Lolli has been actually implemented
as interpreters in Prolog\Prolog, and standard ML. Let us consider again the rules for proving the goal
Gl & GQZ

I{G1}O I{G2}0O

I{G1 & G2} O

(&)

This rule means that the go&!l; andG, must use the same set of resources. In a naive implementation,
the system first copies the input context and proves the two conjuncts separately, and then it compares their
output contexts. It is therefore impossible to change the contexts destructively during the proof search.

Tamuraet al. solved this problem usinigvel indicegto control the consumption of resources [30][49]

and proposed a refinement of tA¢© model, called th& OL model. The main difference is that all re-
sources are kept in only one single context during the proof search, and the consumption of resources can be
easily achieved by changing their consumption level destructively.

The ZOL model makes use of two level indicdsand U to manage the consumption of resources.

In particular, these indices are used to quickly enable and disable consumption of resources in the con-
text, and to keep track of when they have been consumed, respectively. The sequent is an expression of
the formt, v I {G} O 2 wherel andO are IO L-contexts, and7 is a goal formula.L, a positive inte-
ger, is thecurrent consumption levelAt a given point in the proof, only linear resources labeled with that
consumption level (and intuitionistic resources labeled wjtltan be usedl/, a negative integer, is the
current consumption makeiVhen a linear resource is consumed, its consumption level is changed to the
value ofU. TheIOL-context is a list of pairs of the foriR, £), whereR is a resource formula andis its
consumption level. Each formula in tH& L-context can be classified by the value of this field:

Linear unconsumedormulas have the formR, ¢), where/ is the value ofL at which the resource may be
consumed.

Linear consumedormulas have the forniR, u), whereu is the value ofU at the time when the resource
was consumed.

Intuitionistic formulas in the context always take the fo{i, 0).

Figure 2.9 presents the set of sequent rules afth€ model. As withZ /O model, theBC; rules handles
the selection of resource clauses for backchaining. The relptek®; ;;(I, M, R) selects an available
(linear unconsumed or intuitionistic) claugefrom the input contexf. The output contexd/ is the same

2The rules for full fragment of Lolli have been shown in Cervesato’s paper [13].
3In original paper [49], Tamura and Kaneda use the sequent of thelfrems 1, i I {G} O in which intuitionistic context is
separated out.

14 CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

subcontext, . (O, I)

oo I{T}O
Frol{Gi}M Fruv M{G2}O (®)
Fro I{G1® G2} 0O
Fru-1 I{G1} M changg; _, ;,,(M,N) Fry1,u N{G2}O thinable.:(O)
Fru I{G1& G2} O

(1) (M)

Foo I{1}1

T e 6o ©) e O
Fro (R, L) | 1{G} [(R.U) | O] FL [(R,0) | 11{G} [(R,0) | O]

(—0)

"L,U I{R:>G}O (:>)
piCkRLyU(],M,G—OA) '_L,U M{G}O
Fru I{A}O

}_L,U I{R—OG}O
pickR; (1,0, A

L,U() (BC1)

Fru I{A}O

(BC2)

Figure 2.9: The&Z OL System for Propositional Fragment of Lolli

as I, except that the consumption level of the selected clause is changed to the valliibis a linear
resource. Inthé& rule, the relatiorsubcontext 1, (O, I) consumes any linear unconsumed resources from its
input context/. The output contexp is the same a8, except that the consumption levels of the consumed
resources il are changed to the value ©f, if they are linear unconsumed resources.

Frou-11{Gi} M changg _, ;,1(M,N) Fri1v N{G2}O thinable ,(0) @
Fro I{G1 & G2} O

The following two relations are used in the rule. Each can be implemented destructively in one pass
through the context.

e Thechangg , (M, N) relation modifies the context/ so that any resources i with level ¢ have
their level changed td in the contextV.

e Thethinable(O) relation checks whether none of resource®ihave? as their consumption level.
Let us show the outline of the rule for providgy & G:

Loy I{Gi} M
Decrement$/ so that we know which resources are consumed during the proof seakigharfid then
it proves the goal7; .
2. changg,_y 41 (M, N)
Changes the level of resources that have been consundedtmZ + 1.
3. k1,0 N{G2} O
Increments. andU and proves the godls.
4. thinable, 1 (0)
Decrementd. and checks whether none of resource®ihaveL + 1 as their consumption level.

Tamuraet al. have proved thaTOL is logically equivalent toC’. The techniques used IOL have
been already applied to a prototype compiler [49] for a significant subset of first-order Lolli. In the prototype
compiler, the singld O L-context in which all resources are kept is implemented as an array structure, and
the speed access to resources is achieved using hash tables.

2.3. RESOURCE MANAGEMENT MODELS 15

2.3.4 TheLRM Implementation Model

The R M3 model provides an efficient resource management for Lolli and related systems. HoRiéxer,
is still more suited to implementation via interpreters in high-level languages rather than compilers, since it
requires copying and scanning large dynamic data structures to control the consumption of linear resources.
For example, most of rules needs complex operations on the linear context for moving formulas between
strict and lax context and taking intersection of two context.

On the other handf O L provides an enriched formulation that is suited to implementation via not only
interpreters but also compilers. Howevef, @L-based prototype compiler does not treat the goabm-
pletely sinceZOL still depends on theubcontext ;, relation and have not removed non-determinism from
the treatment off".

More recently, Hodast al. solved these problems and have proposed new level-based resource manage-
ment system, called th&R M model [29]. This model is a refinement ®M 3 with ZOL's level indices.

The LRM-sequent is an expression of the fori ;; 7 {G} O whereL andU are level indicesy is a
T-flag, I andO are LRM-contexts, and~ is a goal formula. The main difference frabQO L is thatL is
also used to set deadlineby which newly added resources must be used. TR&/-context is a list of
triples of the form(R, ¢, d) 4, whereR is a resource formuld,is its consumption level, andis its deadline.
Each formula in thd. RM -context can be classified by the values of these two fields:

Linear unconsumedormulas have the forniR, ¢, d), where? is the value ofZ at which the resource may
be consumed, and is thesmallestvalue of L at which the resource may exist without having been
consumed. This index can be seen as a kind of deadline, since if any resources existwittvhen
it is time to decrement the level counterfio- 1, the solver will either backtrack (in the strict case) or
consume those resources immediately (in the lax case).

Linear consumedormulas have the formiR, u, 0), whereuw is the value ofJ at the time when the resource
was consumed.

Intuitionistic formulas in the context always take the fo{@, 0, 0).

Figure 2.10 presents the set@R .M sequent rules. Each of the rules can be used in an implementation
which destructively modifies the context, without copying (as long as some trailing mechanism exists to
reverse the destructive modifications when backtracking).

As same WitlZ O L, thepickR, (I, O, R) relation inBC; rules selects an available (linear unconsumed
or intuitionistic) clause from the conteXtmatching the atori. The output contexD is the same a8, but
with the selected clause marked as linear consumed if it was linear unconstimeeXactly the same as
if it was intuitionistic).

The twoRMj rules forg; are split into four rules, differing in whethér is seen in the right conjunct.

The following three relations are used in the rule ar

e consumedO)
Let/ be an integer witl) < ¢. This is a relation on & RM -context that is true if none of resources in
the contexO have/ as their deadline.

chan
) Z—>Z/ge(l7 O)

Let ¢ and/’ be integers. This is a relation between an input and outgtit/-context that modifies
the input contexf so that any resources inhwith its level#, has the level changed t6in the output
0.

o (o) (1,0
Let ¢, ¢/, d, andd’ be integers. This is a relation between an input and ouf@tit/-context that
modifies the input context so that any resources inwith its level?, and its deadling, has the level
changed td’ and its deadline changed &in the outputO.

“4In original paper [29], Hodaet al. use the the fronR‘} instead.

16

CHAPTER 2. THE LOLLI LANGUAGE AND ITS RESOURCE MANAGEMENT MODELS

ST ST YA
Filo I{G1} M Fru M{G2}0
T (G ©Ga) 0)
changepair
Fooa I{Gi} M (Ufl,O)ﬂ?Lfl,LJrl) (M, M) F2 1.0 M {G2} O consumed1(O) (&00)
F o 1{G1& G5} O 00
changepair ’ changepair ’
oo H{Gi} M (Ufl,O)H?Lfl,LH) (M, M") Fiyo M {G2} O’ (L+1,L+%B(U,O) (0',0) (o)
F) o 1{G1& G5} O o
changepair chan
I—lLﬂU_l I1{Gi} M (Ufl,O)H(gLfl,LJfl) (M, M) LHLEF(M/’MH)
chan
R o M"{G2} 0O’ consumeg1(0’) L+1—>gLe(O/’O) (10)
F o 1{G1& G5} O 10
changepair chan
l—lLyU_l I{Gi}M (Ufl,O)ﬂ?Lﬁ»pl,LJrl) (M, M) LHL#»gle(M/’MN)
changepair chan
Fhyro M"{G2} 0" (L+1,L+%)B(U,O) (0", 0) L+1HgLe(O/’ 0))
&
Fho 1{G1&Gs}O H
v o I{Gi}O &) o1 I{G}O
Foo I{G1® G210 Fo.o I{!G}O
v (R, L, L) [T]{G} (R, U,0) | O]) Fiu (R, L, L) [1]{G} (R, L, L) | O] (—on)
—o
Fo I{R—-G}O Fo [{R—-G}O '
Lo [(R,0,0) [II{G} [(R,0,0) | O]
Fro I{R=G}O
pickR, (1,0, A pick I,M,G—oA T.uv M{G}O
< 0) (BCY) Rl ¢) FLu MA{G} (BOY)
v 1{A}O ruv I{A}O

Figure 2.10: TheLRM System for Propositional Fragment of Lolli

The outline for proving the sequent ;; I {G1 & G2} O is as follows:

1.

Froo T{G M

Decrementd/ so that we can tell which linear resources are consumed during the proof seérch of
and those resources will have the new valu&/ads the value of their consumption level. After that it
proves the goal7,. TheT-flag v, is set tol if G; encounters &, otherwisev; is set to0.

changepair
(U71,0)H(gL+p1,L+1) (M, M)

Changes both the consumption level and deadline of all of the resources that have been consumed in
G to L + 1, to which L will be set during the proof search 6f;. This is because those resources
(strict context ofR M3) can and must be consumeddh.

chan / 17
If the value ofv; is 1, LHLElqM M)

Changes the consumption level of all unconsumed resources(identified by having a consumption
level with the same value dg to L+1, so that resources (lax context®iM 3) that were not explicitly
consumed but are considered to have been also consumggdrg also available fak ;.

2.4. THE SYNTAX OF THE LOLLI LANGUAGE 17

4, I—’fH,U M"{Gy} 0"
Incrementd. andU and proves the goaf,. Decrementd.. The T-flagwvs is settol if G, encounters
aT, otherwisev, is set to0.

changepair
5. If the value ofuy is 1, (o1 ot ety (07 0')

Changes the consumption level and deadline of resources that have been consGmédtimot in

G- to U and0 respectively, since those resources are considered to have been also consumed by
Otherwise consumegd.;(O’) checks whether none of resources héve 1 as their deadline, since

all the resources that have been consume@,imust be consumed i@,. If this fail, fail.

chan
6. If the value ofv, is 1, 1o 310" 0)

Put back the consumption level of those resources that were made avail@bleberauses, en-
counter aT, but were not consumed iAs, to their original level,L.
7. TheT-flagv is set tov; N wvs.

Hodaset al. have proved that th R M model is logically equivalent tiR M. It is the LRM model
that we shall use to design an extension of standard WAM (Warren Abstract Machine) for the Lolli language
described in chapter 4 and 5.

2.4 The Syntax of the Lolli Language

As with AProlog, the full language of Lolli allows nested quantification and the usk,ofigher-order
quantification and unification of-term. In original Lolli syntax, terms and atoms are written in curried
form such as the functional programming language ML, since such notation is more suitable for higher-
order programming features.

Although these features are important aspects of Lolli, we use conventional Prolog syntax since our focus
is on efficient implementation of the first-order Lolli language. The syntax of Lolli operators that we use in
this dissertation is summarized in Table 2.1. The order of operator precederiomls “ ", “exists 7,

TR T RET R &N s) = MY from wider to narrower. The main difference from
original Lolli syntax is that linear implication is written as> instead ofo , and bang operator is written
as! instead of{...}.

Lolli Syntax | Linear Logic Operator
true 1
erase T
B, C BeC
B&C B&C
B; C BaC
B-<>C B—oC
C:-- B B—-oC
B=>C B=C
C<=B B=C
'B 'B
forall X\ B Vr.B
exists X\ B Jx.B

Table 2.1: The Mapping Between Linear Logic Operators and Lolli Syntax

Chapter 3

A Collection of Lolli Programming
Examples

We have presented the theoretical aspect of the Lolli language so far. In this chapter, we will give a brief
introduction to Lolli programming. We will also presents several example programs so that the reader easily
understand a sensemfsource programming Lolli. Compared with Prolog, the biggest difference of Lolli
is its resource consciousness. In Lolli, it is possible to add resources (limited-use clauses) to the program
and consume them dynamically.

Other useful applications of Lolli, such as a propositional theorem prover, a database query, and a natural
language parser are described in Hodas and Miller’s paper [26].

3.1 A Brief Introduction to Lolli Programming

3.1.1 Resource Addition

The linear implication<> is used to add resources which can be consumed exactly once. A query adds a
resource(l) tothe program and then executes a g¢4d) :

?- (1) -<> r(X).

which succeeds by letting = 1. It is noted that added resources must be consumed during the execution
of the subgoal on the right-hand side of the implication. Thus, the following query fails gitice is not
consumed.

?- r(l) -<> true.

If aresource clausd:- G (or G-<> A) is added, the subgo&l will be executed just on the consumption
of A. Thus, the following query succeeds and displays

?2- (r(X) :- write(X)) -<> r(1).

Informally, we allow a®-product of multiple resources to appear on the left-hand side of linear implica-
tion. The following query adds resourcgs) andr(2) and then executes a gaék), r(Y)

?- (r(@), 1(2) -<> ((X), r(Y)).

which also succeeds by letting= 1 andY = 2, or X = 2 andY = 1. Itis noted that such a query should
be written with successive uses of the linear implication formally.

19

20 CHAPTER 3. ACOLLECTION OF LOLLI PROGRAMMING EXAMPLES

?- (1) <> 1(2) -<> (1), 1(Y)).

The resourcek?; &R, means a selective resource. Whéh)&r(2) is added to the program, either
r(1) orr(2) can be consumed, but not both of them. The following query succeeds by tting or
X=2.

?- (r(1) & r(2)) -<> r(X).

The intuitionistic implication=> is used to add infinitely reusable resources, which can be consumed
arbitrarily many times (including zero times). The following query succeeds by lettiadl or X = 2.

?2- 1) => r(2) => (r(X), r(X)).

In Lolli, the two implication operators add resources to the program dynamically during the execution
time. However, they are not the same as the Praksprt mechanism. First, the addition is scoped over

the subgoal on the right-hand side of the implication, buassert ed clause in Prolog remains until it is
retract ed. So, the following query will fail:

?2- (r(@) => (X)), r(Y).
Second, although Prologassert automatically universalizes any free variables in an added clause, in

Lolli clauses added with implication can contain free variables, which may get bound when the clause is
consumed. For example, the following Prolog query will succeed, since the vaXigbleiversalized.

?- assert(r(X)), r(1), r(2).
In contrast, the similar Lolli query:
?- 1(X) => (r(2), r(2)).

will fail, since the execution of(1) causes the variablé to be instantiated td. If we desire the other
behavior, we must quantify explicitly:

?- (forall X\ r(X)) => (r(1), r(2)).

3.1.2 Resource Consumption

In Lolli, the execution of atomic goals means resource consumption and program invocation. All possibilities
are attempted by backtracking. For example, the following query disfilaysi2.

r(2).
?- r(1) => r(X), write(X), nl, fail.

The goalG,&G5 behaves as well a1, G5, but the same resources must be consuméed,; iandG-.
The following query succeeds by letting= Y = 1 andZ = 2, or X =Y = 2 andZ = 1, because(X)
andr(Y) must consume the same resources.

?- (r(1), 1(2) <> ("(X) & r(Y)), r(2)).

The goal! G is just like G except that only infinite resources can be consumed during the execution of
G. The following query succeeds by lettig= 1 andY = 2.

?- 1) => r(2) -<> (Ir(X), r(Y)).

The goalerase (or top) means the consumption of some consumable resources. In the following
queries:

?- (r(Q), r(2)) -<> (r(X), erase).
?- (r(1), r(2) -<> r(X).

the first one succeeds, but the second one fails.

3.2. USING FREE VARIABLES IN RESOURCES 21

reverse(Xs, Zs) :- reverse(Xs, Zs) :-
reverse(Xs, [], Zs). result(Zs) -<> rev(Xs, []).

reverse([], Zs, Zs).
reverse([X|Xs], Ys, Zs) :- rev([], Zs) :- result(Zs).
reverse(Xs, [X|Ys], Zs). rev([X|Xs], Zs) :- rev(Xs, [X|Zs]).

Figure 3.1: A Prolog Program for Reversing a LisFigure 3.2: A Lolli Program for Reversing a List

% choose(Xs, Y, Zs)
% Zs is a list of elements greater thal in Xs.
choose(Xs, Y, Zs) :-

(forall X\ test(X) :- X >Y) => filter(Xs,Zs).
% filter(Xs, Zs)
% Zs is a list of elements satisfyingest/1 in Xs.

filter([],[])-
filter([X|Xs],[X|Zs]) :- test(X),!filter(Xs,Zs).
filter([_|Xs],Zs) :- filter(Xs,Zs).

Figure 3.3: A Lolli Program for Filtering a List

3.2 Using Free Variables in Resources

3.2.1 Reversing a List

Let us consider an example program for reversing a list. In Prolog, we need one extra argument (the second
argument) inreverse/3 to store a list that have been reversed during the execution time. In Lolli, we
do not need it since the resounasult(Zs) is used to receive the result from the deepest recursive call
of rev/2 . The free variableZs will get bound to the reversed list when the goadult(Zs) is called
from rev/2

For example, the goakverse([1,2,3],2S) adds the resourcesult(Zs) and executes the
subgoatev([1,2,3],[]) . Onthe third recursive caltev([],[3,2,1]) consumesesult(Zs) ,
andZs is unified with[3,2,1]

The same technique can be used to describe “accumulators”. A program calculating the summation of a
given list can be written as follows.

sum(List, Sum) :- result(Sum) -<> s(List, 0).

s([], S) :- result(S).
s([X|Xs], SO) :- S is X+S0, s(Xs, S).

3.2.2 Filtering a List

Figure 3.3 shows a simple example for filtering a list with a given condition. For example, when the goal

choose([1,2,3],2,2) is executed, the reusable claugarall X\ test(X) :- X>2 "is added
to the program, and the subgddter([1,2,3],2) is executed. The added resource is used in the
second clause diiter/2 to check whether each element satisfies the condition or not.

It is noted that the addition is not the same as the Pralsgrt mechanism. This is because the free
variableY in the added clause is instantiated2t@nd the added clausest/1 is scoped over the subgoal
filter/2

22 CHAPTER 3. ACOLLECTION OF LOLLI PROGRAMMING EXAMPLES

3.3 Using Resources as Limited-Use Data

3.3.1 N-Queens

queen(N, Q) :-
n(N) -<> result(Q) -<> place(N).

queens(N,Q) :-
gen(1,N,Js),
N2 is 2*N-1, gen(2,N2,Us),

place(1) :- DO is 1-N, gen(DO,N2,Ds),
n(N), sol(N,Js,Us,Ds,Q).
c(1) -<> u(2) -<> d(0) -<> solve(N, []).
place(l) :- sol(0,_,_,_,[D)-
1> 1, sol(1,Js0,Us0,Ds0,[J|Q]) :-
11 is I-1, I > 0, del(J,Js0,Js),

Ul is 2%, U2 is 2*-1,

D1 is I-1, D2 is 1-l,

c()y -<>

u(Ul) -<> u(U2) -<>

d(D1) -<> d(D2) -<> place(l1).

U is I+J, del(U,Us0,Us),
D is I-J, del(D,Ds0,Ds),
11 is I-1, sol(I1,Js,Us,Ds,Q).

del(X,[X|Xs],Xs).
del(X,[Y|Ys]L,[Y[Zs]) :- del(X,Ys,Zs).
solve(0, Q) :- result(Q), erase.

solve(l, Q) :- gen(_,0,[]).
1 > 0, c@), gen(l,N,[l|Ns]) :-
U is I+J, u(V), N>0, I1 is I+1, N1 is N-1,
D is I-J, d(D), gen(I11,N1,Ns).
11 is I-1,

solve(l1, [J|Q]).

Figure 3.5: A Prolog Program for N-Queens in

. . Prolog Programming for Artificial Intelligence
Figure 3.4: A Lolli Program for N-Queens g g 9 g

[11]
2
J
1 23 4 5 6 7 U=l+J
| 1
2
8 16
4
5
6 -7
7
8
D=1-J

Figure 3.6: Resources for 8-Queens

Let us consider the N-Queens problem in Figure 3.5. JheDs andUs in sol/5 are lists indicating
columns and diagonals (see Figure 3.6). Thus, the safety check of the(flacen the board is done by
deletingj from Js, i — j from Ds, andi + j from Us. However, this program heavily rely on significant
manipulation and construction of list structures.

The same technique can be used in Lolli program in Figure 3.4. In Lolli, resources can be used to
represent columng(l), and diagonalsd/1 andu/l), rather than list structures. Thus, the safety check

3.3. USING RESOURCES AS LIMITED-USE DATA 23

knight5(Tour) :-
(k(1,1), k(1,2), k(1,3), k(1,4), k(1,5),
k(2,1), k(2,2), k(2,3), k(2,4), k(2,5),
k(3,1), k(3,2), k(3,3), k(3,4), k(3,5),
k(4,1), k(4,2), k(4,3), k(4,4), k(4,5),
k(5,1), k(5,2), k(5,3), k(5,4), k(5,5))
-<> tour(1, 1, Tour).

tour(l, J, [(1,.9)[Tour]) :-
k@, J),
next(l, J, 11, J1),
tour(l1, J1, Tour).

tour(l, J, (Y :- ka, J.

next(l, J, 11, J1) :- 11 is I-2, J1 is J-1.
next(l, J, 11, J1) - 11 is I-2, J1 is J+1.
next(l, J, 11, J1) :- 11 is I-1, J1 is J-2.
next(l, J, 11, J1) :- 11 is I-1, J1 is J+2.
next(l, J, 11, J1) :- 11 is I+1, J1 is J-2.
next(l, J, 11, J1) :- 11 is I+1, J1 is J+2.
next(l, J, 11, J1) :- 11 is I+2, J1 is J-1.
next(l, J, 11, J1) :- 11 is I+2, J1 is J+1.

Figure 3.7: A Lolli Program for Knight Tour

of the place(i, j) on the board is done quickly by consuming the resouc€ed , u(i + j) , andd(: — j) .

For example, when the goglieen(8,Q) is executed, the subgoplace(8) adds the resources:
c(1) ,...c(8) ,u?) ,...ud6) ,d(-7) ,...d(7) ,and thersolve(8,[]) is called. Thesolve/2
predicate tries to find a solution by consumit(gj) , u(¢ + j) , andd(i — j) for each rowi = 1..8 and
columny. Itis noted that unused resources are consumed implicitly bgridme .

3.3.2 Knight Tour

Figure 3.7 shows a Lolli example for finding a Hamilton path onihe5 chess board. In Hamilton path,
all vertices are visited exactly once. This constraint can be represented easily by using linear resources as
vertices.

The goalknight5(Tour) adds the resourcé$l1,1) ... Kk(5,5) thatindicate 25 vertices and then
executes subgoabur(1l, 1, Tour) . The subgoal tries to find a Hamilton path starting from the po-
sition (1,1). Since visited vertices are consumed during the execution time, thekgiggit5(Tour)
succeeds only when all vertices are visited exactly once.

3.3.3 Kirkman'’s School Girl Problem

In 1850, Kirkman posed the following problem, which relates to a BIBD (Balanced Incomplete Block De-
sign) problem in mathematics.

How 15 school girls can walk in 5 rows of 3 each for 7 days so that no girl walks with any other
girls in the same triplet more than once.

The Lolli program in Figure 3.8 behaves as follows.

24 CHAPTER 3. ACOLLECTION OF LOLLI PROGRAMMING EXAMPLES

kirkman(Groups) :-
(cont :- arrange(35, Groups)) -<> gen_res(15).

gen_res(0) :- cont.
gen_res(N) :-
N > 0,
(9(N),9(N),g(N),9(N),g(N).g(N).g(N)) -<> gen_res(1, N).

gen_res(N, N) :-
N1 is N-1,
gen_res(N1).
gen_res(l, N) :-
I < N,
11 is I+1,
meet(l, N) -<> gen_res(I1, N).

arrange(0, m.

arrange(l, [[G1,G2,G3]|Groups]) :-
I > 0,
g(Gl1), 9(G2), g(G3), % select 3 girls
% check if they have not yet met each other
meet(G1, G2), meet(G1l, G3), meet(G2, G3),
11 is I-1,
arrange(l1, Groups).

Figure 3.8: A Lolli Program for Kirkman'’s School Girl Problem

1. Thegen_res creates resources of sevgfi)’s for eachi = 1..15 andmeet (4, j) for eachi =
1..14, j = (i + 1)..15. Seveng(i)'s correspond to seven attendances-ti girl. Each of resources
meet (¢,) corresponds to the pair of girls.

2. Then, thegen_res calls a goalcont , which calls the goahrrange(35, Groups) because
cont is a rule-type resource.

3. Thearrange finds 35 groups, so that each group consists of three girls, each girl appears in seven
groups, and any pair of girls is included in exactly one group.

3.3.4 Cryptarithmetic Puzzle

Figure 3.9 shows a Lolli program to solve a cryptarithmetic puzzle: “SEND+MORE=MONEY”. Each digit
1 is represented as a linear resoud¢e) . The goalerase is used to express the condition a digit can be
used at most once since it consumes unused resources implicitly.

3.4 Using Resources as Limited-Use Clauses

3.4.1 Path Finding

Figure 3.10 shows a Lolli example for finding a path through a directed graph. Since the arcs are added as
rule-type linear resources, the conditions can be elegantly expressed.

e Each arc can be used at most once.

3.4. USING RESOURCES AS LIMITED-USE CLAUSES 25

crypt([S,E,N,D]+[M,O,R,E]=[M,O,N,E,Y]) :-
(d(0), d(1), d(2), d(3), d(4),
d(5), d(6), d(7), d(8), d(9)) -<>
(add(O, D, E, Y, C1),
add(C1, N, R, E, C2),
add(C2, E, O, N, C3),
add(C3, S, M, O, C4),
add(C4, 0, 0, M, 0),
S \== 0,
M \== 0,
erase).

add(Co, X, Y, Z, C1) :-
digit(X), digit(Y), digit(2),
Sum is CO+X+Y,
Z is Sum mod 10,
C1 is Sum//10.

digit(X) :- var(X), d(X).
digit(X) :- nonvar(X).

Figure 3.9: A Lolli Program for Cryptarithmetic Puzzle

path :-
(@ -<> b) <> % add the arc froma to b
b <> ¢c) <> % add the arc fromb to c
(
(c <> a) <> % add the arc fromc to a
(c <> d) <> % add the arc fromc to d
d <> b) <> % add the arc fromd to b
(

a -<> (d, erase). % find a path froma to d

Figure 3.10: A Lolli Program for Path Finding

e A path is the transitive closure of the arc connected relation.

3.4.2 Tiling Board with Dominoes

Dominoes are puzzle pieces. Each piece consists of two equal squares. There are exactly two possible
shapes. The goal of the puzzle is to place the dominoes so that they fit into the board of given dimension. Let
the board size bén,n). A Lolli program in Figure 3.11 can elegantly expressed the following conditions:

e All m x n units of the board can be used exactly once.
This can be represented easily by mapping each unit to a resorce,) .

e All ™3 dominoes can be used and placed anywhere on the board.
This condition can be expressed by mapping each doming:t@enduct of rule-type resources which
havedomino() as their head parts. Placing a domindiay) is done by consuminb(¢, 7, -) and

b(:,7+1,.) (orb(s, 3,) andb(:+1, 7, .)) in body parts.

26 CHAPTER 3. ACOLLECTION OF LOLLI PROGRAMMING EXAMPLES

%Solver
solve_domino(M, N) :-
D is M*N/2,
row(M) => column(N) => num_of dominos(D) =>
%(cont :- place_domino(D) & write_board(1,1)) -<> gen_res(M, N),
(cont :- place_domino(D)) -<> gen_res(M, N), fail.
solve_domino(_,).

place_domino(0).
place_domino(N) :- N > 0, !, domino(N), N1 is N-1, place_domino(N1).

%Create Resources
gen_res(0) :- cont.
gen_res(N) :- N > 0, !
(
(domino(N) :- d(I, J, N), J1 is J+1, d(I, J1, N))
&
(domino(N) :- d(I, J, N), 11 is I+1, d(I11, J, N))
)
-<> (N1 is N-1, gen_res(N1)).

gen_res(l, J) :- I < 1, !, num_of dominos(D), gen_res(D).
gen_res(l, J) :- J < 1, !, 11 is I-1, column(N), gen_res(l1, N).
gen_res(l, J) :- J1 is J-1, d(I, J, _) -<> gen_res(l, J1).

Figure 3.11: A Lolli Program for Tiling Board with Dominoes

3.5 A Lean Connection Theorem Prover for First-Order Classical
Logic

We have discussed simple examples of Lolli so far. Now we have shown a more sophisticated application of
Lolli.

Recently Hodas and Tamura have reimplementedeheCoP connection-calculus theorem prover of
Otten and Bibel [46] in Lolli. This “lean” theorem prover has been shown to have remarkably good perfor-
mance relative to state-of-the-art systems, particularly considering that it is implemented in just a half-page
of Prolog code in Figure 3.12.

The reimplemented provelglliCoP [28], is of comparable size, and, when compiled under LLP (the
reference Lolli compiler), provides a speedup of 40% deanCoP. Figure 3.13 shows the source code of
lolliCoP. Performance evaluation &flliCoP is shown in chapter 5.

Here, we point out only the biggest differences between two implementations, and omit their whole
behavior in detail. IneanCoP, the technique used to select literals from clauses and clauses from matrices
relies on significant manipulation and construction of list structures on the heap. Howde#iCioP, that
technique can be replaced by the efficient resource management ba&e\drat the formula level in Lolli.

3.5. ALEAN CONNECTION THEOREM PROVER FOR FIRST-ORDER CLASSICAL LOGIC

prove(Mat) :- prove(Mat,1).

prove(Mat,PathLim) :-
append(MatA,[Cla|MatB],Mat), \+member(-_,Cla),
append(MatA,MatB,Matl1), prove(['],[[-!|Cla]|Mat1],[],PathLim).
prove(Mat,PathLim) :-
\+ground(Mat), PathLiml is PathLim+1, prove(Mat,PathLim1).

prove((]._._._).
prove([Lit|Cla],Mat,Path,PathLim) :-
(-NegLit=Lit; -Lit=NegLit) ->
(member_oc(NegLit,Path) ;
append(MatA,[Clal|MatB],Mat), copy_term(Clal,Cla2),
append_oc(ClaA,[NegLit|ClaB],Cla2), append(ClaA,ClaB,Cla3),
(Clal==Cla2 -> append(MatB,MatA,Matl)
; length(Path,K), K<PathLim,
append(MatB,[Clal|MatA],Matl)
), prove(Cla3,Mat1,[Lit|Path],PathLim)
), prove(Cla,Mat,Path,PathLim).

Figure 3.12: ThéeanCoP Theorem Prover of Otten and Bibel

prove(Mat) :- reverse(Mat,Matl),
(ground(Mat) -> propositional => pr(Matl)
; pr(Matl)
).

pr(() - p(D).
pr([Cla|Mat]) :- (ground(Cla) -> (cl(Cla) -<> pr(Mat))
; (cl(Cla) => pr(Mat))
).

p(PathLim) :- cl(Cla), \+member(-_,Cla),
copy_term(Cla,Clal), prove(Clal,PathLim).

p(PathLim) :- \+propositional,
PathLiml1 is PathLim+1, p(PathLim1).

prove([],_) :- erase.
prove([Lit|Cla],PathLim) :-
(-NegLit=Lit; -Lit=NegLit) ->
(path(NegLit), erase ;
cl(Clal), copy_term(Clal,Cla2), append(ClaA,[NegLit|ClaB],Cla2),
append(ClaA,ClaB,Cla3), (Clal==Cla2 -> true ; PathLim>0),
PathLiml is PathLim-1, path(Lit) => prove(Cla3,PathLim1)
) & prove(Cla,PathLim).

Figure 3.13: TheolliCoP Theorem Prover of Hodas and Tamura

27

Chapter 4

Towards a Efficient Implementation for
a Linear Logic Programming Language

In recent years, a number of logic programming languages based on linear logic have been proposed: LO [3],
LinLog [2], Lolli [25, 26], ACL [32, 33], Lygon [20, 21], Forum [27, 41], and Linear LF [14]. In addition,
BinProlog [51, 52] allows the use of linear implications of affine logic (a variant of linear logic). In these
languages, it is possible to add and consume resources (limited-use clauses) dynamically as logical formulas.
The efficient treatment of resources is therefore an important issue for the implementor.

In this chapter we discuss some basic issues on implementation of the Lolli language, especialy compil-
ing resources.

4.1 Implementation Design
There seem to be at least three approaches to implement efficient Lolli systems:

1. Lolli interpreter in high-level languages,
2. Translating Lolli into existing languages: Proloderolog, C, C++, Java, and others,
3. Compiling Lolli into WAM-like abstract machine code.

The approach (1) is the simplest. So far Lolli has been implemented as interpreters in RRstdgg,
and standard ML. Figure 4.1 showgAO model-based Lolli interpreter written in pure Prolog. However,
resources are represented as list structures, and their management heavily relies on significant manipulation
and construction of list structures. This leads to slowdown in performance for large-scaled applications.

For the approach (2), let us consider translating Lolli into similar languages, PrologPaotbg. This
approach might provide better performances, but meet some problems in resource management. In Prolog,
resources might be still represented as list structures. Even if we ussdsbe mechanism for han-
dling resources, there are two difficulties. First, the addition of resources is scoped over the subgoal on
the right-hand side of the implication, but assert ed clause remains until it i®tract ed. Second,
the added resources can contain free variables that may get bound when the clause is consumed, but the
assert automatically universalizes any free variables of added clauses. WBiodpg instead might solve
these problems since it allows the use of intuitionistic implicatienif Lolli) in goals. However\Prolog
have not supported linear implication. To handle the consumption of linear resources, we need to add an
extra argument to all resources for checking if they are linear or intuitionistic. This leads to unnecessary
backtracking.

29

30CHAPTER 4. TOWARDS A EFFICIENT IMPLEMENTATION FOR A LINEAR LOGIC PROGRAMMING LANGUAGE

- op(1060, xfy, (&)).
- op(950, xfy, (-<>)).
- op(950, xfy, (=>)).
- op(900, fy, (h)).

prove(G) :- | =[], O =[], prove(G, I, O).

prove(true, I, - L

prove(erase, I, O) :- !, subcontext(O, I).

prove((G1,G2), I, O) :- |, prove(G1, I, M), prove(G2, M, O).

prove((G1&G2), I, O) :- !, prove(Gl, I, O), prove(G2, I, O).

prove((G1;G2), I, O) :- I, (prove(G1, I, O) ; prove(G2, I, O)).

prove(!G, I,) -1, prove(G, I, I).

prove((R -<> G), |, O) :- !, prove(G, [R]l], [1]|O)).

prove(R => G), I, O) :- 1, prove(G, ['R]|l], ['R|O]).

prove(A, I, O) :- pick(l, O, A). % A is an atomic formula
prove(A, I, O) :- pick(l, M, (G -<> A)), % A is an atomic formula

prove(G, M, O).

subcontext([], o).
subcontext([1|0], [R]l]) :- \+ (R = (1)), subcontext(O, I).
subcontext([R|O], [R]l]) :- subcontext(O, I).

pick(l, I, S) - rule(S).

pick([R|I], [1]1], S) :- W+ (R = 1), pick_S(R, S).
pick('R[1], ['R|I], S) :- pick_S(R, S).

pick([R]l], [RIO], S) :- pick(l, O, S).

pick_S((R1&R2), S) :- !, (pick_S(R1, S) ; pick_S(R2, S)).
pick_S(S, S).

rule(append([], Zs, Zs)).
rule((append(Xs, Ys, Zs) -<> append([X|Xs], Ys, [X|Zs]))).

Figure 4.1: AZ/O Model-Based Lolli Interpreter in Prolog

For the approach (2), let us consider translating Lolli into C and Java. First, using C might have the
advantage of giving nice speedup in performance, avoiding the overhead of emulators, and producing stand-
alone executable code. For Prolog, Philippe Codognet and Daniel Diaz have developéaitiaSystem
[16], that translates Prolog into C via the WAM. Second, using Java might have the advantages of portability,
extensibility, and interactivity with Java. For Prolog, Bart Demoen and Paul Tarau have developed the
jProlog system [18], that translates Prolog into Java via the WAM. Note that, both of them is based on the
WAM (or its variant). It is therefore very important to design an abstract machine for Lolli.

The approach (3), compiling Lolli into WAM-like abstract machine code, might give nice speedup in
performance and became the basis of the approach (2). Recently, N. Tamura and Y. Kaneda proposed the
LLPAM [49], an extension of the standard WAM [1, 56] for significant subset of Lolli. However LLPAM was
logically incomplete in the treatment af since it was based on ti#8) L model. More recently, Hodast
al. solved this problem and proposed a refinement [29] based ofiRlet model. However, the refinement
supported only a small fragment of resourcélsand R, & R»,. Furthermore they were stored as terms in
heap memory, rather than compiled into LLPAM code.

4.2. COMPILING RESOURCE FORMULAS 31

’ CLC)(044+4444* Address of the conpiled LLPAM code———> | Conpi | ed

n (the number of free variables) LLPAM
code

S — reference to first free variable

reference to n-th free variable

Figure 4.2: Closure Structure

4.2 Compiling Resource Formulas

The compilation of resources without free variables is straightforward. They can be compiled just as usual
Prolog clauses because they don’t require a set of bindings of free variable. For example, the resource
formulavVX.VY.(¢(X,Y) —op(f(X),Y)) can be compiled just like Prolog claug€f(X),Y):- ¢(X,Y):

get_structure f/1, Al
unify_variable Al
execute ¢/2

We now discuss compiling resources which contain free variables. For example, let us consider the
resourcerY.(¢(X,Y) —op(f(X),Y)), whereX is a free variable. This resource can not be compiled like a
usual Prolog clause since we should know the valu¥ @it run-time for the consumption of the resources.

To solve this problem, we introduce a new data structure calleslire The closure structure consists of
a reference of compiled code and a set of bindings for free variables (see Figure 4.2). The new instruction
put_closure is used to create a closure structure:

put_closure L, 1, A5
unify_value A4

This code creates new closure cell taggedChyin A5, sets the labdl of compiled code for the resource
VY.(¢(X,Y) —op(f(X),Y)), and sets the mode to write. Thaify_value sets the free variabl¥.

When the closure is called, the WAM registis set to point to the third cell of the closure structure,
the mode is set to read, and the instruction poiRtey set to the address of the compiled code. To retrieve
the values of free variables, the compiled coded will begin wittly variable instructions.

The code generated for the resouvde(q(X,Y) —op(f(X),Y)) is as follows:

L: unify_variable A3
get_structure f/1, Al
unify_value A3
put_value A3, Al
execute g/2

The idea of closure has been widely used in implementation of functional programming languages. In
AProlog [42, 43, 45], G. Nadathet al. have used it for compiling a clauge in the goalD > G where the
D operator corresponds te in Lolli.

32CHAPTER 4. TOWARDS A EFFICIENT IMPLEMENTATION FOR A LINEAR LOGIC PROGRAMMING LANGUAGE

4.3 LLP: A Compiled Linear Logic Programming Language
4.3.1 The Definition of LLP

The LLP language is based on the following fragment of linear logic:

C = Ve A|Vz.(G—oA)
R = A|Ri&Ry|G—oR|G=R|Vz.R
G == 1|T|A‘G1®G2‘Gl&G2|G1@G2‘R—OG|R$G“G

The letters”, G and R stand for “clause”, “goal” and “resource” respectively. Compared with the fragment
used in the original LLPAM papers; — R, G = R, andVx.R are newly added to resource formulas. LLP
supports the full fragment of first-order Lolli except of universal quantifiers in goal{). It is beyond the
scope of this dissertation to deal with higher-order quantification and unificatisiiestns in Lolli. In spite

of these limitations, LLP is expressive enough to cover the example programs in chapter 3.

4.3.2 Pre-Compilation of LLP

It is very convenient for the implementors to view a resource formaldG, = (G2 —o A)) as a resource
formulavz.((! G; ® G2) —o A) whose head is an atomic formula such as Prolog clause.

G=R = !G—-oR
Gy —o(Ga—oR) = (G1®G2)—oR
G—o(R1&R2) = (G—oRy)&(G—oR>)
G —o(Vz.R) = Va.(G—oR) (wherex is notfree inG)
Ve.(Ri & R2) = (Vx.R1) &(Vz.Rs)

By rewriting formulas using above logical equivalences in the forward direction, it is possible to simplify
the definition of resource formulas:

R = Sl & & Sm
S = T|A|G—oA|Vx.S
where A stands for a atomic formula and > 1. S-formulas are calletesource clausem which the form

Vx.(G —o A) corresponds tol:- G in Prolog. Since the above translation is done during the compilation
time, we can write LLP programs in the original definition.

Chapter 5

The LLPAM Abstract Machine

LLP is implemented as a compiler to the LLP Abstract Machine (LLPAM), an extension of the Warren
Abstract Machine (WAM) [1][56]. The extension is mainly for compiling resources and efficient resource
management based on tB& M model.

In this chapter, we present the detail of LLPAM, particularly the differences from the WAM. Further-
more, we summarize the LLPAM instruction set and memory layout in Appendix A.

5.1 New Registers

LLPAM has four new registersR, L, U, andT in addition to the standard WAM register®. (program
pointer), CP (continuation program pointer} (structure pointer)H (top of heap),HB (heap backtrack
pointer),E (last environment)B (last choice point)BO (cut pointer), and'R (top of trail).

e R (top of resource table)
is a non-negative integer index indicating the current top of resource table, a new data area which is
described below. The value Bfincreases as resource clauses are added to the table by implicational
goals, and decreases on backtracking. Its initial value is O.

e L (consumption level)
is a positive integer indicating the current consumption level, which are assigned to resources when
they are added to the table. This corresponds to the current valle@sfused inCRM. Its initial
value is 1.

e U(consumption maker)
is a negative integer indicating the current consumption maker, which are assigned to resources as they
are consumed. This corresponds to the current valdéad used inCRM. Its initial value is—1.

o T (T flag)
is a boolean flag indicating whethérhas been seen as a subgoal at the current level. Its initial value
is false.

The values of these registers must be recorded in each choice point frame regardless of whether LLP
programs make use of the resource management features or not.
Besides of these registers, LLPAM makes use of four auxiliary regide&R1, R2, andRLIST . Every
time when the resource of the forh & - - - & S, (&-product of resource) is added by linear implicatien
RO is set to the index value of first resource clauSe)(Every time acall procedure is invokedR1 and
R2 are set to the lists that contain the indices of possibly consumable resources in the resourBé table.
is always set to the list that contains the indices of linear resources, not intuitionistic resources.

33

34 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

5.2 New Data Areas

LLPAM has three new data ared®ES(the resource tablelJASHthe hash table), ar8YMBOI(the symbol
table) in addition taACODEHEAR STACK TRAIL , andPDL in the WAM.

5.2.1 The Resource Table

The resource tablRESis an array of records with the following structure:

record
sl: Integer,;
s2: Integer;
level: Integer;

deadline: Integer;
out_of scope: Boolean;

pred: symbo]
closure: closure
head: term

body: term

end;

RESgrows when resources are added-ayor =, and shrinks on backtracking. A entry RESrepre-
sents either a linear resource or intuitionistic resource, depending on which implication was used to add it.
Each entry corresponds to a single resource clause.

The fields of the record are assigned as follows:

e When the resource of the fory & - - - & S, (&-product of resource clauses) is added by linear im-
plication—o, newn entries are created because the individijadre added individually. Nevertheless,
we must remember that only one of them may be consumed. Thesfiedd their entries is set to the
index value of the first resource clauSe (the value ofR0). The fields2 is set to the current top of
the resource table (the value Rf. These fields are used to maintain the exclusivitgeproducted
resource. If one resource clauSgis consumed, alk entries are so marked and become unavailable.
It is noted that when added by we need not to set these fields since intuitionistic resource can be
used infinitely.

e The fieldslevel anddeadline correspond to théandd values attached to resourcesdf® M.
They give the level at or below which the resource may be used, and the level by which the resource
must be used. For linear resources the initial values of both fields are taken from the valué of the
register at the time the entry is added. For intuitionistic resources, the two fields are set to 0.

e Theout _of _scope flag is initially false. It is set to true when the subgoal (on the right side of the
implication that added this resource) is completed, and the resource becomes out of scope. This flag
is used because the resource table shrinks only on backtracking.

e The fieldpred is set to the predicate symbol of head of added resource clause. Theldlde
contains a pointer to the closure structure of added resource. It is noted that thiededdandbody
are used to contain the head and body term respectively only when the resource clause are added as
term level from an interpreter.

Figure 5.1 shows the contents of the resource table after adding the regplrcg (¢(X) o p(X))) ®
VY.r(Y') by the implication—o.

5.3. LLPAM CODE GENERATION 35

sl s2 level deadline ouwfscope pred closure head body
RES[0]| O 2 1 1 false p/1 closure ofp(1) nil nil
RES[1]| 0 2 1 1 false p/1 closure ofg(X) —op(X) nil nil
RES[2]| 2 3 1 1 false r/1 closure ofvY.r(Y') nil nil

Figure 5.1: Resource Table After Adding the Linear Reso(p¢e) & (¢(X) - p(X))) @ VY.r(Y).

printname arity codeaddr res res2
SYMBOL[p/1] D 1 code of predicatp/1 [0,1] [1]
SYMBOL[r/1] r 1 code of predicate/1 [2] [2]

Figure 5.2: Symbol Table After Adding the Resoufpél) &(¢(X) —op(X))) ® VY.r(Y)

5.2.2 The Hash and Symbol Tables
The LLPAM has also a symbol tab&YMBOlwith the following structure:

record
print_name: Char;
arity: Integer;
hash_value: Integer;
codeaddr: code address
res: term
res2: termt

end,

The fieldres contains a list of indices of all resources that its predicate symhging _name/arity
The fieldres2 contains a list of indices of resources that its predicate symigoing _name/arity and
its first argument is an unbound logical variable.

The hash tablélASHis used to speed access to the resources. The entries are hashed on the predicate
symbol and the first argument. Looking-up a resource is done through the hash table and the symbol table.
We can't always rely on the hash table for access to the resources. When the atomic ggglwlits
a logical variable as its first argument, we must access all entries/farregardless of first argument.

In this case, we will use the value &mbol[p/n].res . Similarly, since those resources in which
the first argument is a logical variable must be examined for every call/enwe will use the value of
Symbol[p/n].res2 . Figure 5.2 shows a contents®¥MBOIlcorresponding to the Figure 5.1.

5.3 LLPAM Code Generation

The code generated for each operator in a goal represents an imperative implementatiofrofMheile
for the operator.

5.3.1 Code forG; ® G5

The code generated f6f;, @ G5 is simply as follows:

Code for G,
Code for Gy

36 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

5.3.2 CodeforR—oG

An implicational goaRk —o G requires adding the linear resourBdo the resource table and then executing
the goalG. Further, the resourcB must be used during the proof 6f It is noted thatR has been already
converted into a resource clause {gproduct of resource clauses) during the compilation time.

Suppose thaR is converted tag;-product of resource clauses & - - - & Si, the code generated for
R —o G is as follows:

begin_imp Y;
Code for the addition ofS;

Code for the addition ofS,,
mid_imp Y;, Y

Code for G

end_imp Y;, Y; Y

The following new instructions are used in the code generated for theyealz. The code generation
of resource addition will be described in section 5.3.4.

e begin _imp Y,
Store the current value &tin a new permanent variablg. Save the current value &fin RO.

e mid_imp Y;, Y
Store the current values & (the top of the resource table) afd T-flag) to the permanent variables
Y; andYy, respectively. Set the value Bfto false. Itis noted that the newly added resource clauses lie
in positionsy; throughY,; — 1. Set thes1 ands2 fields of all records fronY; to Y; — 1 to the current
values ofR0 andR, respectively.

e end_imp Y;, Y;, Yy
If there are any resources in positions fr¥fto Y; — 1 that have not been consumed, fail. Otherwise,
set theout _of _scope flags of all records frory, to Y; — 1 to true (trailing so that they may be reset
on backtracking), and set the registeto Y, V T. In order to account for the use @fat the top level
of the subgoal, the check for unconsumed resources is made as follows:

— If Tis false, thdevel anddeadline of each resource should lkand O respectively. Oth-
erwise, the resource is unconsumed.

— If Tis true, thelevel anddeadline of each resource should be eithéand 0, orL andL
respectively. Otherwise, the resource is unconsumed.

5.3.3 CodeforR=@G

An implicational goalR = G requires adding the intuitionistic resouréeto the resource table and then
executing the goal:.

Suppose thaR is converted tag.-product of resource clauses & - - - & S»., the code generated for
R = G is as follows:

begin_exp_imp Y;
Code for the addition ofS;

Code for the addition ofS,,
mid_exp_imp Y;, Y
Code for G

end_exp_imp Y;, Y;, Y

j1

5.3. LLPAM CODE GENERATION 37

The following new instructions are used in the code generated for an implication of theRfesrty. If
the goal useds rather than—o, then the behavior of generated code would be the almost same. Thus, we
point out the only differences frolR —o G. The code generation of resource addition will be described in
section 5.3.4.

e begin _exp_imp Y;
Behaves the same hegin _imp except thaR0 need not to be set.

e mid _exp_imp Y;, Y
Behaves the same asd _exp _.imp except that thel ands2 fields of all records frony; toY; — 1
need not be set.

e end_exp_imp Y;, Y;, Y
Behaves the same aad _.imp except that the added resource entries need not be examined. Only set
theout _of _scope flags of all records frony; to Y; — 1 to true (trailing so that they may be reset on
backtracking), and set regisféto Y, v T.

5.3.4 Code for Resource Addition

Let us consider the addition of a resource clavsdG — A), which contains free variablek, ..., X,,,
in which A is an atom with predicate symbgp)n. As mentioned in the previous chapter, this clause is
compiled into the following code:

L: unify_variable Ay
unify_variable Ao
unify_variable Anim

Code for the headA
Code for the bodyG

This code will be executed after the WAM registeiis set to the top of the references to free variables,
and the mode is set tead . Thus, eachunify _variable A, ;" instruction retrieves the value of free
variableX;.

The code generated for adding the clause-bys as follows (If the clause is added by rather than-o,
theadd _res instruction is replaced bgdd _exp _res):

put_structure p/n, A;
Code for the 1st argument

Code for then-th argument
put_closure L, m, A
Code for the free variableX;

Code for the free variableX,,
add_res A;, A;

The following new instructions are used in the code generated for resource addition:

e put _closure L, m, A;

38

CHAPTER 5. THE LLPAM ABSTRACT MACHINE

Create a closure structure on the heap. Setreg4; := (CLO, H);

isterA; to a newCLOcell pointing to the cur- HEAP[H] = L;

rent top of the heap. Pudh(code address)and H := H + 1;

m (the number of free variables) on the heap. HEAP[H] = m;

Set mode tavrite . Theunify_value (or H:=H + 1,

unify_variable) instruction that follows mode = write;

this instruction, pushes the: references to P = P + instruction_size(P);
free variables on the heap.

add_res 4;, A,

Used when the implication operator iso. RES[R].level = L;

Add a record for a (linear) resource clause of RES[R].deadline := L;

the formVz.A or Va.(G — A) as a new en- RES[R].out_of_scope := false

try at the top of the resource tabRES The RES[R].head = A;

value ofL is stored in théevel field andthe RES[R].body := wundef;

deadline field, theout _of _scope flag is RESI[R].closure := Aj;

set to falseA; and4; are pointers to structures RES[R].pred := register_resource(A;);
previously built on heap holding the headand R := R + 1;

closure of the clause respectively. P := P + instruction_size(P);

add_exp_res A;, A;j

Used when the implication operatords. Add RES[R].level := 0;
a record for an (intuitionistic) resource clause RES[R].deadline := 0;

of the formVz.A orvVz.(G — A) asanew en- RES[R].out_of_scope := false

try at the top of the resource tabRES Be- RES[R].head = A

haves the same axld res , except that the RES[R].body = undef;

level anddeadline fields are setto zero. RES|R].closure := Aj;
RES[R].pred := register_resource(A;);
R =R + 1,
P = P + instruction_size(P);

Intheadd res andadd _exp _res instructions, the-egister_resource(4;) function registers the value of
R (the index of added clause) to the hash and symbol tables for speed access to the res®EEeT lre
return value, the index of the predicate symbohApfn the symbol table, is set to thired field. The head

structured; is used to calculate the hash value of added clause, since the entries are hashed on the predicate

symbol and the first argument in current implementation.

Figure 5.3 shows the code generated for the §@4ll) &(¢(X) o p(X))) @VY.r(Y)) —o G, where the

free variableX is stored inAl.

5.3.5 Code forG; & Go

The goalG; & G> requires careful coordination of the consumption of resources between the two conjuncts.

The code generated for a conjunction of the f@a@mng; G, is, structurally, quite simple:

begin_with Y;
Code for G,
mid_with Y;
Code for G,
end_With Y, Yj

5.3. LLPAM CODE GENERATION

begin_imp Y3
put_ground p(1), A2
put_closure L1, 0, A3
add_res A2, A3
put_structure p/1, A4
unify_local_value Al
put_closure L2, 1, A5
unify_local_value Al
add_res A4, A5
mid_imp Y2, Y1
begin_imp Y6

39

% code for p(1)
L1: get integer 1, Al
proceed

% code for ¢(X)—op(X)

L2: unify_variable A2
get_value A2, Al
execute g/1

% code for YY.r(Y)
L3: proceed

put_structure r/1, A6
unify_void 1
put_closure L3, 0, A7
add_res A6, A7
mid_imp Y5, Y4
Code for G

end_imp Y6, Y5, Y4
end_imp Y3, Y2, Y1

Figure 5.3: Code Generated for the Go@l(1) &(¢(X) —p(X))) @ VY.r(Y)) - G.

However, in order to faithfully reproduce the behavior described inCtReM for the & operator, the three
new LLPAM instructions are, individually, more complex than those seen so far.

e begin _with Y;

DecrementJ so that we can tell which resources are consume@,inThose resources will have the
new value ofU as the value of theilevel field. Store the current value of tHeregister in a new
permanent variablg; and set thd register to false.

mid with ¥,

changepair)))))
Perform(U,0)—(L+1,L+1). This marks all of the resources that were used in the left conjunct (identi-

fied by having devel with the same value as registdand adeadline of 0) so that they can, and

must, be used in the right conjunct (by setting both those fieldls-fig to whichL will be set during
change
the execution of the right conjunct). If the valueDfs true, then perfornll_>LJ91 so that resources

that were available but not explicitly used, but whi¢hcan be thought of as having used, are also
available for use in the right conjunct. IncreménandU. Store the current value of tleregister to
a new permanent variablg. Set theT register to false.

end _with v, Y;
) . . changepair
Decrement registdr. If the value of registel is true, then performL+1,L+1)—U0) (T was seen
in this conjunct, so we can set all the resources that should have been consumed, but weren't, as
though they were). Otherwise, perfocansumeg_ ; to check whether all the resources that should

change
have been consumed, were. If this fails, fail. Otherwisg,;ifs true, then perfornh.HR_ (Those
resources that were made available to the right conjunct because the left conjunct incllidedta
weren't used in the right conjunct either, are put back to their original level)T 8ev; v (Y; A T).

The latter two must examine or manipulate teeel anddeadline of all of the in-scope entries in the
resource table. To find out them, it is clearly inefficient to scan all entries in the resource table. To solve

40 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

this problem, we use the registRLIST, which is always set to the list that contains the indices of linear
resources (the values B0). RLIST grows when resources are added-by and shrinks on backtracking.
Thus, all we have to do is to check the elementRbIST , rather than all of entries in the resource table.

5.3.6 Code for! G

Only intuitionistic resources can be used in the executiohGof As in LRM the consumption level is
manipulated to enforce this constraint. The code generatéd:fig as follows:

begin_bang v;
Code for G
end_bang Y;

The following new instructions are used in the code generated for the goal

e begin _bang Y,
Increment_ (so that it is higher than the value of tlevel field in all the entries ilRES Now, only
intuitionistic resources can be used during the proafrpf Store the value of in a new permanent
variabley,.

e end_bang Y;
Decrement.. Set the value of the registérfrom the variabler; (since it does not matter whether a
T was seen itz or not).

5.3.7 Code forT
The use ofT as a goal is compiled to the instruction:

e top
Set the register to true.

5.3.8 Code for Atomic Goals

An atomic goal means resource consumption or an ordinary program invocation. The execution of an atomic
goal A with predicate symbab/n proceeds as follows:

1. Extract the list of indices of the possibly consumable resource clauses in the resourdeE&bhs
referring to the hash and symbol table. The two regisRtrandR2 are used to store the extracted
lists of indices.

2. For eaclRESentry R with predicate symbagl/n in the extracted listR1 andR2, attempt the follow-
ing:
(a) If Ris out of scope, or is linear and has been consumed, fail.
(b) Mark the entryR as consumed.
(c) Execute the closure (compiled code followed by a variable bindingR) of

3. After the failure of all trialscall the ordinary code for predicaté.

The step 1 are added between the point thegtla (or execute) is issued, and the point that the code
block for the predicate is entered.

Looking-up a resource is done through the hash table and the symbol table. In the current implemen-
tation, the entries are hashed on the predicate symbol and the first argument. However, we can not always

5.3. LLPAM CODE GENERATION 41

num_of_args := SYMBOL[Q(P)].arity;

CP := P + instruction_size(P);

BO := B;

if SYMBOL[@(P)].codeaddr = undef then
backtrack;

if tag(SYMBOL[@(P)].res) # LIS then
begin R1 := [; R2 := [end

else

lookup_hash(Q(P));
P := SYMBOL[@(P)].codeaddr;

Figure 5.4: Thecall Instruction of the LLPAM

rely on the hash table for access to the resources. When the goal has an unbound variable as the first argu-
ment, we must access all entries for the given predicate symbol, regardless of the first argument. Similarly,
those resources in which the first argument is an unbound variable must be examined for every call on that
predicate symbol.

Figure 5.4 show theall instruction of the LLPAM whered(P) stands for the index value d? in
the symbol table. This instruction saves the current choice point's adBres80, the value of current
continuation inCP. If the predicateP is defined, then perform thiwokup_hash function (described in
Appendix A). Thelookup_hash function extracts the list of indices of the possibly consumable resource
clauses in the resource table by referring to the hash and symbol tables, and set Rieam@R2 (Set]]
if there are no consumable resources). When the goal has an unbound variable as the first aRjuisient,
set to the list of indices of all resources with that predicate name/&jtsnbol[@(P)].res), andR2is
set to an empty list. OtherwisR1 is set to the list of indices of all resources with that predicate name/arity
and the same first argument through the hash t&tflés set to the list of the indices of all resources which
have that predicate name/arity, but the first argument was an unbound variable when the resource was added
(Symbol[@(P)].res2).

For steps 2 and 3, the following new instructions are used:

e try _resource L
Allocate a new choice point frame on the stack. Behaves the same ad., except thaR1 andR2
are also saved.

e restore _resource
Having backtracked to the current choice point, reset all the necessary information from it.

e retry _resource _else L
Update the next clause fielBP) to L. Update theR1 andR2 fields in the current choice point frame
with their current values.

e trust _resource L
Discard the current choice point frame by resetti its predecessor. Continue execution with the
following instruction labeled..

e pickup _resource p/n, A; L
Find an index of consumable resource with predicate sympolfrom R1 andR2. Set that index to
A;. Continue execution with the following instruction. If there are no consumable resources, jump to
the instruction labeled.

42 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

p/n: try_resource Ly

Lo: restore_resource

Lq: pickup_resource p/n, Any1, Lo
retry_resource_else Lo
consume A,i1, Anio
execute_closure Apyo

Lo: trust_resource L

L an ordinary program code gf/n

Figure 5.5: Naive Code Generation for an Atomic Gpak

p/n: pickup_resource p/n, Aniq, L
try_resource Ly

Lo: restore_resource
pickup_resource p/n, Apy1, Lo

retry_resource_else Ly
Ly: consume A,i1, Anyo

execute_closure Ao
Ly: trust_resource L

L’ anordinary program code qf/n

Figure 5.6: Code Generated for an Atomic Gpah

e consume A,;, Aj
Mark the entryRES[A;] as consumed (sé&tvel to the current value of), anddeadline to 0).
SetA; to the value otlosure field.

e execute _closure A;
Save the current choice poiBtin BO. Let A; be a closure structuCLO, c¢). Set the registe$ to
¢ + 2 pointing to the top of the references to free variables. Set modeanh . Continue execution
with instruction onHEAP[] .

Figure 5.5 shows a naive code generated for an atomicjgoeal This code contains an obvious in-
efficiency. Even if there is not any consumable resource, it allocates a new choice point frame by the
try _resource instruction.

Figure 5.6 shows an improved code, which begin withphekup _resource instruction to check
whether there are any consumable resources or not. If there are no consumable resources, it executes the
ordinary program code (labeldd) immediately.

In figure 5.6, thepickup _resource instruction checks whether there are any consumable resources
or not. It first finds an index of consumable resource with from R1 andR2, and then sets that index
to A, ;. R1andR2 are updated to have the remaining resources. If there are no consumable resources, it
quickly jumps to the ordinary program code labelgd

Thetry _resource instruction allocates a new choice point frame on the stack and continue execution
with the instruction labeled,, . It behaves the same as WAM instructidny* L,”, but R1andR2 are also
saved. Itis noted that, in the LLPAM, they instruction always saves the values of new regisiets, U,
andT in the choice point frame.

5.4. BACKTRACKING 43

Theconsume instruction marks the resour€ES[A,, 1] as as consumed (by changinglasel to
the current value of), and itsdeadline to 0), and sets itslosure N A, 5.

LetA, 2 be(CLO,c). Theexecute _closure instruction first saves the current choice pdrih BO.
It then sets the regist&to ¢ + 2 pointing to the top of the references to free variables. It finally sets mode
toread and continues execution with instruction HEAP[¢] .

Having backtracked to the current choice point labdlgdtherestore _resource instruction resets
all the necessary information from it, and thiekup _resource instruction is invoked again. If there
are not any more consumable resources, it jumps to the instruction labgledd thetrust _resource
instruction discards the current choice point and jumps to the ordinary program code [Bhelterwise,
Theretry _resource _else instruction updates thRl andR2 fields in the current choice point frame
with their current values and continues execution with the following instruction.

5.4 Backtracking

In order to be able to recover the correct state on backtracking, we need to take the following additional
bookkeeping measures:

e The values of registelR, L, U, andT are stored in choice point frames.
e Changes to thelASHtable should be trailed.
e Moving entries inRESout of scope, and changing théwvel ordeadline should be trailed.

e Changes to the regist®LIST should be trailed.

5.5 Optimizing the Design

5.5.1 Optimizing Resource Selection

We now discuss the optimization of the code for atomic goals. For every execution of an atomic goal, the
resource consumption must be examined, regardless of whether there exists an ordinary program invoca-
tion or not. However, when there is no ordinary program invocation, an atomic goal means only resource
consumption. Our optimization design is limited to this case, and the essence of it is as follows:

o Ifthere is only one consumable resource, all we have to do is consume it immediately without creating
a choice point.

e Itis safe to discard the current choice point before consuming the last consumable resource.
The following new instruction is used in the optimized code generated for an atomic goal:
e if _no_resource L

Scans whether there are any consumable resourédsandR2. If there are no consumable resources,

jump to the instruction labeled.

Our optimization can be achieved quite easily by inserting the above new instruction just after the
pickup _resource instructions. Figure 5.7 shows an optimized code corresponding to the Figure 5.6.

44 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

p/n: pickup_resource p/n, A,iq, fail
if no_resource Ly
try_resource Ly

Ly: restore_resource
pickup_resource p/n, Any1, Lo

if no_resource L3
retry_resource_else Lo
Li: consume Api1, Anyo
execute_closure Anio
Lo: trust_resource fail
Ls: trust_resource Ly

Figure 5.7: Optimized Code Generation for an Atomic Ggal

5.5.2 Successive Addition of Linear Resources

The goal of the formR; —o(Ry —o -+ (R, —©G)---)or (R ® R ® --- ® R,,) —o G adds each individual
R; successively and then executes the goabuch goal is frequently used to add multiple resources in LLP
programs. The code generated for the gealo(Ry —--- (R, - G) - -) is as follows:

begin_imp Y,
Code for the addition ofR;
mid_imp Y;,, Yg,
begin_imp v,

Code for the addition ofR,
mid_imp Y;,, Y

2

begin_imp Y,
Code for the addition ofRR,,
mid_imp Y;,, Y

Code forG
end_imp Y; , Y;

n

n? Ykn

end_imp Y;,, Y;,, Y,
end_imp Y, Yj;, Y

However this code contains an obvious inefficiency. This code requires nekegin _imp , mid _.imp
, andend _imp instructions respectively, andvdermanent registers. In particular, each of ¢énel _imp
instructions needs to scan all of the in-scope entries in the resource table.

Our optimization design for solving this problem is as follows:

e Itis possible to add whole resources without using nested instructions.
e Only oneend _imp instruction is used to check whether all added resources are consumed or not.
The following new instruction is used in the optimized code generateBfero(Ry —o - -+ (R, < G) - -):

e more _imp
Set thes1 ands? fields of added resource clausesinto the current values dr0 (the index of first
resource clause) arRl(the top of the resource table), respectively. Update the val®efith R.

5.6. LLPAM CODE EXAMPLE

begin_imp Y3
put_ground p(1), A2
put_closure L1, 0, A3
add_res A2, A3
put_structure p/1, A4
unify_local_value Al
put_closure L2, 1, A5
unify_local_value Al
add_res A4, A5

% code for p(1)
L1: get integer 1, Al
proceed

% code for ¢(X)—op(X)

L2: unify_variable A2
get_value A2, Al
execute g/1

45

more_imp % code for YY.r(Y)
put_structure r/1, A6 L3: proceed
unify_void 1

put_closure L3, 0, A7
add_res A6, A7
mid_imp Y2, Y1
Code for G

end_imp Y3, Y2, Y1

Figure 5.8: Optimized Code Generated for the Gda{1) &(¢(X) < p(X))) @ VY.r(Y)) < G.

Our idea can be achieved quite easily by using the above new instruction. The optimized code generated
for the goalR; —o(Ry —o--- (R, —G)---) is as follows:

begin_imp Y,

Code for the addition ofR;
more_imp

Code for the addition ofR,
more_imp

more_imp

Code for the addition ofR,,
mid_imp Y;, Y

Code forG

end_imp Y;, Y; Y

This optimized code requires only ohegin _imp, mid _imp , andend _imp instructions respectively,
and only 3 permanent registers. The- 1 successive use dfegin _imp andmid _imp are replaced with
n — 1 more_.imp. Then end _imp are replaced with only onend _imp .

Note that, such optimization can be applied to the goat>(R2 = - - - (R, = G) - - -). However, in this
case, we do not need theore _imp instruction since that goal is converted iti®; & Ro & - - & Rn) = G
in compilation time.

For example, Figure 5.8 shows the optimized code corresponding to the Figure 5.3.

5.6 LLPAM Code Example

Figure 5.9 shows the partial code generated for Lolli program of filtering a list in in Figure 3.3.

46 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

% choose(Xs,Y,Zs)

choose/3:
allocate 3
begin_exp_imp Y3
put_structure test/l, A4 % creates test(X) in A4
unify_void 1
put_closure L, 1, A5 % creates a closure
unify_local_value A2 % sets the free variabley
add_exp_res A4, A5 % adds the resource

mid_exp_imp Y2 Y1

put_value A3, A2

call filter/2 % call filter(Xs,Zs)
end_exp_imp Y3 Y2 Y1

deallocate

proceed

% forall(X, (test(X) :- X >Y))
L: unify_variable A2 % retrieves the free variabley
execute ">/2 % executeX > Y

test/1:
pickup_resource test/1, A2, fail
if_no_resource L1
try_resource L1

LO: restore_resource
pickup_resource test/1, A2, L2
if no_resource L3
retry_resource_else LO

L1: consume A2, A3
execute_closure A3

L2: trust_resource fail

L3: trust_resource L1

Figure 5.9: LLPAM Code Generated for the Predicgtteose and the Resourdest in Figure 3.3

5.7 Performance Evaluation of LLP Compiler System

We have developed a LLPAM-based compiler system, called LLP. In this section, we present the perfor-
mances of the LLP compiler system.

LLP is a first generation compiler system for a linear logic programming language. The system consists
of a LLP to LLPAM compiler (written in Prolog) and a emulator (written in C), but it does not incorporate
well-known optimizations, register allocation, last-call-optimization, global analysis, and so on.

The newest package (version is 0.5.1) is available from:

http://bach.cs.kobe-u.ac.jp/llp/

First, we compare the execution speeds of Mu@Queen programs. One is a prolog program in Figure 3.5
compiled under a SICStus Prolog 3.7.1 (WAM code), where resources are represented by list structures.
Another is a Lolli program in Figure 3.4 compiled under LLP 0.5.1 (LLPAM code), where resources are
compiled into closures and kept in the resource table.

Table 5.1 shows the performance results for all solutiorts f N < 14. At N = 8, LLP is 2.67 times
faster than Prolog, and the speedup of LLP is getting larger and largérimsreases. AV = 14, LLP is

5.7. PERFORMANCE EVALUATION OF LLP COMPILER SYSTEM 47

Table 5.1: Performance ResultsgfQueens

N Runs Averaged SICStus3.7.1 LLP0.5.1 Speedup Ratio

8 10 40 15 2.67

9 10 186 68 2.74

10 10 902 292 3.09

11 10 4762 1432 3.33
12 10 26849 7558 3.55
13 5 159856 42292 3.78
14 5 1013514 252846 4.01

Table 5.2: Performance Results of Knight Tobir{ 5)

Runs Averaged SICStus3.7.1 LLP0.5.1 Speedup Ratio
5 60416 25392 2.38

4 times faster than Prolog. Table 5.2 shows the performance results of similar test for Knight Tour program
(all solutions) in Figure 3.7. LLP is 2.38 times faster than Prolog.

Second, we show an improvement in performance by compiling resources rather than storing resources
as terms on heap memory. We compare the execution speeds of two Lolli programs for tiling board with
dominoes, and both of them are compiled under LLP 0.5.1.

Oneis a program in Figure 3.11 where resources are compiled into closures. Another is the same program

except that all occurrences of resources are replaced with metavariables as resources. For example, the code
for adding resources:

gen_res(N) :- N > 0, !,

(
(d(, J, N), J1 is J+1, d(l, J1, N)) -<> domino(N)
&

(d@, J, N), 11 is I+1, d(I11, J, N)) -<> domino(N)
)
-<> (N1 is N-1, gen_res(N1)).

is replaced with

gen_res(N) :- N > 0, |,
Domino = ((d(I, J, N), J1 is J+1, d(I, J1, N)) -<> domino(N)
&

(d@, 3, N), 11 is I+1, d(11, J, N)) -<> domino(N)),
Domino -<> (N1 is N-1, gen_res(N1)).

where resources are not compiled and stored as terms.

Table 3.11 shows the performance results for all solutions on 5 different shaped boards. Compiling
resources (LLP) is 1.5 times faster than representing resources as terms in a heap memadry {Itd?
speedup is due to the compilation of resource clauses, in which their bodies consist of compound goal
formulas, rather than only atoms.

To measure the overhead incurred by the new structures of the LLPAM, we compare our compiler with
high performance Prolog compilers, SICStus Prolog version 3.7.1 and SWI-PrologQuigbtion) version
3.4.1. Table 5.4 shows the performance results of classical Prolog benchmarks. LLP is 1.47 times faster than
SWI-Prolog, but twice slower than SICStus. When we take into consideration that the factor of slowdown

48 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

Table 5.3: Performance Results of Tiling Board with Dominoes

(Row, Column) Runs Averaged LLP LLP Speedup Ratio
(2,5) 5 62 42 1.48
(3,4 5 698 460 1.52
2,7) 5 8474 5830 1.45
4, 4) 5 145062 95934 151
(3,6) 5 2167058 1457346 1.49

Table 5.4: Performance Results of Prolog Benchmarks

Prolog Programs Runs Averaged LLP0.5.1 SWI3.4.1 SICStus3.7.1
boyer 5 1772 520 162
browse 5 414 650 210
cal 5 78 100 44
chat _parser 5 8 14 6
ham 5 262 380 156
poly _10 5 18 34 10
queens _10 (all sol.) 5 680 1060 330
tak 5 60 148 26
zebra 5 18 18 10
Average of Ratio 5 1.00 1.47 0.51

from SICStus seems to be due to the difference between a optimized Prolog compiler and our relative naive
compiler, new structures incur only a sufficiently small overhead.
All times in Table 5.1-5.4 were collected on Linux system (Pentium 11l 850MHz, 128M memory).

5.8 Performance Evaluation of Hodas and Tamura’dolliCoP

Now we shows the performance of a more sophisticated applicatitmili@oP in Figure 3.13. The results
(Table 5.5-5.7) are taken from a paper [28] by Hodas and Tamura.

They testedolliCoP on the 2200 clausal form problems in the TPTP library version 2.3.0 [48, 34].
TPTP consist of 2193 problems known to be unsatisfiable (or valid using positive representation) and 7
propositional problems known to be satisfiable (or invalid). Each problem is rated from 0.00 to 1.00 relative
to its difficulty. A rating of “?” means the difficulty is unknown. No reordering of clauses or literals has
been done.

The tests were performed on a Linux system with a 550MHz Pentium IIl processor and 128M bytes
of memory. The programs were compiled with LLP compiler version 0.5.0. The time limit for all proof
attempts was 300 seconds.

The overall performance @TTER 3.1 (with MACE 1.4) [34, 36]JeanCoP [46], andlolliCoP, in terms
of the number of problems solved, are shown in Table 5.5. The table also includes data for an improved
version ofolliCoP, calledlolliCoP5. The results foteanCoP were obtained in the same environment as
those forlolliCoP, using SICStus Prolog 3.7.1, and are better than those reported by the authors [46]. The
results forOTTER 3.1 (with MACE 1.4), which is not publicly available, are taken from a report by its
developers [34]. These results were produced on a 400MHz Pentium Il, which is somewhat slower than the

5.8. PERFORMANCE EVALUATION OF HODAS AND TAMURA'S.OLLICOP 49

Table 5.5: Overall Performance 6ffTER, leanCoP, andlolliCoP

Total OTTER leanCoP lolliCoP lolliCoP
Solved 2200 1602 (73%) 810 (37%) 822 (37%) 880 (40%)
0to< 1 second 1209 541 554 614
1to< 10 seconds 142 135 124 117
10 to <100 seconds 209 93 91 94
100 to<200 seconds 31 18 25 34
200 to<300 seconds 11 23 28 21

Problems rated 0.00 1308 1230 (94%) 713 (55%) 716 (55%) 737 (56%)
Problems rated-0.00 733 249 (34%) 76 (10%) 83 (11%) 118 (16%)
Problems rated ? 159 123 (77%) 21 (13%) 23 (14%) 25 (16%)

Table 5.6: Performance @TTER leanCoP andlolliCoP Classified by Problem Rating

1308 TPTP Probl ens rated 0.00 733 TPTP Probl ens rated >0.00
Qter —— QO ter
ol I'i CoP2— | ol l'i CoP2—~
497 18 3 194 19 16
——— lolliCo ——— lolliCo
11 1 3 4
| eanCo — | eanCo
9 695 9 33 43
N N\
65 421

machine Hodas and Tamura used. Figure 5.6 depicts the overlap of problems solved by each system.
Table 5.7a compares the performance of all four systems on the 33 problems that they can all solve.

Total CPU time is shown, along with a speedup ratio relativiedmCoP (under SICStus). On just these

problems lolliCoP provides a speedup of 40% oveanCoP, and it has almost the same performance as

OTTER. However, comparing the result of 36 problems solved by l@ther andlolliCoP, OTTERIs 71%

faster as shown in Table 5.7b. Finally, Table 5.7c shows a similar analysis for the 76 probleloki Ga?

andleanCoP can both solve.

50 CHAPTER 5. THE LLPAM ABSTRACT MACHINE

Table 5.7: Comparison @ddTTER, leanCoP, andlolliCoP

(a) 33 problems solved b®TTER, leanCoP, andlolliCoP

OTTER leanCoP IolliCoP lolliCoPy
Total CPU time 1143.03 1590.66 1139.41 338.47
Average CPU time 34.64 48.20 34.53 10.26
Speedup Ratio 1.39 1.00 1.40 4.70

(b) 36 problems solved b®TTER andlolliCoP

OTTER lolliCoP lolliCoPy
Total CPU time 1152.40 1969.67 450.57
Average CPU time 32.01 54.71 12.52
Speedup Ratio 1.71 1.00 4.37

(c) 76 problems solved biganCoP andlolliCoP

leanCoP lolliCoP lolliCoPy
Total CPU time 2757.83 2038.58 853.24
Average CPU time 36.29 26.82 11.23
Speedup Ratio 1.00 1.35 3.23

Chapter 6

Translating a Linear Logic
Programming Language into Java

In recent years, a number of Java implementations for logic programming languages have been developed:
CKI Prolog, JavalLog, Jinni [53], JIP, JLog, JP, jProlog [18], Kernel Prolog, KLIJava, LL, LLPj, MINERVA,
NetProlog, tuProlog, and W-Prolog [57]. However, there has been no Java implementation for linear logic
programming languages.

In this chapter, we present the Prolog Eafystem, that translates LLP into Java via the LLPAM. The
system has the advantages of portability, extensibility, and interactivity with Java. It is portable to any
platform supporting a Java compiler. It is easily expandable with several extensions using a lot of Java class
libraries, such as multi-threaded and distributed system. It also provides smooth bi-directional interaction
between LLP and Java.

There seem to be at least three approaches to implement efficient LLP system in Java.

1. Compiling LLP into Java Bytecodes
2. LLPAM emulator in Java
3. Translating LLP into Java

The approach (1) might be the fastest, but compiling to Java bytecodes is certainly not a simple task and is
sensitive to Java version dependency. The approach (2) might be the simplest, but emulation has not nice
performances if unoptimized and is not possible to produce an independent executable program as output.
Thus, we decided to investigate the approach (3): translating LLP into Java. This has the advantage of giving
nice speedup in performance, avoiding the overhead of emulators, and producing stand-alone executable
codes.

First, we describe how jProlog, LLPj, and Prolog E#fanslate Prolog control flow into Java. After that
we describe how Prolog Gaftranslates LLP into Java.

6.1 Demoen and Tarau’s jProlog Approach

The jProlog system, developed by Demoen and Tarau, is a first generation Prolog-to-Java translator via the
WAM. It is based on binarization transformation [54], a continuation passing style compilation technique
used in BinProlog.

First, each Prolog clause is translated into a binary clause by binarization, and then translated into Java
code.

51

52 CHAPTER 6. TRANSLATING A LINEAR LOGIC PROGRAMMING LANGUAGE INTO JAVA

Each term is translated into a certain Java object. Each clause is translated into one Java class. Each
predicate is translated a set of classes; there is one class for entry point, and other classes for clauses. Each
continuation goal is translated at term level, that is executed by referring to the hash table to transform it into
its corresponding predicate object.

Let us consider a simple example:

p:-aqr
g.

First, each clause is translated into a binary clause:

p(Cont) :- q(r(Cont)).
g(Cont) :- call(Cont).

and then each of them is translated into the following Java code, where some codes are omitted to retrieve
the essence of control flow:

public class pred_p_0 extends Code { % entry point of p/0
static Code cl1 = new pred_p_0_1() ;
static Code glcont ;

void init(PrologMachine mach) {
glcont = mach.LoadPred("q",0) ; % get continuation goalg/0

}

Code Exec(PrologMachine mach) {
return cll.Exec(mach) ; % call the clausep(Cont) :- q(r(Cont))

}
}

class pred_p_0_1 extends pred_p_O { % p(Cont) :- qg(r(Cont)).
Code Exec(PrologMachine mach) {
PrologObject continuation = mach.Areg[0]; % get Cont
mach.Areg[0] = new Funct("r".intern(), continuation) ; % create r(Cont)
mach.CUTB = mach.CurrentChoice ;
return glcont ; % call g/0
}

}

public class pred_g_0 extends Code { % entry point of g/0
static Code cll = new pred_q_0_1() ;
Code Exec(PrologMachine mach) {
return cll.Exec(mach) ; % call the clauseq(Cont) :- call(Cont).
}
}

class pred_g_0_1 extends pred_g_0 { % q(Cont) :- call(Cont).
Code Exec(PrologMachine mach) {
mach.CUTB = mach.CurrentChoice ;
return UpperPrologMachine.Calll ; % call Cont

}
}

Translated code is executed in the following supervisor function:

code = code for target predicate
while (ExceptionRaised == 0) {

code = code.Exec(this) ; % this indicates Prolog engine
}

6.2. THE LLPJ APPROACH 53

jProlog is a good starting point to study of translating Prolog into Java. jProlog supports intuitionistic as-
sumption, backtrackable destructive assignment, and delayed execution. However, jProlog is an experimen-
tal implementation, that does not incorporate well-known optimizations such as indexing and specialization
of head unification, and so on. It is this system that we optimize and extend for linear logic programming
language.

The newest package of jProlog (version is 0.1) is available from:

http://www.cs.kuleuven.ac.be/"bmd/ProloginJava/

The system consists of a Prolog to Java translator (written in Prolog) and a run-time system (written in Java).

6.2 The LLPj Approach

The LLPj system [8] is a first generation, LLP-to-Java translator via LLPAM. This system was also based
on binarization, but it took a different approach from jProlog for translating Prolog into Java.

In this approach, each predicate is translated into only one class, in which each clause is translated into
a single Java method. Each continuation goal is translated at predicate level rather than term level, that is
directly executed by invoking itsxec method. The previous example is translated as follows:

public class PRED_p_0 extends Predicate {
public PRED_p_0 (Predicate cont) {
this.cont = cont; % get Cont
}
public void exec() {
if(clausel()) return; % call the clausep(Cont) :- qg(r(Cont))
private boolean clausel() { % p(Cont) :- q(r(Cont)).
try {
Predicate new_cont = new PRED_r_O(cont); % create r(Cont)
(new PRED_qg_0O(new_cont)).exec(); % call g/0
} catch (CutException e) {

if(e.id != this) throw e€;
return true;

return false;

}
}
public class PRED_g_0 extends Predicate {
public PRED_g_0 (Predicate cont) {
this.cont = cont; % get Cont
}
public void exec() {
if(clausel()) return; % call the clauseq(Cont) :- call(Cont).
private boolean clausel() { % q(Cont) :- call(Cont).
try {
cont.exec(); % call Cont
} catch (CutException e) {
if(e.id != this) throw e;
return true;
return false;
}

54 CHAPTER 6. TRANSLATING A LINEAR LOGIC PROGRAMMING LANGUAGE INTO JAVA

Translated code is executed without a supervisor function:

code = code for target predicate
code.exec();

In this approach, we do not have to care the choice point stack. The trail stack is maintained in each
predicate locally. The cut mechanism is easily implemented by Java exception handling furtgfiorasid
catch . In performance, our translator generated slight faster code for some Prolog benchmarks compared
with jProlog.

The main drawback of this approach is that the invocatiomxafc will invoke other nestedexec
methods, and never return until the system reaches the first solution. This leads to a memory overflow for
large programs. As with jProlog, the system did not incorporate well-known optimizations such as indexing,
specialization of unification, and so on. In addition, LLPj support the LLP language, but resources are not
compiled and stored at term level in the resource table. This slows down the execution speed of resources.

6.3 The Prolog Cat Approach

The Prolog Ca# system is a refinement of LLPj. The main differences from LLPj is as follows:

e As with jProlog, each predicate is translated into a set of classes, but each continuation goal is trans-
lated at predicate level, which is executed by a supervisor function to avoid memory overflows in
LLP;j.

e Itis possible to treat Java objects as Prolog terms, invoke their methods, and access to their fields using
reflection based Java interfagava _constructor/2 ,java _method/3 ,java _set field/3
andjava _get _field/3

e Prolog Caé incorporates the optimization of indexing(only first level) and specialization of head uni-
fication, built-in predicates for error and exception handling, and floating point numbers.

e To execute resources efficiently, resource are compiledciogureswhich consist of a reference of
compiled code and a set of bindings for free variables.

6.3.1 Translating Prolog into Java

Each term is translated into a Java object of classes in Figure\@fiableTerm , IntegerTerm
DoubleTerm , SymbolTerm , ListTerm , andStructureTerm . TheTerm class, with an abstract
methodunify , is a common superclass of these classes.

TheJavaObjectTerm class is used to treat Java objects as terms.ClbsureTerm class is used
to create closure structures for compiling resources in LLP.

Term {abstract}
I

VariableTerm NumberTerm SymbolTerm ListTerm StructureTerm JavaObjectTerm ClosureTerm

IntegerTerm DoubleTerm

Figure 6.1: Term Structure of Prolog @af

6.3. THE PROLOG CAE APPROACH 55

Each predicate is translated a set of classes; there is one class for entry point, and other classes for clauses
and choice instructions. THeredicate class is a common superclass of these classes, and has an abstract
methodexec and the fieldcont for continuation goal. Each continuation goal is translated at predicate
level, that is is executed by a supervisor function. The previous example is translated as follows:

import jp.ac.kobe_u.cs.prolog.lang.*;

public class PRED_p_0 extends Predicate {
public PRED_p_O(Predicate cont) {
this.cont = cont; % get Cont
}
public Predicate exec() { % p(Cont) :- q(r(Cont)).
engine.setB0();
Predicate pl = new PRED_r_0(cont); % create r(Cont)
return new PRED_q_0(pl); % call g/0
}
}
public class PRED_qg_0 extends Predicate {
public PRED_g_O(Predicate cont) {
this.cont = cont; % get Cont
}
public Predicate exec() { % q(Cont) :- call(Cont).
return cont; % call Cont
}
}
Translated code is executed by a supervisor function:
code = code for target predicate
while (code == null) {
code.setEngine(engine); % engine indicates Prolog engine

code = code.exec();

}

This translation method is an integration of jProlog and LLPj approaches. In performance, our translator
generated 1.7 times faster code for a set of classical Prolog benchmarks compared with jProlog. This speedup
is entirely almost due to the optimization of indexing and specialization of head unification.

In Prolog Caé, it is possible to treat Java objects as Prolog terms, invoke their methods, and access to
their fields using reflection based Java interface.

The predicatgava _constructor/2 is used to create a Java object as term, caldd term Java
term is implemented as an instance of flawaObjectTerm class. The predicaava _method/3 is
used to invoke the methods of Java terms. The predjeste _get _field/3 is used to get the values
of specified fields of Java terms. The predigatea _set _field/3 is used to set the values to specified
fields of Java terms.

main :-
java_constructor('java.awt.Frame’, X),
java_method(X, setSize(200,200),),
java_get field(java.lang.Boolean’, 'TRUE’, True),
java_method(X, setVisible(True),).

For example, the above code will display an empty Java frame on your display.

56 CHAPTER 6. TRANSLATING A LINEAR LOGIC PROGRAMMING LANGUAGE INTO JAVA

assert(Clause) :- assertz(user, Clause).
retract(Clause) :- retract(user, Clause).

assertz(Hash, Clause) :-
canonical_clause(Clause, Key, CI),
get_term(Hash, Key, CIs0),
copy_term([CI|CIs0], Cls),
put_term(Hash, Key, CIs).

retract(Hash, Clause) :-
canonical_clause(Clause, Key, CI),
get_term(Hash, Key, CIs0),
copy_term(CIs0O, Clsl),
select_in_reverse(C, Cls1, Cls),
C = Cl,
put_term(Hash, Key, Cls).

Figure 6.2: An Implementation @fssert andretract in Prolog Caé

6.3.2 Implementingassert and retract

Prolog Caé is easily expandable with increasing Java class libraries since all data structures are represented
as Java objects. Here, we present an implementation of Prasg&t andretract by using Java
hash table. In our design, each entry in the hash table contains a list of clauses. The entry is hashed on the
predicate name/arity of the head part of clause.

The following built-in predicates for handling a hash table are used to impleassett andretract
easily.

e put_term(+Hash, +Key, ?Term)
Maps the key to the value dferm in the hash tableKey is a ground term for the hash key. Note that
any unbound variables ifierm are not replaced by new private variables.

e get term(+Hash, +Key, ?Term)
Retrieves the value to which the key is mapped in the hash table and unifies Tevith Term is
unified with empty list if the key is not mapped to any value in the hash table.

The first argumenitiash must be a Java term which has a hash table on the inside. Since such Java terms can
be created bjava _constructor/2 , itis possible to maintain multiple hash tables in Prolog. Figure 6.2
shows source code fassert andretract , whereuser represents the standard hash table in Prolog
Cafe. The behavior oissert/2 s straightforward. First, it takes the hash key of clause and extracts the

list of clauses by referring to the hash tabiget _term/3). Then, it creates a new list by inserting the

target clause to the extracted list and registers a copy of the created list in the haspuabterm/3).

We note that we need to make a copy because unbound variables in clauses might be instantiated after the
assert ion, or variable bindings might be canceled on backtracking. The behavietratt/2 is also
straightforward, so we omit the explanation.

6.3.3 Translating LLP into Java

We have presented the Prolog aspect of the Prolog €gdtem so far. We now describe how PrologéCaf
translates LLP into Java.

6.3. THE PROLOG CAE APPROACH 57

First, each clause including linear logic operators is translated into a Prolog clause, in which those
operators are replaced with built-in predicates that correspond to certain LLPAM instructions. After that it
is binarized and then translated into Java code.

p(X, Y) - q(X) -<> r(Y).
p(X, Y) - q(X) & r(Y).
p(X, Y) - H(a(X), r(Y))).

For example, the above clauses are translated into:

px, Y) - p(X, Y) - pX, Y) -
begin.imp(A), begin_with (A), begin_bang(A),
add_res(q(X), [a/1,[X]]), aex), aex),
mid_imp(B, C), mid _with (B), r(Y),
r(Y), r(Y), end_bang(A).
end.imp(A, B, C). end.with(A, B).
in which each built-in predicate (written by bold face) corresponds to certain LLPAM instruction. The
second argumerjy/1,[X]] of add _res is used to create the closure structure for the resogXe .

After that these clauses are translated into binary clauses and then translated into Java code.
Let us show the partial code generated for the first clap€€,” Y) :- q(X) -<> r(Y)

import jp.ac.kobe_u.cs.prolog.lang.*;

public class PRED_p_2 extends Predicate { % Code for the predicatep/2
static Predicate res_g_1 = new RES_q_1();
static SymbolTerm sym_q_1 = SymbolTerm.makeSymbol("q", 1);

public PRED_p_2(Term al, Term a2, Predicate cont) {
argl = al;
arg2 = az;
this.cont = cont;

}

public Predicate exec() {
engine.setBO();
al = argl.dereference(); % Get the value of 1st argument
a2 = arg2.dereference(); % Get the value of 2nd argument
x = {al};
a4 = new StructureTerm(sym_q_1, Xx); % Create the headq(X)
a5 = new ClosureTerm(res_q_1, X); % Create the closure ofj(X)
pl = new PRED_end_imp_2(a3, a6, a7, cont);
p2 = new PRED_r_1(a2, pl);
p3 = new PRED_mid_imp_1(a6, a7, p2);
p4 = new PRED_add_res_2(a4, a5, p3); % Add the resourceq(X)
return new PRED_begin_imp_1(a3, p4);

}

}
public class RES_g_1 extends Predicate { % Code for the resourcey/1

public Predicate exec() {
al = engine.aregs[l].dereference(); % Get the value of 1st argument
a2 = engine.aregs[2].dereference(); % Get the value of free variableX
this.cont = engine.cont;
if (! al.unify(a2, engine.trail)) % Unify the 1st argument withX

return engine.fail(); % backtrack

return cont;

}

58 CHAPTER 6. TRANSLATING A LINEAR LOGIC PROGRAMMING LANGUAGE INTO JAVA

Table 6.1: Comparison for Prolog Gafs jProlog vs SWI-Prolog

Prolog Programs Runs Averaged Prolog GaD.5.0 jProlog0.1 SWI3.4.1
boyer 5 6600.6 13995.8 634.0
browse 5 1866.4 16129.4 654.0
ham 5 1929.4 3391.8 384.0
nrev (300 elem.) 5 243.8 1520.8 48.0
query 5 64.6 46.2 4.0
tak 5 2327.2 2963.0 11180.0
zebra 5 75.2 127.6 18.0
cal 5 492.4 ? 192.0
chat _parser 5 226.8 ? 18.0
poly _10 5 450.4 ? 38.0
queens _10 (all sol.) 5 2348.0 ? 1892.0
sendmore 5 236.0 ? 72.0
Average of Ratio 5 1.00 1.71 0.16

Theengine indicates an Prolog Cafengine which is activated currently. Thagine.aregs and
engine.cont fields indicate the argument registers and the continuation register respectively. Closure
structures can be implemented easily by usingGlesureTerm class.

6.4 Performance Evaluation

We now present the performances of the PrologeGaktem. The system consists of two Java packages:

e jp.ac.kobe _u.cs.prolog.lang for runtime system,
e jp.ac.kobe _u.cs.prolog.compiler for translator.

We compare Prolog Cafwith jProlog version 0.1 and SWI-Prolog version 3.4.1. jProlog is a first
generation, Prolog-to-Java translator system. SWI-Prolog is a popular Prolog compiler system, that compile
Prolog into WAM.

Table 6.1 shows the performance results of a set of classical Prolog benchmarks. A time of “?” means we
met some errors during the compilation of generated Java code using Java compiler. All times in Table 6.1
were collected on Linux system (Pentium Il 850MHz, 128M memory). witha™ 2 SDK Standard
Edition version 1.4.0.

Prolog Caé generates 1.7 times faster code than jProlog. This speedup is entirely almost due to indexing
and specialization of head unification. Compared with SWI-Prolog, Prolog i€#&f.3 times slower.

Prolog Cat is a first generation, Java implementation for a linear logic programming language. It does
not incorporate well-known optimizations, such as register allocation, last-call-optimization, global analysis,
and so on. The newest package (version is 0.5.0) is available from:

http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/

Chapter 7

TLLP: A Temporal Linear Logic
Programming Language

Recent development of logic programming languages based on linear logic suggests a successful direction to
extend logic programming to be more expressive and more efficient. The treatment of formulas-as-resources
gives us not only powerful expressiveness, but also efficient access to a large set of data. However, in
linear logic, whole resources are kept in one context, and there is no straight way to represent complex data
structures as resources. For example, in order to represent an ordered list and time-dependent data, we need
to put additional indices for each resource formula.

Temporal Linear Logic (TLL) is an extension of linear logic with some features of temporal logic. TLL
was first studied by Kanovich and Itoh [31], and a cut-free sequent system has been proposed by Hirai [23].
The semantics model of TLL consists an infinite number of phase spaces linearly ordered by the time clock.
Each phase space is the same as that of linear logic.

In this chapter, we describes a logic programming language, called TLLP, based on intuitionistic tempo-
ral linear logic. This logic, an extension of linear logic with some features from temporal logics, allows the
use of the modal operatorS*(next-time) and t1’(always) in addition to the operators used in intuitionistic
linear logic. The intuitive meaning of modal operators is as followd3 means tha3 can be used exactly
once at the next moment in timer B means thaf3 can be used exactly once any timié3 means thaf3
can be used arbitrarily many times (including 0 times) at any time.

We first give a proof theoretic formulation of the logic of the TLLP language. We then present a series
of resource management systems designed to implement not only interpreters but also compilers based on
an extension of the standard WAM model. Finally, we describe some implementation methods based on our
systems.

7.1 Intuitionistic Temporal Linear Logic

In this section, we will focus on the sequent syst@irl. [23] of intuitionistic temporal linear logic developed
by Hirai. The expressive power ¢fLL is shown by a natural encoding of Timed Petri Net. It is this logic
that we shall use to design and implement the logic programming language described below.
ITLL allows the use of the modal operato¢s'(next-time) and to’(always) in addition to the operators
used in intuitionistic linear logic. Compared with the sequent systdm(see Figure 2.1) of intuitionistic
linear logic, three rulesl(n1), (R O), and ©) are added. The entire set GfLL sequent rules is given in
Figure 7.1. Here, the left-hand side of sequents are multisets of formulas, and the structural rule for exchange
need not be explicitly stated. The structural rule for weakerkid)(and contraction(!) are available only
for assumptions marked with the modal operatorThis means that, in general, formulas taharked can

59

60 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

(Rules ofILL in Figure 2.1)

A, B—C I IT,0¥ —C R IT,o0%,A —C
AoB —c o Toy oo RO T.05.0A8 S0C

O)

Figure 7.1: The Proof SystefLL for Intuitionistic Temporal Linear Logic

be used exactly once. Limited-use formulas can represent time-dependent resoliftés rhe intuitive
meaning of these modal operators is as follows:

e O B means thaB3 can be used exactly once at the next moment in time.
e O B means thaB3 can be used exactly once any time.
¢ ! B means thaB3 can be used arbitrarily many times (including 0 times) at any time.

By combining these modalities with binary operators in linear logic, several resources can be expressed.
For example,B & O B means thatB can be used exactly once either at the present time or at the next
moment in time O(1 & B) means thaB can be used at most once at the next moment in time.

Two formulasB andC are equivalent, denotet = C, if the sequent$3 — C andC — B are
provable inITLL. The notationO™ meansn multiplicity of O. We note the following sequents that are
provable inITLL.

'B =118, OoB=00O0B, 'B=0!B,
'!B—0B®---®0B, OoB—O"B (n>0)

The main differences from other temporal linear logic systems [31][50] ardéTfhhtincludes the modal
operator ', and it satisfies a cut elimination theorem. Both of these additions are very important for the
design of a language based on the notioblniform Proofs

7.2 Language Design

The idea of uniform proofs [38], proposed by Miller et. al, is a simple and powerful notion for designing
logic programming languages. Uniform proof search is a cut-fyeal-directed proof searcin which a
sequeni’ — G denotes the state of the computation trying to solve the @dabm the prograni’. Goal-
directed proof search is characterized operationally by the bottom-up construction of proofs in which right-
introduction rules are applied first and left-introduction rules are applied only when the right-hand side is
atomic. This means that the operators in the goate executed independently from the progfarmand the
program is only considered when its goal is atomic. A logical systemadbatmact logic programming language
if restricting it to uniform proofs retains completeness. The logics of PralBgplog, and Lolli are examples
of abstract logic programming language.

Clearly, intuitionistic linear logic (even over the connectives: &, ®, —o, !, andV) is not an abstract
logic programming language. For example, the sequenRis— b®a and! a & b — ! a are both provable
in ILL but do not have uniform proofs.

Hodas and Miller have designed the linear logic programming language Lolli [25][26] by restricting
formulas so that the above counterexamples do not appear, although it retains desirable features of linear
logic connectives such dand®. The Lolli language is based on the following fragment of linear logic:

R = T‘A‘Rl&RzlG—OR|G:>R|V£ER
G = 1|T|A|Gi1®G2|Gi1&G2|G1®Ga|R—G|R=G |G| V2G| .G

7.2. LANGUAGE DESIGN 61

(Rules ofL in Figure 2.4)
oY, A—C

I"AB—C o
o, 0A —OC (©)

T Ao —C 9

Figure 7.2:7 L: A Proof System for the Connectivas &, —«, =,V, 1,!, ®, ®, 3, O, andO.

Here, R-formulas and=-formula are calledesourceandgoal formulasrespectively. The connective is
calledintuitionistic implication and it is defined a® = C = (! B) < C.

The sequent of Lolli is of the form'; A — G wherel is a set of resource formulad, is a multiset of
resource formulas, and is a goal formulal’ andA are calledntuitionisticandlinear contextespectively,
and they correspond to thogram G is called thegoal. The sequenf’; A — G can be mapped to the
linear logic sequentl’, A — G. Thus, the right introduction rule foro adds its assumption (called a
linear resourcég to the linear context, in which every formula can be used exactly once. The right introduc-
tion rule for=- adds its assumption (called artuitionistic resourcgto the intuitionistic context, in which
every formula can be used arbitrarily many times (including 0 times).

Hodas and Miller developed a series of proof systé&nisee Figure 2.4) and’ in [25]. They proved that
L is sound and complete with respect to the rules restricted to the Lolli language. They also proyed
preserves completeness even if provability is restricted to uniform prgbfs.the proof system that results
from replacing the Identity, £o, L=, L&, and LV rules in£ with a single rule, calletbackchaining

In this chapter, we will use a more restrictive definition for resource and goal formulad. heatomic
andm > 1:

R = S1& &Sm
S = T|A|G—oA|Vz.S
G = 1|T|A|G1®G2|G1&G2|G1@G2 | R—oG|S=G|!G|Vz.G| .G

Here,S-formulas are callecesource clauseis which A andG are called thdeadand thebodyrespectively.
S-formulas correspond to program clauses. Although this simplification does not change expressiveness of
the language, it makes the presentatiobatkchainingsimpler, as is discussed below.

Since full intuitionistic linear logic is not an abstract logic programming language, it is obvious that
intuitionistic temporal linear logic is not as well. For example, in addition to the counterexamglds, in
the sequentsiOa — Oa,!Oa — Oa, anda & Oa — Oa are all provable iHTLL, but they do not
have uniform proofs.

Figure 7.2 presents a proof systé@nf for the connectives’, &, —, =, V, 1,!, ®, @, 3, O, andO. Two
rules, Lo andO, are added in addition to those that aris€irThis system has been designed to support the
logic programming language TLLP over the following formulasAlfs atomic andn > 1,

R = Sl&&S"L'D(Sl&&S’NL)lOR
S i= T|A|G—0A|Ve.S
G = 1|T|A|Gi®GC2|Gi&Gs|Gi®Ga| R—oG|S=G |G| Va.G| 3G |OG

Let D be a&-product of resource clausés & - - - & S.,. Compared with Lolli,0O™ D andO™ 0 D are
added to resource formulas, abd~ is added to goal formulas. The intuitive meaning of these formulas is
as follows: O™ D means that the resource claugel < i < m) in D can be used exactly once at timp
O™ 0 D means that the resource clausgl < ¢ < m) in D can be used exactly once any time at and after
timen; O G adjusts time one clock ahead and then exeadfites

The proofs of propositions in this chapter are based on Hodas and Miller’s results in [25] for the Lolli
language, and we will only give proof outlines.

62 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

_— —— (BC!
F;D—>A(Bcl) I,D;0 — A (BCh)
provided, in each casel is atomic and4 € || D||.

hA—G I''D;A — G

BCz) BCly)

F;A,D—>A(F,D;A—>A(
provided, in each casel is atomic ands7 — A € || D||.

Figure 7.3: Backchaining for the Proof Systant’

Proposition 7.2.1 Let G be a goal formulal" a set of resource clauses, anda multiset of resource
formulas. LetD* be the result of replacing all occurrences Bf=-C' in D with (! B) —oC, and let
I'* = {B* | B € T'}. Then the sequent; A — G is provable in7 £ if and only if |(I"*), A* — G* is
provable inITLL.

Proof [sketch] The proof of this proposition can be shown by giving a simple conversion between proofs in
the two systems. The cases®@fand Lo are also immediate. O

Proposition 7.2.2 Let G be a goal formulal’ a set of resource clauses, afsch multiset of resource formu-
las. Then the sequeht A — G has a proof irZ £ if and only if it has a uniform proof ir7 L.

Proof [sketch] The proof in the reverse direction is immediate, since a uniform prabfinis a proof in
T L. The forward direction can be proved by showing that any prodf ihcan be converted to a
uniform proof of the same endsequent by permuting the rules to move occurrences of the left-rule up,
though, and above instances of the right-rule. We explicitly show one case, that is wheeclrs
below R: _ _
=1 =2
IAB—C1 T5A,B— Co
I''AB— C1 &Co
A, 0B — C1&Cs (

where=; and=, are uniform proofs of their endsequents respectively. The above proof structure can
be converted to the following:

R&)

LO)

E.l E42
A B— Cy A, B— Cy
I''A,o0B — C (LO) A, 0B — Cs (LO)
(R&)

F;A,DB—>C1&CQ

d

As with £ and£’, the left-hand rules can be restricted to a form of backchaining. Let us consider the
following definition: LetR be a resource formuld.R|| is defined as a set of resource clause$grmulas):

1. if R = Athen||R| = {4},
. if R=G - Athen|R|| = {G - A},
. if R =Vz.S then for all closed terms ||R|| = ||S[t/]],

2
3
4. fR=S51& --& Smthen||R|| = ||S1||U--- U [|Smll,
5. if R=0R then|R|| = ||R|,

6

. if R = O R then||R|| = 0O

7.3. TLLP PROGRAMMING EXAMPLES 63

Let 7 £ be a proof system that results from replacing the Identity, absorb, L=, L&, LV, and LO
rules in7 £ with the backchaining rules in Figure 7.3. These backchaining rules (especially the definition of
|| - ||) are simpler than the original rule for Lolli because of the restrictive definition of resource formulas. It
is noticed that the absorb rule is integrated i6’(;) and BC).

Proposition 7.2.3 Let G be a goal formulal’ a set of resource clauses, asch multiset of resource formu-
las. Then the sequefit A — G has a proof ir7 £ if and only if it has a proof ifr £'.

Since uniform proofs are complete f@rL, this proposition can be proved by showing that there is a
uniform proof in7 £ if and only if there is a proof iff £’. We do not present the proof here. A similar proof
has been given by Hodas and Miller in [25] for the Lolli language.

7.3 TLLP Programming Examples

We new present simple TLLP examples. For the syntax, we@der O and #’ for O.

7.3.1 Path Finding

We first consider a Lolli program that finds a Hamilton path through the complete graph of four vertices.
Since each vertex is represented as a linear resource, the constraints such that each vertex must be used
exactly can be expressed.

P(V.V,[V]) = v(V).

p(U,V,[UIP]) :- v(U), e(UW), p(W,V,P).

e(U,V).

goal(P) :- v(a) -<> v(b) -<> v(c) -<> v(d) -<> p(a,d,P).

When the goafoal(P) is executed, the vertices are added as resources, and thp(g@hP) will
search a path frora to d by consuming each vertex exactly once.

In addition to the resource-sensitive features of Lolli, TLLP can describe the time-dependent properties
of resources, in particular, the precise order of the moments when some resources are consumed. For exam-
ple,#v(a) denotes the vertex that can be used exactly once at and after preg@nttv(c) denotes the
vertexc that can be used exactly once at and after the next moment in time.

p(V.V,[V]) - v(V).

p(U,V,[UlP]) - V(U)! e(Uv\N): @p(WIV!P)

e(U,V).

goal(P) :- #v(a) -<> @ @v(b) -<> @ #v(c) -<> #v(d) -<> p(a,d,P).

So, the above program finds a Hamilton path that satisfies such constraints. It is noticed that time is adjusted
one clock ahead every time the path crosses an arc.

7.3.2 Conway’s Life Game

TLLP is suitable to write programs in which the dynamical state changes with depending on time. In Fig-
ure 7.4, we show a TLLP program of Conway’s Life Game, but the code for output is omitted. The resource
b(I,J) means thatthere is a life ¢hJ) at present. The predicatext(l,J) checks whether a new

life will be born on(l,J) at the next moment in time. If this succeeds, the reso@bél,J) is added. It

is noted that the double negatibn \+ is used to executeext(l,J) without consuming any resources.

64 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

life :- N = 20,
b(1, 2) -<> b(2, 3) -<> b(3, 1) -<> b(3, 2) -<> b(3, 3) <>
n(N) => loop.

loop :- loop(1, 1).

loop(l, J) - n(N), I > N, !, @loop.

loop(l, J) - n(N), J > N, I, 11 is I+1, loop(I1, 1).

loop(l, J) :- \+ \+ next(l, J), !, J1 is J+1, @b(l, J) -<> loop(l, J1).

loop(l, J) :- J1 is J+1, loop(l, J1).

next(l, J) :- b(l, J), !, count(l, J, C), 2 =< C, C =< 3.

next(l, J) :- count(l, J, C), C = 3.

count(l1, J1, C) :-
10 is 11-1, 12 is 1141, JO is J1-1, J2 is J1+1,
count_b([(10,J0),(10,J1),(10,J2),

(11,J0), (11,32),
(12,J0),(12,J1),(12,J2)], C).
count_b([], 0) :- L

count_b([(1,9)[1Js], C) :- b(l, J), !, count_b(lJs, C1), C is Cl+1.
count_b([(1,J)[1Js], C) :- count_b(lJs, C).

Figure 7.4: A TLLP Example of Conway’s Life Game

7.3.3 Timed Petri Net

Our next example is a simple Timed Petri Net reachability emulator. Figure 7.5 shows the program that
checks the reachability of a Timed Petri Net from the initial marking (one token ia the final marking
(one token irp and two tokens im). Eachd;, a hon-negative integer, is the delay time for the transitjon

Since the proof search of TLLP is depth-first and is not complete, we itseative deepeningearch,
a combination of depth-fisrt and breadth-first search. First, the predjwatBep, Lim) checks the
reachability at depth, and then it increases the depth by one if the check fails.

7.4 Resource Management Model

The resource management during a proof searchdhis a serious problem for the implementor. Let us
consider, for example, the execution of the geal® Gs:

A — G1 Th A — Go
AL Ay — G ® Go
——

A

When the system applies this rule during bottom-up search, the linear cantexist be divided inta\,
andA,. If A containsn resource formulas, all” possibilities might need to be tested to find a desirable
partition.

For Lolli, Hodas and Miller solved this problem by splitting resources lazily, and they proposed a new
execution model called thHg/©O model [26].

In this model, the sequert{G} O means that the godF can be executed given thieput context/
so that theoutput contextD remains. The input and output context, together cdl@dontext, are lists of
resource formulad;marked resource formulas, or the special synilibkt denotes a place where a resource
formula has been consumed. In the the execution of the@pal Gb:

I{Gi} M M{G3}O
I{G1 ® G2} O

R®

(®)

7.4. RESOURCE MANAGEMENT MODEL 65

tpn - #p -<> (goal :- p, r, 1) => tpn(1, 100).

tpn(Dep, Lim) :- Dep =< Lim, fire(Dep).
tpn(Dep, Lim) :- Dep =< Lim, Depl is Dep + 1, tpn(Depl, Lim).

next(D) :- D1 is D - 1, D1 > 0, fire(D1).

fire(D) :- goal.

fire(D) - p, @ #p -<> @ #q -<> next(D).
fireD) :- q, 9, 4, @ #r -<> next(D).
fire(D) :- @next(D).

Figure 7.5: A TLLP example of Timed Petri Net

First, I {G1} M tries to execute&z; given the input contexI. If this succeeds, the output contei is
forwarded toG,, and thenM {G>} O is attempted. If this second attempt fails{G } M retries to find a
different, more desirable consumption pattern.

We will extend theZ /O model for the TLLP language. The additional problem here is that the bottom-up
application of the rule fo© in 7 £’ requires manipulating large dynamic data structures.

Lo A—G o
o, 0A — OG (©)

For example, when the system executes the gadlgiven input contexi = [p, O ¢, OO, !s], we need to
reconstruct and create a new input contExt [1, ¢, O, ! s] before the execution of the go@l

We introduce dime indexto solve this problem. Figure 7.6 presents an extension df tii@model for
the TLLP language, calledO7. ZOT makes use of a time indéR. The sequent is of the fordh{G}r O.

T, non-negative integer, is tlrairrent time At a given point in the proof, only resources that can be used at
that time may be used is also used to set@nsumption timef newly added resources.

Each element ifOT -context is a paifR,t) whereR is a resource formula drmarked resource for-
mula, and is its consumption time, or the special symiboLinear resources have the foKi$h; & . .. & Si, t)
or(0(S1 & - .. & Sm), t), wheret is its consumption time calculated from the valugofind its multiplicity
of O. Intuitionistic resources have the forfhS, 0), whereS is a resource clause. For example, the consum-
able resources at time have the following forms in the contex{S; & . . . & Sim, T, (O(S1 & - - - & Sm.), t)
wheret < T, and(! S, 0)

The relationpickRy (I, O, S) holds if S occurs in the context and is consumable at tiniE, andO
results from replacing that occurrence$fn I with 1. The relation also holds IfS occurs inI, andl and
O are equal. The relatiosubcontext (O, I') holds if O arises from replacing arbitrarily many (including 0)
non<-marked elements df that are consumable any time at and after tifheith 1.

To prove thatZOT is logically equivalent ta7 £’, we need to define the notion of differente- O
for two ZOT -context] andO that satisfy the relatiosubcontext(O, I). I —r O is a pair(I', A), where
I' is a set of all formulas$s such that! S, 0) is an element of (andO), andA is a multiset of all formulas
omax(0:t=T) B such that R, t) occur inI (If R is of the formS; & - - - & S, thent > T'. If R is of the form
0(S1 & - - - & Sm), thent is arbitrary), and the corresponding placelns the symboll.

66 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

subcontext(O, I)
I{1}r1I (1) I{T}rO (M)
I{Gi}r M M{Gs2}rO I{G1}rO I{G3}rO
I{G1 ®G2}r O (®) I{G1&G2}7 O (&)
1{Gi}r O o [(15,0) [1] {G}r [{(! 5,0) | O] (=)
[{Gl@GQ}TO I{S:>G}TO
(R, T +n) [1]{G}r[1]0] (=0)
provided thatR is a formula of the formS; & - - - & Sy, 0r O(S1 &+ - - & S)-
I{G}rI I{G}r11 0
e A roco @
pickR-(1,0, A) pickR (I, M,G—- A) MA{G}rO
I{A}; O (BC) I{A}r O (BC2)

Figure 7.6:ZOT: An Z/O Model for Propositional TLLP

Proposition 7.4.1 LetT be a non-negative integer. LEandO beZOT -contexts that satisfyubcontext (O, I).
Let I —r O be the pairI’, A) and letG be a goal formula.l {G}r O is provable inZOT if and only if
I'; A — G is provable in7 L.

Proof [sketch] This proposition, in both directions, can be proved by induction on proof structure.O

7.5 Level-Based Resource Management Model

The Z/O model provides an efficient computation model for proof search. ZI@ model has been re-
fined several times. Cervesato et. al recently have proposed a refinement designed to eliminate the non-
determinism in management of linear context involviggand T [13]. However, theZ /O model and its
refinements still require copying and scanning large dynamic data structures to control the consumption
of linear resources. Thus, they are more suited to develop interpreters in high-level languages rather than
compilers.

We point out two problems here. First, during the executiof '} O (especiallypickR), the context
O is reconstructed from the contekby replacing linear consumed resources withr his will slow down
the execution speed. Secondly, let us consider the execution of th&/ggal-:

1{G1}0 T{Gs}0
I{G1& G2} O

(&)

This rule means that the go@l, andG> must use the same resources. In a naive implementation, the system
first copies the input context and executes the two conjuncts separately, and then it compares their output
contexts. This leads to unnecessary backtracking.

To solve these problems, Tamura et. al have introduced a refinementif¢hmodel withlevel indices
[30][49], called theZOL model!. Hodas et. al recently proposed the refinemerf@f for the complete
treatment ofT in [29].

1in this dissertation, we use the notation in [30] to explainZki2C model.

7.5. LEVEL-BASED RESOURCE MANAGEMENT MODEL 67

subcontext ; (O, I)
Lo T{1} 1 W Ty I{T}O (™)
FLu I{Gi} M +] , M{G2}0O
T o I{G1 ® G2} 0
Fl.u_1 I1{G1} M changg;_; ;41 (M,N) [, ; N{G2}O thinable,1(O)
FLu 1{G1&G2}0)
Fu I{Gi} O @ F1.v [(5,0,0) [11{G}[(S,0,0) | O]
FT p I{G1 &GO FT L 1{S=G}O
Lo (R T +n, L) [I1{G} (R, T +n,U) | O]
7, 1{O"R—=G}O)
provided thatR is a formula of the form:S; & - - - & Sm Or O(S1 & - - - & Sm)-
Fw IGO0 FLp I{Gro
FloI{Gyo H o 1{OG}O
pickRy (1,0, A) pickRf (I, M,G — A) +T ; M{G}O
FT , I{A}O v FT , I{A}O (BCz)

Figure 7.7.Z0OT L: A Level-BasedZ /O Model for Propositional TLLP

ZOL makes use of two level indicdsandU to manage the consumption of resources. The sequent is
of the formt;, v I{G} O. L, a positive integer, is theurrent consumption levelAt a given point in the
proof, only linear resources labeled with that consumption level (and intuitionistic resources labeléy with
can be usedlU, a negative integer, is thmurrent consumption makeWhen a linear resource is consumed,
its consumption level is changed to the valudjof

Each element ifOL-context is a pailR, ¢), whereR is a resource formula, andis its consumption
level. Linear resources have the fofi, ¢), where/ is the value ofZ at which the resource can be consumed.
Intuitionistic resources have the for{f, 0) whereS is a resource clause.

}_L,Ufl I{Gl}M chang%fl’LH(M, N) '_L+1,U N{GQ}O thinabIeLH(O)
Fro I{G1& G2} O

For example, the outline of the execution of the gGal&: G- is as follows:

1. Fru-1 I{G1} M DecremenU so that we know which resources are consumed during the execution
of G1, and then executé’; .

2. change;_, ;1(M, N) Change the level of resources that have been consun@gdto L + 1.
3. Fr+1,0 N{G2} O IncrementL andU, and then execut€’s.
4. thinable, ., (O) Check whether none of resourcegirhavel + 1 as their consumption level.

ZOL is logically equivalent taZ’. InZOL, all resources are kept in a single table, callegburce table
during execution. The consumption of resources can be achieved easily by changing their consumption level
destructively. The idea of this model has already been used as a basis for a compiler system for a useful
fragment of first-order Lolli, in which the resource table is implemented as an array, and the speed access to
resources is achieved by using a hash table.

For TLLP, we give a refinement &fO7, calledZO7T L in Figure 7.7, with level indices fOL. The
sequent of OT L is of the form-7 , T {G} O, whereT is the current time is the current consumption
level, andU is the current consumption maker.

68 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

Each element ifO7T L-contexts is a tupléR, t, £), whereR is a resource formula,is its consumption
time, and/ is its consumption level. Linear resources have the f{8g; . . . & Sy, ¢, £) or (O(S1 & - . - & Sm), t, £),
wheret is calculated from the value @f and its multiplicity ofO, and/ is the value ofL at which the re-
source can be consumed. Intuitionistic resources have the(fgy0), whereS is a resource clause.

When the system executé%yU I{G} O, the consumable resources in the confelive the following
forms: (S1 & ... & Sm, T, L), (O(S1 & - - - & Sm), t, L) wheret < T, and(S, 0, 0).

The reIationpickREU(I,M, S) selects a consumable resource clafiseom the input contexf. The
output contextM is the same a$, except that the consumption level of the selected clause is changed to
the value ofU if itis a linear resource. The relatiathange ,, (M, N) modifies the contexd/ so that any
resources id/ with level £ have their level changed t6in the contextV. The relatiorthinable (O) checks
whether none of resources @ have? as their consumption level. The reIatieubconte@’L(O,I) then
consumes some resources. The output coriieid the same ag, except that the consumption levels of
some resources are changed to the valué,af they are linear resources.

We will not explain the rules in detail here, BOO7 L is logically equivalent t&/ £'.

7.6 Implementation Design

In this section, we discuss implementation issues for the TLLP language.

7.6.1 TLLP Interpreter

It is easy to implement a TLLP Interpreter based on Iit¢7 model in Prolog (see Figure 7.8). This
interpreter is good at splitting resources lazily, but they are managed by list structure. This slow down the
execution speed.

7.6.2 Translating TLLP into LLP

Itis possible to translate TLLP programs into LLP programs by adding a new argument for the current time
T of ZOT to each predicate. Translated code is compiled into LLPAM code and efficiently executed under
LLP compiler system.

The goalG not including the form ofR — G’ and.S = G’ is easily translated into LLP’s goal by using
the following transformatioz[T'], whereT indicates the current time:

171 = 1
TT = T
p(@)[T] = p&T)
(G1®Go)[T] = Gi[T]® Ga[T]
(G1&G)[T] = Gi[T]& Ga[T]
(G1@G)[T] = Gi[T]® Ga[T]
(OG)[T] = G[T+1]

The goalG of the formR-<> G’ andS=>(G" is translated into LLP’s goal as follows:

(O"(S1& & Sm) 0 G)T] = (SHUT +n}1& & ST +n}1) - G[T]
(©O"D(S1& & Sm) = G)[T] (SUT +nj2 & & SndT +nj2) —~ G[T]
(S=a)I = 5{Th=G[T]

7.6. IMPLEMENTATION DESIGN 69

- 0p(1060, xfy, (&)).
- op(950, xfy, [-<>, =>]).
- op(900, fy, [I, @, #)).

prove(G) :- prove(G, O, [], [I)-

prove(true, _T, I, 1) - L

prove(erase, T, |, O) :- I, subcontext(T, O, I).

prove((G1, G2), T, I, O) :- |, prove(Gl1, T, I, M), prove(G2, T, M, O).

prove((G1 & G2), T, I, O) :- !, prove(G1, T, I, O), prove(G2, T, I, O).

prove((Gl ; G2), T, I, O) :- I, (prove(Gl, T, I, O) ; prove(G2, T, I, O)).

prove(R -<> G), T, I, O) :- |,
count_next(R, N, R1), T1 is T + N, prove(G, T, [(R1,T1)|], [1|O]).

prove((S => G), T, I, O) - I, prove(G, T, [(!S,0)]1], [(!S,0)|O)).
prove(IG, T, I, I) :- I, prove(G, T, I,).
prove(@G, T, 1, 0) -1, Tl is T + 1, prove(G, T1, I, O).
prove(A, T, 1, O) - pick(T, I, O, A).
prove(A T, 1, O) - pick(T, I, M, (G -<> A)), prove(G, T, M, 0).
count_next(@R, N, R1) :- !, count_next(R, N1, R1), N is N1 + 1.
count_next(R, 0, R).
pick(T, I, O, S) - pick1(T, I, O, S).
pick(T, I, 1, S) :- rule(S).
pick(T, I, I, (G -<> A)) :- rule((A :- G)).
pickl(_T, [(!S,0)[1], [(*S,0)]1], S).
pickl(T, [#R,TO)I], [1]1, S) ;- T >= T0, select(R, S).
pickl(T, [(R,DN, [2]1], S) :-

+R = (L)), W(R = (#)), select(R, S).
pickl(T, R, [RI|O], S) - pickd(T, I, O, 9).
select((R1 & R2), R) :- !, (select(R1, R) ; select(R2, R)).
select(R, R).
subcontext(_T, 1B M.
subcontext(T, [(!S,0)]0], [(!S,0)|]]) :- subcontext(T, O, I).
subcontext(T, [R1]|O], [#R,TO)|I]) :-

(R1 = (#R,T0) ; R1 = 1), subcontext(T, O,).
subcontext(T, [R1]O], [(R,TO)I]) :-

+R = (1), *(R = (#)),

TO >= T,

(R1 = (R, TO) ; R1 = 1),
subcontext(T, O,).
subcontext(T, [(R,T0)|O], [(R,TO)|I]) :- subcontext(T, O, I).

rule((p(V,V.[V]) :- v(V)).

rule((p(U,V,[UIP]) :- v(U), e(UW), @p(W,V,P))).

rule((e(_U,_V)).

rule((goal(P) :- #v(a) -<> @ @v(b) -<> @ #v(c) -<> #v(d) -<> p(a,d,P))).

Figure 7.8: AZO7T Model-Based TLLP Interpreter in Prolog

70 CHAPTER 7. TLLP: A TEMPORAL LINEAR LOGIC PROGRAMMING LANGUAGE

tpn :- tpn(0).

tpn(A) :- (forall B\ B >= A -<> p(B)) -<>
(forall C\ (p(C),r(C),r(C)) -<> goal(C)) => tpn(1, 100, A).

tpn(A,B,C) - A =< B, fire(A, C).
tpn(A,B,C) :- A =< B, D is A+1, tpn(D, B, C).

next(A, B) - C is A-1, C > 0, fire(C, B).

fire(A, B) :- goal(B).
fire(A, B) :- p(B),

(forall C\ C >= B+1 -<> p(C)) -<>

(forall D\ D >= B+1 -<> (D)) -<> next(A, B).
fire(A, B) :- q(B), q(B), a(B),

(forall C\ C >= B+1 -<> r(C)) -<> next(A, B).

fire(A, B) :- C is B+1, next(A, C).

Figure 7.9: Translating a TLLP Example of Timed Petri Net into LLP

The S{¢}, transformation is defined as follows since the resodrcan be consumed at tinte
p@){th = p(&1)
(G —op@){th = Gl —op(@,1)
(Vz.S){thh = Vz.S{th

The S{t} transformation is defined as follows since the resodf@an be consumed any time at and
after timet:

p(@){t}y = V.(t' >t—op(Z 1))
(G—op(X)){the = W.((t' > t®G[t']) —op(,1))

The S{t}5 transformation is defined as follows since the resogrcan be consumed at any time:

p(@){t}s = Yt'p(Zt)
(G—op(@){t}s = Vt.(G[t'|—op(@t))

Figure 7.9 shows the translated LLP code for a TLLP example of Timed Petri Net in Figure 7.5.

The drawback of this approach is that the rulg"] = T, translating TLLP'sT into LLP’s T, is logically
incomplete. The goal’ in TLLP consumes some of consumable resources any time at and after present.
Thus, letT" be the current time, it can not consume the resources with consumptiort levél. However
LLP’s T might consume those resources since it can not check their consumption time.

7.6.3 TLLPAM: An Extension of LLPAM for the TLLP language
We extend the LLPAM for the TLLP language here. Our extension is summarized as follows:

e Two new fieldgime andbox is added to each entry RES Thetime field denotes the consumption
time InZOT L. Thebox flag is set to false if the newly added resource is not prefixed,mtherwise
true.

7.7. PERFORMANCE EVALUATION 71

Table 7.1: Performance Results of Timed Petri Net

Runs Averaged LLP0.5.1 TLLPO0.1.3 Speedup Ratio
5 1330 776 1.71

e A new registerTl is added. Tl denotes the current tim& in ZO7T L. The value of this register
must be recorded in each choice point frame regardless of whether TLLP programs make use of the
resource management features or fidtis used to set théme field of newly added resourc@&l is
also used for hash key for speed access to the resources.

¢ In the LLPAM, the instruction &dd_res 4;, A;” is used to add linear resource clauses, whgrs
its head,A; is its closurethat consists of the compiled code and a set of bindings for free variables.
We replaced this instruction with two new instructioresltl_exact_timed_res A;, A;, n” and
“add_timed_res A;, 4;, n". The former is used to add a resource clagsgl < i < m) in
O™(S1 & - - - & Sm,), Wherea, is its head; is its closure, ané is the multiplicity of O. The latter is
used to add a resource clausgl < i <m)in O™ 0O(S1 & - - - & Sm), A; IS its head4, is its closure,
andn is the multiplicity ofO.

e In the LLPAM, the instruction pickup_resource p/n, A;, L" finds a consumable resource with
predicate symbagb/n by checking its consumption level, and then it sets its index valae. tih there
are no consumable resources, it jumpgtdNe need to improve this instruction so that it checks not
only the level condition but also the time condition by comparing the consumption timdirttae
field) of resources with the current time (the current valuglof.

7.7 Performance Evaluation

We have developed a TLLPAM-based compiler system, called TLLP. TLLP is a first generation compiler
system for a temporal linear logic programming language. The system consists of a TLLP to TLLPAM com-
piler (written in Prolog) and a emulator (written in C), but it does not incorporate well-known optimizations,
register allocation, last-call-optimization, global analysis, and so on.

We compare the execution speeds of two Timed Petri Net programs. One is a TLLP program in Figure 7.5
compiled under TLLP 0.1.3 (TLLPAM code), where time-dependent resources are compiled into closures
and kept in the resource table. Another is a LLP program in Figure 7.9 compiled under a LLP compiler
0.5.1, where time-dependent resources are translated into corresponding LLP resources that include time
information as arguments.

Table 7.1 shows the performance results. All times in the Table were collected on Linux system (Pentium
[l 850MHz, 128M memory).

TLLP is 1.7 times faster than translating TLLP into LLP. The speedup is due to quick access to con-
sumable resources without creating redundant choice point frames. In TLLBjcthep_resource
instruction is used to find consumable resources by checking not only the level condition but also the time
condition. However, in LLP, thpickup_resource instruction checks only level condition to find them,
and time condition will be checked in the body of the added resources.

The newest package of TLLP (version is 0.1.3) is available from:

http://kaminari.scitec.kobe-u.ac.jp/tlip/

Chapter 8

Conclusion and Future Work

In this dissertation, we proposed new compilation methods to develop efficient implementation for linear
logic programming languages. Main contributions are summarized as follows:

1. A compiler system for a linear logic programming language:
We presented a method for compiling resources and provided an extension of the WAM for a linear
logic programming language LLP. In performance, our compiler provided 40% speedup for a theorem
proving application of classical logic, relative to its Prolog implementation.

2. Atranslator system from a linear logic programming language into Java:
We presented a LLP-to-Java source-to-source translator system. Our translation method is based on
continuation passing style compilation. In performance, our translator is 1.7 times faster for a set of
classical Prolog benchmarks, than an existing Prolog-to-Java translator jProlog.

3. A compiler system for a temporal linear logic programming language:
We presented theory and design of a logic programming language based on intuitionistic temporal
linear logic, called TLLP. We also presented an abstract machine and its instruction set for TLLP
compiler system, and a method for translating TLLP into LLP. In performance, our compiler is 1.7
times faster for a simple example of Timed Petri Net, than translating TLLP into LLP.

The latest packages of those systems are available through WWW:
e LLP version 0.5.1
http://bach.cs.kobe-u.ac.jp/llp/ ,
e Prolog Caé version 0.5.0
http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/ ,
e TLLP version 0.1.3
http://kaminari.scitec.kobe-u.ac.jp/tlip/

This dissertation is the latest step in a course of research begun by N. Tamura and Y. Kaneda towards
efficient implementation for linear logic programming languages. Our compiler has already applied to a
theorem proving application of first-order classical logic, in which linear logic operators were elegantly
used for specifying the problems. Furthermore it gives significantly nice performance relative to its famous
Prolog implementation. We believe that our results will be equally well applied to other resource-conscious
applications based on linear logic.

73

74 CHAPTER 8. CONCLUSION AND FUTURE WORK

However, it is not a full story, and there are many points yet to be investigated. There are at least two
directions on the future work.
First, we want to improve the resulting systems presented in this dissertation:

e LLP does not include well-known optimizations such as register allocation, last-call-optimization,
global analysis, and shallow backtracking, and so on.

e LLP does not support the universal quantifiers in goal, and dynamic compilation of resources.
e TLLP does not support -flag for eliminating non-determinism of the treatmenfiof
Second, we want to implement the followings using our results:

e A Forum-to-Lolli translator
Forum is a presentation of full fragment of linear logic. By translating Forum into Lolli, it might be
possible to develop an efficient linear logic theorem prover. Translated Lolli programs can be compiled
and executed under LLP compiler system.

e A system for specifying real-time finite-state systems in linear logic
M. I. Kanovich, M. Okada and A. Scedrov proposed a logical formalization for specifying real-time
finite-state systems in linear logic. By using LLP, it might be possible to efficiently check the important
properties such asafetyfor given specifications.

e A compiler system for a full fragment of Lolli.
As with \Prolog, Lolli allows nested quantification, the uselof higher-order quantification, and
unification of A\-term. It might be possible to develop a compiler that supports such higher-order
features by extending TeyjuaRrolog compiler) with LLPAM instructions.

Finally, we outline an on-going research using PrologéCaiVe are extending Prolog Gafor multi-
threaded and distributed execution, and are developing interfaces for several constraint solvers such as Math-
ematica. The goal of this research is to develop a heterogeneous constraint solving system for Java, in which
the solvers run on individual threads, and exchange their answers with each other.

Appendix A

The LLPAM at a Glance

A.1 The LLPAM Instructions

In addition to all the instructions of the WAM, the LLPAM includes the instructions listed below. We use
the following notations:

e tag(x) stands for the tag field of tagged data cell

e car(z) stands for the first element of list cell

e cdr(z) stands for the entire list (except for the first element) of list ¢ell
e Q@(f/n) stands for the index value ¢f/n in the symbol table.

LINEAR IMPLICATION INSTRUCTIONS INTUITIONISTIC IMPLICATION INSTRUCTIONS

begin_imp Y; begin_exp_imp Y;

add_res A;, A; add_exp_res A;, A;

more_imp mid_exp_imp Y, Y;

mid_imp Y;, Yy end_exp_imp Y;,Y;, Y,

end_imp Y;,Y;, Y,

WITH INSTRUCTIONS BANG INSTRUCTIONS

begin_with Y, begin_bang Y;

mid_with Y, end_bang Y;

end_With Y, Y

TOPINSTRUCTION CLOSUREINSTRUCTIONS

top put_closure L, m,A;
execute_closure A;

RESOURCECONTROL INSTRUCTIONS CHOICE INSTRUCTIONS

pickup_resource f/n, A L try_resource L

consume A;, A; restore_resource

if_no_resource L retry_resource_else L
trust_resource L

CONTROL INSTRUCTIONS

cal P, N
execute P

75

76

LINEAR IMPLICATION INSTRUCTIONS

| begin _imp Y;

Used when the implication operator-s.
Store the current value & in a new per-
manent variablg;. Save the current value
of Rin RO. Continue execution with the
following instruction.

add res A;, Aj‘

Used when the implication operator-is.
Add a record for a (linear) resource clause
of the form VZ.A or VZ.(G—-A) as a
new entry at the top of the resource ta-
ble, RES The value ofL is stored in the
level field and thedeadline field, the
out _of _scope flag is set to false. A;
and4; are pointers to structures previously
built on the heap holding the head part
and closure of the clause respectively. Per-
form register_resource(A;). This regis-
ters the value oR (the index of added re-
source clause) to the hash and symbol ta-
bles for speed access to the resources in
RES The return value, the index of the
predicate symbol of; in the symbol table,

is set to thepred field. IncrementR by
one. Continue execution with the follow-
ing instruction.

more _imp

Used between the codes that load the (lin-
ear) resourceR; in the goal of the form
Ry —O(RQ—O(Rn—OG)) or (Rl X

Ry ®--® R,)—oG. Setthesl ands2
fields of added resource clausesiy to
the current values dRO (the index of first
resource clause) arid (the top of the re-
source table), respectively. Add the current
value of RO to RLIST, a list of indices of
all linear resources. Trail this change by
pushing a constarit onto the trail stack.
Update the value oRO with R. Continue
execution with the following instruction.

APPENDIX A. THE LLPAM AT A GLANCE

Y, = (RES, R);
RO = R;
P

= P + instruction_size(P);

RES[R].level = L;
RES[R].deadline := L;

RES[R].out_of scope := false
RES[R].head = A
RES[R].body = wundef;
RESI[R].closure := Aj;
RES[R].pred := register_resource(A;);
R =R+ 1;
P = P + instruction_size(P);
for ¢ := RO to R-1 do begin
RES[i].s1 := RO;
RES[i].s2 = R
end;
HEAP[H] := (RES, RO);
HEAP[H+1] := RLIST,;
RLIST := (LIS, H);
H:=H + 2
TRAIL[TR] := (CON, []);
TR = TR + 1,
RO = R;
P = P + instruction_size(P);

A.1. THE LLPAM INSTRUCTIONS 77

mid_.imp Y;, Y

Used between the code that loads the re- Y, = (RES, R);

source and the code for the subgoal when Y, = (TOP, T);

the implication operator iso. Store the T = false

current values oR (the top of the resource for ¢ := RO to R-1 do begin
table) andr (T-flag) to the permanent vari- RES[i].s1 = RO;

ablesy; andyy, respectively. Set the value RES[i].s2 = R

of T to false. Set thesl ands2 fields end;

of added resource clausesito the cur- HEAPI[H] := (RES, RO);

rent values oR0 andR, respectively. Add HEAP[H+1] := RLIST,;

the current value oRO to RLIST, a list RLIST := (LIS, H);

of indices of all linear resources. Trail this H:=H+ 2

change by pushing a constdftonto the TRAIL[TR] := (CON, []);
trail stack. Continue execution with the TR = TR + 1,

following instruction. P = P + instruction_size(P);

end_.imp Y;, Y, Yk‘

Used after the code for the subgoal when the implication operater. iff there are any resources in
positions fromyY; to Y; — 1 that have not been consumed, fail. Otherwise, sebttie of _scope

flags of all records fron¥; to Y; — 1 to true (trailing so that they may be reset on backtracking), and
set the register to Y, Vv T. In order to account for the use of at the top level of the subgoal, the
check for unconsumed resources is made as follows:

e If Tis false, thdevel anddeadline of each resource should hiand O respectively.
Otherwise, the resource is unconsumed.

e If Tistrue, thdevel anddeadline of each resource should be eittiéand 0, oL andL
respectively. Otherwise, the resource is unconsumed.

(RES, m) = Y;
(RES, n) = Y;;
for » .= m to n -1 do begin
¢ = RES][r].level;
d = RES] r].deadline;
consumed == ((£ = U) A (d=0) Vv (T A(L=L) A(d=0L)
if = consumed then
backtrack
end;
for » = mton -1 do
RES[r].out_of_scope := true;
TRAIL[TR] := (RES, m);
TR = TR + 1,
TRAIL[TR] := (RES, n);
TR = TR + 1;
(TOP, flag) = Yi;
T = flag v T,
P P + instruction_size(P);

78

APPENDIX A. THE LLPAM AT A GLANCE

INTUITIONISTIC IMPLICATION INSTRUCTIONS

| begin _exp imp Y;

Used when the implication operator4s.

Store the current value @ in a new per-
Continue execution

manent variabley;.
with the following instruction.

’add,exp res A;, Aj

Used when the implication operator is
=. Add a record for an (intuitionis-

tic) resource clause of the forviz. A or

VZ.(G — A) as a new entry at the top of
the resource tabl&®ES Behaves the same
asadd res , except that theéevel and

fields are set to zero. Continue

deadline

execution with the following instruction.

mid _exp _imp Y;, Y

Used between the code that loads the re-
source and the code for the subgoal, when
the implication operator is>. Store the
current values oR (the top of the resource
table) andr (T -flag) to the permanent vari-
ablesy; andYy, respectively. Set register
T to false. Continue execution with the fol-
lowing instruction.

end_exp_imp Y;, Y;, Y

Used after the code for the subgoal, when
the implication operator is>. The added
resource entries need not be examined. Set
the out _of _scope flags of all records
fromY; to Y; — 1 to true (trailing so that
they may be reset on backtracking). Set
registerT to Y, vV T. Continue execution
with the following instruction.

Y; = (RES, R);
P = P + instruction_size(P);

RES[R].level = 0;
RES[R].deadline := 0;

RESI[R].out_of_scope :=
RES[R].head = A;
RES[R].body = wundef;
RES[R].closure := Aj;
RES[R].pred :=

R =R + 1;

P := P + instruction_size(P);
Y; = (RES, R);

Y = <TOP, T>,

T = false

P = P + instruction_size(P);

mton -1 do
RES[r].out_of scope :=

TRAIL[TR] := (RES, m);

TR = TR + 1;

TRAIL[TR] :=

TR = TR + 1;

(TOP, flag) = Yy;

T = flag v T,

P = P + instruction_size(P);

(RES, n);

false

register_resource(h;);

true;

A.1. THE LLPAM INSTRUCTIONS

WITH INSTRUCTIONS

|begin _with v;

Used when the conjunction operatorgis Uu:=uU-1;

DecrementJ so that we can tell which re- Y; = (TOP, T);

sources are consumed in the left conjunct. T = false

Store the current value af in a new per- P := P + instruction_size(P);

manent variabler, and set registeil to
false. Continue execution with the follow-
ing instruction.

Used between the code for the left and right changepair(U, 0, L+1, L+1);

conjuncts when the conjunction operator is if T then

&. Performchangepair. This marks all of change(L, L+1);

the resources that were used in the left con- L:=1L+ 1

junct so that they can, and must, be used in Uu:=uU+ 1,

the right conjunct. IfT is true, then per- Y, = (TOP, T);

form change so that resources that were T = false

available but not explicitly used, but which P = P + instruction_size(P);

T can be thought of as having used, are
also available for use in the second con-
junct. Increment andU. Store the cur-
rent value of thd register to a new perma-
nent variabler ;. Set theT register to false.
Continue execution with the following in-
struction.

end _with Y;, Yj

Used after the code for the right con- (TOP, flagl) = Y;;

junct when the conjunction operator is (TOP, flag2) = Yj;

&. Decrement registek. |If T is true, L =1L -1;

then performchangepair (T was seen in if T then

this conjunct, so we can set all the re- changepair(L+1, L+1, U, 0)
sources that should have been consumed, else if = consumed(L+1) then
but weren't, as though they were). Other- backtrack;

wise, perfornconsumed to check whether if flag2 then

all the resources that should have been con- change(L+1, L);

sumed, were consumed. If this fails, back- T flagl Vv (flag2 N T);

track. Otherwise, IfY; is true, then per- P
form change (Those resources that were

made available to the second conjunct be-
cause the first conjunct includedTg but

weren't used in the second conjunct either,

are put back to their original level). Sé&t

toY; vV (Y; A T). Continue execution with

the following instruction.

P + instruction_size(P);

80

BANG INSTRUCTIONS

’ begin _bang Y;

IncrementL. Store the value of in a new
permanent variablg;. Continue execution
with the following instruction.

Decrement. Set the value of the register
T from the variablér;. Continue execution
with the following instruction.

TOPINSTRUCTION

Set the register to true. Continue execu-
tion with the following instruction.

CLOSUREINSTRUCTIONS

’put closure L, m, A;

Set registers; to a newCLO cell point-
ing to the current top of the heap. Push
L (code address) angh (the number of
free variables) on the heap. Set mode to
write . Continue execution with the fol-
lowing instruction. Theunify_value

(or unify_variable) instruction that
follows this instruction, pushes the ref-
erences to free variables on the heap.

’ execute _closure A,

Save the current choice poiBtin BO. Set
the registefS to ¢+ 2 pointing to the top of
the references to free variables. Set mode
toread . Continue execution with instruc-
tion onHEAP[] .

L
Y, :
P

APPENDIX A. THE LLPAM AT A GLANCE

=L + 1
= (TOP, T);
= P + instruction_size(P);

(TOP, flag) = Y;;

L
T
s)

o -

A, =

H
H
H
H

L - 1;

flag;
P + instruction_size(P);

o
U=

+ instruction_size(P);

(CLO, H;
EAP[H] = L;
=H + 1
EAP[H] = m;
=H + 1

mode = write;

P

= P + instruction_size(P);

(CLO, ¢) = A
BO := B;

S

= ¢ + 2;

mode = read;

P

:= HEAP[¢];

A.1. THE LLPAM INSTRUCTIONS 81

RESOURCECONTROL INSTRUCTIONS

pickup _resource f/n, A;, L‘

Find an index of consumable resource with predicate synfipoelfrom R1andR2. Set that index to
A;. Continue execution with the following instruction. If there are no consumable resources, jump to
the instruction labeled..

found = false
while (tag(R1) = LIS) A (- found) do begin
(RES, r) = car(R1); R1 = cdr(RY);
found := (RES[r]l.pred = Q(f/n))
A (- RES[r].out_of_scope)

A (RES[r].level = 0 VvV RES[r].level = L)
end;
while (tag(R2) = LIS) A (- found) do begin
(RES, r) := car(R2); R2 = cdr(R2);
found := (RES[r]l.pred = Q(f/n))
A (- RES[r].out_of_scope)
A (RES[r].level = 0 VvV RES[r].level = L)

end,
if found then A; := (RES, r) elseP = L;

if _no_resource L]

Check whether there are any consumable resourde$ andR2. If there are no consumable
resources, jump to the instruction labeled

found = falsg

while (tag(R1) = LIS) A (- found) do begin
(RES, r) = car(R1);
found = (— RES[r].out_of_scope)

A (RES[r].level = 0 VvV RES][r].level = L);
if found then break;
R1 := cdr(R1)
end,
while (tag(R2) = LIS) A (- found) do begin
(RES, r) = car(R2);
found := (- RES[r].out_of scope)
A (RES[r].level = 0 VvV RES[r].level = L);

if found then break;
R2 = cdr(R2)
end,
if R1 =[] then
begin R1 := R2; R2 := | end
if tag(R1) # LIS then
P:= L
else
P := P + instruction_size(P);

82 APPENDIX A. THE LLPAM AT A GLANCE

consume A;, A; ‘

Mark the entryRES[A;] as con- (RES, r) = A
sumed (setfevel to the current if RES[r].level # 0 then begin
value ofU, anddeadline to 0). changelevel(r, U);
Set A; to the value ofclosure changedeadline(r, 0)
field. Continue execution with the end;
following instruction. A; = RES] r].closure;
P = P + instruction_size(P);

CHOICE INSTRUCTIONS

’ try _resource L

Allocate a new choice point frame newB := bottom_of _stack;

on the stack. Behaves the same STACK[newB] := num_of_args;

astry L, except thaR1 andR2 n = STACK[newB];

are also saved. Continue execu- for ¢ := 1 to n do STACK[newB+i] = A;;

tion with the following instruction STACK[newB+n+1] = E;

labeledL. STACK[newB+n+2] = CP;
STACK[newB+n+3] = B;
STACK[newB+n+4] = P + instruction_size(P);
STACK[newB+n+5] = TR;
STACK[newB+n+6] = H;
STACK[newB+n+7] = BO;
STACK[newB+n+8] = R;
STACK[newB+n+9] = L;
STACK[newB+n+10] = U;
STACK[newB+n+11] = T,
STACK[newB+n+12] = R1;
STACK[newB+n+13] = R2;
B = newB,;
HB := H;
P = L

restore _resource

A.1. THE LLPAM INSTRUCTIONS

Having backtracked to the current
choice point, reset all the necessary
information from it. Continue ex-
ecution with the following instruc-
tion.

n = STACK|B];
for i =1
E := STACK[B+n+1];
CP := STACK[B+n+2];
unwind_trail(STACK[B+n+5] , TR);
TR = STACK[B+n+5];

H := STACK[B+n+6];
R := STACK[B+ n+8];
L := STACK[B+ n+9];
U := STACK[B+n+10];
T := STACK[B+ n+11];
R1 := STACK[B+n+12];
R2 := STACK[B+ n+13];
P := P + instruction_size(P);
retry _resource _else L
Update the next clause field tb. n = STACK|B];
Update theR1 and R2 fields in STACK[B+n+4] = L;
the current choice point frame with STACK[B+n+12] := R1,
their current values. Continue ex- STACK[B+n+13] = R2;
ecution with the following instruc- HB := H;
tion. P = P + instruction_size(P);
trust _resource L\
Discard the current choice point n = STACK|B];
frame by resetting® to its prede- B := STACK[B+ n+3];
cessor. Continue execution with the HB := STACK[B+STACK|B]+6];
following instruction labeled.. P = L

to n do A; := STACK[B+ {];

CONTROL INSTRUCTIONS

cal P, N

Save the current choice point’s ad- num-of_args = SYMBOL[Q(P)].arity;
dressB in BO. Save the value of CP = P + instruction_size(P);

current continuation irCP. If the BO = B;

predicate P is defined, then per- if SYMBOL[@(P)].codeaddr = undef then
form lookup_hash. This extracts backtrack;

the list of indices of the possibly if tag(SYMBOL[@(P)l.res) # LIS then
consumable resource clauses in the begin R1 := [; R2 := [end

resource table by referring to the else
hash and symbol tables. Set the
extracted lists toR1 and R2 (Set

[if there are no consumable re-
sources). Continue execution with
the instruction labeled byp.

lookup_hash(Q(P));
P := SYMBOL[@(P)].codeaddr;

84

execute P

Save the current choice point’s ad-
dress B in BO. If the predi-
cate P is defined, then perform
lookup_hash. This extracts the
list of indices of the possibly con-
sumable resource clauses in the re-
source table by referring to the hash
and symbol tables. Set the extracted
lists to R1 and R2 (Set|] if there
are no consumable resources). Con-
tinue execution with the instruction
labeled byP.

APPENDIX A. THE LLPAM AT A GLANCE

num-of_args = SYMBOL[Q(P)].arity;
BO := B;

if SYMBOL[Q(P)].codeaddr = undef then
backtrack;

if tag(SYMBOL[@(P)].res) # LIS then
begin R1 = [|; R2 := |[] end

else

lookup_hash(Q(P));
P := SYMBOL[@(P)].codeaddr;

A.2 The LLPAM Auxiliary Procedures and Functions

We summarize auxiliary operations used in the LLPAM instructions. We use the natatigrto stand for

the address af.

’Thederef function‘

function deref(a:
begin
(tag, wal)
if (tag
return deref(val)
else
return a
end {deref};

address) : address;

= STORE[q];

’ Thebacktrack procedur%

procedure backtrack;
begin
if B = bottom_of _stack then
exit_program
else begin
BO := STACK[B+STACK[B]+7];
P := STACK[B+STACK|B]+4]
end
end {backtrack};

’ Theregister_resource function‘

Registers the current value Bf(the index of added resource clause) to the symbol and hash tables to

REF) A (wal # a) then

speed access to the resources in the resource table.

A.2. THE LLPAM AUXILIARY PROCEDURES AND FUNCTIONS 85

function register_resource(a: address): Integer;

begin
(tag, wal) = STORE[q];
case tag of
CON : idx = @(val);
STR : idz := Q(STOREpal]);
end;
if SYMBOLfdz].res = undef then SYMBOLJdzx].res = 1B
HEAP[H] := (RES, R);
HEAP[H+1] := SYMBOL] idz].res;
SYMBOLJdzx].res = (LIS, H ;
H:=H+ 2
TRAIL[TR] := (LIS, &(SYMBOLjdz].res));
TR = TR + 1,
if SYMBOL[dz].res2 = wundef then SYMBOLJdz].res2 := ;

h = hash(a, hashsize);

if h = undef then begin
HEAP[H] := (RES, R);
HEAP[H+1] := SYMBOL] idx].res2;

SYMBOL[dz].res2 := (LIS, H);
H:=H+ 2
TRAIL[TR] := (LIS, &(SYMBOLdz].res2));
TR = TR + 1;
end
else begin

HEAP[H] := (RES, R);
HEAP[H+1] := HASH[h]:
HASH[R] := (LIS, H);
H:=H + 2
TRAIL[TR] := (LIS, &(HASHIA])):;
TR = TR + 1;

end,

return idx

end {register_resource};

Thehash andhash_one_level functions|

In current implementation, the entries of the resource table are hashed on the predicate symbol/arity
and the first argument.

function hash(a: address, hashsize:Integer): Integer;
begin
case STORE[a] of
(REF, _): return undef;

(INT, _), (CON, _): return (hash_one_level(a) mod hashsize);
(STR, addr): argl := STORE[addr+1];
(LIS, addr): argl := STORE[addr];

end;
argl = deref(argl);
(tag, wal) := argl;

86 APPENDIX A. THE LLPAM AT A GLANCE

if tag = REF then return undef;
h = hash_one level(a);
h = add_hash(h, hash_one_level(argl));
return (h mod hashsize)
end {hash};

function hash_one_level(a: address): Integer;
begin
case STORE[e] of
(REF, _): return undef;
(INT, 4): return g;
(CON, ¢): return SYMBOL[Q(c)].hash_value;
(STR, addr): return SYMBOL[Q(STORE[addr])].hash_value;
(LIS, _): return SYMBOL[Q(.)].hash_value;
end
end {hash_one_level};

’ The changelevel procedur#

procedure changelevel(i, ¢: Integer);

begin

if RES[:].level # (then begin
TRAIL[TR] := (TOP, true);
TR = TR + 1,
TRAIL[TR] = (RES, 1i);
TR = TR + 1;
TRAIL[TR] := (INT, RES[i].level);
TR = TR + 1,
for £ ;== RES[i].s1 to (RES[i].s2) - 1 do

RES[k].level = L
end

end {changelevel};

’ Thechangedeadline procedur#

procedure changedeadline(i, ¢: Integer);

begin

if RES[{].deadline # (then begin
TRAIL[TR] := (TOP, false);
TR = TR + 1,
TRAIL[TR] := (RES, i);
TR = TR + 1;
TRAIL[TR] := (INT, RES[¢].deadline);
TR = TR + 1,
for k := RES[i].s1 to (RES[i].s2) - 1 do

RES[k].deadline := ¢
end

end {changedeadline};

A.2. THE LLPAM AUXILIARY PROCEDURES AND FUNCTIONS

The changepair procedur#

procedure changepair(¢l, dl, (2, d2: Integer

)i
begin
p = RLIST;
while tag(p) = LIS do begin
(RES, i) = car(p);
found =

(= RESJi].out_of scope)
A (RES[7].level = £1)

A (RES[¢].deadline = dl);
if found then begin

changelevel (i, (2);

changedeadline(i, d2)
end;

p = cdr(p)
end

end {changepair};

’ Thechange procedur#

procedure change(f1, ¢2: Integer);
begin

p = RLIST;

while tag(p) = LIS do begin
(RES, i) = car(p);
found = (- RESJ[i].out_of scope)

A (RES[i].level =
if found then

changelevel (i, (2);
p = cdr(p)
end

end {change};

Theconsumed function\

function consumed(¢: Integer

:): Boolean;
begin
p = RLIST,;
while tag(p) = LIS do begin
(RES, i) = car(p);

not_consumed = (— RESJ[i].out_of scope)

A (RES[i].level =
if not_consumed then
return false;
p = cdr(p)
end;

return true
end {consumed};

’ Thelookup_hash procedur#

),

0);

87

88 APPENDIX A. THE LLPAM AT A GLANCE

procedure lookup_hash(s: Integer);
begin
if num_of_args = 0 then begin
h = (SYMBOL] s].hash_value mod hashsize);
R1 HASHTIh];
R2 :=]
end
else begin
addr = deref(Ay);
(tag, _) = STORE[addr];
if tag = REF then begin
R1 := SYMBOL][s].res;
R2 := |
end
else begin
:= SYMBOL[s].hash_value;
:= (add_hash(h, hash_one_level(addr)) mod hashsize);
HASHI A];
SYMBOL[s].res2

h

h

R1 =

R2 =
end

end

end {lookup_hash};

’ Theunwind_trail procedur#

procedure unwind_trail(al, a2: address);
begin
p = a2 - 1,
while p >= al do begin
case TRAIL[p] of

(REF, _): begin
STORE[TRAIL[p]] := (REF, TRAIL[p]);
p:= p-1 end

(CON, _): begin
RLIST := c¢dr(RLIST);
p = p-1 end

(INT, n): begin {undo changelevel and changedeadline}
p=p-1
(RES, m) := TRAIL[p];
p = p-1
(TOP, flag) := TRAIL[p];
if flag then

for £k .= RES[m].s1 to RES[m].s2 - 1 do
RES[k].level = n
else
for k£ := RES[m].s1 to RES[m].s2 - 1 do
RES[k].deadline := n;

p=rp-1
end;

(LIS, a): begin

A.2. THE LLPAM AUXILIARY PROCEDURES AND FUNCTIONS

STORE[g] = cdr(STORE[]);

p=rp-1
end,

(RES, m): begin {undo end_imp and end_exp_imp}
p=p-1

(RES, k) := TRAIL[p];
for £ == ktom -1 do
RES[/].out_of scope := false
p=mp-1
end;
end
end
end {unwind_trail};

89

90

APPENDIX A. THE LLPAM AT A GLANCE

A.3 The LLPAM Memory Layout and Registers

Registers:
P Code Area
CcP—»
S —»
" Heap
H v
Stack

B
choice point
E
environment
Trail
TR

PDL

Choice point frame:

S

arity

-2

1st argument

.
.
.

nth argument

cont. code

An

CE cont. environment
cP

B

previous choice point

BP next clause

TR trail pointer

H heap pointer

BO cut pointer

top of resource table

L consumption level

U consumption maker

T topflag

R1 resource list

R2 resource list

Environmnet frame:

CE cont. environment

CP cont. code

Y1 1stlocal variable

.

L]

Yn nth local variable

A.3. THE LLPAM MEMORY LAYOUT AND REGISTERS

Registers:

Symbol

Symbol Entry Frame:

symbol entry

Resource

print_name Char

arit y Integer

hash_val ue Integer

codeaddr address
res resource list
res2 resource list

Resource Entry Frame:

resource entry

Hash

sl Integer
s2 Integer
| evel Integer
deadl i ne Integer

out _of _scope Boolean

head term
body term
cl osure closure

pred Integer

91

Bibliography

[1]
(2]

3]

[4]

5]

[6]

[7]

(8]

[9]

[10]

[11]
[12]

Hassan At-Kaci. Warren’s Abstract MachineMIT Press, 1991.

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logiournal of Logic and
Computation2(3):297-347, 1992.

Jean-Marc Andreoli and Remo Pareschi. Linear objects: Logical processes with built-in inheritance.
New Generation Computing:445-473, 1991.

Mutsunori Banbara, Kyoung-Sun Kang, Takaharu Hirai, and Naoyuki Tamura. Logic programming in
a fragment of intuitionistic temporal linear logic. In Philippe Codognet, editmyceedings of the 17th
International Conference on Logic Programming (ICLP’0fbpges 315-330. Springer-Verlag LNCS
2237, November 2001.

Mutsunori Banbara, Kyoung-Sun Kang, and Naoyuki Tamura. Java implementation of a linear logic
programming language.lnformation Processing Society of Japan Transactions on Programming
40(SIG 10 (PRO 5)):1-16, December 1999. (in Japanese).

Mutsunori Banbara, Kyoung-Sun Kang, and Naoyuki Tamura. An abstract machine for a compiler sys-
tem of a linear logic programming languagéomputer Software, Japan Society for Software Science
and Technologyl18(1):39-60, 2001. (in Japanese).

Mutsunori Banbara, Kyoung-Sun Kang, and Naoyuki Tamura. An abstract machine for a compiler
system of a temporal linear logic programming languagfgormation Processing Society of Japan
Transactions on Programming2(SIG 11 (PRO 12)):52—66, November 2001. (in Japanese).

Mutsunori Banbara and Naoyuki Tamura. Java implementation of a linear logic programming language.
In Proceedings of the 10th Exhibition and Symposium on Industrial Applications of Ppdggs 56—
63, October 1997.

Mutsunori Banbara and Naoyuki Tamura. Compiling resources in a linear logic programming lan-
guage. In Konstantinos Sagonas, editrpceedings of the JICSLP’98 Post Conference Workshop
7 on Implementation Technologies for Programming Languages based on lpagies 32—-45, June
1998.

Mutsunori Banbara and Naoyuki Tamura. Translating a linear logic programming language into Java.
In M. Carro, | .Dutra, et al., editor®roceedings of the ICLP’'99 Workshop on Parallelism and Imple-
mentation Technology for (Constraint) Logic Programming Languggages 19—39, December 1999.

Ivan Bratko.Prolog programming for artificial intelligenceAddison-Wesley, 1986.

lliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and Andre Scedrov. A meta-
notation for protocol analysis. In R. Gorrieri, edit®roceedings of the 12th IEEE Computer Security
Foundations Workshop — CSFW,;9%ages 55-69, Mordano, Italy, 28—30 June 1999. IEEE Computer
Society Press.

93

94 BIBLIOGRAPHY

[13] lliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource management for linear
logic proof search. In R. Dyckhoff, H. Herre, and P. Schroeder-Heister, edRarseedings of the
Fifth International Workshop on Extensions of Logic Programming — ELR}@§es 67-81, Leipzig,
Germany, 28-30 March 1996. Springer-Verlag LNAI 1050.

[14] lliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke, efitoceedings
of the Eleventh Annual Symposium on Logic in Computer Science — LIG5i§és 264—275, New
Brunswick, New Jersey, 27—30 July 1996. IEEE Computer Society Press. This work also appeared as
Preprint 1834 of the Department of Mathematics of Technical University of Darmstadt, Germany.

[15] Jawahar Chirimar.Proof Theoretic approach to specification languagehD thesis, University of
Pennsylvania, February 1995.

[16] Philippe Codognet and Daniel DiaZ¥AMCCCompiling Prolog to C. In Leon Sterling, editdpro-
ceedings of International Conference on Logic Programmipages 317-331. The MIT Press, Jun
1995.

[17] Jon Cook. P#: Using prolog within the .net framework. Technical report, University of Edinburgh, to
appear.

[18] Bart Demoen and Paul Tarau. jProlog home page.
http://www.cs.kuleuven.ac.be/"bmd/ProloginJava/

[19] Jean-Yves Girard. Linear logid-heoretical Computer Sciencg0:1-102, 1987.

[20] James Harland and David Pym. A uniform proof-theoretic investigation of linear logic programming.
Journal of Logic and Computatiod(2):175-207, April 1994.

[21] James Harland, David Pym, and Michael Winikoff. Programming in Lygon: An overview. In M. Wirs-
ing and M. Nivat, editorsAlgebraic Methodology and Software Technolaggges 391-405, Munich,
Germany, July 1996. Springer-Verlag LNCS 1101.

[22] James Harland and Michael Winikoff. Implementing the linear logic programming language Lygon. In
J. Lloyd, editor,Proceedings of the 1995 International Logic Programming Sympggages 66—80,
Portland, Oregon, 1995.

[23] Takaharu Hirai. An application of temporal linear logic to Timed Petri NetsPrvceedings of the
Petri Nets’99 Workshop on Applications of Petri Nets to Intelligent System Develggrages 2—-13,
June 1999.

[24] Joshua S. Hodas. Specifying filler-gap dependency parsers in a linear-logic programming language. In
K. Apt, editor, Proceedings of the Joint International Conference and Symposium on Logic Program-
ming, pages 622—636, Washington, DC, November 1992.

[25] Joshua S. Hodad.ogic Programming in Intuitionistic Linear Logic: Theory, Design and Implemen-
tation. PhD thesis, University of Pennsylvania, Department of Computer and Information Science,
1994,

[26] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear logic.
Information and Computatignl10(2):327-365, 1994. Extended abstract in the Proceedings of the
Sixth Annual Symposium on Logic in Computer Science, Amsterdam, July 15-18, 1991.

[27] Joshua S. Hodas and Jeffrey Polakow. Forum as a logic programming language: Preliminary results
and observations. In M. Okada, editBroceedings of the Linear Logic '96 Meetinglume 3, Tokyo,
Japan, 1996. Elsevier Electronic Notes in Theoretical Computer Science.

BIBLIOGRAPHY 95

[28] Joshua S. Hodas and Naoyuki Tamura. Lollicop - a linear logic implementation of a lean connection-
method theorem prover for first-order classical logic. In RajeeveGAtexander Leitsch, and Tobias
Nipkow, editors,Proceedings of First International Joint Conference on Automated Reasoning (13-
CAR’01) pages 670-684. Springer-Verlag LNCS 2083, 2001.

[29] Joshua S. Hodas, Kevin Watkins, Naoyuki Tamura, and Kyoung-Sun Kang. Efficient implementation
of a linear logic programming language. In Joxan Jaffar, edftmrceedings of the 1998 Joint Interna-
tional Conference and Symposium on Logic Programpjiages 145-159. MIT Press, June 1998.

[30] Kyoung-Sun Kang, Mutsunori Banbara, and Naoyuki Tamura. Efficient resource management model
for linear logic programming language€omputer Software, Japan Society for Software Science and
Technology18(0):138-154, 2001. (in Japanese).

[31] Max I. Kanovich and Takayasu Ito. Temporal linear logic specifications for concurrent processes
(extended abstract). IAroceedings of 12th Annual IEEE Symposium on Logic in Computer Science
(LICS'97), pages 48-57, 1997.

[32] Naoki Kobayashi and Akinori Yonezawa. ACL — A concurrent linear logic programming paradigm.
In D. Miller, editor, Proceedings of the 1993 International Logic Programming Sympqspages
279-294, Vancouver, Canada, October 1993. MIT Press.

[33] Naoki Kobayashi and Akinori Yonezawa. Asynchronous communication model based on linear logic.
Formal Aspects of Computing:279-294, 1994. Short version appeared in Joint International Confer-
ence and Symposium on Logic Programming, Washington, DC, November 1992, Workshop on Linear
Logic and Logic Programming.

[34] Argonne National Laboratory. Otter and MACE on TPTP v2.3.0. Web page at
http://www-unix.msc.anl.gov/AR/otter/tptp230.html , May 2000.

[35] Pablo Lopez and Ernesto Pimentel. A lazy splitting system for forum. In M.Falaschi, M.Navarro, and
A.Policriti, editors,Proceedings of the Joint Conference on Declarative Programppiages 247-258,
1997.

[36] W. MacCune.OTTER 3.0 reference manual and guide. Technical Report ANL-94/6, Argonne National
Laboratory, 1994.

[37] M. Okada M.I. Kanovich and A. Scedrov. Specifying real-time finite-state systems in linear logic. In
Frank S. de Boer and Maurizio Gabbrielli, editoEdectronic Notes in Theoretical Computer Scignce
volume 16. Elsevier Science Publishers, 2000.

[38] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic pro-
gramming.Annals of Pure and Applied Logi61:125-157, 1991.

[39] Dale Miller. An overview of linear logic programming. In Thomas Ehrhard, Jean-Yves Girard, Paul
Ruet, and Phil Scott, editorSubmitted as a chapter for a book on linear lagambridge University
Press.

[40] Dale Miller. A survey of linear logic programmingComputational Logic: The Newsletter of the
European Network in Computational Log(2):63-67, December 1995.

[41] Dale Miller. A multiple-conclusion specification logicTheoretical Computer Scienc&65(1):201—
232, 1996.

96 BIBLIOGRAPHY

[42] Gopalan Nadathur. The metalanguagygrolog and its implementation. In Herbert Kuchen and
Kazunori Ueda, editor®Rroceedings of the Fifth International Symposium on Functional and Logic
Programming (FLOPS’'01)pages 1-20. Springer-Verlag LNCS 2024, March 2001.

[43] Gopalan Nadathur, Bharat Jayaraman, and Keehang Kwon. Scoping constructs in logic programming:
Implementation problems and their solutiodournal of Logic Programming25(2):119-161, Nov.
1995.

[44] Gopalan Nadathur and Dale Miller. An overview XProlog. In Robert A. Kowalski and Kenneth A.
Bowen, editorsl.ogic Programming: Proceedings of the Fifth International Conference and Sympo-
sium, Volume JIpages 810-827, Cambridge, Massachusetts, August 1988. MIT Press.

[45] Gopalan Nadathur and Guanshan Tong. Realizing modularityptiolog. Journal of Functional and
Logic Programming9, April 1999.

[46] J. Otten and W. Bibel. leanCoP: lean connection-based theorem proving. Rroceedings
of the Third International Workshop on First-Order Theorem Proyipgges 152-157. Univer-
sity of Koblenz, 2000. Electronically available, along with submitted journal-length version, at
http://www.intellektik.informatik.tu-darmstadt.de/"jeotten/leanCoP/

[47] Mutsunori Banbara Eiji Sugiyama, Kyoung-Sun Kang, and Naoyuki Tamura. Towards a logic pro-
gramming based on linear logic. Rroceedings of the Symposium on Industrial Applications of Prolog
1995 pages 65-72, October 1995. (in Japanese).

[48] G. Sutcliffe and C. Suttner. The TPTP problem library—CNF release vliIdrnal of Automated
Reasoning21:177-203, 1998.

[49] Naoyuki Tamura and Yukio Kaneda. Extension of WAM for a linear logic programming language.
In T. Ida, A. Ohori, and M. Takeichi, editor§econd Fuiji International Workshop on Functional and
Logic Programmingpages 33-50. World Scientific, November 1996.

[50] Makoto Tanabe. Timed petri nets and temporal linear logicLdoture Notes in Computer Science
1248: Proceedings of Application and Theory of Petri Nptgges 156-174, June 1997.

[51] P.Tarau, V. Dahl, and A. Fall. Backtrackable State with Linear Assumptions, Continuations and Hidden
Accumulator Grammars. Ih.PS’95 Workshop on Visions for the Future of Logic Programmbgy.
1995.

[52] Paul Tarau. BinProlog 5.40 User Guide. Technical Report 97-dpaftement d’Informatique,
Universié de Moncton, Apr. 1997. Available fromttp://clement.info.umoncton.ca/
BinProlog

[53] Paul Tarau. Jinni: a Lightweight Java-based Logic Engine for Internet Programming. In Kostis Sago-
nas, editorProceedings of JICSLP’98 Implementation of LP languages Workd$Wiapchester, U.K.,
jun 1998. invited talk.

[54] Paul Tarau and Michel Boyer. Elementary Logic Programs. In P. Deransart and J. Nakiszy
editors,Proceedings of Programming Language Implementation and Logic Programmintper 456
in Lecture Notes in Computer Science, pages 159-173. Springer, August 1990.

[55] Anne S. Troelstralectures on Linear LogidCSLI Lecture Notes 29, Center for the Study of Language
and Information, Stanford, California, 1992.

[56] David H. D. Warren. An abstract Prolog instruction set. Technical Report Technical Note 309, SRI
International, Menlo Park, CA, Oct. 1983.

BIBLIOGRAPHY 97

[57] Michael Winikoff. W-Prolog home page.
http://goanna.cs.rmit.edu.au/ winikoff/wp/

[58] Eric Wohlstadter, Stoney Jackson, and Premkumar T. Devanbu. Generating wrappers for command line
programs: The cal-aggie wrap-o-matic projectlriternational Conference on Software Engineering
pages 243-252, 2001.

