

PDF issue: 2025-11-04

公共空間の音声伝達性能に関する研究

小林, 正明

```
(Degree)
博士 (工学)
(Date of Degree)
2011-03-07
(Date of Publication)
2011-04-01
(Resource Type)
doctoral thesis
(Report Number)
乙3148
(URL)
https://hdl.handle.net/20.500.14094/D2003148
```

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

神戸大学博士論文

公共空間の音声伝達性能に関する研究

平成 23 年 1 月

小林正明

公共空間の音声伝達性能に関する研究

目次

第1章 序論	1
1.1 はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2 既往の研究 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2.1 音声伝達性能の主観的評価指標について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2.2 音声伝達に影響を及ぼす物理的要因について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
1.3 研究の目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
1.4 論文の構成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
第2章 「聴き取りにくさ」の提案	7
2.1 実験 1: 残響付加音場における「聴き取りにくさ」 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
2.1.1 方法	8
2.1.2 結果と考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
2.1.3 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
2.2 実験 2: 残響および騒音付加音場における「聴き取りにくさ」 ・・・・・・・・・・	22
2.2.1 方法	22
2.2.2 結果と考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
2.2.3 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
2.3 総合的考察-音声伝達性能と主観的評価指標の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
2.4 結論 · · · · · · · · · · · · · · · · · ·	34
第3章 音声レベルが「聴き取りにくさ」に及ぼす影響	35
3.1 実験 3: 騒音を付加せず音声レベルを変化させた場合 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
3.1.1 方法	36
3.1.2 結果と考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
3.1.3 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
3.2 実験 4:SN 比を一定に保ち音声レベルを変化させた場合 ········	44
3.2.1 方法	44
3.2.2 結果と考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
3.2.3 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
3.3 総合的考察-音声伝達に最適な音声レベル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
3.4 結論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51

第4章 「聴き取りにくさ」の実験)	方法について	53
4.1 実験 5: 学習効果の検証 ・・・		54
4.1.1 方法		54
4.1.2 結果と考察 ・・・・・・・・		59
4.1.3 まとめ ・・・・・・・・・		63
4.2 実験 6: 残響付加音場における文	脈効果	64
4.2.1 方法		64
4.2.2 結果と考察 ・・・・・・・・		71
4.2.3 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		76
4.3 実験 7:騒音付加音場における文	脈効果	77
		77
4.3.2 結果と考察 ・・・・・・・・		80
		81
4.4 結論		82
第5章 音声伝達に最適な発話速		83
	さ」に及ぼす影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	話速度の現状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	と音声レベル・・・・・・・・・・・・・・・・・・・・・・・	
	こと音声レベル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	声伝達に最適な発話速度と音声レベル ・・・・	
	に及ぼす影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
5.7 結論		152

第6章 総括	153
引用文献	155
付録	161
本論文に関する発表論文	165
謝辞	169

第1章 序論

1.1 はじめに

我々の日常生活には音声を「聴く」機会が溢れている。会話はもちろん,駅や空港,病院,商業施設といった公共空間において案内・誘導・呼出等に用いられるアナウンス,講習会や講演会のスピーチのほか,演劇や芝居,緊急時の非常放送のように音声を「聴く」状況は様々である。このような様々な状況に関わらず,音声を「聴く」ことは音声から情報を「得る」ことを目的としている。したがって,音声は受聴者が正確,かつ,容易に聴き取れなければならない。しかし,現実には音声を容易に聴き取ることができない場合が多い。これは音声が発声から受聴に至る過程で,様々な要因によって劣化するためである。音声を聴取したときに受聴者が評価する音声伝達の良好さ,言い換えれば,発声から受聴に至る過程において音声情報がどれだけ劣化せずに相手に伝わるかをあらわす性能を音声伝達性能と呼ぶ[1]。

音声伝達性能に影響を及ぼす主な要因を表 1.1 に示す[1]. 音声伝達の過程は発声系, 伝送系および受聴系の 3 段階に分類できる. 発声系は発話者が声に出すところまでを言い, 伝送系は音声の出口である発声者の口から受聴者の耳に届くまで, 受聴系は受聴者の外耳から認識までの系をいう. 受聴者に音声を正しく伝えるためには, 各要因によって生じる音声劣化を抑制し, 高い音声伝達性能を実現することが必要である. しかし, 音声の劣化をどの程度まで抑制すれば良いかは明らかにされていない. この理由として, これまでに提案された音声伝達性能の評価方法が実際に即していないことが挙げられる. 良好な音声伝達を実現するためには, 主観量である音声伝達性能を適切な主観的評価指標を用いて尺度化し, 様々な要因が及ぼす影響を的確に把握することが必要である.

表 1.1 音声伝達の過程と影響を及ぼす要因

音声伝達の過程	音声伝達に影響を及ぼす要因
発声系	言語、発話速度、発声レベル、周波数特性など
伝送系	騒音,反射音,拡声設備(拡声レベル,音源数,歪特性)など
受聴系	聴覚特性,受容力(言語能力・集中性・状況把握)など

1.2 既往の研究

1.2.1 音声伝達性能の主観的評価指標について

音声伝達に関する研究は電話通信に関する分野において 1910 年頃から始まった. 1930 年には、ベル電話研究所の Fletcher ら[2]が英語の音節および文章のリストを作成し、これらの

試験音を聴取・回答した際の正答率である音節明瞭度と文章了解度の関係を報告している.

日本国内において建築音響の立場から音声伝達性能に関する本格的な研究が行われるよ うになったのは 1950 年代になってからである. 1952 年に久我ら[3]が国内のホールで日本語 音節を用いた明瞭度試験を実施し、明瞭度と了解度、単音節明瞭度と連音節明瞭度の関係を 報告している.このように、当時は室内空間における音声伝達性能の主観的評価指標として、 主に単音節を試験用音源として用いる明瞭度試験[4-6]が行われていた.しかし,単音節明瞭 度試験は試験音として単音節を用いるため,単語や会話のような連続音声における前後の音 韻の影響を計ることができないという欠点があった.そこで,1985 年に小川ら[7]により, 建築空間の残響などの時間歪が明瞭度に及ぼす影響を評価する目的で,無意味三連音節の試 験用音源が作成された.この試験用音源は単音節と比べて音場を評価する時間窓が長いため に残響などの時間歪の影響を評価しやすいことや,無意味な音節であるために学習効果が少 ないことなどの特徴を持っている. さらに, 中島[8]は音声信号を模したマスカーで単音節 を挟み, 連音節と同じ効果をもたせたマスカー付き単音節明瞭度試験用音源を開発した. こ れは従来の単音節明瞭度試験用音源よりも室の特性を反映することに優れていた。その後、 是永ら[9]がこの音源に改良を加え、マスカーを多数付加した試験用音源を用いて大空間に おける明瞭度試験を行い,室内音場の条件を従来の方法より的確に反映できることを示した. 橋本ら[10]は4種類の発話速度で実施した無意味三連音節明瞭度試験結果に会話音声の発話 速度の頻度分布を考慮した重み付けを行うことで室内音場の明瞭度をより適切に評価でき ることを示した.

しかし、音声伝達性能の主観的評価指標として単音節明瞭度や無意味三連音節明瞭度等を 用いた場合、いずれも非言語を試験音として用いるため、日常の生活空間での音声伝達性能 が把握できるとは言い難い. すなわち、これらの数字から伝達性能を実感として理解しにく いという欠点がある. 音声伝達性能の主観的評価指標は我々が実感として理解しやすいもの でなければならない.

非言語を試験音として用いる明瞭度に対し、試験音に単語や文章を用いる了解度は単語や文章が聴き取れる割合をあらわしており、我々が実感として理解しやすい主観的評価指標と言える。 国外では、Houtgast[11]が音韻バランスを考慮したオランダ語 C-V-C 単語リストを用いた了解度試験を行い、子音の誤答率をあらわす ALcons[12]を算出している。また、Bradley[13-16]は Fairbank の押韻試験[17]を用いて、室内における音声伝達性能が室内音響特性と SN 比に大きく影響を受けることを示した。 Fairbank の押韻試験とは、試験音に英単語を用い、提示された単語の最初の文字を回答させる聴取試験である。また、受聴者の音声聴取能力に関する分野では、試験音として有意味な文章を聴取させて騒音付加時の受聴能力を評価する SPIN-test[18,19]や、同じく有意味な文章を聴取させて Speech Recognition Threshold (SRT)[20-22]を求める試験法が用いられている。他にも、補聴器適合に関する分野では、ランダムに並べた数字を聴取させ、受聴者にかかる負担である Listening Effort を定量化する試みも行われている[23]。しかし、研究者によって試験方法や実験条件は様々であり、音声伝

達性能の測定方法や評価方法は統一されていないのが現状である[24].

日常生活における音声伝達性能という点で実際に即した結果が得られる了解度であるが、試験音に単語や文章を用いるために生じる2つの問題点が挙げられる.一つは、了解度が試験に用いる単語や文章に依存することである.1984年に文章了解度試験を提案した戸井田[25]は同一の音場条件であっても、試験に用いる文章によって正答率が大きく変化することを報告している.これは試験音が有意味であるため、前後の文脈により類推が可能になることが原因とされている.文章了解度における文脈の影響をなくすため、1989年に田中ら[26]は意味が解らない不自然な文を試験音として提案しているが、現実性に欠けており、実感として理解しやすい主観的評価指標とは言えない.単語了解度に関しても同様の問題が生じると考えられ、音声伝達性能を正しく評価するためには試験に用いる単語を何らかの方法によって統制しなければならない.そこで、坂本ら[27]は単語に対するなじみの程度を表す主観的評定値であり、単語知覚における心的辞書の影響を反映した主観評価量の一つである単語親密度、すなわち、単語に対する「なじみの程度」[28]によって単語を統制した単語了解度試験用単語リストを提案した.親密度で統制した単語リストを用いることによって、単語の違いによる正答率のばらつきを抑えられることが示されている.

単語了解度試験におけるもう一つの問題点は、我々の日常生活において、受聴環境がそれ程良くない状況においても単語や文章を十分に理解できることがあるように、了解度が音声伝達性能のそれ程高くない音場においても 100 %に達してしまうことである。そのため、単語了解度や文章了解度がそれらの音場で受ける聴感上の印象と必ずしも合致しないことや、音声伝達性能が比較的高い音場間の違いをあらわせないことが後述のように問題となっている

一方,情報伝達性能を評価する明瞭度や了解度とは異なる観点から音声伝達性能を評価する試みもなされている。中島ら[29]や佐藤ら[30]は「聴き取りやすさ」という評価語を用いて聴感印象を評価させることにより、室内空間の音声伝達性能の評価を行った。明瞭度や了解度のような情報の伝達率による評価と異なる点は音声情報の受け手がどのように感じるかに着目している点である。音声情報の音質に重点が置かれるため、その評価は明瞭度や了解度と比較して多次元的になるが、より主観に従った評価ができる。しかし、提案されている「聴き取りやすさ」は相対的な値であり、音声伝達性能の定量的な評価はできない。

1.2.2 音声伝達に影響を及ぼす物理的要因について

音声伝達に影響を及ぼす要因の一つが騒音レベルである. Beranek[31]は音声伝達を目的とする空間として教室を取り上げ、NC-40以下を教室における騒音の推奨値として提案した. この他にも音声伝達を必要とする空間として教室に着目した研究は数多く、Stumpf[32]とSharland[33]は NC-35以下を、Parkin ら[34]は NC-25以下を、Burns[35]は NR30以下をそれぞれ教室の騒音推奨値として報告している.

Bradley[14]は室内の音声伝達性能に影響を及ぼす要因が室内音響特性及びSN比であるとし、Fairbankの押韻試験を用いた聴取試験[13-16]の結果より、音声伝達が許容できる音響条件はSN-5dB以上かつ残響時間2.0秒以下であり、単語了解度が100%となる理想的な音響条件はSN+15dB以上かつ残響時間0.5秒以下であると報告している.

このように、従来の聴取試験によって音声伝達に最適な残響時間や SN 比が提案されているが、音声レベルそのものに関する提案は見当たらない。我々の日常生活を考慮すれば、音声伝達性能が SN 比だけではなく、音声レベルそのものにも影響されることは容易に想像できる。音声伝達に最適な音声レベルが示されない理由として、音声伝達性能の主観的評価指標が抱える問題点が挙げられる。すなわち、音声伝達性能がそれ程高くない音場においても100%に達してしまう了解度試験では、音声伝達性能が高い音場の違いをあらわすことができないのである。Studebaker ら[36]は騒音のない状況では、音声レベル 64dB から 99dB の範囲で単語了解度がほぼ 100%となることを示しているが、音声レベル 99dB が我々の日常生活における音声聴取に過剰であることは論を俟たない。

音声レベル同様,音声伝達に影響を及ぼす発声系の要因として発話速度が挙げられる.発 話速度が音声伝達に及ぼす影響は 1929 年頃から報告されており[37,38],特に高齢者に及ぼ す影響の大きさが報告されているが[39,40],より詳細な検討が行われるようになったのは, Fairbanks ら[41]が音声信号の基本周波数を変えずに時間軸を縮小または伸長する方法を開 発した 1954 年以降である.

1957年に Calearo ら[42]は高齢者に異なる発話速度で文章を提示した結果,発話速度が最も速い 350 単語/分において,聴き取り間違いが 50%以上も生じることを明らかにした.また,1964年に Quiros ら[43]は高齢者による文章了解度試験(スペイン語)を異なる発話速度で実施し,一般的な発話速度とされる 140 単語/分と比較して 250 単語/分および 350 単語/分で提示した場合の了解度が有意に低下することを報告している. 時間軸を縮小して(発話速度を速めて)提示した単語や文章の了解度が低下する傾向は,高齢者だけでなく若年者においても生じることが明らかにされている[44-46].

一方,1966年にLuterman ら[47]は時間軸を縮小および伸長した試験用音声を用いて明瞭度試験を行い,高齢者の明瞭度は発話速度が速い場合だけでなく,遅い場合にも低下することを示し、同様の結果が若年者にも生じることを報告している。時間軸を伸長する(発話速度を遅くする)ことが必ずしも単語了解度の上昇に繋がるわけではないことは、感音難聴の若年者と高齢者[48]や失語症の若年者と高齢者[49]の場合にも確認されている。

ゆっくり話された単語や文章の了解度が向上する理由として、受聴者が音声情報の欠落部を前後の文脈から類推する時間が得やすくなることや言語処理(Language Processing)に要する時間を長く得られること等が考えられているが未だ実証はされていない[50]. また、発話速度が遅い場合に了解度が低下する理由を追求した研究例もほとんどみられない.このように、発話速度が音声伝達に多大な影響を及ぼすことは明らかにされているが、その影響を定量的に把握した例はなく、発話速度が音声伝達に及ぼすメカニズムも解明されていないの

が実情である.しかし,発話速度が速くても遅くても了解度が低下するというこれまでの知 見は音声伝達に最適な発話速度が存在することを示しており,音声伝達に最適な音響条件を 検討するうえで重要である.

建築空間における最適な発話速度の検討には、残響音と騒音の影響を考慮することが不可欠である. 橋本ら[51]は室内音場における反射音構造の違いが発話速度の異なる明瞭度試験結果に反映されることを報告している。 翁長ら[52]は若年者と高齢者を対象とした単語了解度試験より、残響付加音場では発話速度が速いほど了解度が低下し、その低下の程度は高齢者の方が若年者よりも大きいことを明らかにした。また、騒音付加音場において、単語了解度は発話速度に無関係であるとしている。なお、残響と騒音を同時に付加した音場において、発話速度が音声伝達に及ぼす影響を検討した研究例はほとんど見当たらない。

テレビ放送等の視聴覚メディアの分野では、音声伸長を用いた高齢者等の音声聴取補助に関する研究がすすめられている。津村ら[53]や沼畑ら[54]は音声伸長量と話者映像が単語了解度に及ぼす影響を検討し、音声と話者映像を提示した場合の単語了解度が音声のみを提示した場合よりも有意に向上すること、および、話者映像の提示の有無に関わらず、音声の伸長量が一定値を超えると単語了解度が低下することを示している。今井ら[55]は高齢者を対象に発話速度を変化させた音声の評価実験を行い、十分な了解度が得られている場合であっても、発話速度によって「ききやすさ」に差が生じることを明らかにした。さらに、最も「ききやすい」と感じる発話速度が年齢によって異なること、および、高齢者ほどより遅い発話速度を「ききやすい」と感じていることを示した。この結果は、従来の了解度を用いた試験法では明らかにできなかった音声伝達に最適な音響条件を検討するうえで聴感印象評価が有効であることを示唆している。

1.3 研究の目的

これまでに述べてきた背景や既往の研究によれば、公共空間における音声伝達に関する問題点として以下が挙げられる.

- 1. 音声伝達性能が比較的高い音場間の違いをあらわし、かつ、絶対評価のできる主観的評価指標がない.
- 2. 音声伝達に影響を及ぼす要因のうち、発声系に関する要因、すなわち、音声レベルや発話速度の最適値が明らかにされていない.

本研究では、これらの問題点を解決するために、まず、聴感印象に着目した新しい主観的 評価指標を提案し、その有効性を検討する.

次に,この新しい主観的評価指標を用いて,公共空間における音声レベルと発話速度の最適値を明らかにする.

1.4 論文の構成

本論文は本章を含め全6章で構成される.

第1章では、音声伝達に関する問題点を明らかにし、本研究の目的を示す.

第2章では、音声伝達性能が比較的高い音場間の違いをあらわすことができ、かつ、絶対 評価のできる新しい主観的評価指標を提案し、その有効性を検討する.

第3章では,第2章で提案した主観的評価指標を用い,騒音レベルに応じた音声伝達性能に最適な音声レベルを明らかにする.

第4章では,新しい主観的評価指標の実験方法が抱える問題点とその解決方法について検討する.

第5章では、公共空間で用いられているアナウンスの発話速度の実情を明らかにする.また、若年者と高齢者のそれぞれについて、第2章で提案した主観的評価指標を用いた聴取実験を行い、両者にとって最適な音声レベルと発話速度を明らかにする.

第6章では、本研究で得られた成果を総括する.

本論文では,第2章から第5章において10種類の聴取実験を行う.各実験で取り扱う音声伝達に影響を及ぼす要因とその水準数を表1.2に示す.

音声伝達に影響を及ぼす要因 実験 . 被験者 番号 単語親密度 発話速度 音声レベル 騒音 残響 (聴力) 若年者 1 2 1 1 N 4 2 2 若年者 1 1 1 6 3 10 N 1 若年者 若年者 4 1 1 5 8 1 4 5 3 若年者 1 1 1 N Ν 7 若年者 6 1 1 1 若年者 7 1 1 1 6 N 5 8 若年者 1 4 1 4 6 9 1 4 4 若年者 6 1

4

1

表 1.2 本論文で取り扱う音声伝達に影響を及ぼす要因とその水準数

N:付加なし

高齢者

4

10

1

6

第2章「聴き取りにくさ」の提案

音声伝達性能の主観的評価指標は実感として理解しやすいものでなければならない. 従来 用いられている単語了解度は単語を正確に聴き取れる割合をあらわしており, 日常生活にお ける音声伝達性能を実感として理解しやすい主観的評価指標である. しかし, 試験音声によ って結果が異なることや音場から受ける聴感上の印象と必ずしも合致せず, 音声伝達性能が 比較的高い音場間の違いをあらわすことができない点が問題とされてきた.

単語の「聴き取りやすさ」は単語を聴き取り易いと感じた人の割合をあらわしており、単語 了解度同様、音声伝達性能を実感として理解しやすい主観的評価指標と考えられる.しかし、 日常生活において音声伝達性能について意識することがあるとすれば、それは音声を聴き取り易いと感じた場合よりも、むしろ聴き取りにくいと感じた場合であることが多いことから、 本研究では、音声伝達性能の評価方法として単語の「聴き取りにくさ」に注目する.

一方,音声伝達性能を絶対評価するためには試験に用いる単語を何らかの方法によって統制しなければならない.なお、単語知覚の統制方法の指標は、我々が単語知覚の際に音韻列情報だけでなく意味情報も含めた心的辞書を利用していることを考慮して、心的辞書を反映したものであることが望ましい.

そこで、本研究では、単語に対する「なじみの程度」を表す主観的評定値であり、単語知覚における心的辞書の影響を反映した指標の一つである親密度[28]によって単語を統制し、さらに語頭の音韻バランスだけでなく語中の音韻バランスも考慮した単語了解度試験用単語リスト[27]を用いた聴取実験を行うこととする.

親密度で統制された単語を用いた聴取実験を行い、音声伝達性能の評価指標としての「聴き取りにくさ」の有効性を検討するとともに、「聴き取りにくさ」が音声伝達性能の主観的評価指標として有効であるかを明らかにする.

実験1では、まず、残響付加音場における「聴き取りにくさ」の有効性について検討する.

2.1 実験 1: 残響付加音場における「聴き取りにくさ」

2.1.1 方法

A. 単語

我々が日常で用いる単語は、同一音場であっても、親密度が高いほど正答率が高くなることが明らかにされている[56]. そこで、単語親密度が「聴き取りにくさ」に及ぼす影響を明らかにするため、最も高い親密度群 $7.0\sim5.5$ で構成された 1 音表 (50 単語) とその次に高い親密度群 $5.5\sim4.0$ で構成された 1 音表の計 2 音表を用いた。用いた音表を表 2.1 に示す。

なお、表 2.1 に示した単語の前の番号は実験用音源の作成を円滑に行うために用いた単語番号である.

表 2.1 実験 1 で用いた単語

音表 1-1 (親密度 7.0~5.5)								
1 アマグモ	2	イマフウ	3	ウチガワ	4	オシダシ	5	オヤモト
6 ガニマタ	7	キタカゼ	8	キュウショク	9	グウタラ	10	ケイサツ
11 ゲンイン	12	コウフク	13	ザイガク	14	サイジツ	15	ジツブツ
16 シハライ	17	シャブシャブ	18	スタミナ	19	セツリツ	20	ソラミミ
21 タナバタ	22	ダンタイ	23	チョウハツ	24	チンタイ	25	ツナガリ
26 デマカセ	27	ドクヤク	28	トビバコ	29	ナツバショ	30	ニンニク
31 ネアガリ	32	ハダイロ	33	パチンコ	34	バランス	35	ヒキダシ
36 ブランド	37	フリガナ	38	ホウタイ	39	マンルイ	40	ヤマカジ
41 ユウワク	42	ヨクネン	43	ランパク	44	リクジョウ	45	リャクダツ
46 レンパイ	47	ワタクシ	48	カシパン	49	クスリヤ	50	ミジンコ
音表 1-2(親密度	5.5	~4.0)						
51 アイアイ	52	イチブン	53	ウラガネ	54	オハグロ	55	ガイユウ
56 カザアナ	57	キャクアシ	58	ギャクサン	59	キュウガク	60	キワマリ
61 ギンマク	62	クタビレ	63	グンダン	64	コツゼン	65	ザイバツ
66 サンバシ	67	ジカバキ	68	シタヅミ	69	シャクナゲ	70	ショウワル
71 スナヤマ	72	ソクハツ	73	タンパツ	74	ダンマリ	75	チマミレ
76 チャクフク	77	チョクリツ	78	ツユザム	79	ドウナガ	80	トリタテ
81 ナカワタ	82	ニシガワ	83	ヌカルミ	84	バイシン	85	ハラダチ
86 ヒツダン	87	ピンハネ	88	フダツキ	89	ブンダン	90	ホソウデ
91 マヤカシ	92	ミミアテ	93	ムササビ	94	モミガラ	95	ヤマバト
96 ユキハダ	97	ラクジツ	98	リンカン	99	ワカハゲ	100	ジャアクサ

B. 提示条件

a. インパルス応答

インパルス応答の模式図を図 2.1 に示す. 音場は直接音と 1 つの残響音で構成されている. 残響音のすべてを直接音の妨害成分として扱うため, 直接音到来から残響音到来までの時間間隔(遅れ時間)を Haas 効果[57]を考慮して 50ms とした.

残響時間は 0.5s, 0.9s, 2.0s, 6.0s の 4 種類である. なお, いずれの場合も残響時間の周波数特性は平坦とした.

直接音の音圧Pdと残響音の出だし部分の音圧Prとの比をここでは直接音と残響音との音 圧比と呼び、Pr/Pdとして表す. 設定した音圧比は 1/2, 1/4, 1/10 の 3 種類である.

図 2.2 に実験 1 で用いた音場の 500Hz と 1kHz の 2 オクターブバンドにおけるエコーダイアグラムを示す.

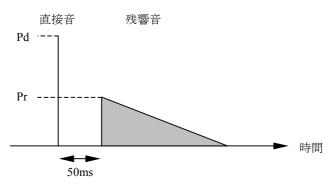


図 2.1 インパルス応答の模式図

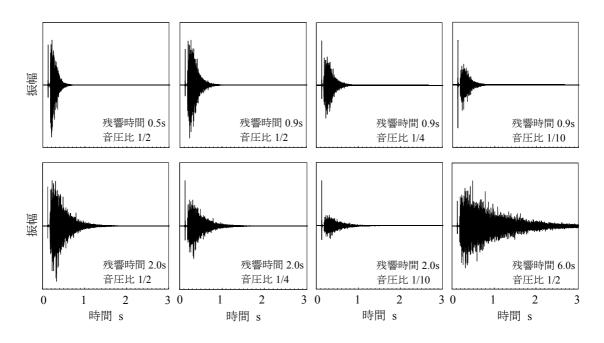


図 2.2 実験1で用いた音場のエコーダイアグラム(500Hz と1kHzの2オクターブバンド)

b. 音声レベル

実験で用いる 100 単語の直接音のみを提示した場合に、被験者の頭部中心に相当する位置においてピーク値の平均が 65.0 ± 2.0 dBA (時定数: Fast) とした.

c. 音場の種類

残響時間および音圧比の組み合わせを変化させた表 2.2 に示す 8 音場を用いた.

パラメータ				音	場			
	A	В	С	D	Е	F	G	Н
残響時間(s)	0.5	0.9	0.9	0.9	2.0	2.0	2.0	6.0
音圧比	1/2	1/2	1/4	1/10	1/2	1/4	1/10	1/2
音声レベル(dBA)				6	5			
騒音レベル(dBA)				-	-			

表 2.2 実験 1 で用いた音場

d. 発話速度

発話速度は 5.6 音節/秒(以下 syl/s)でほぼ一定である.

C. 刺激の作成

無響室録音された約5秒の女声アナウンスを直接音,すなわちドライソースとし,それに 市販のリバブレーター(YAMAHA 製 SPX-900)を用いて作成したインパルス応答を計算機 上で畳み込んだものを刺激とする.刺激の作成手順を図2.3に示す.

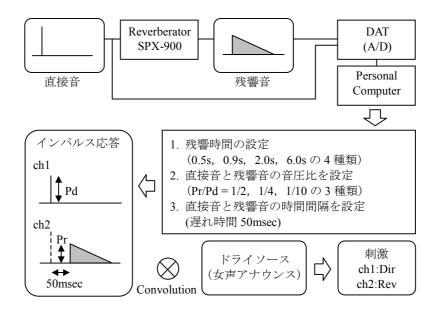


図 2.3 刺激作成手順のブロックダイアグラム

D. 実験用音源の作成

実験用音源は以下の手順により作成した.

- 1. 親密度 7.0~5.5 と親密度 5.5~4.0 の各 50 個の単語から 5 個ずつ, あわせて 10 個の単語を 1 つにまとめ, 計 10 個の単語群をつくる.
- 2. 各単語群に 8 音場を畳み込む. すなわち, 10 単語群×8 音場の計 80 の刺激群を作成 する.
- 3. 80 の刺激群の中から単語群が重ならないように 8 音場を抜き出し, 親密度と音場に関係なくランダムに並べ替え 1 組の実験用音源を完成させる.
- 4. 一度用いた刺激群を重複しないように上記3の手順を繰り返し,全刺激群を用いて10 組の実験用音源を作成する.

	音場							
	A	В	С	D	Е	F	G	Н
実験用音源1	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40
大峽 日	51-55	56-60	61-65	66-70	71-75	76-80	81-85	86-90
	31-33	30-00	01-03	00-70	/1-/3	70-80	01-03	80-90
実験用音源2	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45
	56-60	61-65	66-70	71-75	76-80	81-85	86-90	91-95
実験用音源3	11-15	16-20	21-25	26-30	31-35	36-40	41-45	46-50
	61-65	66-70	71-75	76-80	81-85	86-90	91-95	96-100
実験用音源4	16-20	21-25	26-30	31-35	36-40	41-45	46-50	1-5
	66-70	71-75	76-80	81-85	86-90	91-95	96-100	51-55
実験用音源 5	21-25	26-30	31-35	36-40	41-45	46-50	1-5	6-10
	71-75	76-80	81-85	86-90	91-95	96-100	51-55	56-60
実験用音源 6	26-30	31-35	36-40	41-45	46-50	1-5	6-10	11-15
	76-80	81-85	86-90	91-95	96-100	51-55	56-60	61-65
実験用音源7	31-35	36-40	41-45	46-50	1-5	6-10	11-15	16-20
	81-85	86-90	91-95	96-100	51-55	56-60	61-65	66-70
実験用音源8	36-40	41-45	46-50	1-5	6-10	11-15	16-20	21-25
	86-90	91-95	96-100	51-55	56-60	61-65	66-70	71-75
実験用音源9	41-45	46-50	1-5	6-10	11-15	16-20	21-25	26-30
	91-95	96-100	51-55	56-60	61-65	66-70	71-75	76-80
実験用音源10	46-50	1-5	6-10	11-15	16-20	21-25	26-30	31-35
	96-100	51-55	56-60	61-65	66-70	71-75	76-80	81-85

図 2.4 実験用音源を構成する刺激群

10組の実験用音源を構成する単語群と音場の関係を図 2.4 に示す. 図 2.4 における数字は表 2.1 で示した単語をあらわし、A~H は表 2.2 で示した音場をあらわす. なお、図中の網掛けは1つの単語群が全ての音場において用いられていることをあらわしている.

E. 装置

実験は神戸大学工学部建設学科環境音響学研究室の無響室内で行った.実験のブロックダイアグラムを図 2.5 に示す. 受聴点はスピーカ正面から左右 30°の距離 3mに位置する 2点である. なお,実験に用いたスピーカの受聴点における周波数特性を図 2.6 に示す. スピーカ正面から左右 30°ともに 100Hz~10kHz において±5dB 以内で平坦である.

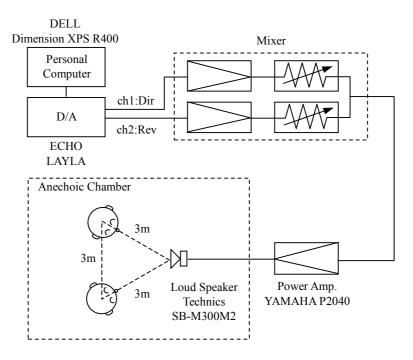


図 2.5 実験系ブロックダイアグラム

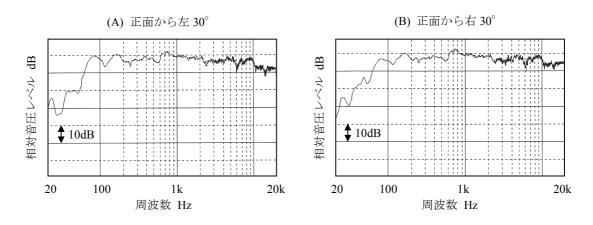


図 2.6 実験 1 で用いたスピーカの周波数特性

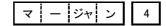
F. 被験者

被験者として学生 123 名 (男性 89 名,女性 34 名) と社会人 2 名 (両名ともに男性,29 歳と30 歳)の計 125 名を用いた.

G. 提示方法

すべての被験者は実験の前に、本実験では用いない 12 単語(親密度 $7.0\sim5.5$ から 6 単語、親密度 $5.5\sim4.0$ から 6 単語)によって練習を行った。練習用に用意した音場は A、E、H の 3

この実験は、日本語単語の聴取実験です.


以下の注意事項に従って回答してください.

- ・カタカナで記入してください.
- ・原則として「キャ」等の小さいヤ、ユ、ヨを含む音節と、小さいッ」、伸ばす音の「-」は1マスに書いてください.(基本的には枠の中に1単語書いてもらえば 結構です.)

例: マージャン

- ・「ズ」と「ヅ」は同じ音なのでどちらを書いてもかまいません.
- ・意味のわからない単語に聴こえても、**聴こえたとおり**に書いてください.
- ・同時に、その音声の聴き取りにあたって「聴きとりにくさ」の程度を次の4段階で 評価し、その番号を下の例に従って枠内に記入してください.
 - 1. 聴き取りにくくはない
 - 2. やや 聴き取りにくい
 - 3. かなり 聴き取りにくい
 - 4. 非常に 聴き取りにくい

例:単語が「マージャン」で評価が「聴き取りにくくはない」とき

- ・単語と単語の間隔は9秒です。その間に回答してください。
- ・まず、練習を12回行います. つづいて本実験を行います.
- 実験は約17分で終了します。
- ・練習後と本実験の40回答後に少し休憩を取ります。

図 2.7 実験 1 で用いた教示文

音場であり、それぞれの音場について親密度 $7.0\sim5.5$ から 2 単語、親密度 $5.5\sim4.0$ から 2 単語を用いた。各刺激の間隔は 9 秒とした。実験時間は練習 12 語も含めて約 19 分である。なお、被験者にはモーラ数について教示していない。図 2.7 に実験 1 で用いた教示文を示す。

H. 回答方法

被験者には回答用紙をはさんだ野帳を持たせ、無響室に頭を固定させずに座らせた.無響室の照明はつけたままにし、回答用紙の記入に必要十分な明るさを与えている.被験者には回答用紙にカタカナで聴こえたとおりに書かせると同時に、その単語の聴き取りにくさを表2.3 に示す 4 段階で判断させ、数字で記入させた.

表 2.3 聴き取りにくさのスケール

- 1. 聴き取りにくくはない
- 2. やや 聴き取りにくい
- 3. かなり 聴き取りにくい
- 4. 非常に 聴き取りにくい

一般的に、聴感印象の評価には図 2.8 に示すような「聴き取りにくい」と「聴き取りやすい」の両極を用いることが多い[58].

しかし、このような評価尺度では「まったく聴き取りにくくない」という場合に、「どちらでもない」と回答すべきか「聴き取りやすい」と回答すべきかがあいまいである。また、第 1 章でも述べたように、我々の日常生活における伝達性能を評価する態度が「聴き取りやすさ」ではなく「聴き取りにくさ」を基準にしていることから、本実験においては両極ではなく、「聴き取りにくさ」の単極で評価尺度を定める。

図 2.8 両極を用いた聴き取りにくさ(聴き取りやすさ)のスケール例

2.1.2 結果と考察

聴取実験のデータ整理には、被験者 125 名のうち聴覚になんらかの異常があると申告した者と記入漏れによる者 3 名を除いた 122 名のデータを使用した.

A. 「聴き取りにくさ」の提案

親密度 $7.0\sim5.5$ と親密度 $5.5\sim4.0$ のそれぞれについて,各音場の単語了解度と聴き取りにくつ関係を図 2.9 に示す.図(A)と図(B)はそれぞれ親密度 $7.0\sim5.5$ と親密度 $5.5\sim4.0$ の結果である.図中の凡例は「〇」が単語了解度をあらわし,「△」は「聴き取りにくさ 1=聴き取りにくくはない」と回答した割合,「 \bullet 」が「聴き取りにくさ 1」および「聴き取りにくさ 2 = やや聴き取りにくい」と回答した割合,「 \bullet 」が「聴き取りにくさ 1」,「聴き取りにくさ 2」および「聴き取りにくさ 3=かなり聴き取りにくい」と回答した割合をあらわす.

図2.9より、親密度に関わらず、単語了解度(\bigcirc)は「聴き取りにくさ 1」と回答した割合(\triangle)を上回り、「聴き取りにくさ 1」と「聴き取りにくさ 2」の合計(\bigcirc)にほぼ等しい.これは、単語を正確に聴き取れたとしても、やや聴き取りにくいと感じる場合があることを意味している.言い換えれば、たとえ単語了解度が 100%であったとしても、聴き取りにくいと感じている可能性があり、その空間の音声伝達性能が最高であるとはいえない.最高の音声伝達性能とは、100%聴き取りにくくない状態のことを言うべきである.すなわち、本実験で用いた聴き取りにくさの評価尺度において、「聴き取りにくさ 1」を除いた「聴き取りにくさ 2」、「聴き取りにくさ 3」および「聴き取りにくさ 4=非常に聴き取りにくい」と回答した割合の合計が 0%になる場合である.

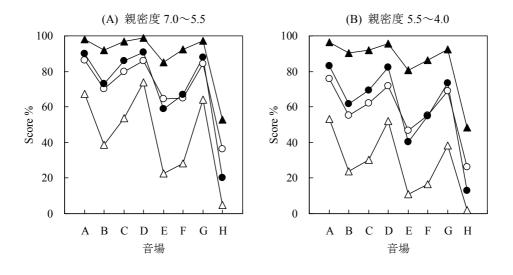


図 2.9 単語了解度と聴き取りにくさの関係

 以上より、「聴き取りにくさ 2」、「聴き取りにくさ 3」および「聴き取りにくさ 4」と回答した割合の合計によって公共空間の音声伝達性能を評価すべきと考える。ここで、その「聴き取りにくさ 2」、「聴き取りにくさ 3」および「聴き取りにくさ 4」と回答した割合の合計を「聴き取りにくさ」と定義する。

B. 「聴き取りにくさ」と単語了解度の関係

図 2.10 と図 2.11 に親密度 7.0~5.5 と親密度 5.5~4.0 における単語了解度と「聴き取りにくさ」の関係をそれぞれ示す.

(A) 図は単語了解度と「聴き取りにくさ」のスコアを示している. 図中の凡例は「〇」が単語了解度をあらわし、「 \bullet 」が「聴き取りにくさ」をあらわす. (B) 図では縦軸に単語了解度、横軸に「聴き取りにくさ」をとり、両者の相関関係を示している. 図中に回帰直線式を示す. また、r は両者の相関係数である.

まず、親密度 $7.0\sim5.5$ について検討する. 図 2.10 (A) より、「聴き取りにくさ」と単語了解度には負の相関関係がみられる. このことは図 2.10 (B) で示した相関係数 r が-0.951 と高いことからも明らかであり、「聴き取りにくさ」と単語了解度には高い負の相関関係がある. また、図 2.10 (A) において、両者の変動幅を見ると、単語了解度では最高値を示す音場 A と最低値を示す音場 H との差が約 50%であるのに対し、「聴き取りにくさ」においては、最高値を示す音場 H と最低値を示す音場 D の間には約 60%の差が見られる. さらに、各音場のスコアの差を見ても、「聴き取りにくさ」の方が単語了解度よりも大きい. 図 2.10 (B) に示した回帰直線の傾きは-0.653 であり、単語了解度は「聴き取りにくさ」のほぼ半分しか変化しないことがわかる. 以上より、「聴き取りにくさ」の方が単語了解度よりも音場の違いに対する感度が良いとみなせる.

次に親密度 5.5~4.0 について検討する.「聴き取りにくさ」と単語了解度の関係は親密度 7.0~5.5 の場合と同様の傾向がみられる. 図 2.11 (B) より「聴き取りにくさ」と単語了解度 の相関係数 r は-0.94 と高く、親密度 7.0~5.5 と同じく高い負の相関関係をもつ. 変動幅は 単語了解度が最高値を示す音場 A と最低値を示す音場 H では約 60%の差があるのに対し、「聴き取りにくさ」は最高値を示す音場 H と最低値を示す音場 A の差が約 50%と親密度 7.0~5.5 の場合とは逆転している. しかし、これは単語了解度において音場 H におけるスコアが他の音場と大きく離れているからである. 図 2.11 (A) より各音場のスコアの差は、音場 H を除くと、「聴き取りにくさ」の方が大きく、また図 2.11 (B) における回帰直線の傾きは-0.807であることから、親密度 7.0~5.5 に比べるとやや劣るが、親密度 5.5~4.0 においてもやはり「聴き取りにくさ」は単語了解度よりも音場の違いに対する感度が良いといえる.

以上より、「聴き取りにくさ」は単語了解度と高い負の相関を有し、かつ、単語了解度よりも音声伝達性能を厳しく評価できると言える.なお、この傾向は親密度の高い方が顕著であるため、音声伝達性能の評価には親密度の高い単語を用いることが適切と考えられる.

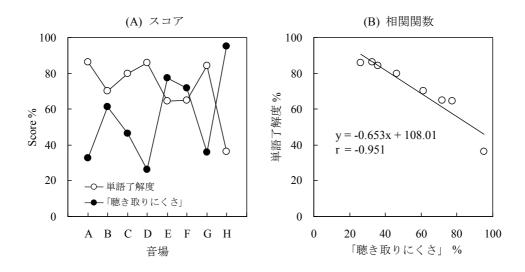


図 2.10 親密度 7.0~5.5 における単語了解度と「聴き取りにくさ」の関係

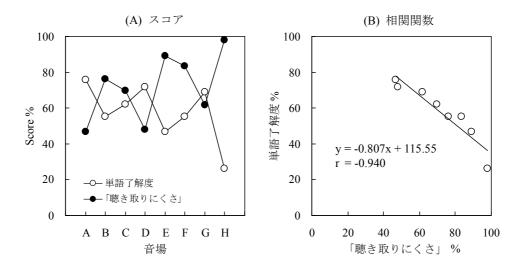


図 2.11 親密度 5.5~4.0 における単語了解度と「聴き取りにくさ」の関係

C. 親密度が「聴き取りにくさ」に及ぼす影響

「聴き取りにくさ」が単語了解度より厳密に音声伝達性能を評価できること、および、その傾向は親密度が高い単語ほど顕著であることを示した。このことから、音声伝達性能の評価には親密度が最も高い単語を用いることが望ましい。しかし、日常生活における音声伝達の観点より、親密度の違いが単語了解度と「聴き取りにくさ」に及ぼす影響を明らかにすることも必要と考えられる。ここでは、単語了解度と「聴き取りにくさ」における親密度 $7.0\sim5.5$ と親密度 $5.5\sim4.0$ の関係について検討する。

図 2.12(A) と (B) はそれぞれ本実験で得られた単語了解度と「聴き取りにくさ」を単語了解度の高い音場順に並べたものである. 図中の凡例は「〇」が親密度 $7.0\sim5.5$ をあらわし、「 \bullet 」が親密度 $5.5\sim4.0$ をあらわしている.

単語了解度の場合, 親密度 $7.0\sim5.5$ と親密度 $5.5\sim4.0$ のスコアの差はほぼ一定である. 一方, 「聴き取りにくさ」の場合, 親密度 $7.0\sim5.5$ と親密度 $5.5\sim4.0$ のスコアの差は単語了解度が低い音場ほど少し小さくなる傾向があるが, 単語了解度と同じく, ほぼ一定の差がある.

親密度が単語了解度と「聴き取りにくさ」に及ぼす影響をさらに検討するために、親密度 $7.0\sim5.5$ と親密度 $5.5\sim4.0$ のスコアの相関分析を行った. 図 2.13 (A) は単語了解度に対する

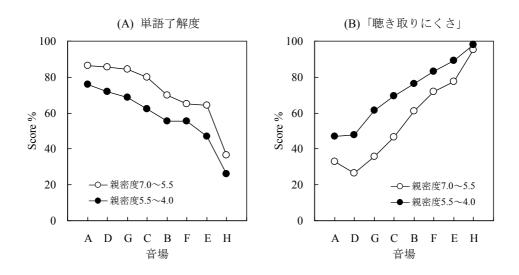


図 2.12 単語了解度の高い順に音場を並び替えた単語了解度と「聴き取りにくさ」

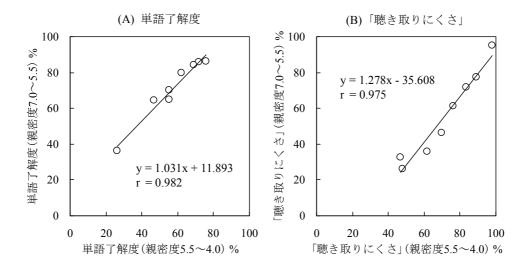


図 2.13 親密度 7.0~5.5 と親密度 5.5~4.0 の関係

結果であり、図 2.13 (B) は「聴き取りにくさ」に対する結果である。それぞれ図中に回帰直線式と相関係数 r を示す。相関係数 r は単語了解度において 0.982, 「聴き取りにくさ」において 0.975 といずれも非常に高い値をとる。この結果は音場の違いに関わらず、単語了解度と「聴き取りにくさ」に親密度が及ぼす影響は等しいことを意味している。このことから、親密度の違いが単語了解度と「聴き取りにくさ」に及ぼす影響はある関係式で表されることが期待される。

D. 被験者の親密度の検証

天野ら[28]が定めた単語親密度と、本実験の被験者の単語親密度が異なることは十分考えられる. そこで被験者の親密度を測定した. 聴取実験終了後に、実験で用いた音表を被験者に視覚提示し7段階(1:親密度が低い~7:親密度が高い)で評価させた. 被験者は聴取実験と同じ被験者 125名である. 図 2.14 に親密度実験の教示文を示す.

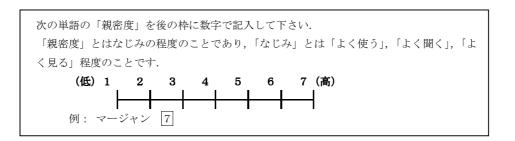


図 2.14 親密度実験の教示文

各単語について 125 名の親密度の平均を求めた. 図 2.15 は被験者の親密度分布を示すために、親密度を 0.5 刻みで分け、各範囲に属する単語の数を求めたものである. なお、「○」は本研究において親密度 7.0~5.5 に属する単語の結果をあらわし、「●」は親密度 5.5~4.0 に属する単語の結果をあらわす.

親密度 $7.0\sim5.5$ の単語群の平均が 4.8,親密度 $5.5\sim4.0$ の単語群の平均が 3.4 と,いずれも本実験で用いた被験者の親密度が単語リストの親密度より低い.しかし親密度 $7.0\sim5.5$ に属する単語群と親密度 $5.5\sim4.0$ に属する単語群の平均の差について t 検定した結果,両者には有意差が認められた (p<0.05).

本実験で用いた被験者の親密度によれば、天野らが定めた親密度が最も高いグループ(親密度 $7.0 \sim 5.5$) とその次に高いグループ(親密度 $5.5 \sim 4.0$) の単語が 50 単語中の 8 単語入れ替わる. ここでは、その 8 単語を入れ替えた場合の単語了解度および「聴き取りにくさ」について検討する. なお、8 単語を入れ替えた新しい単語リストにおいて親密度が高い方のリストを親密度 $7.0 \sim 5.5$ とし、親密度の低い方を親密度 $5.5 \sim 4.0$ とする.

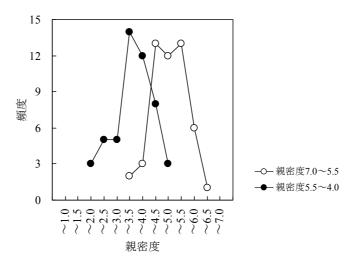


図 2.15 被験者の親密度分布

次に、親密度 $5.5\sim4.0$ と親密度 $5.5\sim4.0$ ~について検討する.両親密度に対する単語了解度と「聴き取りにくさ」を図 2.17 に示す.図中の凡例は「〇」が親密度 $5.5\sim4.0$ をあらわし、「 \bullet 」が親密度 $5.5\sim4.0$ ~をあらわす.図 2.17 より、親密度 $5.5\sim4.0$ と親密度 $5.5\sim4.0$ ~は音

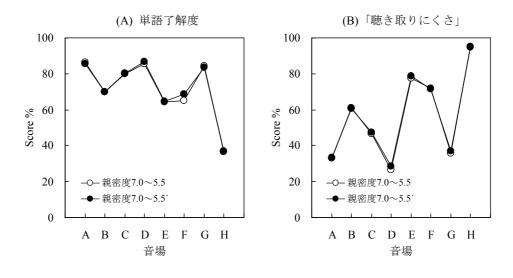


図 2.16 親密度 7.0~5.5 と親密度 7.0~5.5 の比較

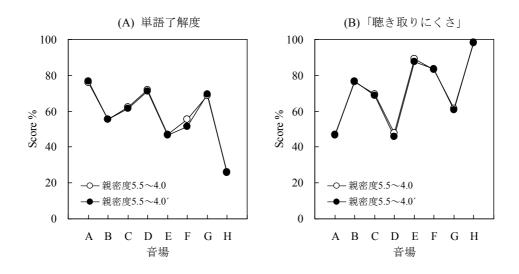


図 2.17 親密度 5.5~4.0 と親密度 5.5~4.0 の比較

場 F の単語了解度において 3.7%の差がみられるものの, その他の音場の単語了解度と「聴き取りにくさ」で生じた差は 2%以下である.

以上より,実験に用いた単語リストと被験者の親密度に基づいて作成した単語リストについて,単語了解度と「聴き取りにくさ」に明らかな差はみられず,これまでに検討し導き出した結論は支持される.

2.1.3 まとめ

音声伝達性能の主観的評価指標として、親密度によって統制された単語を聴き取りにくいと感じた人の割合である「聴き取りにくさ」を提案し、残響付加音場における「聴き取りにくさ」と単語了解度を比較・検討した。その結果、以下のことを明らかにした。

- 1. 「聴き取りにくさ」と単語了解度は高い負の相関がある.
- 2. 単語了解度が100%であっても、聴き取りにくいと感じる人がいる.したがって、「聴き取りにくさ」の方が単語了解度より厳密に音声伝達性能を評価できる.
- 3. 「聴き取りにくさ」は単語了解度より音場の違いに対する感度が良い.
- 4. 親密度の高い単語ほど音場の違いに対する「聴き取りにくさ」の感度が良い.

2.2 実験 2: 残響および騒音付加音場における「聴き取りにくさ」

実験1より,騒音の無い音場では「聴き取りにくさ」が単語了解度よりも音声伝達性能を厳しく,かつ,感度良く評価できることを示した.しかし,騒音がある音場では,騒音レベルの大小に関わらず「聴き取りにくさ」が常に高い値をとり,音場の違いを明確にあらわすことができないことも考えられる.

実験2では、残響および騒音付加音場における「聴き取りにくさ」の聴取実験を行い、「聴き取りにくさ」が音声伝達性能の主観的評価指標として有効であるかを検討する.

2.2.1 方法

A. 単語

実験1では、親密度の高い単語ほど音場の違いに対する「聴き取りにくさ」の感度が良いことが示された。そこで、実験2では最も高い親密度7.0~5.5の単語で構成される6音表(1音表は50単語)を用いた。用いた音表を表2.4に示す。なお、表2.4に示した単語の前の番号は実験用音源の作成を円滑に行うために用いた単語番号である。

表 2.4 実験 2 で用いた単語

音表 2-1				
1 アクユウ	2 イロドリ	3 ウタゴエ	4 オトサタ	5 ガクネン
6 カベガミ	7 キュウジン	8 キンキュウ	9 グイノミ	10 クモユキ
11 ケイヒン	12 ゲテモノ	13 コレホド	14 サカズキ	15 ジツゲン
16 シンユウ	17 スイメン	18 セツゾク	19 ゼツボウ	20 ソノヘン
21 ダイキチ	22 タイシツ	23 ツリボリ	24 デンゴン	25 テンメツ
26 トウゼン	27 ドンブリ	28 ナツモノ	29 ニンジン	30 ネブソク
31 ノリモノ	32 バリカン	33 ハントシ	34 ヒキヌキ	35 フトモモ
36 プロペラ	37 ブンセキ	38 ベツベツ	39 ホウソク	40 ボロクソ
41 マルガオ	42 ミトオシ	43 モウヒツ	44 ヤスウリ	45 ユキドケ
46 ヨコモジ	47 レンジツ	48 ロウドウ	49 ワキヤク	50 ゴブゴブ
音表 2-2				
51 アイベヤ	52 イケドリ	53 ウラナイ	54 オヒロメ	55 カケソバ
56 ガソリン	57 キズグチ	58 キュウソク	59 グウゼン	60 クジビキ
61 ケツダン	62 コクドウ	63 ザツヨウ	64 サンシン	65 シチガツ
66 スポンジ	67 ゼイニク	68 セメント	69 ゾウキン	70 ソクタツ
71 ダイホン	72 タテブエ	73 チョクゼン	74 チンピラ	75 ツイトツ
76 テヌグイ	77 ドウブツ	78 トシシタ	79 ナガイス	80 ニンシキ
81 ヌレギヌ	82 ノウヒン	83 ババロア	84 ハンソデ	85 ヒトヅマ
86 フユフク	87 ブンレツ	88 ホウガク	89 ミギウデ	90 ムナモト
91 メチャクチャ	ャ92 モクテキ	93 ヤスモノ	94 ユウビン	95 ヨリミチ
96 リョウワキ	97 レンコン	98 ワルモノ	99 マジメサ	100 リレキショ
音表 2-3				
101 アメダマ	102 イナズマ	103 ウワムキ	104 オテアゲ	105 カズノコ
106 ガンジツ	107 キュウケイ	108 キンケツ	109 クチグセ	110 ケイシキ
111 ゲンジツ	112 ゴクラク	113 コンソメ	114 サケズキ	115 ジーパン
116 シタシミ	117 スイガイ	118 ズブヌレ	119 セツヤク	120 ゼンシン
121 ソプラノ	122 タツジン	123 ダツモウ	124 チャルメラ	125 ツクダニ
126 デキタテ	127 ドタンバ	128 トリハダ	129 ナツバテ	130 ニクシン
131 ネツアイ	132 ノウヤク	133 バイリツ	134 パソコン	135 ハバヨセ
136 フユモノ	137 ブンメイ	138 ヘイボン	139 ホヤホヤ	140 マボロシ
141 ミチヅレ	142 モミアゲ	143 ヤクヒン	144 ユウザイ	145 ヨビダシ
146 レンアイ	147 ワルノリ	148 テガルサ	149 ヒダリテ	150 ラクゴカ

表 2.4 実験 2 で用いた単語(つづき)

音表 2-4				
151 アケボノ	152 イレモノ	153 ウケツケ	154 オトズレ	155 カタログ
156 ガンメン	157 キシメン	158 キュウゲキ	159 クイスギ	160 ゲイノウ
161 ケイベツ	162 コイビト	163 ゴンドラ	164 ザツオン	165 サンケツ
166 シキベツ	167 スレスレ	168 セイヒン	169 ゾウスイ	170 ソクセキ
171 タケヤブ	172 ダメオシ	173 チチオヤ	174 ツゲグチ	175 テイネン
176 デンプン	177 ドクゼツ	178 トコノマ	179 ナガイモ	180 ヌクモリ
181 ネンキン	182 ノドモト	183 バライロ	184 ハリガネ	185 ヒトヅテ
186 フンドシ	187 ブンルイ	188 ヘイジツ	189 ホンシツ	190 マンネリ
191 ミミヨリ	192 メンセツ	193 モミクチャ	194 ヤキマシ	195 ユウドク
196 ヨロコビ	197 レイコク	198 ロウジン	199 ワカモノ	200 ニホンゴ
音表 2-5				
201 アオジソ	202イキギレ	203 ウワノセ	204 オオヨソ	205 ガクブチ
206 カタミチ	207 キキトリ	208 クチベニ	209 ゲツマツ	210 ケンキュウ
211 コトワザ	212 サキホド	213 ザルソバ	214 シャミセン	215 シワヨセ
216 スドオリ	217 セキニン	218 ゼラチン	219 ソロバン	220 タダモノ
221 ダテマキ	222 チンモク	223 ツカノマ	224 デンセツ	225 テンテキ
226 ドクガス	227 トツゲキ	228 ナゲヤリ	229 ニンシン	230 ネサガリ
231 バクゼン	232 ハツユキ	233 ヒトゴミ	234 フルホン	235 プレハブ
236 ベツジン	237 ボウダイ	238 ホンバン	239 マイナス	240 ミオボエ
241 メイモン	242 モトモト	243 ヤキモノ	244 ユリカゴ	245 ヨコドリ
246 ライテン	247 レイボウ	248 ロウガン	249 ワルヨイ	250 ゴマシオ
音表 2-6				
251 アツヤキ	252 イリグチ	253 ウンパン	254 オアズケ	255 ガムシャラ
256 カワグツ	257 キヤスメ	258 キュウギョウ	259 キョウフウ	260 ギンイロ
261 クビスジ	262 ケツロン	263 コクジン	264 ザイニチ	265 サクヒン
266 ジャジャウマ	267 ジョウハツ	268 ショクザイ	269 シワクチャ	270 スピード
271 センジツ	272 ダツラク	273 タビビト	274 チャクショク	275 チョンマゲ
276 ツリバシ	277 テキトウ	278 ドサクサ	279 トビイリ	280 ナツフク
281 ニクマン	282 バクチク	283 ハナミズ	284 ビーダマ	285 ヒキワケ
286 ヒョウサツ	287 ピラニア	288 フナヨイ	289 ブンカイ	290 マンイン
291 ムナイタ	292 ヤリナゲ	293 ユウガタ	294 ヨリドリ	295 ライキャク
296 リョウウデ	297 ワリカン	298 ジチタイ	299 シャシンカ	300 ミガルサ

B. 提示条件

a. インパルス応答

インパルス応答の模式図は図2.1と同様である.

残響時間は 0.5s と 2.0s の 2 種類である. 残響時間周波数特性は 63Hz から 8kHz の 8 オクターブバンドにおいて ± 0.1 s 以内で平坦である.

直接音の音圧 Pd と残響音の出だし部分の音圧 Pr との音圧比 (Pr/Pd) は 1/10 である. 図 2.18 に各音場の $500Hz\sim1kHz$ の 2 オクターブバンドにおけるエコーダイアグラムを示す.

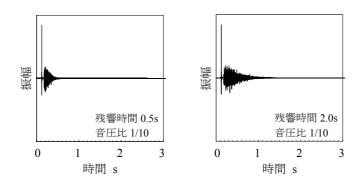


図 2.18 実験 2 で用いた音場のエコーダイアグラム(500 と 1kHz の 2 オクターブバンド)

b. 音声レベル

各単語の直接音のみを提示した場合に、被験者の頭部中心に相当する位置におけるピーク値が 55.0 ± 0.2 dBA (時定数:Slow) とした.

c. 騒音レベル

騒音は定常騒音である Hoth スペクトル型ノイズ[59]を用いた. 図 2.19 に Hoth スペクトル型ノイズの 1/1 オクターブバンド分析による周波数特性を示す. 騒音レベルは 0dBA, 10dBA, 25dBA, 40dBA, 55dBA, 60dBA の 6 種類である.

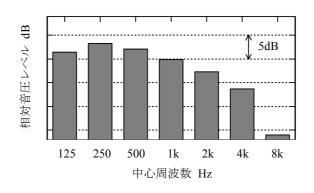


図 2.19 Hoth スペクトル型ノイズの周波数特性(1/1 オクターブバンド)

d. 音場の種類

実験音場として、残響時間と騒音レベルの組み合わせを変化させた表 2.5 に示す 12 音場を用いた.

音場 パラメータ В D Ε F G Η Ι J Α 残響時間(s) 0.5 0.5 0.5 0.5 0.5 0.5 2.0 2.0 2.0 2.0 2.0 1/10 音圧比 音声レベル(dBA) 55 騒音レベル(dBA) 10 25 40 60 40 60 0 55 10 25 55 +45+30 +15 ± 0 -15 +45 $+30 +15 \pm 0 -15$ SN比

表 2.5 実験 2 で用いた音場

e. 発話速度

発話速度は 5.6 syl/s でほぼ一定である.

C. 刺激の作成

実験1と同様の手順である.

D. 実験用音源の作成

実験用音源は以下の手順により作成した.

- 1. 全300個の単語を番号の若い順から25個ずつまとめ、計12個の単語群をつくる.
- 2. 各単語群に含まれる 25 単語と全 12 音場のインパルス応答を畳み込む. 1 つの単語群と 12 音場のうちの 1 つを畳み込んだものを 1 つの刺激群とすると, 12 単語群×12 音場の計 144 の刺激群をつくる.
- 3. 144 の刺激群の中から単語群が重ならないように A~L の 12 音場を抜き出し, 音場に関係なくランダムに並べ替えて 1 組の実験用音源を完成させる.
- 4. 一度用いた刺激群を重複しないように上記3の手順を繰り返し,全刺激群を用いて12 組の実験用音源を作成する.

実験用音源を構成する単語群と音場の関係を図 2.20 に模式的に示す. 図 2.20 における数字は表 2.4 で示した単語をあらわし、A~L は表 2.5 で示した音場を表す. なお、図中の網掛けは1つの単語群が全ての音場において用いられていることをあらわしている. 被験者はいずれか一つの実験用音源を聴取する. すなわち、複数の被験者によって全ての実験用音源が聴取されることで全単語が全音場において聴取されることになり、音韻バランスが考慮される.

実際の聴取実験では、被験者には1回の試行において50単語ずつ提示した。すなわち、 各被験者は6回の試行を行った。

				音場				
	A	В	С	•••	Ι	J	K	L
実験用音源1	1-25	26-50	51-75	•••	201-250	226-250	251-275	276-300
実験用音源2	26-50	51-75	76-100		226-250	251-275	276-300	1-25
実験用音源3	51-75	76-100	101-125		251-275	276-300	1-25	26-50
実験用音源 4	76-100	101-125	126-150		276-300	1-25	26-50	51-75
実験用音源 5	101-125	126-150	151-175		1-25	26-50	51-75	76-100
実験用音源 6	126-150	151-175	176-200		26-50	51-75	76-100	101-125
実験用音源7	151-175	176-200	201-225		51-75	76-100	101-125	126-150
実験用音源8	176-200	201-225	226-250		76-100	101-125	126-150	151-175
実験用音源9	201-225	226-250	251-275		101-125	126-150	151-175	176-200
実験用音源10	226-250	251-275	276-300		126-150	151-175	176-200	201-225
実験用音源 11	251-275	276-300	1-25		151-175	176-200	201-225	226-250
実験用音源 12	276-300	1-25	26-50		176-200	201-225	226-250	251-275

図 2.20 実験用音源を構成する刺激群

E. 装置

実験は神戸大学工学部建設学科環境音響学研究室の無響室内において行った.実験のブロックダイアグラムを図 2.21 に示す. 直接音, 残響音および騒音は被験者の正面に位置した 1 つのスピーカから提示した. 受聴点はスピーカ正面から左右 30°の距離 2m に位置する 2 点である. なお, 実験に用いたスピーカの受聴点における周波数特性を図 2.22 に示す. スピーカ正面から左右 30°ともに 100Hz~10kHz において±5dB 以内で平坦である.

F. 被験者

正常な聴力を有する学生13名(男性9名,女性4名)を用いた.

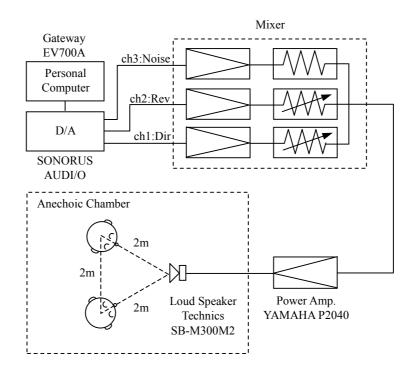


図 2.21 実験系ブロックダイアグラム

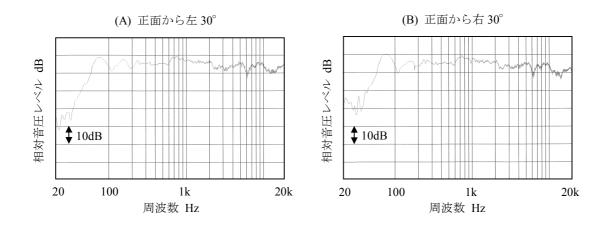


図 2.22 実験 2 で用いたスピーカの周波数特性

G. 提示方法

図 2.23 は刺激提示の模式図である. 騒音の出だしと音声提示の出だしの時間間隔は 135ms である. 実験に用いた単語は全て 4 モーラで統一されているが,各単語の音声提示時間 Δt_1 はわずかに異なる. 音声提示終了後の騒音提示時間の違いが「聴き取りにくさ」に影響を及ぼすことが考えられるので,単語ごとに騒音提示時間を変化させ,等しい残響時間においては全ての単語に対して音声提示終了後の騒音提示時間 Δt_2 を一定とした. 騒音提示時間は 7.0~7.5s である. なお,騒音提示時間にはそれぞれ 50ms の立ち上がり及び立ち下りを含む. 刺激と刺激の間隔は 6.0s である. 1 回の試行にかかる時間は約 10 分である. なお,被験者にはモーラ数について教示していない. 教示文は実験 1 と同様である.

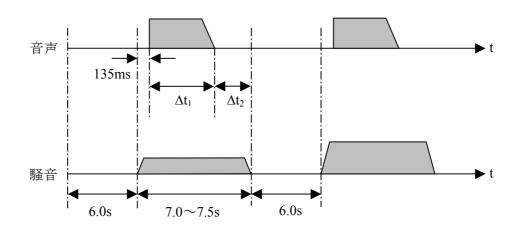


図 2.23 刺激の提示方法

H. 回答方法

実験1と同様である.

2.2.2 結果と考察

回答結果より、単語を正しく聴取できた割合である単語了解度と、表 2.3 に示した聴き取りにくさのスケールの 2~4 と回答した割合である「聴き取りにくさ」を算出した.

図 2.24 に実験 2 の結果を示す.縦軸は単語了解度及び「聴き取りにくさ」であり,横軸は騒音レベルと SN 比である.図中の凡例は「〇」と「lacktriangle」がそれぞれ残響時間 0.5s と 2.0s の単語了解度をあらわし,「 Δ 」と「 Δ 」がそれぞれ残響時間 0.5s と 2.0s の「聴き取りにくさ」をあらわす.

騒音レベルが 40dBA 以下, すなわち SN+15dB 以上の範囲では単語了解度は残響時間によらずほぼ 100%となる. 一方, 「聴き取りにくさ」は SN +15dB 以上の範囲においても残響時間の違いが明らかである. すなわち, SN+15dB では約 20%の差が生じており, SN +30dB 以上では約 40%の差が生じている. また, 単語了解度は SN 比が高くなると共に上昇し, やがて 100%に達するのに対し, 「聴き取りにくさ」は SN 比が高くなっても一定値以下とはならず, 0%に達しない. これは残響音の影響を反映しているものと考えられる.

これに対し、騒音レベルが 55dBA および 60dBA, すなわち $SN\pm 0$ dB および -5dB の場合、「聴き取りにくさ」は残響時間によらずほぼ 100%となる。単語了解度も残響時間による違いはみられないが、いずれの残響時間においても、騒音レベル 55dBA $(SN\pm 0$ dB) と 60dBA (SN-5dB) の差は明らかである。

以上の結果は、騒音付加音場においても「聴き取りにくさ」は常に高い値を取ることはなく、音声伝達性能が良い場合、すなわち、本実験における騒音レベルが 40dBA 以下の場合は「聴き取りにくさ」の方が「単語了解度」よりも感度良く、かつ、厳しく音声伝達性能を評価できることを示している。一方、音声伝達性能が悪い場合、すなわち、本実験における騒音レベルが 40dBA より大きい場合は単語了解度の方が「聴き取りにくさ」よりも感度良く音声伝達性能を評価できることを示している。

なお、Bradley[13-16]は音声伝達に理想的な音響条件を SN+15dB 以上かつ残響時間 0.5 秒以下と報告している。本実験結果においても、その範囲の単語了解度はほぼ 100%であることが示された。しかし、「聴き取りにくさ」では、残響時間 0.5s における SN+15dB と+30dB に約 20%もの差が生じている。したがって、「聴き取りにくさ」に基づけば、音声伝達に最適な音響条件は SN+30dB 以上かつ残響時間 0.5 秒以下となる。

なお、残響時間 2.0s の場合、SN+15dB と+30dB の「聴き取りにくさ」にほとんど差がみられないが、これは「聴き取りにくさ」に及ぼす残響時間 (2.0s) の影響が SN 比の影響 (SN+15dB) と+30dB よりも大きいことが理由と考えられる.

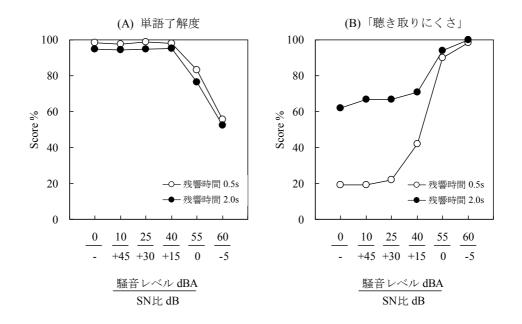


図 2.24 音声レベル 55dBA における騒音レベルと 単語了解度及び「聴き取りにくさ」の関係

2.2.3 まとめ

残響および騒音付加音場において親密度で統制した単語の聴取実験を行い,「聴き取りにくさ」と単語了解度の比較から以下のことを明らかにした.

- 1. 騒音がある場合においても、「聴き取りにくさ」は常に 100%とはならず、音声伝達性能を評価することが可能である.
- 2. 音声伝達性能が良い場合は「聴き取りにくさ」の方が単語了解度よりも感度良く、かつ、厳しく音声伝達性能を評価できる.
- 3. 音声伝達性能が悪い場合は単語了解度の方が「聴き取りにくさ」よりも感度良く音声 伝達性能を評価できる.

2.3 総合的考察-音声伝達性能と主観的評価指標の関係

実験1および実験2で得られた結果を基に,音声伝達性能と主観的評価指標の関係について考察する.

図 2.25 (A) は音声伝達性能と理想的な主観的評価指標の関係を表した模式図である. 音声 伝達性能が増加すれば主観的評価値は単調増加する. すなわち, 音声伝達性能が最小の場合 に主観的評価値は最小となり, 音声伝達性能が最大の場合に主観的評価値は最大となる. しかし, 過去の研究では, 様々な主観的評価指標が提案されているが(A)図で示すような主観的評価指標は存在しない.

現在,広く用いられている主観的評価指標は単語了解度(押韻試験を含む)であるが,従来の研究より以下のことが示されている. すなわち,図 2.25(B)に示すように,単語了解度は音声伝達性能が低い場合(領域(a))において,音場の違いを感度良く評価できる. しかし,音声伝達性能が少し高くなると(領域(b)),いずれの音場においても非常に高い値となり,音場の違いに対する感度が低くなる. さらに音声伝達性能が高くなると(領域(c),(d)),単語了解度は100%となり,音場の違いを全く表すことができない.

一方,実験1および実験2の結果を考慮すれば、音声伝達性能と「聴き取りにくさ」の関係は図2.25(C)のように表すことができる。まず、単語了解度によって音声伝達性能を感度よく求めることができる領域(領域(a))では、「聴き取りにくさ」はほぼ100%となるため、音場の違いを明確に表すことはできない。次に、音声伝達性能が少し高い領域(領域(b))では、「聴き取りにくさ」は単語了解度よりも感度良く、かつ、厳しく音声伝達性能を評価できる。音声伝達性能がさらに高い領域(領域(c))では、単語了解度がほぼ100%となり、音場の違いを明確にあらわすことはできないのに対し、「聴き取りにくさ」は感度良く音声伝達性能を評価できる。現実には、単語を正確に聴き取れない建築空間はほとんど存在せず、我々が日常生活で使用する空間のほとんどは領域(b)または領域(c)に相当すると考えられる。この点を考慮すれば、「聴き取りにくさ」は単語了解度よりも音声伝達性能の主観的評価指標として適していると言える。

なお、音声伝達性能が最も良い領域(領域(d))においては、単語了解度は100%となり、「聴き取りにくさ」は0%となるため、いずれの指標を用いても音場の違いを評価することはできない。この領域に関する研究は現時点では見当たらないが、領域(d)の音声伝達性能を評価するために「聴き取りにくさ」より感度の良い主観的評価指標、例えば「音声の質(Quality)」が必要となるかもしれない。

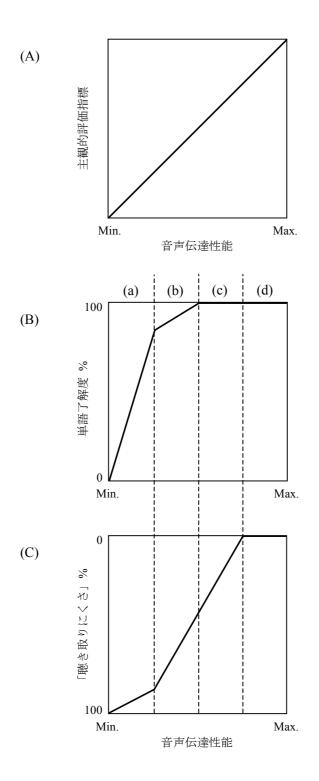


図 2.25 音声伝達性能と主観的評価指標の関係の模式図

2.4 結論

第2章では、音声伝達性能の主観的評価指標として、親密度によって統制された単語を聴き取りにくいと感じた人の割合である「聴き取りにくさ」を提案し、残響および騒音付加音場における「聴き取りにくさ」と単語了解度を比較・検討した。その結果、以下のことを明らかにした。

- 1. 「聴き取りにくさ」と単語了解度は高い負の相関がある.
- 2. 単語了解度が 100%であっても、聴き取りにくいと感じている人がいる. すなわち、 最高の音声伝達性能は単語了解度が 100%の状態ではなく、「聴き取りにくさ」が 0%の 状態である.
- 3. 音声伝達性能が良い場合は「聴き取りにくさ」の方が単語了解度よりも感度良く、かつ、厳しく音声伝達性能を評価できる。一方、音声伝達性能が悪い場合は単語了解度の方が「聴き取りにくさ」よりも感度良く音声伝達性能を評価できる。

現実には、単語を正確に聴き取れない建築空間はほとんど存在せず、我々が日常生活で使用する空間のほとんどは音声伝達性能が良い音場である.したがって、「聴き取りにくさ」の方が単語了解度よりも音声伝達性能の主観的評価指標として適していると言える.

なお,親密度の高い単語ほど音場の違いに対する「聴き取りにくさ」の感度が良いことから, 「聴き取りにくさ」の聴取実験では、親密度の最も高い単語を用いることとする.

第3章 音声レベルが「聴き取りにくさ」に及ぼす影響

従来の研究では、音声伝達に最適な残響時間や SN 比は提案されているものの、最適な音声レベルについての提案は見当たらない。この理由として、現在、音声伝達性能の主観的評価指標として広く用いられている単語了解度が音声伝達性能のあまり高くない音場において最大値に達してしまうため、それよりも音声伝達性能が高い音場間の違いを明らかにできない点が挙げられる。これに対し、第2章で提案した「聴き取りにくさ」は音声伝達性能が高い音場において、単語了解度よりも感度良く、かつ、厳しく音声伝達性能を評価できることが示された。

第3章では、「聴き取りにくさ」を用いて音声レベルが音声伝達性能に及ぼす影響を明らかにするとともに、音声伝達に最適とされる残響時間 0.5s において[13-16]、騒音レベルと最適音声レベルの関係を明らかにする.

実験3では、まず、騒音を付加しない場合について、音声レベルと「聴き取りにくさ」の関係を明らかにする.

3.1 実験 3: 騒音を付加せず音声レベルを変化させた場合

3.1.1 方法

A. 単語

最も高い親密度 $7.0\sim5.5$ の単語で構成される 4 音表 (1 音表は 50 単語)を用いた.用いた音表を表 3.1 に示す.なお,表 3.1 に示した単語の前の番号は実験用音源の作成を円滑に行うために用いた単語番号である.

表 3.1 実験 3 で用いた単語リスト

音表 3-1				
1 アドリブ	2 イザカヤ	3 ウワゴト	4 オフクロ	5 カオパス
6 ガクセイ	7 ギンコウ	8 キンパツ	9 クチダシ	10 グラタン
11 ケンリツ	12 ゴタゴタ	13 コメント	14 ザンコク	15 シタマチ
16 ジツヨウ	17 スイドウ	18 ゼイキン	19 セツブン	20 ソノママ
21 ダツゼイ	22 タベゴロ	23 ツリバリ	24 テリヤキ	25 トクダネ
26 ナゾナゾ	27 ニイヅマ	28 バイテン	29 ハハオヤ	30 ヒキニゲ
31 ピストル	32 フリソデ	33 ヘンシン	34 ボウハン	35 ホンモノ
36 ムネヤケ	37 メイアン	38 モチゴメ	39 ヤマイモ	40 ユウメシ
41 ヨセガキ	42 ライネン	43 レンゾク	44 ワレワレ	45 サケグセ
46 ドクヘビ	47 チカテツ	48 ノゾキミ	49 マヌケサ	50 ミヂカサ
音表 3-2				
51 アマザケ	52 イタズラ	53 ウタガイ	54 オダワラ	55 カンザシ
56 ガンタン	57 キズアト	58 ギャクテン	59 グランド	60 クワガタ
61 ケイヤク	62 ゲレンデ	63 コノママ	64 サカダチ	65 ジャガイモ
66 シンガタ	67 ジンミャク	68 スキヤキ	69 ソウナン	70 ダビング
71 チャクセキ	72 ツブツブ	73 テイイン	74 ドシャブリ	75 ナニサマ
76 ネンマツ	77 バクハツ	78 ハナマル	79 ヒキガネ	80 ブツダン
81 フデバコ	82 ヘイタイ	83 ペリカン	84 マサユメ	85 ミガワリ
86 ミャクハク	87 ムチャクチャ	88 ヤブイシャ	89 ユウダイ	90 ヨウナシ
91 ライニチ	92 ロクガツ	93 ワープロ	94 ゴマアエ	95 シャシンヤ
96 セイジカ	97 タマリバ	98 トチガラ	99 ニマイメ	100 ホケンジョ

表 3.1 実験 3 で用いた単語リスト (つづき)

音表 3-3				
101 アベコベ	102 インサツ	103 ウラガワ	104 オヤバカ	105 ガイジン
106 カザカミ	107 キミガヨ	108 キャクセキ	109 クシザシ	110 ゲキダン
111 ケツマツ	112 ゴチャマゼ	113 コンダテ	114 サイワイ	115 ザツダン
116 シナギレ	117 ジンメイ	118 スタジオ	119 セイネン	120 ゼンソク
121 ソレダケ	122 ダイフク	123 タンマツ	124 チャクジツ	125 ツウキン
126 デタラメ	127 テンキン	128 トノサマ	129 ドラフト	130 ナカナカ
131 ニワサキ	132 ヌカミソ	133 ネンカン	134 ノリカエ	135 ハダアレ
136 パリパリ	137 バングミ	138 ヒガワリ	139 フタタビ	140 ヘンカン
141 ホウリツ	142 マンキツ	143 ミチバタ	144 モモイロ	145 ヤスラギ
146 ユウヤケ	147 ヨウフウ	148 ランオウ	149 レイガイ	150 ワリビキ
音表 3-4				
151 アラスジ	152 イレズミ	153 ウナドン	154 エキベン	155 オヒサマ
156 ガッペイ	157 キズモノ	158 クギヅケ	159 グレード	160 ゲキトツ
161 ケシゴム	162 コウネツ	163 ゴキブリ	164 ザイモク	165 サボテン
166 シナモノ	167 ジュウゴヤ	168 シュッシン	169 スイミン	170 センギリ
171 ソウダン	172 タチヨミ	173 ダンカイ	174 チュウジュン	175 ツリイト
176 テツドウ	177 ドクシン	178 ナガネン	179 ニワトリ	180 ネガエリ
181 ハキモノ	182 バンメシ	183 ヒツヨウ	184 ビフテキ	185 フウリン
186 ブツブツ	187 マエガリ	188 ミチクサ	189 メンエキ	190 モリソバ
191 ヤキソバ	192 ユデダコ	193 ヨウフク	194 リュウツウ	195 レッテル
196 ワリコミ	197 トリニク	198 カミワザ	199 ジカヨウ	200 チエノワ

B. 提示条件

a. インパルス応答

インパルス応答の模式図を図3.1 に示す. 音場は直接音と1つの残響音で構成されている. 残響音はすべて妨害音成分として扱うことを前提に,直接音到来から初期残響音到来までの 時間間隔(遅れ時間)は Haas 効果[57]を考慮し,50ms とした.

残響時間は 0.5s である. 残響時間周波数特性は 63Hz から 8kHz の 8 オクターブバンドに おいて ± 0.1 s 以内で平坦である.

直接音の音圧 Pd と残響音の出だし部分の音圧 Pr との音圧比 (Pr/Pd) は 1/10 である. 図 3.2 に各音場の 500Hz と 1kHz の 2 オクターブバンドにおけるエコーダイアグラムを示す.

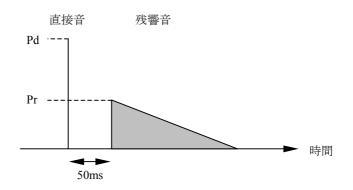


図 3.1 インパルス応答の模式図

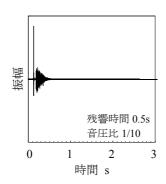


図3.2 実験3で用いた音場のエコーダイアグラム(500と1kHzの2オクターブバンド)

b. 音声レベル

音声レベルは 25dBA~70dBA の 10 種類である. 各単語の直接音のみを提示した場合に、被験者の頭部中心に相当する位置におけるピーク値のばらつきが±0.3dBA (時定数:Slow) 以内とした.

c. 音場の種類

実験音場として、音声レベルを変化させた表 3.5 に示す 10 音場を用いた.

音場 パラメータ В $\overline{\mathbf{C}}$ G Н J A D Е 残響時間(s) 0.5 音圧比 1/10 音声レベル(dBA) 25 30 35 40 45 50 55 60 65 70 騒音レベル(dBA)

表 3.2 実験 3 で用いた音場

d. 発話速度

発話速度は 5.6 syl/s でほぼ一定である.

C. 刺激の作成

無響室録音された約5秒の女声アナウンスを直接音, すなわちドライソースとし, それに 市販のリバブレーター(YAMAHA 製 SPX-900)を用いて作成したインパルス応答を計算機 上で畳み込んだものを刺激とする. 刺激の作成手順を図3.3 に示す.

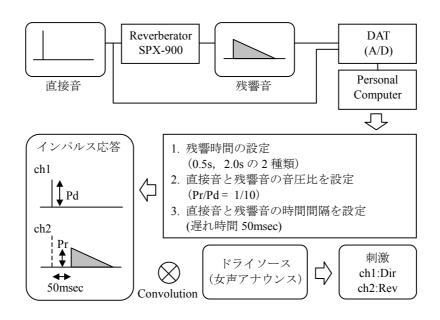


図 3.3 刺激作成手順のブロックダイアグラム

D. 実験用音源の作成

実験用音源は以下の手順により作成した.

- 1. 全200個の単語を番号の若い順から20個ずつまとめ、計10個の単語群をつくる.
- 2. 各単語群に含まれる 20 単語と全 10 音場のインパルス応答を畳み込む. 1 つの単語群 と 10 音場のうちの 1 つを畳み込んだものを 1 つの刺激群とすると, 10 単語群×10 音 場の計 100 の刺激群をつくる.
- 3. 100 の刺激群の中から単語群が重ならないように A~J の 10 音場を抜き出し、音場に関係なくランダムに並べ替えて 1 組の実験用音源を完成させる.
- 4. 一度用いた刺激群を重複しないように上記3の手順を繰り返し,全刺激群を用いて10 組の実験用音源を作成する.

実験用音源を構成する単語群と音場の関係を図 3.4 に模式的に示す. 図 3.4 における数字は表 3.1 で示した単語番号をあらわし、A~J は表 3.2 で示した音場を表す. なお、図中の網掛けは 1 つの単語群が全ての音場において用いられていることを示している. 被験者はいずれか一つの実験用音源を聴取する. すなわち、複数の被験者によって、全ての実験用音源が

聴取されることで、全単語が全音場において聴取されることになり、音韻バランスが考慮される.

実際の聴感実験では、被験者には1回の試行において50単語ずつ提示した。すなわち、 各被験者は4回の試行を行った。

				音場				
	A	В	С	•••	G	Н	Ι	J
実験用音源1	1-20	21-40	41-60	•••	121-140	141-160	161-180	181-200
実験用音源 2	21-40	41-60	61-80		141-160	161-180	181-200	1-20
実験用音源3	41-60	61-80	81-100		161-180	181-200	1-20	21-40
実験用音源 4	61-80	81-100	101-120	•••	181-200	1-20	21-40	41-60
実験用音源 5	81-100	101-120	121-140	•••	1-20	21-40	41-60	61-80
実験用音源 6	101-120	121-140	141-160	•••	21-40	41-60	61-80	81-100
実験用音源7	121-140	141-160	161-180		41-60	61-80	81-100	101-120
実験用音源8	141-160	161-180	181-200		61-80	81-100	101-120	121-140
実験用音源9	161-180	181-200	1-20		81-100	101-120	121-140	141-160
実験用音源 10	181-200	1-20	21-40	•••	101-120	121-140	141-160	161-180

図 3.4 実験用音源を構成する刺激群

E. 装置

実験は神戸大学工学部建設学科環境音響学研究室の無響室内において行った.実験のブロックダイアグラムを図 3.5 に示す.

直接音と残響音は被験者の正面に位置した 1 つのスピーカから提示した. 受聴点はスピーカ正面から右 30° の距離 2m に位置する 1 点である. なお, 実験に用いたスピーカの受聴点における周波数特性を図 3.6 に示す. 受聴点における周波数特性はスピーカ正面から左右 30° ともに 100Hz において ± 5 dB 以内で平坦である.

F. 被験者

正常な聴力を有する学生 9 名(男性 5 名,女性 4 名)及び社会人 1 名(男性,31 歳)の計 10 名を用いた.

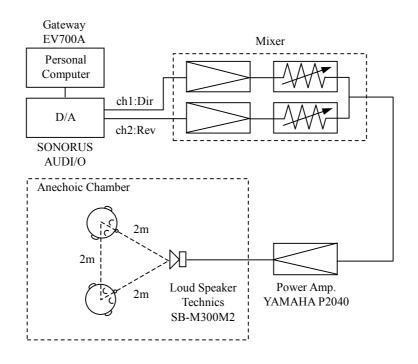


図 3.5 実験系ブロックダイアグラム

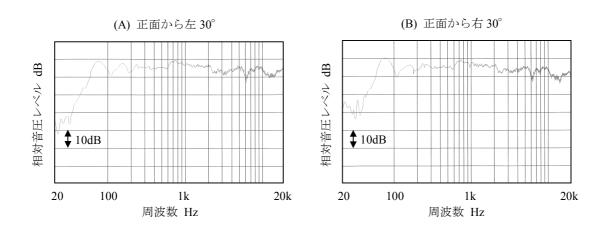


図 3.6 実験 3 で用いたスピーカの周波数特性

G. 提示方法

各刺激の間隔は6秒とした.実験時間は約10分である.なお、被験者にはモーラ数について教示していない.図3.7に実験3で用いた教示文を示す.

この実験は、日本語単語の聴取実験です. 以下の注意事項に従って回答してください.

- カタカナで記入してください。
- ・原則として「キャ」等の小さいヤ、ユ、ヨを含む音節と、小さい「ッ」、伸ばす音の「一」は1マスに書いてください. (基本的には枠の中に1単語書いてもらえば結構です。)

例: マ ー ジャン

・「ズ」と「ヅ」は同じ音なのでどちらを書いてもかまいません.

同時に、その**単語の「聴き取りにくさ」の程度を次の**4段階で評価し、その番号を下の例に従って枠内に記入してください。

- 1. 聴き取りにくくはない
- 2. やや 聴き取りにくい
- 3. かなり 聴き取りにくい
- 4. 非常に 聴き取りにくい

例:単語が「マージャン」で評価が「聴き取りにくくはない」とき

マージャン 1

- ・単語と単語の間隔は6秒です. その間に回答してください.
- 実験は約10分で終了します。

図3.7 実験3で用いた教示文

H. 回答方法

被験者には回答用紙をはさんだ野帳を持たせ、無響室に頭を固定させずに座らせた.無響室の照明はつけたままにし、回答用紙の記入に必要十分な明るさを与えた.被験者には回答用紙にカタカナで聴こえたとおりに書かせると同時に、その単語の聴き取りにくさを表 3.3 に示す 4 段階で判断させ、数字で記入させた.

表 3.3 聴き取りにくさのスケール

- 1. 聴き取りにくくはない
- 2. やや 聴き取りにくい
- 3. かなり 聴き取りにくい
- 4. 非常に 聴き取りにくい

3.1.2 結果と考察

回答結果より、単語を正しく聴取できた割合である単語了解度と、表 3.3 に示した聴き取りにくさのスケールの $2\sim4$ と回答した割合である「聴き取りにくさ」を算出した。図 3.8 に実験 3 の結果を示す。

単語了解度は音声レベル 25dBA の場合を除き、全ての音場でほぼ 100%となり、音声レベルによる明らかな違いは見られない。

一方,「聴き取りにくさ」は音声レベル 25dBA でほぼ 100%であるが,音声レベルが高くなるにつれて減少し,55dBA において約 30%となる.音声レベル 55dBA 以上では,「聴き取りにくさ」は音声レベルとともに増加し,音声レベル 70dBA において約 80%に達する.「聴き取りにくさ」が最小となる音声レベル 55dBA の場合と最大となる 25dBA 場合では約 70%の差が生じている.

以上より、音声伝達性能が比較的高い実験3の音場では、「聴き取りにくさ」が単語了解度よりも感度良く、かつ、厳しく音声伝達性能を評価できることが示された。また、残響時間0.5sで音声レベルのみを変化させた場合の「聴き取りにくさ」は音声レベル55dBAで最小となることが示された。

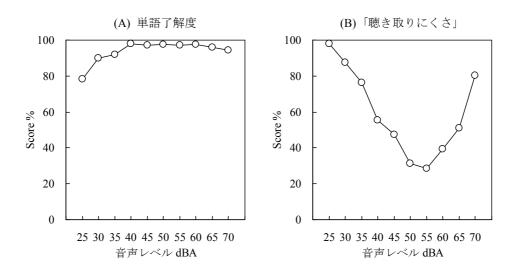


図3.8 音声レベルと単語了解度および「聴き取りにくさ」の関係

3.1.3 まとめ

騒音を付加せず音声レベルのみを変化させた聴取実験より以下を明らかにした.

- 1. 単語了解度は音声レベルによらずほぼ 100%となる.
- 2. 「聴き取りにくさ」は音声レベルに応じて大きく変化し、音声レベル 55dBA で最小となる.

3.2 実験 4: SN 比を一定に保ち音声レベルを変化させた場合

騒音を付加せず音声レベルのみを変化させた実験3において、「聴き取りにくさ」は音声レベル55dBAで最小となることが示された.

実験4では,音声伝達に最適とされるSN+15dBと+30dBの場合について,音声レベルと「聴き取りにくさ」の関係を明らかにする.

3.2.1 方法

A. 単語

最も高い親密度 7.0~5.5 の単語で構成される 4 音表 (1 音表は 50 単語) を用いた. 用いた音表を表 3.4 に示す. なお,表 3.4 に示した単語の前の番号は実験用音源作成の際に,作業を円滑に行うために用いた単語番号である.

表 3.4 実験 4 で用いた単語リスト

音景	長 4-1								
1	アナログ	2	イベント	3	ウメボシ	4	オオヨウ	5	ガイハク
6	カステラ	7	キュウヨウ	8	キレナガ	9	クチドメ	10	ゲンジョウ
11	ケンセツ	12	ゴキゲン	13	コクフク	14	サトイモ	15	ジツメイ
16	ジョギング	17	ショクヒン	18	シンチク	19	スゴロク	20	セトモノ
21	ソレホド	22	タイダン	23	チョクシン	24	チンボツ	25	ツケモノ
26	テツボウ	27	デンキュウ	28	ドウヨウ	29	トンネル	30	ナキゴト
31	ニセモノ	32	ネゴコチ	33	ノウリツ	34	ハツネツ	35	ビショヌレ
36	ヒトジチ	37	フウセン	38	ブツメツ	39	ヘソクリ	40	ホクリク
41	ポンコツ	42	マスコミ	43	ミズイロ	44	モクゾウ	45	ヤミツキ
46	ユイノウ	47	ヨコヅナ	48	レイトウ	49	ロンブン	50	ワキバラ

表 3.4 実験 4 で用いた単語リスト (つづき)

音表 4-2								
51 アサフ	52	イラダチ	53	ウラグチ	54	エンガワ	55	オカルト
56 カラア	ゲ 57	ガラクタ	58	キャッカン	59	キョウハン	60	キンイツ
61 クラヤ	· ミ 62	グンシュウ	63	コシアン	64	サイハツ	65	ザツガク
66 シアワ	'セ 67	ジツザイ	68	シュウダン	69	ジュクスイ	70	ショッパナ
71 スナバ	72	ダイナシ	73	タツマキ	74	チャクリク	75	チュウジツ
76 チョク	バイ 77	ツユアケ	78	テーブル	79	トッシン	80	ドロンコ
81 ナカニ	- ワ 82	ニクガン	83	バウンド	84	ハタラキ	85	ヒシガタ
86 ビョウ	シュツ 87	ヒョウバン	88	フカヅメ	89	プレート	90	ブンツウ
91 マナサ	シ 92	ミズタマ	93	ムダグチ	94	ヤマビコ	95	ユウダチ
96 ヨコカ	7 97	ライヒン	98	リキサク	99	リューマチ	100	ワリバシ
音表 4-3								
101 アジツ	ケ 10	2 イチニチ	103	ウヤムヤ	104	オツトメ	105	ガクワリ
106 カミガ	ラ 10	7キュウキョク	108	ギリギリ	109	キンピカ	110	クチヒゲ
111 ケイサ	ン 11	2 コウズイ	113	ザイシツ	114	シナリオ	115	ショクニン
116 ジンカ	ク 11	7 スイハン	118	セイジツ	119	ゼンハン	120	ソライロ
121 ダイブ	`ツ 12	2 タビサキ	123	チョウカン	124	チンアゲ	125	トビキリ
126 ドラネ	.コ 12	7 ナグサメ	128	ニクシミ	129	バイパス	130	ハツユメ
131 ヒマジ	13	2 ヒョウハク	133	プライド	134	フリダシ	135	ブンカツ
136 ヘナチ	ョコ 13	7 ポロシャツ	138	マニキュア	139	ミズワリ	140	モクモク
141 ヤキブ	ラ 14	2ユウジン	143	ヨコガキ	144	ラクタン	145	リョウガワ
146 ワリマ	シ 14	7 ツリビト	148	キョダイサ	149	サンビカ	150	ジョシダイ
音表 4-4								
151 アテサ	キ 15	2イイブン	153	ウリモノ	154	エンスト	155	オトウト
156 カラッ	ポ 15	7キュウシュツ	158	ギュウニク	159	キリスト	160	クチヅケ
161 ケンチ	ウ 16	2 ゲンブツ	163	コウフン	164	ジツイン	165	シモヤケ
166 シュク	メイ 16	7 ショウエネ	168	ズッコケ	169	スペード	170	セキドウ
171 ゼツメ	ツ 17	2 ソクジツ	173	チュウトロ	174	チョクゲキ	175	ツキユビ
176 テツジ	·ン 17	7 トモグイ	178	ドリブル	179	ニュウヨク	180	ヌケミチ
181 ノウミ		2 ヒルメシ						ホクベイ
186 ボッシ	(ユウ 18	7マエムキ	188	ミドコロ	189	メートル	190	モチニゲ
191 ユウグ	`レ 19	2 ヨビステ	193	リットル	194	リュウネン	195	レンキュウ
196 ゴウリ	カ 19	7 ジュウジカ	198	ニホンシュ	199	ハシュツジョ	200	フシギサ

B. 提示条件

a. インパルス応答

実験3と同様,直接音と1つの残響音から成る.

残響時間は 0.5s のみである. 残響時間周波数特性は実験 3 と同様, 63Hz から 8kHz の 8 オクターブバンドにおいて $\pm 0.1s$ 以内で平坦である. 設定した音圧比は 1/10 である.

b. 音声レベル

音声レベルは 50dBA~70dBAの5種類である。各単語の直接音のみを提示した場合に、被験者の頭部中心に相当する位置におけるピーク値のばらつきは ± 0.2 dBA(時定数:Slow)以内である。

c. 騒音レベル

騒音には定常騒音である Hoth スペクトル型ノイズ[59]を用いた. 図 3.9 に Hoth スペクトル型ノイズの 1/1 オクターブバンド分析による周波数特性を示す. 騒音レベルは各音声レベルに対し SN+15dB および+30dB となるよう設定した.

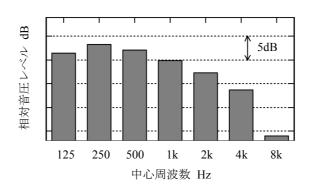


図 3.9 Hoth スペクトル型ノイズの周波数特性(1/1 オクターブバンド)

d. 音場の種類

実験音場として、音声レベルと騒音レベルの組み合わせを変化させた表 3.5 に示す 10音場を用いた.

パラメータ					音	場				
	A	В	С	D	Е	F	G	Н	I	J
残響時間(s)					0	.5				
音圧比					1/	10				
音声レベル(dBA)	50	55	60	65	70	50	55	60	65	70
騒音レベル(dBA)	20	25	30	35	40	35	40	45	50	55
SN比	+30	+30	+30	+30	+30	+15	+15	+15	+15	+15

表 3.5 実験 4 で用いた音場

e. 発話速度

発話速度は 5.6 syl/s でほぼ一定である.

C. 刺激の作成

実験1と同様の手順である.

D. 実験用音源の作成

実験用音源の作成手順は実験3と同様である.

E. 装置

実験のブロックダイアグラムは実験 3 と同様である. ただし, 直接音, 残響音および騒音は被験者の正面に位置した 1 つのスピーカから提示した. 実験のブロックダイアグラムを図3.10 に示す

F. 被験者

正常な聴力を有する学生10名(男性6名,女性4名)を用いた.

G. 提示方法

図 3.11 は刺激提示の模式図である. 騒音の出だしと音声提示の出だしの時間間隔は 135ms である. 実験に用いた単語は全て 4 モーラで統一されているが,各単語の音声提示時間 Δt_1 はわずかに異なる. 音声提示終了後の騒音提示時間の違いが「聴き取りにくさ」に影響を及ぼすことが考えられるので,単語ごとに騒音提示時間を変化させ,等しい残響時間においては全ての単語に対して音声提示終了後の騒音提示時間 Δt_2 を一定とした. 騒音提示時間は $7.0\sim7.5\mathrm{s}$ である. なお,騒音提示時間にはそれぞれ $50\mathrm{ms}$ の立ち上がり及び立ち下りを含む. 刺激と刺激の間隔,および,1回の試行にかかる時間は実験 3 と同様である.

H. 回答方法

実験3と同様である.

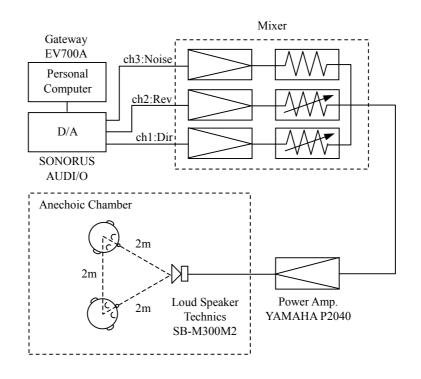


図 3.10 実験系ブロックダイアグラム

図 3.11 刺激の提示方法

3.2.2 結果と考察

回答結果より、単語を正しく聴取できた割合である単語了解度と、表 3.3 に示した聴き取りにくさのスケールの 2~4 と回答した割合である「聴き取りにくさ」を算出した.

図 3.12 に実験 4 の結果を示す. 縦軸は単語了解度, または, 「聴き取りにくさ」であり,

横軸は音声レベルを表している. 図中の凡例は「○」と「●」がそれぞれ SN+30dB と+15dB の「単語了解度」または「聴き取りにくさ」を表す.

SN+30dB の場合、単語了解度は音声レベルの違いによらずほぼ 100%となる. 一方、「聴き取りにくさ」は音声レベルによって大きく変化し、音声レベルが大きいほど増加する. 「聴き取りにくさ」が最小となる音声レベル 50dBA の場合と最大となる 70dBA の場合では約55%の差が生じている.

SN+15dB の場合も SN+30dB の場合と同様の傾向を示す。ただし、SN+30dB の場合とは異なり、「聴き取りにくさ」は音声レベル 55dBA において最小となる。「聴き取りにくさ」が最小となる音声レベル 55dBA の場合と最大となる 70dBA の場合では約 40%の差が生じている。

また、同一の音声レベルにおいて、単語了解度は SN 比の違いがみられないが、「聴き取りにくさ」は音声レベル 70dBA の場合を除いて SN 比の違いが明らかである.

以上のように、単語了解度が音声レベルと SN 比の違いによらず全ての音場でほぼ 100% であるのに対し、「聴き取りにくさ」は SN 比と音声レベルによって明らかな差が生じており、音声伝達性能が比較的高い実験 4 の音場においても、「聴き取りにくさ」の方が単語了解度よりも音声伝達性能を感度良く、かつ、厳しく評価できることが示された.

なお、SN+15dB および+30dB のいずれの場合も、音声レベルが高くなるにつれて「聴き取りにくさ」が増加する.このことは音声レベルが高過ぎると聴取者は音声を聴き取りにくいと感じることを示している.一方、実験 3 では、音声レベルが低過ぎると、音声が聴き取れないために「聴き取りにくさ」が増加することが示されている.したがって、「聴き取りにくさ」に基づけば、残響時間 0.5 秒、かつ、SN+15dB および+30dB の場合、音声伝達に最適な音声レベルは 50~55dBA 程度と考えられる.

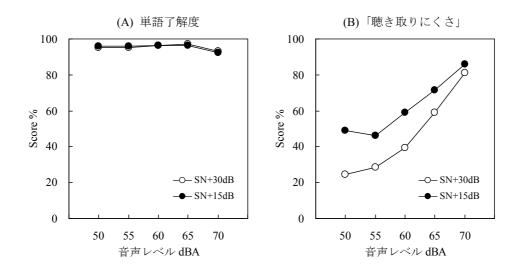


図 3.12 SN 比が一定の場合の音声レベルと単語了解度および「聴き取りにくさ」の関係

3.2.3 まとめ

SN 比を+15dB または+30dB で一定とし、音声レベルと騒音レベルを同時に変化させた聴取実験より、以下を明らかにした。

- 1. 単語了解度は SN 比と音声レベルによらずほぼ 100%となる.
- 2. 「聴き取りにくさ」は SN 比と音声レベルに応じて大きく変化し、いずれの SN 比においても音声レベル 50~55dBA 程度で最小となる.

3.3 総合的考察-音声伝達に最適な音声レベル

実験 2~4 で得られた結果に基づき、騒音レベルに応じた音声伝達に最適な音声レベルについて考察する. なお、本検討では、既往の研究において音声伝達に理想的とされている残響時間 0.5s[13-16] の場合を取り上げる.

図3.13 は実験 2~4 で得られた残響時間 0.5s の場合の単語了解度と「聴き取りにくさ」を集約したものである. 縦軸は音声レベルを表し, 横軸は騒音レベルを表す. 図中の凡例は「○」,「△」,「●」がそれぞれ実験 1,実験 2,実験 3 で用いた音場であることを表している. 凡例の右下に示した斜体の数字がその音場で得られた単語了解度と「聴き取りにくさ」である. なお,同一音場を異なる実験で用いた場合,すなわち,音声レベルが 55dBA で騒音レベルが 0dBA, 25dBA および 40dBA の場合については両実験で得られた単語了解度および「聴き取りにくさ」を示している.

図 3.13 より、単語了解度が 96%以上となるのは SN+15dB 以上、かつ、音声レベル 40~65dB の場合である. Knudsen [60]は残響時間や騒音レベル等が音声伝達に最良の条件であっても、言葉自体の不明瞭さによって音節明瞭度が 100%に達せず、96%となることを示している. したがって、上述の条件では、単語了解度は最高値に達していると考えられ、音声伝達に最適な音声レベルを単語了解度によって判断することはできない. これに対し、同条件において「聴き取りにくさ」は明らかな差が生じているため、「聴き取りにくさ」に基づいて音声伝達に最適な音声レベルを考察する.

まず,騒音レベル 25dBA 以下の場合について検討する.騒音を付加しない場合,「聴き取りにくさ」は音声レベル 55dBA で最小となる.音声レベル 55dBA に着目すると,騒音レベル 10dBA および 25dBA の「聴き取りにくさ」がそれぞれ 19.1%, 25.4%であり,騒音を付加しない場合の「聴き取りにくさ」24.0%と明らかな差はみられない.したがって,騒音レベルが 25dBA 以下の場合に最適な音声レベルは 55dBA と考えられる.

次に、騒音レベル 25dBA~40dBA の場合について検討する。騒音レベル 35dBA に着目すると、音声レベル 50dBA および 65dBA の「聴き取りにくさ」はそれぞれ 49.0%と 59.0%である。一方、音声レベル 55dBA の「聴き取りにくさ」が騒音レベル 25dBA および 40dBA においてそれぞれ約 25%、45%であることから、音声レベル 55dBA、かつ、騒音レベル 35dBA

の「聴き取りにくさ」は 25~45%の範囲内と推定される. よって, 騒音レベル 35dBA では, 音声レベル 55dBA の方が音声レベル 50dBA および 65dBA よりも「聴き取りにくさ」が小さくなると考えられる. 騒音レベルがさらに大きい 40dBA の場合も音声伝達に最適な音声レベルは 55dBA 以上と考えられるが, 音声レベル 55dBA (SN+15dB) の「聴き取りにくさ」は音声レベル 70dBA (SN+30dB) よりも小さい. 以上より, 騒音レベル 25dBA から 40dBA の場合に最適な音声レベルは 55dBA と考えられる.

最後に、騒音レベル 40dBA 以上の場合について検討する. この範囲の騒音レベルにおいて SN+15dBA 以上を満たすには、音声レベル 55dBA 以上が必要となるため、音声伝達に最適な音声レベルは SN 比で決定されると考えられる. ここで、同一の騒音レベルでは SN+30dB の方が SN+15dB よりも「聴き取りにくさ」が大きく、過剰な音声レベルが「聴き取りにくさ」を増加させることを考慮すれば、騒音レベル 40dBA 以上の場合に最適な音声レベルは SN+15dB となる音声レベルと考えられる.

以上をまとめると、残響時間 0.5s において、音声伝達に最適な音声レベルは騒音レベル 40dBA 以下の場合は 55dBA であり、騒音レベル 40dBA 以上の場合は SN+15dB となる音声レベルである.

なお、音声レベルが最適値であっても、「聴き取りにくさ」は騒音レベルが高くなるにつれて増加し、騒音レベル 55dBA (音声レベル 70dBA) では 86.0%に達している。すなわち、「聴き取りにくさ」を小さくするためには最適な音声レベルを確保するだけでなく、騒音レベルを小さくすることが重要である。

3.4 結論

音声レベルおよび騒音レベルの組み合わせを変化させた第2章および第3章の実験2~4より、残響時間0.5sの音場について以下を明らかにした.

- 1. SN+15dB 以上、かつ、音声レベル $40\sim65dB$ の場合、単語了解度はほぼ 100%となるが、「聴き取りにくさ」は音声レベルや SN 比に応じて変化する.
- 2. 「聴き取りにくさ」に基づけば、音声伝達に最適な音声レベルは騒音レベル 40dBA 以下の場合が 55dBA で一定であり、騒音レベル 40dBA 以上の場合は SN 比+15dB となる音声レベルである。
- 3. 最適音声レベルを確保した場合であっても、騒音レベルが高いほど「聴き取りにくさ」 は上昇する. すなわち、良好な音声伝達を行うためには最適な音声レベルを確保する だけでなく、騒音レベルを小さくする必要がある.

さらに、同一の音声レベルおよび騒音レベルの組み合わせであっても、異なる実験で得られた「聴き取りにくさ」に差が生じていることが示された.

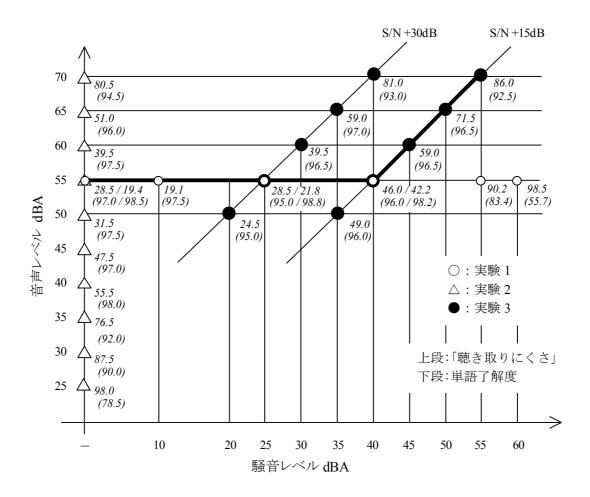


図 3.13 騒音レベルに応じた音声伝達に最適な音声レベル(残響時間 0.5s の場合)

第4章「聴き取りにくさ」の実験方法について

音声伝達性能の評価指標には、同一の音場に対して一定の値が得られることが求められる. しかしながら、第3章では、異なる実験で用いた同一音場の「聴き取りにくさ」が一定の値と はならないことが示された.この原因として、「聴き取りにくさ」の実験方法自体が抱える問 題が考えられる.音声伝達性能の主観的評価指標として「聴き取りにくさ」を用いるためには、 それらの問題を解決しておく必要がある.

同一音場の「聴き取りにくさ」が変動する原因の一つとして,同一被験者に同一音表を繰り返し提示した際の学習効果が考えられる. 親密度で統制された単語リストの数には限りがあるため,被験者の数が限定されている場合,同一被験者に同一音表が繰り返し提示される可能性がある. 実際,単語了解度については,同一音表を繰り返し提示することによって学習効果があらわれることが一般に知られており,「聴き取りにくさ」についても学習効果が生じることが考えられる.

また, 評定尺度法を用いて得られる「聴き取りにくさ」は実験に用いる音場の数や性質, すなわち, 刺激文脈が異なれば文脈効果[61,62]によって値が変動すると考えられる.

第4章では、「聴き取りにくさ」の実験方法に関する上記の問題点に着目し、同一音場の「聴き取りにくさ」の変動を抑制するための方法を検討する.

実験5では、まず、同一被験者に対して同一音表を繰り返し提示し、単語了解度と「聴き取りにくさ」の学習効果の有無について検証する.

4.1 実験 5: 学習効果の検証

4.1.1 方法

A. 単語

最も高い親密度 7.0~5.5 の単語で構成される 2 音表 (1 音表は 50 単語)を用いた. 用いた音表を表 4.1 に示す. なお,表 4.1 に示した単語の前の番号は実験用音源作成の際,作業を円滑に行うために用いた単語番号である.

表 4.1 実験 5 で用いた単語

音	表 5-1								
1	アシバヤ	2	ウワバキ	3	エイユウ	4	オヤユビ	5	カタマリ
6	ガブノミ	7	キマグレ	8	クチカズ	9	グラビア	10	ゲンコツ
11	ケンブツ	12	コツバン	13	ゴブサタ	14	サキユキ	15	ザッソウ
16	ジグザグ	17	シナカズ	18	シュクフク	19	ジュンスイ	20	スウハイ
21	ゼイコミ	22	セイジン	23	ソウタイ	24	ダイヤル	25	タダノリ
26	デンアツ	27	テンプラ	28	トウミン	29	ドクダン	30	ナガソデ
31	ニセサツ	32	ネタキリ	33	ハジマリ	34	バツグン	35	ヒトガラ
36	フタマタ	37	ヘアピン	38	ベランダ	39	ホラアナ	40	ママハハ
41	ミマワリ	42	モクゲキ	43	ヤケザケ	44	ユウハン	45	ヨクジツ
46	リッタイ	47	ワカサギ	48	ブタニク	49	ツワモノ	50	イダイサ
音表	5-2								
51	アジワイ	52	イヤイヤ	53	オヤスミ	54	カバヤキ	55	ガラガラ
56	キバラシ	57	ギャクタイ	58	キャクホン	59	クウフク	60	ケイゾク
61	ゴウイン	62	コナイダ	63	サカサマ	64	ザリガニ	65	ジンザイ
66	シンサツ	67	スジガキ	68	セイベツ	69	ソンシツ	70	タカビシャ
71	ダンラン	72	チャクチャク	73	チリガミ	74	ツリカワ	75	テイサツ
76	ドクリツ	77	トリケシ	78	ナガグツ	79	ニジマス	80	ヌリタテ
81	ネンガン	82	ノウナシ	83	バクダン	84	ハツマゴ	85	ビンカン
86	ヒンシツ	87	フクツウ	88	プラチナ	89	マチブセ	90	ミンカン
91	ムダアシ	92	モチマエ	93	ヤジウマ	94	ユキヤマ	95	ヨミウリ
96	ラクガキ	97	ワザワイ	98	ウタタネ	99	シャカイカ	100	ルスバン

B. 提示条件

a. インパルス応答

インパルス応答の模式図を図 4.1 に示す. 音場は直接音と 1 つの残響音で構成されている. 残響音のすべてを直接音の妨害成分として扱うため, 直接音到来から残響音到来までの時間間隔(遅れ時間)を Haas 効果[57]を考慮して 50ms とした.

残響時間は 0.5, 2.0, 6.0s の 3 種類である. なお, いずれの場合も残響時間の周波数特性は平坦とした.

直接音の音圧 Pd と残響音の出だし部分の音圧 Pr との音圧比 (Pr/Pd) は 1/2 である. 図 4.2 に各音場の 500Hz \sim 1kHz の 2 オクターブバンドにおけるエコーダイアグラムを示す.

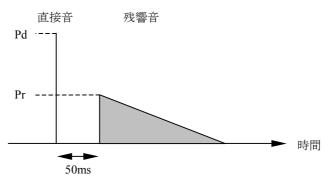


図 4.1 インパルス応答の模式図

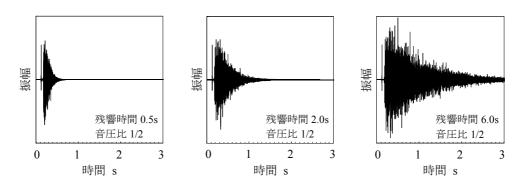


図 4.2 実験 5 で用いた音場のエコーダイアグラム(500~1kHzの2オクターブバンド)

b. 音声レベル

実験用音源の音圧レベルは、実験で用いる 200 単語の直接音のみを提示した場合に、被験者の頭部中心に相当する位置においてピーク値の平均が 55.0 ± 3.0 dBA (時定数: Fast) である.

c. 音場の種類

実験音場として、残響時間を変化させた表 4.2 に示す 3 音場を用いた.

パラメータ	音場					
	Н	M	L			
残響時間(s)	0.5	2.0	6.0			
音圧比		1/2				
音声レベル(dBA)		55				
騒音レベル(dBA)		-				

表 4.2 実験 5 で用いた音場

d. 発話速度

発話速度は 5.6 syl/s でほぼ一定である.

C. 刺激の作成

無響室録音された約5秒の女声アナウンスを直接音, すなわちドライソースとし, それに 市販のリバブレーター(YAMAHA 製 SPX-900)を用いて作成したインパルス応答を計算機 上で畳み込んだものを刺激とする. 刺激の作成手順を図4.3に示す.

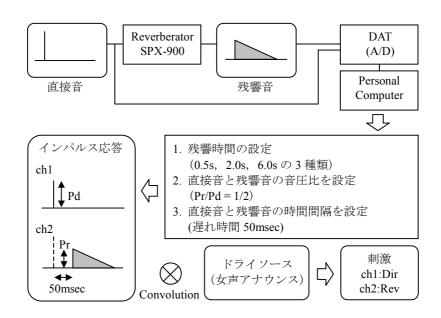


図 4.3 刺激音作成の手順のブロックダイアグラム

D. 実験用音源の作成

各音表に各音場を畳み込んだものをそれぞれ 1 つの実験用音源とした. すなわち, 1 つの実験用音源は 50 刺激で構成される. ここでは、音表 1 の 50 単語に音場 H を畳み込んだ実験用音源を[H1]のように表記する. 実験 5 では H1, H2, M1, L2 の 4 種類の実験用音源を作成した.

E. 装置

実験は神戸大学工学部建設学科環境音響学研究室の無響室内において行った.実験のブロックダイアグラムを図 4.4 に示す. 受聴点はスピーカ正面から左右 30°の距離 3mに位置する 2 点である. なお, 実験に用いたスピーカの受聴点における周波数特性を図 4.5 に示す. スピーカ正面から左右 30°ともに 100Hz~10kHz において±5dB 以内で平坦である.

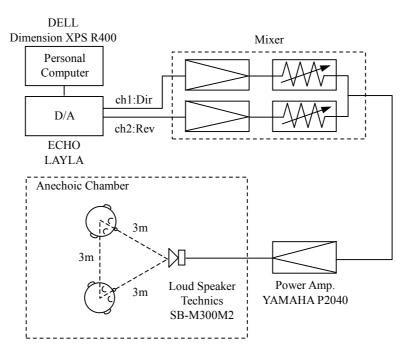


図 4.4 実験系ブロックダイアグラム

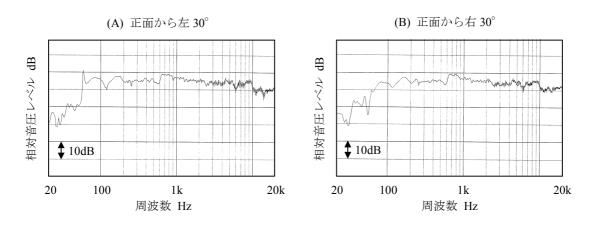


図 4.5 実験 5 で用いたスピーカの周波数特性

F. 被験者

聴力検査の結果より,正常な聴力を有する学生11名(男性8名,女性3名)と社会人1名(男性)の計12名を用いた.

G. 提示方法

実験 5 では、音声伝達性能の異なる音場 M および L における学習効果を検討するため、以下に示す聴取実験 5-1、5-2 を行った。

聴取実験 5-1: $M1 \rightarrow H1 \rightarrow M1 \rightarrow H1 \rightarrow M1 \rightarrow H1 \rightarrow M1 \rightarrow H1 \rightarrow M1$ 聴取実験 5-2: $L2 \rightarrow H2 \rightarrow L2 \rightarrow H2 \rightarrow L2 \rightarrow H2 \rightarrow L2 \rightarrow H2 \rightarrow L2$

いずれの聴取実験も1音表のみを使用し、また、音声伝達性能が高い音場 H と対象音場 (M またはL)の2音場で構成されている.

聴取実験は5-1と5-2の順で異なる日に行い,両実験の間隔は最大で2日とした.ただし, それぞれの聴取実験は1日で行った.両実験とも,刺激の間隔は9秒とし,1試行の実験時間は約9分であった.また,各試行の間に20分程度の休憩を挟んだ.なお,被験者にはモーラ数について教示していない.図4.6に実験で用いた教示文を示す.

この実験は、日本語単語の聴取実験です.

以下の注意事項に従って回答してください.

- カタカナで記入してください。
- ・原則として「キャ」等の小さいヤ、ユ、ヨを含む音節と、小さい「ッ」、伸ばす音の「一」は1マスに書いてください.(基本的には枠の中に1単語書いてもらえば結構です.)

例: ゴ - ギャン

- ・「ズ」と「ヅ」は同じ音なのでどちらを書いてもかまいません.
- ・同時に、その音声の聴き取りにあたって「聴き取りにくさ」の程度を次の4段階で評価 し、その番号を下の例に従って枠内に記入してください。
 - 1. 聴き取りにくくはない
 - 2. やや 聴き取りにくい
 - 3. かなり 聴き取りにくい
 - 4. 非常に 聴き取りにくい

例:単語が「ゴーギャン」で評価が「聴き取りにくくはない」とき

ゴ ー ギャン 1

- ・単語と単語の間隔は9秒です。その間に回答してください。
- ・実験は約9分で終了します.

図 4.6 実験 5 で用いた教示文

H. 回答方法

被験者には回答用紙をはさんだ野帳を持たせ、無響室内の椅子に頭を固定させずに座らせた.無響室内の照明はつけたままにし、回答用紙への記入に必要十分な明るさを与えた.被験者には回答用紙にカタカナで聴こえた単語を書かせると同時に、その単語の聴き取りにくさを表 4.3 に示す 4 段階で判断させ、数字で記入させた.

表 4.3 聴き取りにくさのスケール

- 1. 聴き取りにくくはない
- 2. やや 聴き取りにくい
- 3. かなり 聴き取りにくい
- 4. 非常に 聴き取りにくい

4.1.2 結果と考察

回答結果より、単語を正しく聴取できた割合である単語了解度と、表 4.3 に示した聴き取りにくさのスケールの 2~4 と回答した割合である「聴き取りにくさ」を算出した.

A. 聴取実験 5-1

全被験者のうち、「聴き取りにくさ」が他の被験者とは異なる傾向を示した 2 名を省いた 10 名の結果を図 4.7 に示す。また、異なる回答傾向を示した 2 名の結果を図 4.8 に示す。なお、図 4.7 および図 4.8 とも横軸は音場を表し、左から右へ提示順に並べている。

図 4.7 に示した 10 名の結果では、音場 M と音場 H の「聴き取りにくさ」の差が明らかである。これに対し、図 4.8 で示した 2 名の結果は音場 M と音場 H の「聴き取りにくさ」に明らかな差がみられない。ここでは、この 2 名の被験者が評定尺度法を用いた実験に慣れておらず、適切な評価がなされていない可能性があると判断し、10 名の結果(図 4.7)について考察する。

実験用音源 H1 の単語了解度は 1 回目の提示でほぼ 100%に達しており, 2 回目以降の結果と明らかな差がみられない. 一方, 実験用音源 M1 の単語了解度は 1 回目の提示よりも 2 回目の方が高く, さらに提示回数が増すにつれて上昇する. 5 回目の提示ではほぼ 100%に達しており, 音場 H との差はほとんどみられない.

これに対し、実験用音源 H1 の「聴き取りにくさ」は提示回数が増してもほぼ一定である。 実験用音源 M1 の「聴き取りにくさ」も同様であり、提示回数によらず、両者の差は明らかである。

表 4.4 は実験用音源 H1 および M1 の単語了解度と「聴き取りにくさ」を提示回数ごとに t 検定した結果である. 表中の左下側は単語了解度について, 右上側は「聴き取りにくさ」につ いての結果である.

実験用音源 H1 の単語了解度は全ての組み合わせに有意差はみられない. 一方,「聴き取りにくさ」は1回目と4回目の組み合わせのみに有意水準5%の有意差が認められる.

これに対し、実験用音源 M1 の単語了解度は 1 回目と $2\sim5$ 回目のそれぞれの組み合わせに有意水準 1%の有意差が認められ、さらに、2 回目と 4、5 回目の組み合わせについても有意水準 5%の有意差が認められる。一方、「聴き取りにくさ」には全ての組み合わせに有意差は認められない。

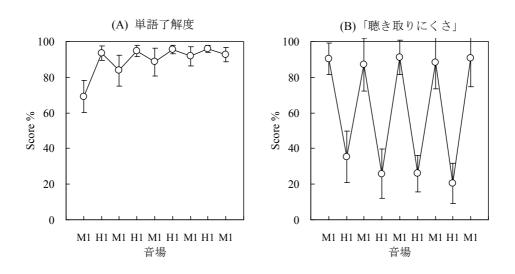


図 4.7 同一音表を繰り返し提示した場合の 単語了解度と「聴き取りにくさ」の変動(聴取実験 5-1)

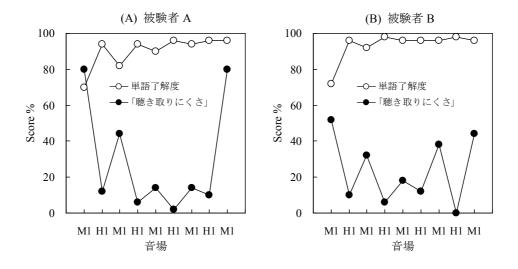


図 4.8 異なる傾向を示した被験者 2 名の単語了解度と「聴き取りにくさ」(聴取実験 5-1)

H1	1回目	2回目	3回目	4 回目
1回目	-			
2 回目		-		
3回目			-	
4 回目	*			-

表 4.4 単語了解度および「聴き取りにくさ」の t 検定結果(聴取実験 1)

M1	1回目	2回目	3回目	4回目	5回目
1回目	-	* *	* *	* *	* *
2 回目		-		*	*
3 回目			-		
4 回目				-	
5 回目					
			ے یہ مام مام	(0 0 1 J	0.05

**p<0.01, *p<0.05

B. 聴取実験 5-2

聴取実験 5-1 とは異なり、全ての被験者が同様の回答傾向を示したため、12 名の結果を用いて単語了解度および「聴き取りにくさ」を算出した. 図 4.9 に聴取実験 5-2 の結果を示す. なお、横軸は音場を表し、左から右へ提示順に並べている.

実験用音源 H2 の単語了解度は1回目の提示でほぼ100%に達しており,2回目以降の結果と明らかな差がみられない.一方,実験用音源L2の単語了解度は1回目の提示よりも2回目の方が高く,さらに提示回数が増すにつれて上昇する.5回目の提示ではほぼ100%に達しており,音場Hとの差はほとんどみられない.

これに対し、実験用音源 H2 の「聴き取りにくさ」は提示回数が増してもほぼ一定である。 実験用音源 L2 の「聴き取りにくさ」も提示回数によらずほぼ一定であり、音場 H と L の差は明らかである。

表 4.5 は実験用音源 H2 および L2 の単語了解度と「聴き取りにくさ」を提示回数ごとに t 検定した結果である. 表中の左下側は単語了解度について, 右上側は「聴き取りにくさ」についての結果である.

実験用音源 H2 の単語了解度は1回目と3回目の組み合わせに有意水準1%の有意差が認められ、1回目と4回目の組み合わせに有意水準5%の有意差が認められる.一方、「聴き取りにくさ」には全ての組み合わせに有意差は認められない.

実験用音源M1の単語了解度は1回目と $2\sim5$ 回目のそれぞれの組み合わせに有意水準1%の有意差が認められ、さらに、2回目と4、5回目の組み合わせについても有意水準5%の有意差が認められる. 一方、「聴き取りにくさ」には全ての組み合わせに有意差は認められない.

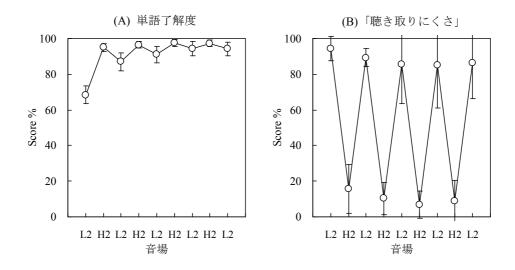


図 4.9 同一音表を繰り返し提示した場合の 単語了解度と「聴き取りにくさ」の変動(聴取実験 5-2)

表 4.5 単語了解度および「聴き取りにくさ」の t 検定結果(聴取実験 2)

H2	1回目	2回目	3回目	4 回目
1回目	-		**	*
2 回目		-		
3回目			-	
4 回目				-

L2	1回目	2回目	3回目	4 回目	5回目
1 回目	-	* *	* *	* *	* *
2 回目		-		*	*
3 回目			-		
4 回目				-	
5回目					
	•			(0.01	< 0.0 F

**p < 0.01, *p < 0.05

C. 単語了解度に対する学習効果

表 4.4 および表 4.5 より,実験用音源 M1, L2, H2 では,繰り返し提示による単語了解度の上昇が確認された.ここで,1音場を 50 単語で構成し,異なる 2 音場を交互に聴取する実験 5 では,繰り返し提示による学習の対象として音場と単語の 2 つが考えられる.前者は音声伝達性能の低い音場であっても訓練によって単語の認識に必要な音響的な手がかりが

得やすくなることであり、後者は提示される単語を予め知ることで音声伝達性能の低い音場であっても単語を同定しやすくなることである. 実験 5 の場合、実験用音源 M1 および L2 の 1 回目の提示は全てが異なる単語であるため、単語了解度には音場の学習効果のみが影響する. 一方、2 回目以降の提示では、1 回目と同じ単語が繰り返し提示されるため、単語了解度には音場と単語の両者に対する学習効果が影響する.

親密度が等しい単語を用い、残響時間のみが異なる実験用音源 M1 および L2 について、1 回目の提示で得られた単語了解度がほぼ等しいことは音場の学習効果が生じたためと考えられる. これに対し、実験用音源 M1 および L2 のいずれの単語了解度においても、1 回目の提示で得られた値と 2 回目以降の提示で得られた値に有意差がみられることは単語の学習効果が生じたためと考えられる.

D. 「聴き取りにくさ」に対する学習効果

表 4.4 および表 4.5 より、「聴き取りにくさ」は実験用音源 H1 の 1 回目と 4 回目に有意水準 5%の有意差が認められたものの、その他の組み合わせには有意差が認められなかった。 したがって、「聴き取りにくさ」は音場および単語の学習効果が生じにくいと言える。

E. 「聴き取りにくさ」に対する文脈効果

図 4.7 および図 4.9 より, 聴取実験 5-1 で用いた実験用音源 H1 と聴取実験 5-2 で用いた実験用音源 H2 は同一音場であるにもかかわらず, 「聴き取りにくさ」に明らかな差がみられる. ここで, 聴取実験 5-1 および 5-2 で用いた音表が親密度の最も高い単語で統制されていることを考慮すれば, 実験用音源 H1 および H2 の「聴き取りにくさ」に生じた差はそれぞれの聴取実験において音場 H と組み合わせた音場(音場 M または L)の影響によって生じたものと考えられる.

4.1.3 まとめ

単語了解度と「聴き取りにくさ」に対する学習効果について検証した結果,以下を明らかにした.

- 1. 単語了解度は繰り返し提示による学習効果があらわれる.
- 2. 「聴き取りにくさ」は繰り返し提示による学習効果の影響を無視できる.

すなわち、単語了解度の聴取実験では、同一被験者に対して同一音表を繰り返し提示することを避ける必要があるが、「聴き取りにくさ」の聴取実験では、同一被験者に対して同一音表を繰り返し提示することができる.

4.2 実験 6: 残響付加音場における文脈効果

「聴き取りにくさ」に対する学習効果の有無を検証した実験 5 では、1 つの音表を繰り返し提示した場合であっても同一音場の「聴き取りにくさ」は変動しないことが示された.

一方、「聴き取りにくさ」は異なる実験で用いた同一音場の値が必ずしも一致しないことが第3章や実験5において示されている。このような差は文脈効果[61,62]によって生じると考えられる。文脈効果とは、前後の刺激の影響によって対象とする刺激の評価が変化する現象をいう。「聴き取りにくさ」の聴取実験では、1つの実験において複数の音場を被験者に提示しており、提示する音場の数や音声伝達性能の程度は実験ごとに異なる。そのため、評定尺度法を用いる「聴き取りにくさ」には文脈効果が生じやすく、刺激文脈が異なる実験間で用いた音場の評価が一致しにくいことが考えられる。「聴き取りにくさ」を用いて音声伝達性能を絶対評価するためには、何らかの方法によって文脈効果を抑制しなければならない。

文脈効果を抑制する方法として、基準刺激を用いて刺激文脈を統制する方法が考えられる. 基準刺激とは、刺激文脈によらず常に一定の評価が得られる刺激を意味する.本研究では、刺激文脈の両端に位置する基準刺激、すなわち、「聴き取りにくさ」が0%および100%の音場を用いて刺激文脈を統制する方法が文脈効果の抑制に有効であるかを検討する.

実験6では、まず、残響付加音場において基準刺激の有効性を検討する.

4.2.1 方法

A. 単語

表 4.6 に示す親密度 7.0~5.5 の単語で構成される 4 音表 (1 音表は 50 単語)を用いた.

表 4.6 実験 6 で用いた単語

音表 6-1									
1	アマグモ	2	イマフウ	3	ウチガワ	4	オシダシ	5	オヤモト
6	ガニマタ	7	キタカゼ	8	キュウショク	9	グウタラ	10	ケイサツ
11	ゲンイン	12	コウフク	13	ザイガク	14	サイジツ	15	ジツブツ
16	シハライ	17	シャブシャブ	18	スタミナ	19	セツリツ	20	ソラミミ
21	タナバタ	22	ダンタイ	23	チョウハツ	24	チンタイ	25	ツナガリ
26	デマカセ	27	ドクヤク	28	トビバコ	29	ナツバショ	30	ニンニク
31	ネアガリ	32	ハダイロ	33	パチンコ	34	バランス	35	ヒキダシ
36	ブランド	37	フリガナ	38	ホウタイ	39	マンルイ	40	ヤマカジ
41	ユウワク	42	ヨクネン	43	ランパク	44	リクジョウ	45	リャクダツ
46	レンパイ	47	ワタクシ	48	カシパン	49	クスリヤ	50	ミジンコ

表 4.6 実験 6 で用いた単語(つづき)

音表 6-2				
51 アシバヤ	52 ウワバキ	53 エイユウ	54 オヤユビ	55 カタマリ
56 ガブノミ	57 キマグレ	58 クチカズ	59 グラビア	60 ゲンコツ
61 ケンブツ	62 コツバン	63 ゴブサタ	64 サキユキ	65 ザッソウ
66 ジグザグ	67 シナカズ	68 シュクフク	69 ジュンスイ	70 スウハイ
71 ゼイコミ	72 セイジン	73 ソウタイ	74 ダイヤル	75 タダノリ
76 デンアツ	77 テンプラ	78 トウミン	79 ドクダン	80 ナガソデ
81 ニセサツ	82 ネタキリ	83 ハジマリ	84 バツグン	85 ヒトガラ
86 フタマタ	87 ヘアピン	88 ベランダ	89 ホラアナ	90 ママハハ
91 ミマワリ	92 モクゲキ	93 ヤケザケ	94 ユウハン	95 ヨクジツ
96 リッタイ	97 ワカサギ	98 ブタニク	99 ツワモノ	100 イダイサ
音表 6-3				
101 アゲモノ	102 イイワケ	103 ウクレレ	104 オザシキ	105 オメデタ
106 カチヌキ	107 キゴコチ	108 キュウジツ	109 クチベタ	110 ケンケツ
111 ゲンツキ	112 ゴウトウ	113 コンヨク	114 サキドリ	115 シモフリ
116 ステレオ	117 セイフク	118 ゼンメツ	119 ソウゴウ	120 ダイアル
121 タコヤキ	122 ツウシン	123 テキセツ	124 デメキン	125 トシゴロ
126 ドロヌマ	127 ナイヨウ	128 ニチボツ	129 ノビノビ	130 ハナウタ
131 ヒトゴト	132 ビンセン	133 フウソク	134 プリント	135 ブレンド
136 ベツメイ	137 ペンギン	138ヘンピン	139 ボウヨミ	140 ホロヨイ
141 マンプク	142 ミチノク	143 メイモク	144 モクゼン	145 ヤマモリ
146 ユウズウ	147 ヨソモノ	148 レイフク	149 ロウドク	150 ワレモノ
音表 6-4				
151 アジワイ	152 イヤイヤ	153 オヤスミ	154 カバヤキ	155 ガラガラ
156 キバラシ	157 ギャクタイ	158 キャクホン	159 クウフク	160 ケイゾク
161 ゴウイン	162 コナイダ	163 サカサマ	164 ザリガニ	165 ジンザイ
166 シンサツ	167 スジガキ	168 セイベツ	169 ソンシツ	170 タカビシャ
171 ダンラン	172 チャクチャク	173 チリガミ	174 ツリカワ	175 テイサツ
176 ドクリツ	177 トリケシ	178 ナガグツ	179 ニジマス	180 ヌリタテ
181 ネンガン	182 ノウナシ	183 バクダン	184 ハツマゴ	185 ビンカン
186 ヒンシツ	187 フクツウ	188 プラチナ	189 マチブセ	190 ミンカン
191 ムダアシ	192 モチマエ	193 ヤジウマ	194 ユキヤマ	195 ヨミウリ
196 ラクガキ	197 ワザワイ	198 ウタタネ	199 シャカイカ	200 ルスバン

B. 提示条件

a. インパルス応答

直接音のみの場合と実験 5 で示した直接音と 1 つの残響音から成る場合の 2 種類である. 残響音がある場合の残響時間は 0.5s, 1.0s, 1.5s, 2.0s, 3.0s, 6.0s であり、いずれも音圧比は 1/10 である. 図 4.10 に各音場の 500Hz と 1kHz の 2 オクターブバンドにおけるエコーダイアグラムを示す.

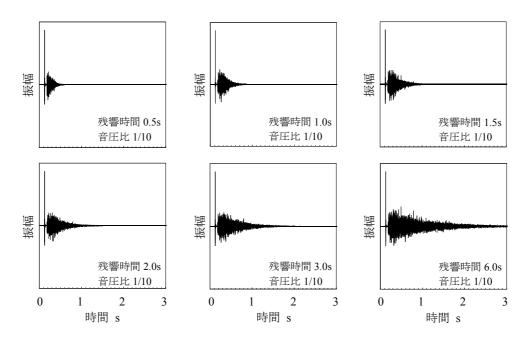


図 4.10 実験 6 で用いた音場のエコーダイアグラム (500~1kHz の 2 オクターブバンド)

b. 音声レベル

各単語の直接音のみを提示した場合に、被験者の頭部中心に相当する位置におけるピーク値を 55.0 ± 0.3 dBA (時定数:Slow) とした.

c. 音場の種類

実験音場として、残響時間を変化させた表 4.7 に示す 7 音場を用いた.

パラメータ音場ABCDEFG残響時間(s)0.00.51.01.52.03.06.0音圧比1/10音声レベル(dBA)55騒音レベル(dBA)-

表 4.7 実験 6 で用いた音場

実験6では、以下に示す5種類の聴取実験のそれぞれで生じた文脈効果を比較・検討する. 各聴取実験で用いた音場を表 4.8 に示す.全ての聴取実験は音場 C (残響時間 1.0s)と音場 D(同 1.5s)を含む $3\sim5$ 音場で構成されている.

聴取実験 6-1:刺激文脈を統制しない場合

刺激文脈を統制しない場合に、どれだけの文脈効果が生じるかを確認する. 残響時間 0.5s, 1.0s, 1.5s の音場で構成される聴取実験 6-1a と残響時間 1.0s, 1.5s, 2.0s の音場で構成される聴取実験 6-1b を行い、両実験で用いた残響時間 1.0s および 1.5s に対する「聴き取りにくさ」を比較する. なお、各聴取実験は 2回の試行に分けて提示し、各試行内で提示する音場の順序はランダムとした.

聴取実験 6-2:刺激文脈に「聴き取りにくさ」が 0%の音場を加えた場合

刺激文脈に「聴き取りにくさ」が常に 0%の音場を加えた場合の文脈効果を確認する.「聴き取りにくさ」が常に 0%の音場として、音声聴取を妨害する残響音が存在しない音場、すなわち、直接音のみの音場を用いる. 聴取実験 6-1a および 6-1b のそれぞれに直接音のみの音場を加えた聴取実験 6-2a および 6-2b を行い、両実験で用いた残響時間 1.0s および 1.5s に対する「聴き取りにくさ」を比較する. なお、各聴取実験は 4回の試行に分けて提示し、各試行内で提示する音場の順序はランダムとしたが、各試行の最初は直接音のみの音場とした.

聴取実験 6-3:刺激文脈に「聴き取りにくさ」が 100%の音場を加えた場合

刺激文脈に「聴き取りにくさ」が常に 100%の音場を加えた場合の文脈効果を確認する. 「聴き取りにくさ」が常に 100%の音場として, 残響時間の長い音場が考えられる. しかし, 「聴き取りにくさ」が常に 100%となる残響時間が明らかではないため, ここでは残響時間 3.0s の音場を加える場合と 6.0s の音場を加える場合の 2 通りを考える. すなわち, 聴取実験 6-1a および 6-1b のそれぞれに残響時間 3.0s の刺激を加えた聴取実験 6-3-1a および 6-3-1b と残響時間 6.0s の刺激を加えた聴取実験 6-3-2a および 6-3-2b を行い, 両実験で用いた残響時間 1.0s および 1.5s に対する「聴き取りにくさ」を比較する. なお, 各聴取実験は 4 回の試行に分けて提示し, 各試行内で提示する音場の順序はランダムとしたが, 各試行の最初は残響時間 3.0s または 6.0s の音場とした.

聴取実験 6-4:刺激文脈に「聴き取りにくさ」が 0%および 100%の音場を加えた場合

刺激文脈に「聴き取りにくさ」が常に 0%および 100%の音場を加えた場合の文脈効果を確認する. 聴取実験 6-1a および 6-1b に直接音のみの音場と残響時間 6.0s の音場を加えた聴取実験 6-4a および 6-4b を行い, 両実験で用いた残響時間 1.0s および 1.5s に対する「聴き取りにくさ」を比較する. なお, 各聴取実験は 4回の試行に分けて提示し, 各試行内で提示する音場の順序はランダムとしたが, 各試行の 1番目と 2番目はそれぞれ直接音のみの音場, 残

響時間 6.0s の音場とした.

聴取実験 6-5:実験に対する慣れの検証

実験 6 で用いる音場は基準刺激を含めて 7 種類である. よって, 聴取実験を繰り返すうちに被験者が音場を記憶し, 提示された音場に対して相対的な評価をしていないことも考えられる. そこで, 聴取実験 6-1 および 6-4 を同一被験者に同一の提示順序で行い, これまでに得られた結果が実験に対する慣れによるものかどうかを検証する.

聴取実懸	숙		音場							
心以大砂	K.	A	В	С	D	Е	F	G		
6-1	a		0	0	0					
0-1	b			\circ	\circ	\circ				
6-2	a	0	0	0	0					
0-2	b	\circ		\circ	\circ	\bigcirc				
6-3-1	a		0	0	0		0			
0-3-1	b			\circ	\circ	\circ	\circ			
6-3-2	a		0	0	0			0		
0-3-2	b			\circ	\bigcirc	\bigcirc		\bigcirc		
6-4	a	0	0	0	0			0		
0-4	b	\circ		\circ	\bigcirc	\bigcirc		\circ		
6-5-1	a		0	0	0					
0-3-1	b			\bigcirc	\circ	\bigcirc				
6-5-2	a	0	0	0	0			0		
0-3-2	b	\circ		\circ	\circ	\circ		0		

表 4.8 聴取実験 6-1~6-5 で用いた音場

d. 発話速度

発話速度は 5.6 syl/s でほぼ一定である.

C. 刺激の作成

実験5と同様の手順である.

D. 実験用音源の作成

実験用音源の作成手順を以下に示す.

- 1. 全200個の単語を番号の若い順から50個ずつまとめ、計4個の単語群をつくる.
- 2. 各単語群に含まれる50単語と各聴取実験で用いる音場のインパルス応答を畳み込む. 1つの単語群に1音場を畳み込んだものを1つの刺激群とする.
- 3. 全刺激群の中から単語群が重ならないように各聴取実験で用いる全音場を抜き出し、 1組の実験用音源を作成する.

4. 一度用いた刺激群を重複しないように上記3の手順を繰り返し、全刺激群を用いて2 または4組の実験用音源を作成する.

例として、聴取実験 6-2a の実験用音源を構成する単語群と音場の関係を図 4.11 に模式的に示す。図 4.11 において、数字は表 4.6 で示した単語をあらわし、A~D は表 4.7 で用いた音場を表す。なお、図中の網掛けは 1 つの単語群が全ての音場において用いられていることを示している。被験者はいずれか一つの実験用音源を聴取する。すなわち、複数の被験者によって全ての実験用音源が聴取されることで、全単語が全音場において聴取されることになり、音韻バランスが考慮される。

被験者には1つの実験用音源を2回または4回の試行に分けて提示するが、その際、各試行に含まれる音場は同数とし、各試行の刺激文脈が同一となるようにした.

	音場							
	A	В	С	D				
実験用音源 1	1-50	51-100	101-150	151-200				
実験用音源2	51-100	101-150	151-200	1-50				
実験用音源3	101-150	151-200	1-50	51-100				
実験用音源 4	151-200	1-50	51-100	101-150				

図 4.11 実験用音源を構成する刺激群の一例(聴取実験 6-2a の場合)

E. 装置

実験は神戸大学工学部建設学科環境心理実験室内の無響室において行った.実験のブロックダイアグラムを図 4.12 に示す. 直接音および残響音は被験者の正面に位置した 1 つのスピーカから提示した. 受聴点はスピーカ正面の距離 2m に位置する点である. なお, 実験に用いたスピーカの受聴点における周波数特性は図 4.13 に示すとおり, 100Hz~10kHz において±5dB 以内で平坦である.

F. 被験者

聴力検査の結果から、正常な聴力を有する学生8名(男性5名,女性3名)を用いた.

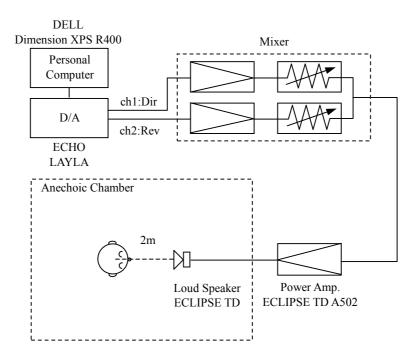


図 4.12 実験系ブロックダイアグラム

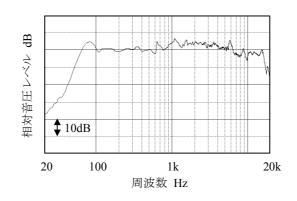


図 4.13 実験 6 で用いたスピーカの周波数特性

G. 提示方法

図 4.14 は刺激提示の模式図である. 実験に用いた単語は 4 モーラで統一されているが、各刺激の提示時間は残響時間および単語によって 7.1~7.6s の範囲で異なる. 刺激の間隔は 6.0s とし、各試行の間に 20 分程度の休憩を挟んだ.

各聴取実験において、刺激文脈が異なる実験 a と b は異なる日に実施した. また、各聴取実験の間隔は少なくとも 2 日間とした.

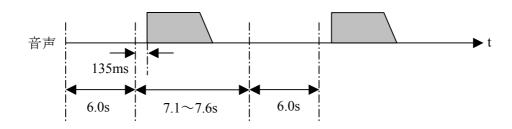


図 4.14 刺激の提示方法

H. 回答方法

実験5と同様である.

4.2.2 結果と考察

A. 刺激文脈を統制しない場合

図 4.15 に結果を示す. 縦軸は「聴き取りにくさ」をあらわし、横軸は音場の残響時間をあらわす. 図中の凡例は「〇」と「 \bullet 」がそれぞれ聴取実験 6-1a と 6-1b の結果をあらわす.

両実験で用いた残響時間 1.0s および 1.5s の音場に対する「聴き取りにくさ」を比較すると、それぞれ 13.3%と 13.0%の差がみられる.この差は両実験を構成する音場の違い、すなわち、刺激文脈の違いによって生じたものと考えられる.

刺激文脈を統制しない場合,文脈効果によって異なる実験で用いた同一音場の「聴き取りにくさ」に明らかな差が生じた.

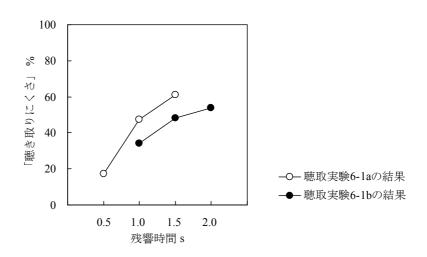


図 4.15 聴取実験 6-1 の結果

B. 刺激文脈に「聴き取りにくさ」が 0%の音場を加えた場合

図 4.16 に結果を示す. 縦軸は「聴き取りにくさ」をあらわし、横軸は音場の残響時間をあらわす. 図中の凡例は「〇」と「 \bullet 」がそれぞれ聴取実験 6-2a と 6-2b の結果をあらわす.

直接音のみの音場の「聴き取りにくさ」は聴取実験 6-2a で 1.5%, 聴取実験 6-2b で 1.8% と ほぼ 0%になり,両者の差はほとんどみられない.また,両実験で用いた残響時間 1.0s と 1.5s の音場に対する「聴き取りにくさ」の差はそれぞれ 3.5% と 0.3% となり,刺激文脈を統制しない場合よりも明らかに小さくなった.

以上より、刺激文脈に直接音のみの音場を加えることで、文脈効果が「聴き取りにくさ」 に及ぼす影響を低減できる.

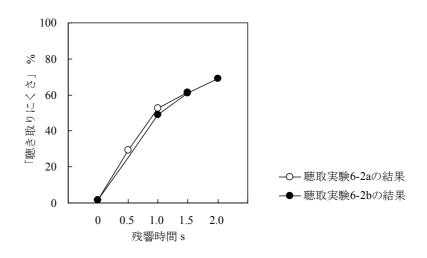


図 4.16 聴取実験 6-2 の結果

C. 刺激文脈に「聴き取りにくさ」が 100%の音場を加えた場合

刺激文脈として残響時間 3.0s の音場を加えた場合の結果を図 4.17 に示す. 縦軸は「聴き取りにくさ」をあらわし、横軸は音場の残響時間をあらわす. 図中の凡例は「〇」と「 \bullet 」がそれぞれ聴取実験 6-3-1a と 6-3-1b の結果をあらわす.

残響時間 3.0s の音場の「聴き取りにくさ」は聴取実験 6-3-1a で 84.5%, 聴取実験 6-3-1b で 77%であり、両者に明らかな差がみられる。また、両実験で用いた残響時間 1.0s と 1.5s の音場に対する「聴き取りにくさ」の差はそれぞれ 8.8%と 9.7%となり、刺激文脈を統制しない場合よりも小さいものの、明らかな差がみられる。よって、残響時間 3.0s の音場は基準刺激として適当ではない。

刺激文脈として残響時間 6.0s の音場を加えた場合の結果を図 4.18 に示す. 図中の凡例は「○」と「●」がそれぞれ聴取実験 6-3-2a と 6-3-2b の結果をあらわしている.

残響時間 6.0s の音場の「聴き取りにくさ」は聴取実験 6-3-2a で 95.5%, 聴取実験 6-3-2b で

95.3%とほぼ 100%になり、両者の差はほとんどみられない. また、両実験で用いた残響時間 1.0s と 1.5s の音場に対する「聴き取りにくさ」の差がいずれも 3.0%となり、刺激文脈を統制しない場合よりも明らかに小さくなった.

以上より、刺激文脈に残響時間 6.0s の音場を加えることで、文脈効果が「聴き取りにくさ」に及ぼす影響を低減できる.

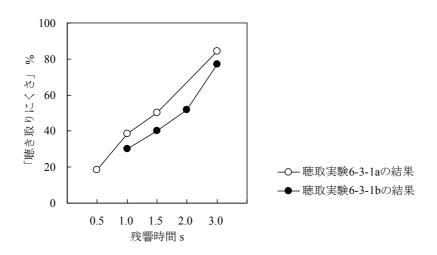


図 4.17 聴取実験 6-3-1 の結果

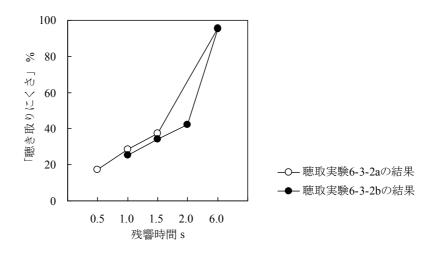


図 4.18 聴取実験 6-3-2 の結果

D. 刺激文脈に「聴き取りにくさ」が 0%および 100%の音場を加えた場合

図 4.19 に結果を示す. 縦軸は「聴き取りにくさ」をあらわし、横軸は音場の残響時間をあらわす. 図中の凡例は「〇」と「 \bullet 」がそれぞれ聴取実験 6-4a と 6-4b の結果をあらわす.

直接音のみの音場の「聴き取りにくさ」は聴取実験 6-4a, 6-4b ともほぼ 0%である。また,残響時間 6.0s の音場は聴取実験 6-4a, 6-4b ともほぼ 100%である。さらに,両実験で用いた残響時間 1.0s と 1.5s の音場に対する「聴き取りにくさ」の差はそれぞれ 1.3% と 1.0% となり,ほぼ一致する。

以上より、刺激文脈に「聴き取りにくさ」が常に 0%および 100%の基準刺激を加えることで、文脈効果が「聴き取りにくさ」に及ぼす影響を抑制できる.

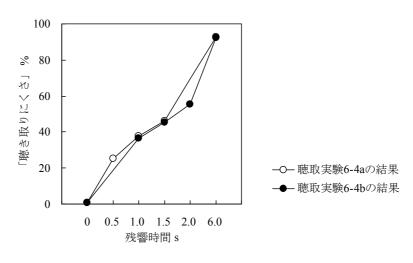


図 4.19 聴取実験 6-4 の結果

E. 実験に対する慣れの検証

刺激文脈を統制しない聴取実験 6-5-1 の結果を図 4.20 に示す. 縦軸は「聴き取りにくさ」をあらわし、横軸は音場の残響時間をあらわす. 図中の凡例は「〇」と「 \bullet 」がそれぞれ聴取実験 6-5-1a と 6-5-1b の結果をあらわしている

両実験で用いた残響時間 1.0s および 1.5s の音場に対する「聴き取りにくさ」を比較すると、 それぞれ 7.2%と 11.5%の差が生じている.よって、聴取実験を繰り返した後でも、文脈効果によって異なる実験で用いた同一音場の「聴き取りにくさ」に明らかな差が生じた.

刺激文脈に直接音のみの音場と残響時間 6.0s の音場を加えた聴取実験 6-5-2 の結果を図 4.21 に示す. 図中の凡例は「○」と「●」がそれぞれ聴取実験 6-5-2a と 6-5-2b の結果をあらわしている.

両実験で用いた残響時間 1.0s と 1.5s の音場に対する「聴き取りにくさ」の差はそれぞれ 0.5%と 2.5%となり、刺激文脈に基準刺激を加えることで文脈効果を抑制できることが改め て示された.

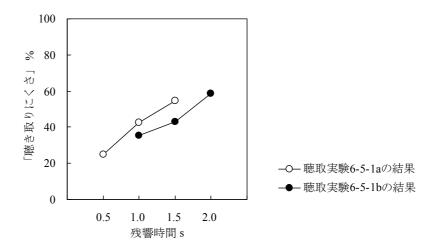


図 4.20 聴取実験 6-5-1 の結果

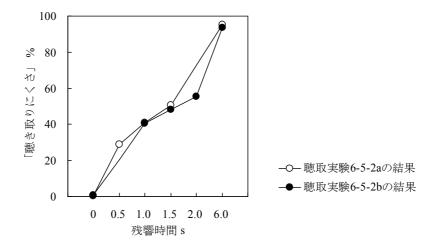


図 4.21 聴取実験 6-5-2 の結果

4.2.3 まとめ

残響付加音場における文脈効果を検討した結果,以下を明らかにした.

- 1. 刺激文脈を統制しない場合,文脈効果によって異なる実験で用いた同一音場の「聴き取りにくさ」が変化する.
- 2. 刺激文脈に「聴き取りにくさ」が常に 0%および 100%の基準刺激を加えることで、文脈効果が「聴き取りにくさ」に及ぼす影響を抑制できる.
- 3. 刺激文脈によらず「聴き取りにくさ」が常に 0%となるのは直接音のみの音場であり、 刺激文脈によらず「聴き取りにくさ」が常に 100%となるのは残響時間 6.0s の音場であ る.

4.3 実験 7: 騒音付加音場における文脈効果

実験 6 では、「聴き取りにくさ」が常に 0%および 100%の音場、すなわち、基準刺激を用いて刺激文脈を統制する方法が文脈効果の抑制に有効であることを残響付加音場において明らかにした。

実験7では、騒音付加音場において基準刺激の有効性を検討する.

4.3.1 方法

A. 単語

実験 6 で用いた単語と同じ単語, すなわち, 表 4.6 に示した 4 音表 (1 音表は 50 単語) を用いた.

B. 提示条件

a. インパルス応答

図 4.1 に示したインパルス応答の模式図において残響音を取り除いたもの、つまり、直接音のみを用いた.

b. 音声レベル

実験6と同様である

c. 騒音レベル

騒音は定常騒音である Hoth スペクトル型ノイズ[59]を用いた. 図 4.22 に Hoth スペクトル型ノイズの 1/1 オクターブバンド分析による周波数特性を示す. 騒音は付加しない場合と 25dBA, 35dBA, 40dBA, 45dBA, 60dBA のそれぞれを付加する場合の 6 種類である.

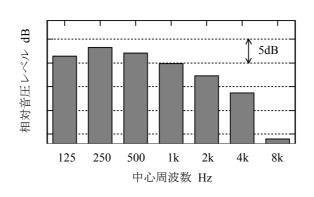


図 4.22 Hoth スペクトル型ノイズの周波数特性(1/1 オクターブバンド)

d. 音場の種類

実験音場として、騒音レベル(SN比)を変化させた表 4.9 に示す 6 音場を用いた.

パラメータ			音場	易		
	A	В	С	D	Е	F
残響時間			-			
音圧比			1/1	0		
音声レベル(dBA)			55			
騒音レベル(dBA)	-	25	35	40	45	60
SN比	∞	+30	+20	+15	+10	-5

表 4.9 実験 7 で用いた音場

実験7では、以下に示す2種類の聴取実験のそれぞれで生じた文脈効果を比較・検討する. 各聴取実験で用いた音場を表 4.10 に示す。全ての聴取実験は音場 C (SN+20dB) と音場 D (同+15dB) を含む $3\sim5$ 音場で構成されている.

聴取実験 7-1:刺激文脈を統制しない場合

刺激文脈を統制しない場合に、どれだけの文脈効果が生じるかを確認する。SN+30dB, +20dB, +15dB の音場で構成される聴取実験 7-1a と SN+20dB, +15dB, +10dB の音場で構成される聴取実験 7-1b を行い、両実験で用いた SN+20dB および+15dB に対する「聴き取りにくさ」を比較する。なお、各聴取実験は 2 回の試行に分けて提示し、各試行内で提示する音場の順序はランダムとした。

聴取実験 7-2:刺激文脈に「聴き取りにくさ」が 0%および 100%の音場を加えた場合

刺激文脈に「聴き取りにくさ」が常に 0%および 100%の音場を加えた場合の文脈効果を確認する. 「聴き取りにくさ」が常に 0%の音場として,音声聴取を妨害する騒音が存在しない音場,すなわち,直接音のみの音場を用いる. 一方,「聴き取りにくさ」が常に 100%の音場として,騒音レベルが音声レベルを上回る SN-5dB の音場を用いる. 聴取実験 7-1a および 7-1b に直接音のみの音場と SN-5dB の音場を加えた聴取実験 7-2a および 7-2b を行い,両実験で用いた SN+20dB および+15dB に対する「聴き取りにくさ」を比較する. なお,各聴取実験は 4回の試行に分けて提示し、各試行内で提示する音場の順序はランダムとしたが、各試行の 1番目と 2番目はそれぞれ直接音のみの音場, SN-5dB の音場とした.

				مواب	[
聴取実験	ì			音	場		
10.40		A	В	C	D	E	F
7.1	a		0	0	0		
7-1	b			\bigcirc	\bigcirc	\bigcirc	
7-2	a	0	0	0	0		0
1-4	b	\circ		\bigcirc	\bigcirc	\bigcirc	\circ

表 4.10 聴取実験 7-1~7-2 で用いた音場

e. 発話速度

発話速度は 5.6 syl/s でほぼ一定である.

C. 実験用音源の作成

実験用音源の作成手順は実験6と同様である.

D. 装置

実験のブロックダイアグラムは実験 6 と同様である. ただし, 実験 6 で用いた残響音を実験 7 では騒音に置き換えている.

E. 被験者

実験6で用いた被験者と同一の被験者を用いた.

F. 提示方法

図 4.23 は刺激提示の模式図である. 騒音の出だしと音声提示の出だしの時間間隔は 135ms である. 実験に用いた単語は全て 4 モーラで統一されている. 各単語の音声提示時間 Δt_1 は $0.8\sim1.3s$ の範囲で異なるが,騒音提示時間は 5.0s で一定とした. なお,騒音提示時間に

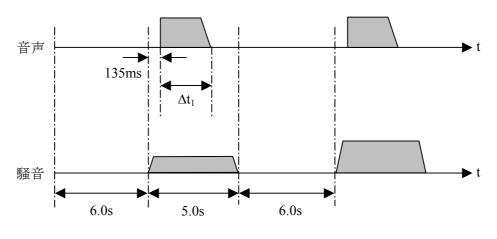


図 4.23 刺激の提示方法

はそれぞれ 50ms の立ち上がり及び立ち下りを含む. 刺激と刺激の間隔は 6.0s である. 1 回の試行にかかる時間は約 10 分である.

各聴取実験において、刺激文脈が異なる実験 $a \ge b$ は異なる日に実施した. また、各聴取実験の間隔は少なくとも 2 日間とした.

G. 回答方法

実験6と同様である.

4.3.2 結果と考察

A. 刺激文脈を統制しない場合

図 4.24 に結果を示す. 縦軸は「聴き取りにくさ」をあらわし、横軸は音場の残響時間をあらわす. 図中の凡例は「〇」と「 \bullet 」がそれぞれ聴取実験 7-1a と 7-1b の結果をあらわす.

両実験で用いた SN 比+20dB および+15dB の音場に対する「聴き取りにくさ」を比較すると、 それぞれ 19.0%と 20.5%の差がみられる.この差は両実験を構成する音場の違い、すなわち、 刺激文脈の違いによって生じたものと考えられる.

残響付加音場と同様,騒音付加音場においても刺激文脈を統制しない場合,文脈効果によって異なる実験で用いた同一音場の「聴き取りにくさ」に明らかな差が生じた.

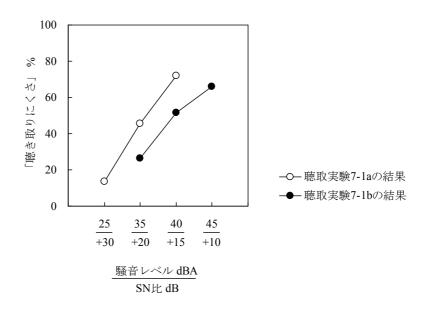


図 4.24 聴取実験 7-1 の結果

B. 刺激文脈に「聴き取りにくさ」が 0%および 100%の音場を加えた場合

図 4.25 に結果を示す. 縦軸は「聴き取りにくさ」をあらわし、横軸は音場の残響時間をあらわす. 図中の凡例は「〇」と「ullet」がそれぞれ聴取実験 7-2a と 7-2b の結果をあらわす.

直接音のみの音場の「聴き取りにくさ」は聴取実験 7-2a, 7-2b ともほぼ 0%である。また, SN-5dB の音場は聴取実験 7-1a, 7-2b ともほぼ 100%である。さらに、両実験で用いた SN 比+20dB および+15dB の音場に対する「聴き取りにくさ」の差はそれぞれ2.0%と3.0%となり、ほぼ一致する。

以上より、残響付加音場と同様、騒音付加音場においても刺激文脈に「聴き取りにくさ」 が常に0%および100%の基準刺激を加えることで、文脈効果が「聴き取りにくさ」に及ぼす 影響を抑制できる.

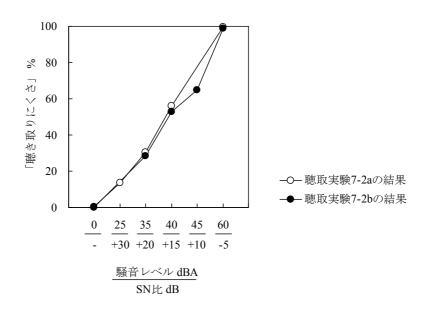


図 4.25 聴取実験 7-2 の結果

4.3.3 まとめ

騒音付加音場における文脈効果を検討した結果,以下を明らかにした.

- 1. 刺激文脈を統制しない場合,文脈効果によって異なる実験で用いた同一音場の「聴き取りにくさ」が変化する.
- 2. 刺激文脈に「聴き取りにくさ」が常に 0%および 100%の基準刺激を加えることで、文脈効果が「聴き取りにくさ」に及ぼす影響を抑制できる.
- 3. 刺激文脈によらず「聴き取りにくさ」が常に 0%となるのは直接音のみの音場であり、刺激文脈によらず「聴き取りにくさ」が常に 100%となるのは SN-5dB の音場である.

4.4 結論

第4章では、「聴き取りにくさ」の実験方法について検証し、以下を明らかにした.

- 1. 「聴き取りにくさ」の聴取実験では、同一被験者に同一音表を繰り返し提示しても学習 効果はあらわれず、影響は無視できる.
- 2. 「聴き取りにくさ」の聴取実験では、刺激文脈に基準刺激を加えることで、文脈効果を抑制できる.
- 3. 「聴き取りにくさ」に対する文脈効果を抑制するための基準刺激とは、「聴き取りにくさ」が常に0%および100%となる音場である.

すなわち, 聴取実験で用いる刺激群に基準刺激を加えることによって, 「聴き取りにくさ」 は音声伝達性能を絶対評価できる.

第5章 音声伝達に最適な発話速度と音声レベル

音声伝達性能に影響を及ぼす要因が発声系,伝送系,受聴系の3段階に分類されることは第1章で既に述べたが,公共空間における音声情報の提供を考えた場合,発声系の要因が音声伝達に及ぼす影響を把握することは特に重要である.これは駅,空港,病院,商業施設等の公共空間は用途や規模によって伝送系,すなわち,音場(騒音や反射音等)が一定でなく,また,不特定多数が利用する公共空間では,利用者(=受聴者)を特定できないためである.

音声伝達性能に影響を及ぼす発声系の主な要因として、音声レベルと発話速度が挙げられる.公共空間において良好な音声伝達を実現するためには、音場の状況に応じた最適な発話速度と音声レベルで情報を発信することが必要である.本論文の第3章では、発話速度が5.6 syl/s でほぼ一定の場合について、「聴き取りにくさ」を用いて音声レベルが音声伝達性能に及ぼす影響を明らかにした。第5章では、発話速度が音声伝達性能に及ぼす影響を明らかにするとともに、公共空間における音声伝達に最適な発話速度と音声レベルについて検討する.

実験8では、まず、音声レベルを一定とした場合の発話速度が単語了解度と「聴き取りにくさ」に及ぼす影響を明らかにする.

5.1 実験8:発話速度が「聴き取りにくさ」に及ぼす影響

5.1.1 方法

A. 単語

第2章で示したように、親密度の高い単語ほど音場の違いに対する「聴き取りにくさ」の感度が良いことから、「聴き取りにくさ」の聴取実験では親密度の最も高い単語を用いる.一方、若年者と高齢者では同じ単語であっても親密度が異なることが佐藤ら[63]によって報告されている.実験8では、坂本らによる単語リスト[27]、および、佐藤らによる親密度調査結果[63]に基づいて新たに作成した若年者と高齢者のいずれにとっても親密度が最も高い100単語を用いた.単語は全て4モーラである.用いた単語を表5.1に示す.なお、表5.1に示した単語の前の番号は実験用音源の作成を円滑に行うために用いた単語番号である.

表 5.1 実験 8 で用いた単語

			·						
1	ギンコウ	2	シアワセ	3	モクテキ	4	ヒルメシ	5	ニンジン
6	ソウダン	7	ユウジン	8	ケイサン	9	オヤスミ	10	ケンキュウ
11	バングミ	12	ネブソク	13	ヨウフク	14	セキニン	15	スイドウ
16	ジツゲン	17	ワリビキ	18	レンアイ	19	ユウビン	20	ニホンゴ
21	ゼイコミ	22	キュウジツ	23	ヨロコビ	24	ジュンスイ	25	ワカモノ
26	ユウガタ	27	ブタニク	28	コウフク	29	ツケモノ	30	レイボウ
31	テキトウ	32	ケイサツ	33	ハハオヤ	34	ナガソデ	35	ゲンジツ
36	トモダチ	37	イタズラ	38	ロクガツ	39	スイミン	40	チカテツ
41	ニホンシュ	42	ライネン	43	ドウブツ	44	カラアゲ	45	アサメシ
46	セイジカ	47	シンユウ	48	カイフク	49	ゴチソウ	50	サクヒン
51	ヒツヨウ	52	ナイヨウ	53	ロウジン	54	ゼンシン	55	ヘイジツ
56	ヒダリテ	57	キュウケイ	58	ベツベツ	59	コイビト	60	ホンモノ
61	ケツロン	62	トウゼン	63	レイトウ	64	ハントシ	65	イチニチ
66	ネンマツ	67	ニュウヨク	68	ニンシキ	69	ソノママ	70	オヤユビ
71	オハナシ	72	ギャクテン	73	トシシタ	74	ジンカク	75	ゼイキン
76	ネサガリ	77	セツヤク	78	ケイゾク	79	ヤスウリ	80	ガンタン
81	スキヤキ	82	イザカヤ	83	マエムキ	84	アジツケ	85	ナツモノ
86	ドンブリ	87	ハジマリ	88	シハライ	89	チチオヤ	90	キンキュウ
91	コクドウ	92	ウメボシ	93	ケンチク	94	ヤキソバ	95	マンプク
96	ダイキチ	97	オメデタ	98	シュクフク	99	ミギウデ	100	ドクリツ

B. 提示条件

a. インパルス応答

Sato ら[64]によって、「聴き取りにくさ」は音声伝達性能の物理的評価指標の 1 つである Speech Transmission Index [65] (以下、STI) と高い相関を有することが報告されている. 実験 8 では、実音場で測定されたインパルス応答に一部加工を加え、STI が 0.31~0.80 のほぼ等 間隔に分布する 6 種類を用いた. インパルス応答は日本建築学会音声伝送品質研究 SWG が 保有するインパルス応答データベース(以下、IR-DB)[66]に収録されているものを用いた. 表 5.2 に実験 8 で用いるインパル応答の STI を示す. なお、Imp1 は「聴き取りにくさ」の聴取実験における文脈効果を低減するための基準刺激である.

インパルス応答	STI
Imp1	0.31
Imp2	0.41
Imp3	0.51
Imp4	0.62
Imp5	0.71
Imp6	0.80

表 5.2 実験 8 で用いたインパルス応答

b. 音声レベル

無響室録音された単語にインパルス応答を畳み込んで作成した刺激を提示した際に,被験者の頭部中心に相当する位置においてピーク値の平均が 65.0±0.3dBA (時定数:Slow) とした. とした.

c. 騒音レベル

騒音は定常騒音である Hoth スペクトル型ノイズ[59]を用いた。図 5.1 に Hoth スペクトル型ノイズの 1/1 オクターブバンド分析による周波数特性を示す. 騒音レベルは 0dBA, 45dBA, 55dBA, 60dBA の 4 種類である.

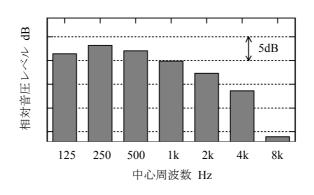


図 5.1 Hoth スペクトル型ノイズの周波数特性(1/1 オクターブバンド)

d. 音場の種類

インパルス応答 6 種類と騒音レベル 4 種類の組み合わせを変化させた 24 音場を用いた. 各音場の STI を表 5.3 に示す。表 5.3 における ImpD とは直接音のみの音場をあらわす。なお、本章では、インパルス応答 Imp6 と騒音レベル 45dB の組み合わせを Imp6N45 のようにあらわす。

インパルス応答		騒音レベ	ンレ(dBA)	
イン・ハレハル合	0	45	55	60
Imp2	0.41	0.36	0.33	0.29
Imp3	0.51	0.44	0.40	0.35
Imp4	0.62	0.54	0.48	0.41
Imp5	0.71	0.63	0.55	0.47
Imp6	0.80	0.72	0.61	0.51
ImpD (Direct sound)	1.00	0.89	0.74	0.59

表 5.3 実験 8 で用いた音場の STI

e. 発話速度

発話速度は 5.5 syl/s, 6.5 syl/s, 7.5 syl/s, 8.5 syl/s の 4 種類である. なお, 発話速度の調整には Sugi Speech Analyzer を使用し、ピッチを変えずに時間軸を縮小または伸長した.

f. 基準刺激

表 5.4 に基準刺激の提示条件、すなわち、音場と発話速度の組み合わせを示す. なお、基準刺激 A、B はそれぞれ「聴き取りにくさ」が 100% $\ge 0\%$ の基準刺激をあらわす.

 条件	基準	刺激
术门	A	В
インパルス応答	Imp1	ImpD
音声レベル(dBA)	65	65
騒音レベル(dBA)	60	0
発話速度(syl/s)	5.5	5.5
STI	0.22	1.00

表 5.4 実験 8 で用いた基準刺激の提示条件

C. 実験用音源の作成

実験用音源は以下の手順により作成した.

- 1. 全100 単語を4種類の発話速度に統制し、計400個の刺激をつくる.
- 2. 400 個の刺激に Imp2~Imp6 の 5 種のインパルス応答を畳み込み 2000 個の刺激を作成

する. すなわち, インパルス応答を畳み込まない刺激 400 個+インパルス応答を畳み込んだ刺激 2000 個の計 2400 個の刺激が作成される.

- 3. 2400 個の刺激にそれぞれ 4 種類の騒音を付加し、計 9600 個の刺激を作成する.
- 4. 「聴き取りにくさ」が 100%の基準刺激として, 5.5 syl/s の単語 100 語に Imp1 を畳み込み, 60dBA の騒音を付加した刺激を 2 個づつ作成する. また, 「聴き取りにくさ」が 0%の基準刺激として, 5.5 syl/s の単語 100 語にインパルス応答を畳み込まず, 騒音も 付加しない刺激を 2 個づつ作成する. すなわち, 計 400 個の基準刺激が作成される.
- 5. 作成した 10000 個の刺激(実験用刺激 9600 個+基準刺激 400 個)から異なる単語 100 語を音場が重ならないように抜き出し,1 組の実験用音源を作成する. ただし,2 種類の基準刺激は2回づつ重複させる.
- 6. 一度用いた刺激を重複しないように上記 5 の手順を繰り返し, 100 組の実験用音源を 作成する.

実際の聴取実験では、被験者には1回の試行において50単語ずつ提示した。すなわち、各被験者は1組の実験用音源を2回に分けて聴取し、計10回の試行を行った。実験用音源を2つに分ける際には、文脈効果を低減させる目的で2種類の基準刺激を試行の最初に配置し、残りの提示条件をランダムに並び替えた。

上記の手順により、1組の実験用音源は24音場×4発話速度の96条件に2条件×2回の基準刺激を併せた計100条件で構成される.実験用音源を構成する単語と提示条件の関係を図5.2に模式的に示す。図5.2において、各実験用音源を構成する数字は表5.1で示した単語番号をあらわしている.図中の網掛けは1つの単語が全ての提示条件において用いられていることを示している.すなわち、複数の被験者によって全ての実験用音源が聴取されることで、全単語が全提示条件において聴取されることになり、音韻バランスが考慮される.

被験者には1回の試行において50単語ずつ,すなわち,1つの実験用音源を2回の試行に分けて提示するが,その際,各試行の文脈効果を低減させるため,2種類の基準刺激を試行の最初に配置し、残りの提示条件をランダムに並び替えた

なお、1 人の被験者が 5 つの実験用音源を聴取し、20 人の被験者によって全ての実験用音源が聴取されるようにした。

D. 装置

実験は神戸大学工学部建設学科の簡易無響室で行った.実験のブロックダイアグラムを図5.3 に示す.

受聴点はスピーカ正面から 1.5mの距離に設置した. なお, 実験に用いたスピーカの受聴 点における周波数特性を図 5.4 に示す.

	提示条件(音場と発話速度の組み合わせ)								
	1	2	•••	95	96	97	98	99	100
		T	Ī		1	T	1	T	
実験用音源1	1	2	•••	95	96	97	98	99	100
安野田文派 2	100	1	1	0.4	05	06	0.7	00	00
実験用音源 2	100	1	•••	94	95	96	97	98	99
実験用音源3	99	100		93	94	95	96	97	98
大 峽川日1/5 3	- 77	100		73	71	73	70	71	70
実験用音源 4	98	99	•••	92	93	94	95	96	97
		I.	1				l .	I.	
:					:				
		Τ	Ī		T			_	
実験用音源 98	4	5	•••	98	99	100	1	2	3
字黔田玄海 00	2	1	Ī	07	00	00	100	1	2
実験用音源 99	3	4	•••	97	98	99	100	1	2
実験用音源 100	2	3	l	96	97	98	99	100	1
大 顺/川日伽/ 100		<i>J</i>		70	71	70	,,	100	1

図 5.2 実験用音源を構成する単語と提示条件

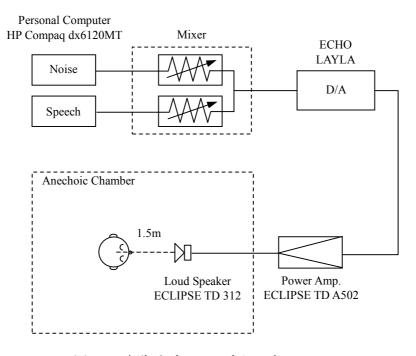


図 5.3 実験系ブロックダイアグラム

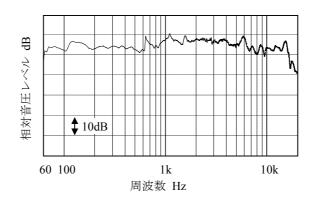


図 5.4 実験 8 で用いたスピーカの周波数特性

E. 被験者

被験者には20代の学生20名を用い,実験の前に全被験者に対し簡易聴力検査を行った. 聴力検査にはオージオメータを用い,125Hz,250Hz,500Hz,1000Hz,2000Hz,4000Hz,8000Hzの純音について最小可聴値を5dB刻みで測定した.PTA(500Hz,1kHz,2kHzの聴力レベルの平均)は最大でも13.4dBHLであり,全被験者は正常な聴力を有することが確認された.

F. 提示方法

図 5.5 は刺激提示の模式図である.騒音の出だしと音声提示の出だしの時間間隔は 1.0s である.各単語の提示時間 Δt_1 は提示条件によって異なるが,騒音提示時間は 5.0s で一定とした.なお,騒音提示時間にはそれぞれ 50ms の立ち上がり及び立ち下りを含む.刺激と刺激の間隔は 5.0s とした.一回の試行にかかる時間は約 8 分である.なお,被験者にはモーラ数について教示していない.図 5.6 に実験 8 で用いた教示文を示す.

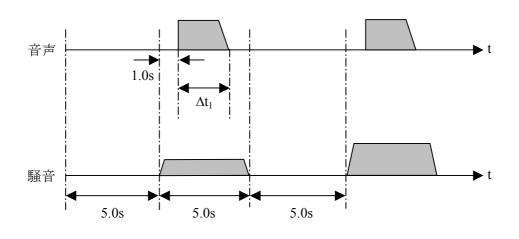


図 5.5 刺激の提示方法

この実験は、日本語単語の聴取実験です.

以下の注意事項に従って回答してください.

- カタカナで記入してください。
- ・原則として「キャ」等の小さいヤ、ユ、ヨを含む音節と、小さい「ッ」、伸ばす音の「-」は1マスに書いてください. (基本的には枠の中に1単語書いてもらえば

結構です.)
例:

- ・「ズ」と「ヅ」は同じ音なのでどちらを書いてもかまいません.
- ・意味のわからない単語に聴こえても、聴こえたとおりに書いてください.
- ・同時に、その音声の聴き取りにあたって「聴きとりにくさ」の程度を次の4段階で評価し、その番号を下の例に従って枠内に記入してください。
 - 1. 聴き取りにくくはない
 - 2. やや 聴き取りにくい
 - 3. かなり 聴き取りにくい
 - 4. 非常に 聴き取りにくい

例:単語が「マージャン」で評価が「聴き取りにくくはない」とき

・単語と単語の間

隔は10秒です。その間に回答してください。

・実験は約8分で終了します.

図 5.6 実験 8 で用いた教示文

G. 回答方法

被験者には回答用紙をはさんだ野帳をもたせ、簡易無響室に頭を固定させずに座らせた。 簡易無響室の照明はつけたままにし、回答用紙の記入に必要十分な明るさを与えている.被 験者には回答用紙にカタカナで聴こえたとおりに書かせると同時に、その単語の聴き取りに くさを表 5.5 に示す 4 段階で判断させ、数字で記入させた.

表 5.5 聴き取りにくさのスケール

- 1. 聴き取りにくくはない
- 2. やや 聴き取りにくい
- 3. かなり 聴き取りにくい
- 4. 非常に 聴き取りにくい

5.1.2 結果と考察

A. 単語了解度

回答結果より、単語を正しく聴取できた割合である単語了解度を算出した. 残響または騒音のいずれかを付加した場合、および、残響と騒音を同時に付加した場合のそれぞれについて発話速度が単語了解度に及ぼす影響を明らかにする.

a. 残響付加音場

残響のみを付加した音場の発話速度と単語了解度の関係を図 5.7 に示す. なお, 残響付加音場には直接音のみの音場 ImpDN0 も含める. 残響付加音場では, 発話速度や音場によらず単語了解度が 90%を上回る. 各音場における発話速度 5.5syl/s と 8.5syl/s の単語了解度の差は 5%以下であるが, STI が小さい音場ほど, 発話速度が速くなるにつれて単語了解度が低下する傾向がみられる.

統計を用いてこの結果を検討する.

まず、発話速度と音場についての1要因分散分析結果を表5.6に示す。発話速度、音場ともに有意水準5%で有意であると認められたが、音場のF値が発話速度のF値を大きく上回る。これは、単語了解度に対する発話速度の影響が音場の影響よりも小さいことを意味している。

次に、発話速度について Tukey の HSD 検定による多重比較を行った。結果を表 5.7 に示す。表中の*はその組み合わせに有意差が認められたことを示す。表 5.7 に示すように、発話速度 5.5 syl/s と 8.5 syl/s の間に有意差が認められたものの、その他の組み合わせに有意差はみられなかった。

以上より,残響付加音場では,単語了解度は音場と発話速度のいずれにも影響を受けることが示された.

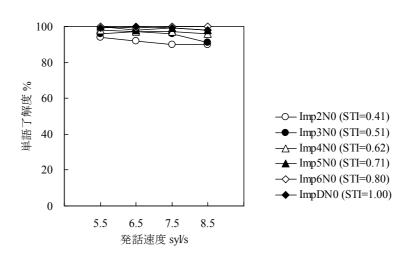


図 5.7 残響付加音場における発話速度と単語了解度の関係

表 5.6	残響付加音場の単語了解度に対する分散分析結果
1 3.0	

変動因	平方和	自由度	普遍分散	F値
発話速度	17.33	3	5.78	3.74*
音場	194.83	5	38.97	25.23 *
誤差	23.17	15	1.54	

*p < 0.05

表 5.7 残響付加音場の単語了解度に対する多重比較結果(HSD=2.07)

発話速度(syl/s)	5.5	6.5	7.5	8.5
5.5	-			*
6.5		-		
7.5			-	
8.5				-
			*	p < 0.05

b. 騒音付加音場

騒音のみを付加した音場の発話速度と単語了解度の関係を図 5.8 に示す. 騒音付加音場では,発話速度と音場によらず単語了解度がほぼ 100%に達してしまい,発話速度と音場の差がほとんどみられない.

残響付加音場と同様,騒音付加音場においても発話速度と音場についての1要因分散分析結果を行った. 結果を表 5.8 に示す. 発話速度,音場ともに有意水準 5%で有意差がみられないことから,騒音付加音場では,STIが 0.59~1.00 の範囲において単語了解度は音場および発話速度のいずれの影響も受けない.

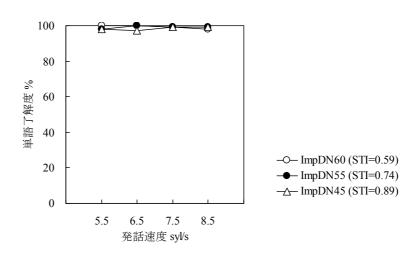


図 5.8 騒音付加音場における単語了解度と発話速度の関係

	平方和	 自由度		 F 値
<u></u>	1.25	3	0.42	0.61
音場	2.25	4	0.56	0.82
誤差	8.25	12	0.69	

表 5.8 騒音付加音場の単語了解度に対する分散分析表

*p < 0.05

c. 残響と騒音を同時に付加した音場

残響と騒音を同時に付加した音場の発話速度と単語了解度の関係を図 5.9 に示す. なお, 図 5.9 において, (A) (B) (C) 図はそれぞれ騒音レベルが 45dBA, 50dBA, 60dBA の音場における発話速度と単語了解度の関係である.

残響および騒音付加音場では、発話速度と音場の組み合わせによって単語了解度が約60%~100%で変化する.ここで、同一の発話速度に対してはSTIが小さいほど単語了解度が小さくなる傾向がみられるが、同一のSTIに対しては発話速度が速くなるほど単語了解度が小さくなる場合と5.5 syl/s および8.5 syl/s よりも6.5 syl/s の単語了解度が大きくなる場合の2種類の傾向がみられる.これは、表5.7で示した残響付加音場の単語了解度に対する多重比較結果とは異なる傾向である.

また、図 5.9 では、騒音レベルが大きいほど、発話速度の違いによる単語了解度の変化が大きくなる傾向がみられる。一方、これまでの検討では、単語了解度が残響付加音場では発話速度の影響を受けるものの、騒音付加音場では発話速度の影響を受けないことが示されている。

以上より,残響と騒音を同時に付加した音場において発話速度が単語了解度に及ぼす影響は残響または騒音のいずれか一方のみを付加した音場において発話速度が単語了解度に及ぼす影響とは異なることが考えられる.

残響と騒音を同時に付加した音場において,発話速度が単語了解度に及ぼす影響について 統計を用いて検討する.

まず、発話速度と音場を要因とした2要因の分散分析を行う.2要因の分散分析では、表5.9に示すようにSTIを0.1間隔で区分した.なお、それぞれのSTI区間の単語了解度は当該区間の全音場の単語了解度を平均して算出した.表5.10に示した2要因の分散分析結果より、発話速度、音場、交互作用ともに有意水準5%で有意であると認められた.

次に、交互作用について発話速度の単純主効果を検定した結果を表 5.11 に示す. 表中の*はその組み合わせに有意差が認められたことを示す. 交互作用は STI が 0.3 以上 0.4 未満の場合と 0.4 以上 0.5 未満の場合、すなわち、STI が 0.5 未満の音場で認められた.

さらに、表 5.11 において有意差の見られた 0.5 未満の音場について Tukey の HSD 検定による単語了解度の多重比較を行った. 結果を表 5.12 および表 5.13 に示す.

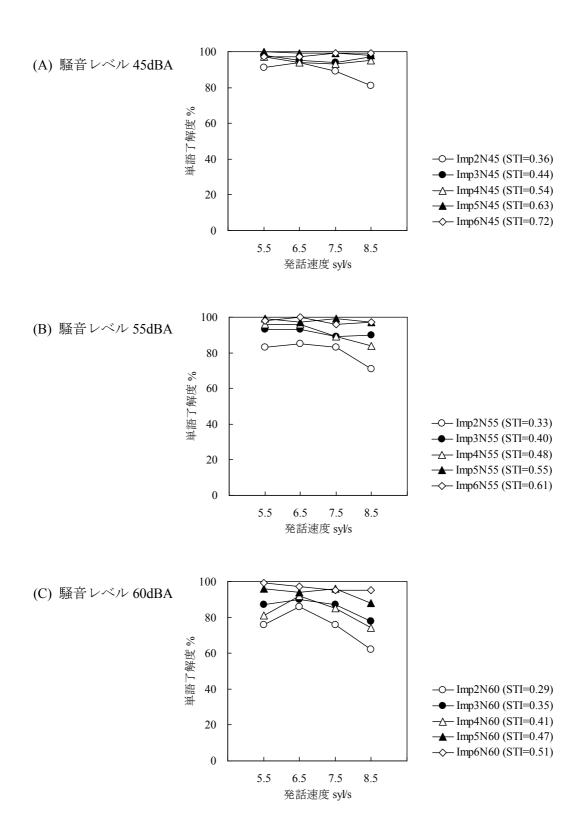


図 5.9 残響および騒音付加音場における単語了解度と発話速度の関係

表 5.12 に示すように、STI が 0.3 以上 0.4 未満の場合、発話速度 5.5 syl/s,6.5 syl/s,7.5 syl/s のそれぞれと 8.5 syl/s の間に有意差が認められた。また、表 5.13 に示すように、STI が 0.4 以上 0.5 未満の場合、発話速度 5.5 syl/s,6.5 syl/s のそれぞれと 8.5 syl/s の間に有意差が認められた。

以上より、残響と騒音を同時に付加した音場では、単語了解度は音場と発話速度のいずれにも影響を受け、特に、STIが 0.5 未満の音場において発話速度が 8.5 syl/s になると有意に低下することが示された.この結果は、残響または騒音のいずれか一方のみを付加した音場において発話速度が単語了解度に及ぼす影響とは異なる.

音場	STI 区間
a1	0.3 以上 0.4 未満
a2	0.4 以上 0.5 未満
a3	0.5 以上 0.6 未満
a4	0.6 以上 0.7 未満
a5	0.7 以上 0.8 未満
a6	0.8 以上 0.9 未満

表 5.9 STI による音場の区分

表 5.10 残響および騒音付加音場の単語了解度に対する分散分析結果

変動因	平方和	自由度	普遍分散	F値
音場 A	2014.86	5	402.97	10.84*
誤差 S(A)	595.03	16	37.19	
発話速度 B	151.95	3	50.65	10.20*
交互作用 A×B	271.67	15	18.11	3.65*
誤差 B×S(A)	238.43	48	4.97	

*p < 0.05

表 5.11 単語了解度に対する発話速度の単純主効果検定結果

変動因	平方和	自由度	普遍分散	F値
al における発話速度の効果	311.70	3	103.90	20.92*
a2 における発話速度の効果	83.66	3	27.89	5.61 *
a3 における発話速度の効果	15.04	3	5.01	1.01
a4 における発話速度の効果	7.41	3	2.47	0.50
a5 における発話速度の効果	0.98	3	0.33	0.07
a6 における発話速度の効果	4.82	3	1.61	0.32

*p < 0.05

表 5.12 0.3 ≦STI < 0.4 の単語了解度に対する多重比較結果(HSD=4.68)

発話速度(syl/s)	5.5	6.5	7.5	8.5
5.5	-			*
6.5		-		*
7.5			-	*
8.5				-
			*	p<0.05

表 5.13 0.4 ≦ STI < 0.5 の単語了解度に対する多重比較結果 (HSD=4.68)

発話速度(syl/s)	5.5	6.5	7.5	8.5
5.5	-			*
6.5		-		*
7.5			-	
8.5				-
				< 0.05

*p < 0.05

B.「聴き取りにくさ」

回答結果より、表 5.5 に示した聴き取りにくさのスケールにおいて 2~4 と回答した割合である「聴き取りにくさ」を算出した. 残響または騒音のいずれかを付加した場合、および、残響と騒音を同時に付加した場合のそれぞれについて発話速度が「聴き取りにくさ」に及ぼす影響を明らかにする.

a. 残響付加音場

残響のみを付加した音場の発話速度と「聴き取りにくさ」の関係を図 5.10 に示す. なお, 残響付加音場には直接音のみの音場 ImpDN0 も含める. 残響付加音場では, 発話速度と音場の組み合わせによって「聴き取りにくさ」が約 0%~60%で変化する. 発話速度が「聴き取りにくさ」に及ぼす影響は明らかではないが, 発話速度 5.5 syl/s の「聴き取りにくさ」が同一音場における発話速度 8.5 syl/s の「聴き取りにくさ」を下回ることから, 発話速度が速くなるほど「聴き取りにくさ」が上昇する傾向があると考えられる.

統計を用いてこの結果を検討する.

まず、発話速度と音場についての1要因分散分析結果を表5.14に示す。発話速度、音場ともに有意水準5%で有意であると認められたが、音場のF値が発話速度のF値を大きく上回る.これは、「聴き取りにくさ」に対する発話速度の影響が音場の影響よりも小さいことを意味している.

次に、発話速度について Tukey の HSD 検定による多重比較を行った。結果を表 5.15 に示す。表中の*はその組み合わせに有意差が認められたことを示す。表 5.15 に示すように、発話速度 5.5 syl/s,6.5 syl/s のそれぞれと 8.5 syl/s の間に有意差が認められた。

以上より, 残響付加音場では, 「聴き取りにくさ」は音場と発話速度のいずれにも影響を受けることが示された.

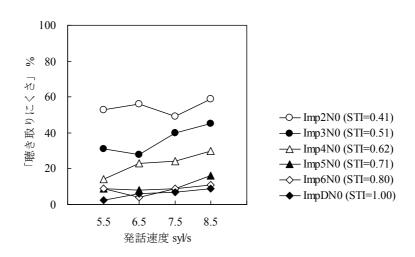


図 5.10 残響付加音場における発話速度と「聴き取りにくさ」の関係

表 5.14 残響	付加音場の「聴き〕	取りにく	さ」に対す	る分散分析結果
-----------	-----------	------	-------	---------

変動因	平方和	自由度	普遍分散	F値
発話速度	263.28	3	87.76	6.60*
音場	7222.43	5	1444.49	108.67*
誤差	199.39	15	13.29	

*p < 0.05

表 5.15 残響付加音場の「聴き取りにくさ」に対する多重比較結果(HSD=6.07)

発話速度(syl/s)	5.5	6.5	7.5	8.5
5.5	-			*
6.5		-		*
7.5			-	
8.5				-
			.1.	< 0.0 <i>5</i>

*p < 0.05

b. 騒音付加音場

騒音のみを付加した音場の発話速度と「聴き取りにくさ」の関係を図 5.11 に示す. 残響付加音場では,発話速度と音場の組み合わせによって「聴き取りにくさ」が約 0%~25%で変化する. 残響付加音場と同様,騒音付加音場においても発話速度が「聴き取りにくさ」に及ぼす影響は明らかではないが,発話速度 5.5 syl/s の「聴き取りにくさ」が同一音場における発話速度 8.5 syl/s の「聴き取りにくさ」を下回ることから,発話速度が速くなるほど「聴き取りにくさ」が上昇する傾向があると考えられる.

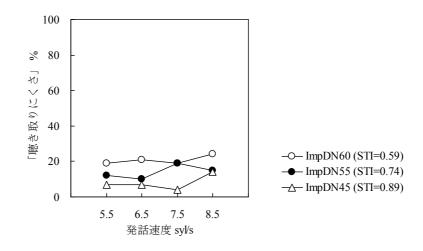


図 5.11 騒音付加音場における発話速度と「聴き取りにくさ」の関係

残響付加音場と同様,騒音付加音場においても発話速度と音場についての1要因分散分析 結果を行った. 結果を表 5.16 に示す. 発話速度,音場ともに有意水準 5%で有意であると認 められたが,音場の F 値が発話速度の F 値を大きく上回る. これは,「聴き取りにくさ」に 対する発話速度の影響が音場の影響よりも小さいことを意味している.

次に、発話速度について Tukey の HSD 検定による多重比較を行った。結果を表 5.17 に示す。表中の*はその組み合わせに有意差が認められたことを示す。表 5.17 に示すように、発話速度 5.5 syl/s,6.5 syl/s のそれぞれと 8.5 syl/s の間に有意差が認められた。

以上より,騒音付加音場においても,「聴き取りにくさ」は音場と発話速度のいずれにも影響を受けることが示された.

表 5.16 騒音付加音場の「聴き取りにくさ」に対する分散分析結果

変動因	平方和	自由度	普遍分散	F値
発話速度	67.25	3	22.42	3.69*
音場	525.58	4	131.40	21.62*
誤差	72.92	12	6.08	

*p < 0.05

表 5.17 騒音付加音場の「聴き取りにくさ」に対する多重比較結果(HSD=4.23)

発話速度(syl/s)	5.5	6.5	7.5	8.5
5.5	-			*
6.5		-		*
7.5			-	
8.5				-
			*	p < 0.05

c. 残響と騒音を同時に付加した音場

残響と騒音を同時に付加した音場の発話速度と「聴き取りにくさ」の関係を図5.12に示す。なお、図5.12において、(A)(B)(C)図はそれぞれ騒音レベルが45dBA、50dBA、60dBAの音場における発話速度と「聴き取りにくさ」の関係である。

残響および騒音付加音場では、発話速度と音場の組み合わせによって「聴き取りにくさ」が約 0%~90%で変化するが発話速度が「聴き取りにくさ」に及ぼす影響は明らかではない、そこで、残響と騒音を同時に付加した音場における発話速度が単語了解度に及ぼす影響を単語了解度の場合と同様の方法を用いて検討する.

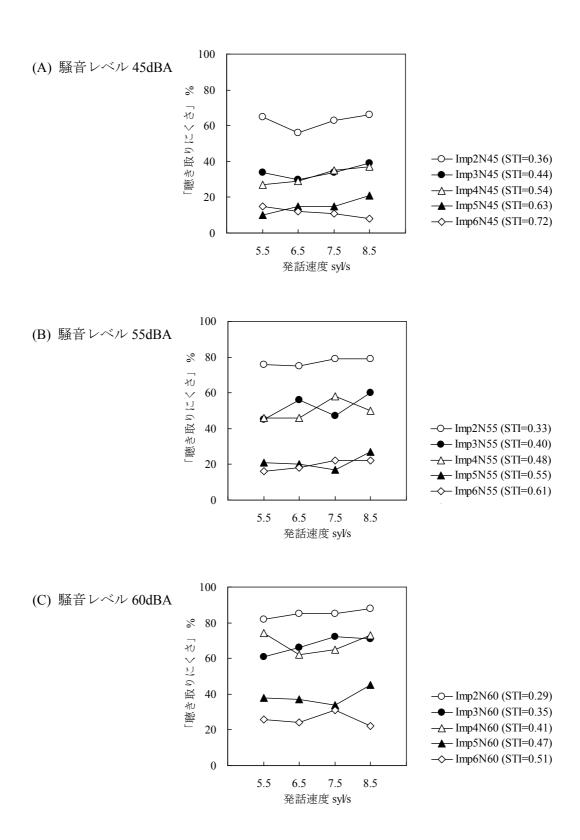


図 5.12 残響および騒音付加音場における「聴き取りにくさ」と発話速度の関係

まず、発話速度と音場を要因とした 2 要因の分散分析結果を行った。結果を表 5.18 に示す。なお、2 要因の分散分析を行うにあたり、STI 区間は表 5.9 を用い、それぞれの STI 区間の「聴き取りにくさ」は当該区間の全音場の「聴き取りにくさ」を平均して算出した。

表 5.18 より, 発話速度と音場に有意水準 5%で有意な差があると認められたが, 交互作用に有意差はみられなかった. すなわち, 発話速度が「聴き取りにくさ」に及ぼす影響は音場によらず一定であることを意味する.

次に、発話速度について Tukey の HSD 検定による「聴き取りにくさ」の多重比較を行った. 結果を表 5.19 に示す。表中の*はその組み合わせに有意差が認められたことを示す。表 5.19 に示すように、発話速度 5.5 syl/s,6.5 syl/s のそれぞれと 8.5 syl/s の間に有意差が認められた。

以上より、残響と騒音を同時に付加した音場では、「聴き取りにくさ」は音場と発話速度のいずれにも影響を受けること、および、発話速度 8.5 syl/s の「聴き取りにくさ」が、音場によらず、発話速度 5.5 syl/s および 6.5 syl/s の場合よりも有意に増加することが示された.

表 5.18 残響および騒音付加音場の「聴き取りにくさ」に対する分散分析結果

変動因	平方和	自由度	普遍分散	F値
音場 A	36445.68	5	7289.14	27.24*
誤差 S(A)	4282.09	16	267.63	
発話速度 B	423.10	3	141.03	8.80*
交互作用 A×B	171.69	15	11.45	0.71
誤差 B×S(A)	769.61	48	16.03	

*p < 0.05

表 5.19 残響および騒音付加音場の「聴き取りにくさ」に対する多重比較結果(HSD=3.43)

発話速度(syl/s)	5.5	6.5	7.5	8.5
5.5	-			*
6.5		-		*
7.5			-	
8.5				-

*p < 0.05

5.1.3 まとめ

実験 8 では、音声レベルを一定とした場合の発話速度が単語了解度と「聴き取りにくさ」に及ぼす影響を検討し、以下を明らかにした。

- 1. 単語了解度は残響付加音場において発話速度の影響を受けるものの, 騒音付加音場では発話速度の影響を受けない. また, 残響と騒音を同時に付加した音場において, 単語了解度は STI が 0.5 未満の音場で発話速度が 8.5 syl/s になると有意に低下する.
- 2. 「聴き取りにくさ」は残響付加音場, 騒音付加音場および残響と騒音を同時に付加した音場のいずれの場合にも発話速度の影響を受け, 発話速度 5.5 syl/s, 6.5 syl/s のそれぞれと 8.5 syl/s の間に有意差を生じる.

5.2 公共空間におけるアナウンスの発話速度の現状

被験者に正常な聴力を有する若年者を用い、発話速度を 5.5 syl/s~8.5 syl/s の範囲で変化させた実験 8 より、残響付加音場、騒音付加音場および残響と騒音を同時に付加した音場のいずれにおいても「聴き取りにくさ」は発話速度 8.5 syl/s で有意に増加することが示された。一方、発話速度 5.5 syl/s と 6.5 syl/s における「聴き取りにくさ」は全ての音場で有意差がみられなかった。ここで、音声伝達に最適な発話速度が存在するという従来の知見を考慮すれば、公共空間における音声伝達に最適な発話速度を検討するため、発話速度を 5.5 syl/s 以下とした場合の「聴き取りにくさ」の変化を明らかにする必要がある。

実験の前に,実際の公共空間および公共放送で用いられているアナウンスの発話速度の頻度分布を明らかにする.

5.2.1 調査対象

A. 鉄道

a. 地下鉄

駅のアナウンスとして札幌市営地下鉄,仙台市営地下鉄,名古屋市営地下鉄,京都市営地下鉄,大阪市営地下鉄,神戸市営地下鉄のプラットホームや改札口を調査した.調査の時間帯は朝ラッシュ時、閑散時、タラッシュ時である.

車内アナウンスとして神戸市営地下鉄の海岸線および山手線を調査した.調査の時間帯は 車内が比較的混雑していない平日昼間である.

b. JR(新幹線)

駅のアナウンスとして新大阪駅のプラットホームを調査した. 車内アナウンスとして新大阪-東京間を調査した.

c. JR(在来線)

駅のアナウンスとして東京都内の3駅におけるプラットホームと改札口を調査した.調査は早朝から深夜まで行った.

車内のアナウンスは大阪環状線を対象とし、平日昼間を調査した.

d. 私鉄

東京都内および大阪府内の私鉄を対象とした.駅のアナウンスとして近鉄電車,京阪電車, 阪急電鉄,つくばエクスプレスを調査した.

車内のアナウンスとして阪急電鉄,神戸ポートライナー,京浜急行電鉄,近鉄電車,南海電鉄を調査した.なお,都営地下鉄も当区分に含む.

B. 空港

国内の空港を対象とし、出発ロビー、到着ロビー、搭乗口におけるアナウンスの発話速度 を調査した.調査は発着便数の多い時間と少ない時間のいずれについても実施した.対象と した空港は関西国際空港、中部国際空港および羽田空港である.

C. テレビニュース

2007年11月27日~2007年12月1日までの平日5日間に放送されたテレビニュースを対象とした. 朝の番組からは「おはよう日本(NHK)」,「ズームイン SUPER (読売テレビ)」,「おはよう朝日です(ABC テレビ)」,「めざましテレビ(関西テレビ)」の4番組を調査し,夜の番組からは「筑紫哲也 NEWS23 (毎日放送)」,「報道ステーション(ABC テレビ)」,「ニュース JAPAN (関西テレビ)」の3番組を調査した. なお,ニュースの発話速度調査は同時間帯(朝もしくは夜)の全番組で取り扱われたテーマを対象とし,番組内のインタビューや対談部分は含まない.

5.2.2 分析方法

調査で得られた音声の冒頭からポーズまで、ポーズから次のポーズまでをそれぞれ 1 サンプルとする. 1 サンプルにおける音声の継続時間を同サンプルに含まれる音節 (syllable) で除したものを発話速度 (syl/s) とする. 表 5.20 に本調査で得られた鉄道各線、空港およびテレビニュースの各サンプル数を示す.

表 5.20 発話速度調査の対象とサンプル数

調査対象	サンプル数
地下鉄	925
JR(新幹線)	189
JR(在来線)	496
私鉄	420
関西国際空港	138
中部国際空港	679
羽田空港	110
ニュース (朝)	1136
ニュース(夜)	364

5.2.3 結果と考察

A. 鉄道

鉄道アナウンスは提供方法と内容によって表 5.21 に示す 4 種類に分類した。表 5.21 における「生声」および「自動」はアナウンスの提供方法の違いをあらわし、駅員が拡声器を用いて行うアナウンスを「生声」、予め録音された音声の自動再生によるアナウンスを「自動」とする。また、「発着」および「発着以外」はアナウンスの内容の違いをあらわし、電車の到着または発車を知らせるためのアナウンスを「発着」、そうでない場合のアナウンスを「発着以外」とする。なお、「発着以外」は利用者への諸注意(禁煙、不審物の規制など)やイベント案内のほか、出発時刻の案内も含む。

表 5.21 鉄道アナウンスの種類

- 1. 生声・発着
- 2. 生声・発着以外
- 3. 自動・発着
- 4. 自動・発着以外

各調査対象で得られた駅および車内のアナウンスについて,アナウンスの種類ごとに発話速度頻度分布を求めた. 図 5.13 に一例として大阪市営地下鉄駅構内における「生声・発着」の発話速度頻度分布を示す. また,図 5.13 に示した発話速度と出現頻度の関係を Z 変換した結果を図 5.14 に示す.図中に示した回帰式の相関係数が 0.99 と非常に高いことから,当該発話速度の出現頻度は正規分布とみなせる.同様の傾向は全調査対象の全種類のアナウンスにみられた.これ以降に示す発話速度の平均値と標準偏差は調査対象の発話速度頻度分布を Z 変換した後の回帰式より算出したものである.

鉄道アナウンスは鉄道の種類によらず駅および車内におけるアナウンスの種類と発話速度分布に同様の傾向がみられるため、駅および車内におけるアナウンスの種類ごとに発話速度の平均値と標準偏差を算出した。図 5.15 に結果を示す。図の横軸は表 5.21 で示した鉄道アナウンスの種類を表し、左から右へ平均発話速度が遅い順に並べている。これより、発話速度が最も速いのは平均発話速度が 8.0syl/s となる駅の「生声・発着」であり、発話速度が最も遅いのは平均発話速度が 5.5 syl/s となる車内の「自動・発着」である。なお、アナウンスの内容によらず、生声アナウンス(\bigcirc \Delta)の発話速度が自動アナウンス(\bigcirc A)より速い傾向がみられた。

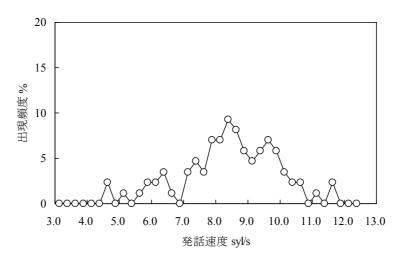


図 5.13 大阪市営地下鉄駅構内における「生声・発着」の発話速度頻度分布

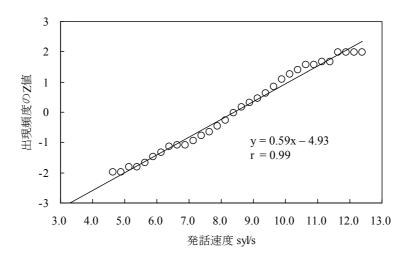


図 5.14 大阪市営地下鉄駅構内における「生声・発着」の発話速度と出現頻度の Z 値

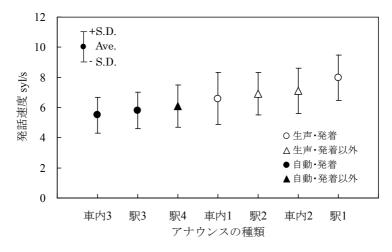


図 5.15 鉄道アナウンスの発話速度調査結果

B. 空港

空港アナウンスは提供方法によって表 5.22 に示す 2 種類に分類した. 空港係員が拡声器 を用いて行うアナウンスを「生声」, 予め録音された音声の自動再生によるアナウンスを「自動」とする.

表 5.22 空港アナウンスの種類

- 1. 生声
- 2. 自動

空港アナウンスの場合も全調査対象の全種類のアナウンスにおいて発話速度の出現頻度 は正規分布とみなせる.よって、これ以降に示す発話速度の平均値と標準偏差は調査対象の 発話速度頻度分布を Z 変換した後の回帰式より算出したものである.

図 5.16 に空港アナウンスの発話速度を示す. 図の横軸は表 5.22 で示した空港アナウンスの種類を表し、左から右へ平均発話速度が遅い順に並べている. これより、発話速度が最も速いのは平均発話速度が 9.0 syl/s となる中部国際空港の「生声」であり、発話速度が最も遅いのは平均発話速度が 5.3 syl/s となる関西国際空港の「自動」である. なお、いずれの空港においても生声アナウンス(○)が自動アナウンス(●)より速い傾向がみられるが、関西国際空港の生声アナウンスは中部国際空港および羽田空港の自動アナウンスより遅いことから、全体的な傾向は明らかでない.

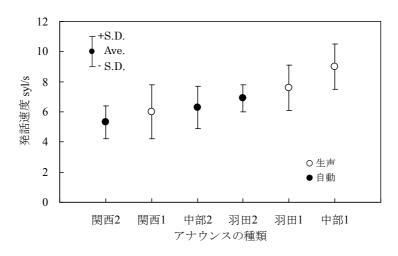


図 5.16 空港アナウンスの発話速度調査結果

C. テレビニュース

表 5.23 にテレビニュースの発話速度を示す. テレビニュースの場合も全調査対象において発話速度の出現頻度は正規分布とみなせる. よって,表 5.23 に示す発話速度の平均値と標準偏差は調査対象の発話速度頻度分布を Z 変換した後の回帰式より算出したものである. これより,朝のニュースが夜のニュースより速く,平均発話速度はそれぞれ 8.8 syl/s と 8.1 syl/s である.

調査対象平均値(syl/s)標準偏差(syl/s)サンプル数ニュース(朝)8.81.31136ニュース(夜)8.11.4364

表 5.23 テレビニュースの発話速度調査結果

5.2.4 まとめ

公共空間および公共放送で用いられているアナウンスの発話速度を調査し,以下を明らかにした.

- 1. 鉄道アナウンスの発話速度は生声によるアナウンスが自動アナウンスより速い傾向 がみられる. 平均発話速度は 5.5 syl/s~8.0 syl/s である.
- 2. 空港アナウンスの発話速度は空港によるばらつきがみられる. 平均発話速度は 5.3 syl/s \sim 9.0 syl/s である.
- 3. テレビニュースの発話速度は朝のニュースが夜のニュースより速く、平均発話速度は それぞれ 8.8 syl/s と 8.1 syl/s である.
- 4. 本調査において得られた公共空間および公共放送のアナウンスの発話速度は概ね 4.0 $syl/s\sim10.0 syl/s$ の範囲に分布する.

5.3 実験 9: 若年者に最適な発話速度と音声レベル

公共空間における音声伝達に最適な発話速度と音声レベルを明らかにするため、実験 9 では、まず、残響と騒音を同時に付加した音場における若年者に最適な発話速度と音声レベルを明らかにする. なお、実験 9 で用いる発話速度の範囲は公共空間におけるアナウンスの発話速度調査で得られた結果を参考とする.

5.3.1 方法

A. 単語

実験8と同様である.

B. 提示条件

a. インパルス応答

日本建築学会音声伝送品質研究 SWG が保有するインパルス応答データベース(以下, IR-DB)[66]に収録されているものを用いた.表 5.24 に実験 9 で用いるインパル応答の STI を示す.様々な公共空間の STI を実測・集計した佐藤ら[67]の報告によれば、ほとんどの公共空間は STI が 0.5 以上となることが示されている.なお、Imp4 は「聴き取りにくさ」の聴取実験における文脈効果を低減するための基準刺激である.

インパルス応答STIImp10.80Imp20.71Imp30.51Imp40.31

表 5.24 実験 9 で用いたインパルス応答

b. 音声レベル

「聴き取りにくさ」を用いて音声伝達性能と音声レベルの関係について検討した Sato ら [68]の実験結果を参考に 65dBA, 70dBA, 75dBA, 80dBA の 4 種類とした. インパルス応答を畳み込んだ音声刺激を提示した場合に,被験者の頭部中心に相当する位置におけるピーク値のばらつきが ± 0.3 dBA (時定数:Slow)以内としている.

c. 騒音レベル

公共空間における騒音の類型化を行った高橋ら[69]の調査結果より、地下鉄駅プラットホームにおける電車音がない場合の周波数特性である A 類型の騒音を用いる. A 類型騒音の周波数特性を図 5.17 に示す. 騒音の提示レベルは被験者の頭部中心に相当する位置における中央値で 60dBA (時定数:Slow) とした.

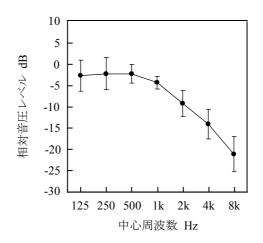


図 5.17 A 類型騒音の周波数特性

d. 音場の種類

インパルス応答 4 種類と音声レベル 4 種類の組み合わせを変化させた 16 音場を用いた. 騒音を付加した各音場の STI を表 5.25 に示す。表 5.25 における ImpD とは直接音のみの音場をあらわす。なお、本章では、インパルス応答 Imp3 と音声レベル 75dB の組み合わせの標記を Imp3S75 のようにあらわす。

インパルス応答	音声レベル(dBA)					
イン・ソレハ心合	80	75	70	65		
ImpD (Direct sound)	0.89	0.85	0.74	0.59		
Imp1	0.72	0.68	0.61	0.51		
Imp2	0.63	0.60	0.55	0.47		
Imp3	0.44	0.43	0.40	0.35		

表 5.25 実験 9 で用いた音場の STI

e. 発話速度

発話速度調査によれば、公共空間および公共放送のアナウンスの発話速度は概ね 4.0syl/s ~ 10.0 syl/s の範囲に分布することが示された.一方、実験 8 では、発話速度 5.5syl/s ≥ 6.5 syl/s の「聴き取りにくさ」に有意差がみられなかった. これらの結果を考慮して、実験 9 では、発話速度を 4.5syl/s ~ 9.5 syl/s の範囲で 1.0syl/s ごとに変化させることとした.

発話速度の調整には Sugi Speech Analyzer を使用し、平均発話速度 5.6 ± 0.4 syl/s である元の単語のピッチを変えずに時間軸を縮小または伸長した。なお、発話速度を調整した全ての単語を視聴し、縮小または伸長した際に音声が劣化していないことを確認した。

f. 基準刺激

表 5.26 に基準刺激の提示条件、すなわち、音場と発話速度の組み合わせを示す. なお、 基準刺激 A、B はそれぞれ「聴き取りにくさ」が 100%と 0%の基準刺激をあらわす. 実験 8 より、STI が 0.5 未満の音場において発話速度が有意に低下することが示されたことを 考慮して、基準刺激 A の発話速度は 8.5 syl/s とした.

	基準	刺激
木厂	A	В
インパルス応答	Imp4	ImpD
音声レベル(dBA)	65	65
騒音レベル(dBA)	60	-
発話速度(syl/s)	8.5	5.5
STI	0.22	1.00

表 5.26 実験 9 で用いた基準刺激の提示条件

C. 実験用音源の作成

実験用音源は以下の手順により作成した.

- 1. 全100 単語を6種類の発話速度に統制し、計600個の刺激をつくる.
- 2. 600 個の刺激に Imp1~Imp3 の 3 種のインパルス応答を畳み込み 1800 個の刺激を作成する. すなわち, インパルス応答を畳み込まない刺激 600 個+インパルス応答を畳み込んだ刺激 1800 個の計 2400 個の刺激が作成される.
- 3. 2400 個の刺激の音声レベルをそれぞれ 4 種類に調整 し, 計 9600 個の刺激を作成する.
- 4. 「聴き取りにくさ」が 100%の基準刺激として、8.5syl/s の単語 100 語に Imp4 を畳み込み、音声レベルを 65dBA に調整した刺激を 2 個ずつ作成する. また、「聴き取りにくさ」が 0%の基準刺激として、5.5 syl/s の単語 100 語にインパルス応答を畳み込まず、音声レベルを 65dBA に調整した刺激を 2 個ずつ作成する. すなわち、計 400 個の基準刺激が作成される.
- 5. 作成した 10000 個の刺激(実験用刺激 9600 個+基準刺激 400 個)から異なる単語 100 語を音場が重ならないように抜き出し,1 組の実験用音源を作成する. ただし,2 種類の基準刺激は2回ずつ重複させる.
- 6. 一度用いた刺激を重複しないように上記 5 の手順を繰り返し,100 組の実験用音源を 作成する.

実際の聴取実験では、被験者には1回の試行において50単語ずつ提示した。すなわち、各被験者は1組の実験用音源を2回に分けて聴取し、計10回の試行を行った。実験用音源を2つに分ける際には、文脈効果を低減させる目的で2種類の基準刺激を試行の最初に配置

し、残りの提示条件をランダムに並び替えた.

上記の手順により、1 組の実験用音源は 16 音場×6 発話速度の 96 条件に 2 条件×2 回の基準刺激を併せた計 100 条件で構成される. 実験用音源を構成する単語と提示条件の関係を図 5.18 に模式的に示す。図 5.18 において、各実験用音源を構成する数字は表 5.1 で示した単語番号をあらわしている. 図中の網掛けは1つの単語が全ての提示条件において用いられていることを示している. すなわち、複数の被験者によって全ての実験用音源が聴取されることで、全単語が全提示条件において聴取されることになり、音韻バランスが考慮される. 被験者には1回の試行において 50 単語ずつ、すなわち、1つの実験用音源を2回の試行

被験者には1回の試行において50単語すつ、すなわち、1つの実験用音源を2回の試行に分けて提示するが、その際、各試行の文脈効果を低減させるため、2種類の基準刺激を試行の最初に配置し、残りの提示条件をランダムに並び替えた

なお、1 人の被験者には5 つの実験用音源を提示し、20 人の被験者によって全ての実験用音源が聴取されることとした。

	提示条件(音場と発話速度の組み合わせ)								
	1	2	•••	95	96	97	98	99	100
実験用音源1	1	2	•••	95	96	97	98	99	100
実験用音源 2	100	1	•••	94	95	96	97	98	99
実験用音源3	99	100	•••	93	94	95	96	97	98
実験用音源4	98	99	•••	92	93	94	95	96	97
÷					÷				
実験用音源 98	4	5	•••	98	99	100	1	2	3
実験用音源 99	3	4	•••	97	98	99	100	1	2
実験用音源 100	2	3	•••	96	97	98	99	100	1
					l I	1	I	1 100	

図 5.18 実験用音源を構成する単語と提示条件

D. 装置

実験は神戸大学工学部建設学科の簡易無響室で行った.実験のブロックダイアグラムを図5.19に示す.

受聴点はスピーカ正面から 1.5mの距離に設置した. なお,実験に用いたスピーカの受聴点における周波数特性を図 5.20 に示す. 100Hz~10kHz において±5dB 以内で平坦である.

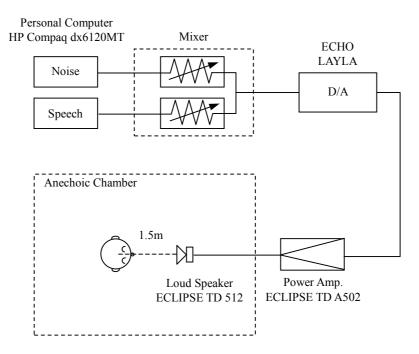


図 5.19 実験系ブロックダイアグラム

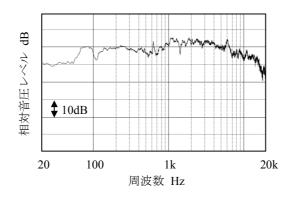


図 5.20 実験 9 で用いたスピーカの周波数特性

E. 被験者

被験者には20代の学生20名を用い,実験の前に全被験者に対し簡易聴力検査を行った. 聴力検査にはオージオメータを用い,125Hz,250Hz,500Hz,1000Hz,2000Hz,4000Hz,8000Hzの純音について最小可聴値を5dB刻みで測定した.被験者の平均聴力レベルを図5.21に示す.PTA(500Hz,1kHz,2kHzの聴力レベルの平均)は最大でも13.3dBHLであり,全被験者は正常な聴力を有することが確認された.

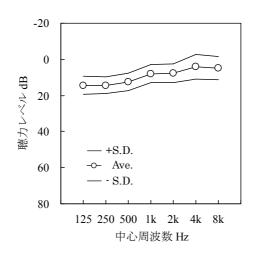


図 5.21 実験 9 で用いた被験者の両耳の平均オージオグラム

F. 提示方法

実験8と同様である.

G. 回答方法

実験8と同様である.

5.3.2 結果と考察

A. 単語了解度

回答結果より、単語を正しく聴取できた割合である単語了解度を算出した。発話速度および音声レベルの組み合わせと単語了解度の関係を図 5.22 に示す。図(A)(B)(C)(D)はそれぞれ ImpD, Imp1, Imp2, Imp3 の結果をあらわしている。なお、図の縦軸と横軸はそれぞれ単語了解度と発話速度をあらわし、凡例の違いは音声レベルの違いをあらわす。

図(A) \sim (C)では、発話速度や音声レベルの違いによらず単語了解度がほぼ 100%となっている.これに対し、図(D)の単語了解度は全体的に低下し、発話速度や音声レベルの影響があらわれる.

統計を用いてこの結果を検討する.

まず,各インパルス応答について,発話速度と音声レベルを要因とした2要因の分散分析 結果を表5.27示す.ここでは,試行回数ごとの単語了解度を被験者内誤差としている.表 中の*は有意水準5%で有意であることをあらわす.

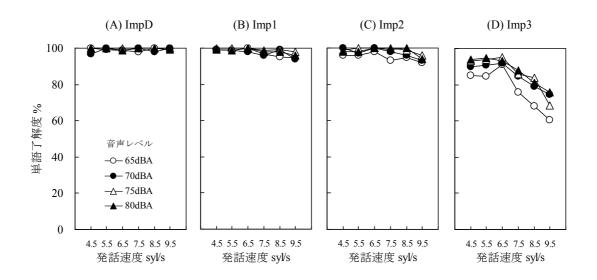


図 5.22 発話速度および音声レベルの組み合わせと単語了解度の関係(若年者)

ImpD は全ての要因が有意ではないが、Imp1 は発話速度の主効果が有意である. さらに、Imp2 と Imp3 は発話速度および音声レベルの主効果が有意である. なお、交互作用はいずれの場合も有意ではなかった. すなわち、単語了解度は STI が非常に高い音場(ImpD)においては発話速度や音声レベルの影響を受けないが、STI がやや低い音場(Imp1)では発話速度の影響を受ける. さらに STI が低い音場(Imp2 および Imp3)では単語了解度は発話速度と音声レベルのいずれにも影響を受ける. ただし、交互作用がみられないことから、発話速度と音声レベルはそれぞれが独立して単語了解度に影響する.

次に、発話速度が有意であった音場に関して Tukey の HSD 検定による単語了解度の多重比較を行った。結果を表 5.28 に示す。表中の*はその組み合わせに有意水準 5%で有意差が認められたことを意味する。 Imp1 では発話速度 4.5 syl/s \sim 6.5 syl/s のそれぞれと 9.5 syl/s の間に有意差が認められた。 Imp2 では 4.5 syl/s \sim 8.5 syl/s のそれぞれと 9.5 syl/s の間に有意差が認められた。 Imp3 では $4.5\sim$ 8.5 syl/s のそれぞれと 9.5 syl/s の間, 4.5 syl/s \sim 6.5 syl/s のそれぞれと 7.5 syl/s および 8.5 syl/s の間に有意差が認められた。

表 5.27 単語了解度に対する 2 要因分散分析結果(若年者)

Im	nl)

変動因	平方和	自由度	普遍分散	F 値
被験者S	10.39	4	2.60	
発話速度 A	3.88	5	0.78	0.22
誤差 A×S	71.78	20	3.59	
音声レベル B	19.60	3	6.53	2.38
誤差 B×S	32.90	12	2.74	
交互作用 A×B	58.12	15	3.87	1.16
誤差 A×B×S	200.36	60	3.34	
全体 T	397.03	119	3.34	

*p<0.05

Imp1

変動因	平方和	自由度	普遍分散	F値
被験者S	63.02	4	15.75	_
発話速度 A	219.90	5	43.98	6.38*
誤差 A×S	137.81	20	6.89	
音声レベル B	68.60	3	22.87	2.11
誤差 B×S	129.77	12	10.81	
交互作用 A×B	76.58	15	5.11	0.63
誤差 A×B×S	484.50	60	8.08	
全体 T	1180.17	119	9.92	

*p < 0.05

Imp2

•				
変動因	平方和	自由度	普遍分散	F値
被験者S	54.42	4	13.61	
発話速度 A	370.84	5	74.17	5.84*
誤差 A×S	253.98	20	12.70	
音声レベル B	269.40	3	89.80	10.95*
誤差 B×S	98.44	12	8.20	
交互作用 A×B	110.30	15	7.35	0.63
誤差 A×B×S	696.01	60	11.60	
全体 T	1853.39	119	15.57	

*p<0.05

				√p < 0.03
Imp3				
変動因	平方和	自由度	普遍分散	F値
被験者S	5375.29	4	1343.82	
発話速度 A	8130.36	5	1626.07	42.54*
誤差A×S	764.41	20	38.22	
音声レベル B	1951.79	3	650.60	8.41*
誤差 B×S	928.66	12	77.39	
交互作用 A×B	557.31	15	37.15	0.85
誤差 A×B×S	2619.59	60	43.66	
全体 T	20327.41	119	170.82	

表 5.28 発話速度に対する単語了解度の多重比較結果(若年者)

Imp1 HSD=2.61

1						
発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-					*
5.5		-				*
6.5			-			*
7.5				-		
8.5					-	
9.5						-

*p < 0.05

Imp2 HSD=3.54

発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-					*
5.5		-				*
6.5			-			*
7.5				-		*
8.5					-	*
9.5						-

*p < 0.05

Imp3 HSD=6.15

発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-			*	*	*
5.5		-		*	*	*
6.5			-	*	*	*
7.5				-		*
8.5					-	*
9.5						-

*p < 0.05

ここで、多重比較の結果に基づき、各インパルス応答について発話速度を2つのグループに分類する.2つのグループとは、各インパルス応答において単語了解度が最も高くなる発話速度、および、その単語了解度と有意差を生じない発話速度で構成される単語了解度が高いグループとそれ以外の発話速度で構成される単語了解度が低いグループである.

発話速度と単語了解度の関係を図 5.23 に示す. 発話速度と音声レベルはそれぞれが独立して単語了解度に影響することから、ここでは、音声レベルの違いを考慮していない. 図中の凡例は「○」が単語了解度の低いグループをあらわし、「●」が単語了解度の高いグループをあらわす. なお、発話速度が有意ではない ImpD は全ての発話速度が単語了解度の高いグループとみなす.

図 5.23 に示すように、単語了解度の高いグループは ImpD が 4.5 syl/s \sim 9.5 syl/s、 Imp1 および Imp2 が 4.5 syl/s \sim 8.5 syl/s、 Imp3 が 4.5 syl/s \sim 6.5 syl/s である. 以上の範囲が単語了解度に基づく若年者の最適発話速度と考えられる.

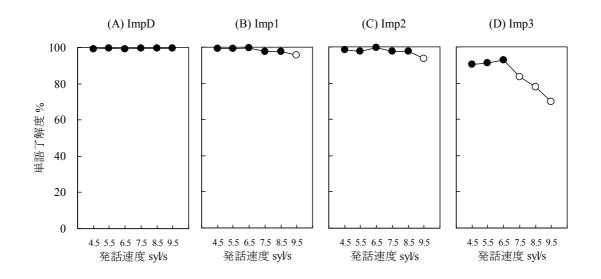


図 5.23 発話速度と単語了解度の関係(若年者)

- O 単語了解度の低いグループ
- 単語了解度の高いグループ

次に、音声レベルが有意であった音場に関して Tukey の HSD 検定による単語了解度の多重比較を行った。結果を表 5.29 に示す。表中の*はその組み合わせに有意水準 5%で有意差が認められたことを意味する。 Imp2 および Imp3 のいずれの場合も音声レベル 65dBA と音声レベル 70dBA, 75dBA, 80dBA のそれぞれの間に有意差が認められた。

ここで、多重比較の結果に基づき、各インパルス応答について音声レベルを2つのグループに分類する.2つのグループの構成は発話速度の場合と同様である.

音声レベルと単語了解度の関係を図 5.24 に示す. 発話速度と音声レベルはそれぞれが独立して単語了解度に影響することから、ここでは、発話速度の違いを考慮していない. 図中の凡例は「○」が単語了解度の低いグループをあらわし、「●」が単語了解度の高いグループをあらわす. なお、発話速度が有意ではない ImpD および Imp1 は全ての音声レベルが単語了解度の高いグループとみなす.

図 5.24 に示すように、単語了解度の高いグループは ImpD および Imp1 が 65dBA~80dBA, Imp2 および Imp3 が 70dBA~80dBA である. 以上の範囲が単語了解度に基づく若年者の最適音声レベルと考えられる.

表 5.29 音声レベルに対する単語了解度の多重比較結果(若年者)

Imp2 HSD=2.20

音声レベル(dBA)	65	70	75	80
E P V · VV (UDA)	0.5	70	13	- 00
65	-	*	*	*
70		-		
75			-	
80				-

*p < 0.05

Imp3 HSD=6.74

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-		
75			-	
80				-

*p < 0.05

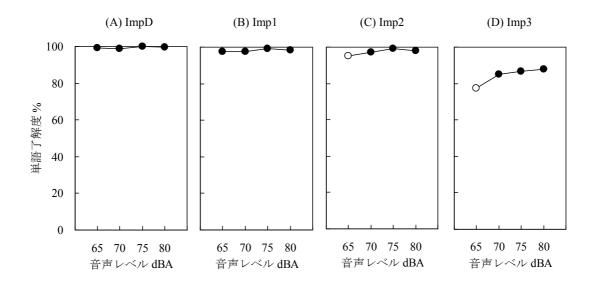


図 5.24 音声レベルと単語了解度の関係(若年者)

- O 単語了解度の低いグループ
- 単語了解度の高いグループ

B.「聴き取りにくさ」

回答結果より、表 5.5 に示した聴き取りにくさのスケールにおいて $2\sim4$ と回答した割合である「聴き取りにくさ」を算出した. 発話速度および音声レベルの組み合わせと「聴き取りにくさ」の関係を図 5.25 に示す. 図(A)(B)(C)(D)はそれぞれ ImpD, Imp1, Imp2, Imp3 の結果をあらわしている. なお、図の縦軸と横軸はそれぞれ「聴き取りにくさ」と発話速度をあらわし、凡例の違いは音声レベルの違いをあらわす.

単語了解度の場合とは異なり、「聴き取りにくさ」は提示条件の違いによって $0\%\sim100\%$ の範囲で大きく変化する。図(A)、(B)、(C)、(D)の順に「聴き取りにくさ」が大きくなる傾向がみられるが、各インパルス応答において発話速度と音声レベルが「聴き取りにくさ」に及ぼす影響には同様の傾向がみられる。 すなわち、同一音声レベルの「聴き取りにくさ」は発話速度 $5.5 \text{ syl/s} \sim 8.5 \text{ syl/s}$ と比較して発話速度 4.5 syl/s および 9.5 syl/s が増加する。一方、同一発話速度の「聴き取りにくさ」は音声レベル 75 dBA と 80 dBA に明らかな差はみられないが、音声レベルが 75 dBA よりも小さくなるにつれて大きくなる。

統計を用いてこの結果を検討する. 方法は単語了解度の場合と同様である.

各インパルス応答について,発話速度と音声レベルを要因とした2要因の分散分析結果を表 5.30 示す. ここでは,試行回数ごとの「聴き取りにくさ」を被験者内誤差としている.表中の*は有意水準5%で有意であることをあらわす.

全てのインパルス応答において発話速度と音声レベルの主効果が有意であるが,いずれの場合も交互作用が有意ではなかった.このことは,発話速度と音声レベルはそれぞれが独立して単語了解度に影響することを意味する.

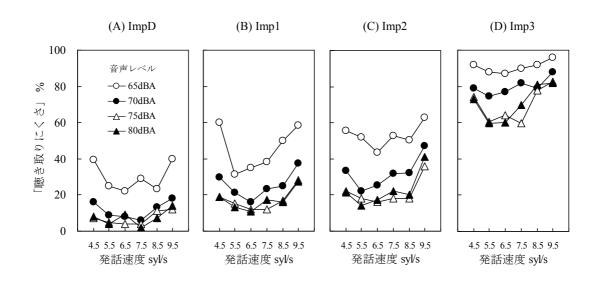


図 5.25 発話速度および音声レベルの組み合わせと「聴き取りにくさ」の関係(若年者)

表 5.30 「聴き取りにくさ」に対する 2 要因分散分析結果(若年者)

ImpD

変動因	平方和	自由度	普遍分散	F値
被験者S	1101.25	4	275.31	_
発話速度 A	1942.36	5	388.47	8.08*
誤差 A×S	960.99	20	48.05	
音声レベル B	10369.39	3	3456.46	120.61*
誤差 B×S	343.89	12	28.66	
交互作用 A×B	982.85	15	65.52	1.65
誤差 A×B×S	2389.41	60	39.82	
全体 T	18090.14	119	152.02	

*p<0.05

Imp1

1				
変動因	平方和	自由度	普遍分散	F 値
被験者S	5188.90	4	1297.22	
発話速度 A	5580.01	5	1116.00	19.13*
誤差 A×S	1166.53	20	58.33	
音声レベル B	16061.96	3	5353.99	105.60*
誤差 B×S	608.38	12	50.70	
交互作用 A×B	1359.94	15	90.66	1.53
誤差 A×B×S	3458.96	60	59.15	
全体 T	33514.68	119	281.64	

*p<0.05

Imp2

•				
変動因	平方和	自由度	普遍分散	F値
被験者S	5726.43	4	1431.61	_
発話速度 A	5839.21	5	1167.84	11.09*
誤差 A×S	2106.72	20	105.34	
音声レベル B	19127.05	3	6375.68	33.57*
誤差 B×S	2279.37	12	189.95	
交互作用 A×B	640.14	15	42.68	0.50
誤差 A×B×S	5140.06	60	85.67	
全体 T	40858.97	119	343.35	
	·	<u>-</u>		

*p<0.05

Imp3

変動因	平方和	自由度	普遍分散	F値
被験者S	4072.12	4	1018.03	
発話速度 A	4026.55	5	805.31	7.36*
誤差 A×S	2187.36	20	109.37	
音声レベル B	8524.59	3	2841.53	49.86*
誤差 B×S	683.87	12	56.99	
交互作用 A×B	1497.38	15	99.83	1.34
誤差 A×B×S	4476.35	60	74.61	
全体 T	25468.21	119	214.02	

次に、発話速度が有意であった音場に関して Tukey の HSD 検定による「聴き取りにくさ」の多重比較を行った。結果を表 5.31 に示す。表中の*はその組み合わせに有意水準 5%で有意差が認められたことを意味する。 ImpD では発話速度 4.5 syl/s と 5.5 syl/s の間、4.5 syl/s と 7.5 syl/s の間、5.5 syl/s \sim 8.5 syl/s のそれぞれと 9.5 syl/s の間に有意差が認められた。 Imp1 では発話速度 4.5 syl/s と 5.5 syl/s \sim 7.5 syl/s のそれぞれの間、6.5 syl/s と 8.5 syl/s の間に有意差が認められた。 Imp2 では発話速度 4.5 syl/s のそれぞれと 9.5 syl/s の間に有意差が認められた。 Imp2 では 4.5 syl/s \sim 8.5 syl/s のそれぞれと 9.5 syl/s の間に有意差が認められた。 Imp3 では 5.5 syl/s および 6.5 syl/s のそれぞれと 8.5 syl/s の間、5.5 syl/s \sim 7.5 syl/s のそれぞれと 9.5 syl/s の間に有意差が認められた。 Imp3 では 5.5 syl/s の間に有意差が認められた。

ここで、多重比較の結果に基づき、各インパルス応答について発話速度を2つのグループに分類する.2つのグループとは、各インパルス応答において「聴き取りにくさ」が最も小さくなる発話速度、および、その「聴き取りにくさ」と有意差を生じない発話速度で構成される「聴き取りにくさ」が小さいグループとそれ以外の発話速度で構成される「聴き取りにくさ」が高いグループである.

発話速度と「聴き取りにくさ」の関係を図 5.26 に示す. 発話速度と音声レベルはそれぞれが独立して単語了解度に影響することから、ここでは、音声レベルの違いを考慮していない. 図中の凡例は「○」が「聴き取りにくさ」の高いグループをあらわし、「●」が「聴き取りにくさ」の低いグループをあらわす.

図 5.26 に示すように、「聴き取りにくさ」の小さいグループは ImpD が 5.5 syl/s~8.5 syl/s、Imp1 が 5.5 syl/s~7.5 syl/s、Imp2 が 4.5 syl/s~8.5 syl/s、Imp3 が 4.5 syl/s~7.5 syl/s である. ここで、各インパルス応答で最も「聴き取りにくさ」が小さくなる発話速度は ImpD が 7.5 syl/s、Imp1 および Imp2 が 6.5 syl/s、Imp3 が 5.5 syl/s である.この結果は STI が小さいほど発話速度の遅い方が「聴き取りにくさ」を低減できることを示している.さらに、発話速度 4.5 syl/s が ImpD および Imp1 では「聴き取りにくさ」の大きいグループに属するのに対し、Imp2 および Imp3 では「聴き取りにくさ」の小さいグループに属することからも同様の結論が導かれる.これらを考慮すれば、Imp1 の「聴き取りにくさ」の小さいグループ 5.5 syl/s~7.5 syl/s に対し、Imp1 よりも STI が小さい Imp2 の「聴き取りにくさ」の小さいグループは 7.5 syl/s 以下の範囲であると考えられる.よって、「聴き取りにくさ」に基づく若年者の最適発話速度は ImpD が 5.5 syl/s~8.5 syl/s、Imp1 が 5.5 syl/s~7.5 syl/s、Imp2 と Imp3 が 4.5 syl/s~7.5 syl/s と考えられる.

音声伝達に最適な発話速度と音声レベル

表 5.31 発話速度に対する「聴き取りにくさ」の多重比較結果(若年者)

1						
発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-	*		*		
5.5		-				*
6.5			-			*
7.5				-		*
8.5					-	*
9.5						-

*p<0.05

Imp1 HSD=7.59

発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-	*	*	*		
5.5		-				*
6.5			-		*	*
7.5				-		*
8.5					-	*
9.5						-

*p<0.05

Imp2 HSD=10.20

発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-					*
5.5		-				*
6.5			-			*
7.5				-		*
8.5					-	*
9.5						-

*p<0.05

Imp3 HSD=10.40

発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-					
5.5		-			*	*
6.5			-		*	*
7.5				-		*
8.5					-	
9.5						-

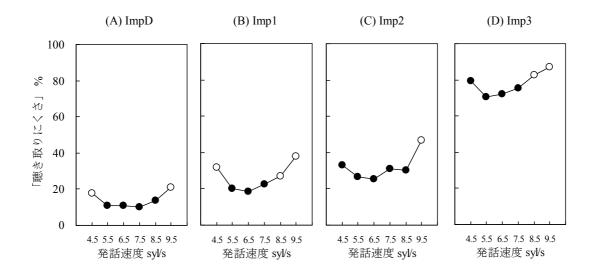


図 5.26 発話速度と「聴き取りにくさ」の関係(若年者)

- 「聴き取りにくさ」の高いグループ
- 「聴き取りにくさ」の低いグループ

次に、音声レベルが有意であった音場に関して Tukey の HSD 検定による「聴き取りにくさ」の多重比較を行った。結果を表 5.32 に示す。表中の*はその組み合わせに有意水準 5%で有意差が認められたことを意味する。ImpD、Imp1 および Imp3 では、音声レベル 65dBA と $70dBA \sim 80dBA$ のそれぞれの間、音声レベル 70dBA と 75dBA および 80dBA のそれぞれの間に有意差が認められた。Imp2 では音声レベル 65dBA と $70dBA \sim 80dBA$ のそれぞれの間、音声レベル 70dBA と 75dBA の間に有意差が認められた。

ここで、多重比較の結果に基づき、各インパルス応答について音声レベルを2つのグループに分類する.2つのグループの構成は発話速度の場合と同様である.

音声レベルと「聴き取りにくさ」の関係を図 5.27 に示す. 発話速度と音声レベルはそれぞれが独立して単語了解度に影響することから、ここでは、発話速度の違いを考慮していない. 図中の凡例は「○」が「聴き取りにくさ」の高いグループをあらわし、「●」が「聴き取りにくさ」の低いグループをあらわす.

図 5.27 に示すように、いずれのインパルス応答においても「聴き取りにくさ」の小さいグループは 75dBA および 80dBA である. この範囲が「聴き取りにくさ」に基づく若年者の最適音声レベルと考えられる.

音声伝達に最適な発話速度と音声レベル

表 5.32 音声レベルに対する「聴き取りにくさ」の多重比較結果(若年者)

ImpD HSD=4.10

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-	*	*
75			-	
80				-

*p<0.05

Imp1 HSD=5.46

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-	*	*
75			-	
80				-

*p<0.05

Imp2 HSD=10.56

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-	*	
75			-	
80				-

*p<0.05

Imp3 HSD=5.79

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-	*	*
75			-	
80				-

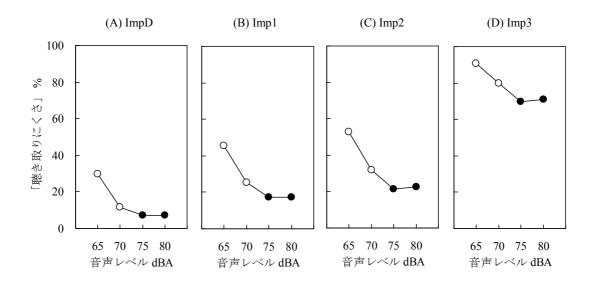


図 5.27 音声レベルと「聴き取りにくさ」の関係(若年者)

- 「聴き取りにくさ」の高いグループ

C. 若年者に最適な発話速度と音声レベル

若年者に最適な発話速度と最適音声レベルを検討する.

表 5.33 は単語了解度および「聴き取りにくさ」のそれぞれに基づく若年者の最適発話速度と両者に共通する範囲である。単語了解度に基づく若年者の最適発話速度は ImpD が 4.5 syl/s~9.5 syl/s, Imp1 および Imp2 が 4.5 syl/s~8.5 syl/s, Imp3 が 4.5 syl/s~6.5 syl/s である。一方,「聴き取りにくさ」に基づく若年者の最適発話速度は ImpD が 5.5 syl/s~8.5 syl/s, Imp1 が 5.5 syl/s~7.5 sy

表 5.34 は単語了解度および「聴き取りにくさ」のそれぞれに基づく若年者の最適音声レベルと両者に共通する範囲である. 単語了解度に基づく若年者の最適音声レベルは ImpD および Imp1 が 65dBA~80dBA, Imp2 および Imp3 が 70dBA~80dBA である. 一方,「聴き取りにくさ」に基づく若年者の最適音声レベルはインパルス応答によらず 75dBA および 80dBA である. 両者に共通する範囲はインパルス応答によらず 75dBA および 80dBA であり,この範囲が若年者に最適な発話音声レベルである.

表 5.33 音声伝達に最適な発話速度(若年者)

syl/s

				- 5
主観的評価指標	ImpD	Imp1	Imp2	Imp3
単語了解度	4.5-9.5	4.5-8.5	4.5-8.5	4.5-6.5
「聴き取りにくさ」	5.5-8.5	5.5-7.5	4.5-7.5	4.5-7.5
共通	5.5-8.5	5.5-7.5	4.5-7.5	4.5-6.5

表 5.34 音声伝達に最適な音声レベル(若年者)

dBA

主観的評価指標	ImpD	Imp1	Imp2	Imp3
単語了解度	65-80	65-80	70-80	70-80
「聴き取りにくさ」	75-80	75-80	75-80	75-80
共通	75-80	75-80	75-80	75-80

5.3.3 まとめ

実験9では、残響と騒音を同時に付加した音場における若年者に最適な発話速度と音声レベルを検討し、騒音レベル60dBAの場合について以下を明らかにした.

- 1. 単語了解度と「聴き取りにくさ」のいずれに対しても、音場によらず、発話速度と音声レベルがそれぞれ独立して影響する.
- 2. 音声伝達に最適な発話速度と音声レベルは室内音響特性によって以下のように変化する.

STI=1.00 の場合・・・発話速度 5.5~8.5 syl/s, 音声レベル 75~80dBA

STI=0.80 の場合・・・発話速度 5.5~7.5 syl/s, 音声レベル 75~80dBA

STI=0.71 の場合・・・発話速度 4.5~7.5 syl/s, 音声レベル 75~80dBA

STI=0.51 の場合・・・発話速度 4.5~6.5 syl/s, 音声レベル 75~80dBA

5.4 実験 10: 高齢者に最適な発話速度と音声レベル

公共空間は不特定多数が活動する場である. 実験 9 では, 残響と騒音を同時に付加した音場において若年者の最適発話速度と最適音声レベルを明らかにしたが, 近年の高齢社会では公共空間の利用者として高齢者を無視することはできない. 高齢者と若年者では同一音場における「聴き取りにくさ」が異なるため[70], 実験 9 で得られた結果が高齢者にも適用できるとは限らない.

実験 10 では、残響と騒音を同時に付加した音場における高齢者の最適発話速度と最適音 声レベルを明らかにする

5.4.1 方法

A. 単語

実験9と同様である.

B. 提示条件

実験9と同様である

C. 実験用音源の作成

実験9と同様である. なお,1人の被験者には3つの実験用音源を提示し,34人の被験者によって全ての実験用音源が聴取されることとした.

D. 実験装置

実験9と同様である.

E. 被験者

被験者として、(社)神戸市シルバー人材センターから派遣された社会活動を日常的に営んでいる 65 歳以上の男女 34 名を用いた. 年齢は 74 ± 3.6 歳で年齢構成は $65\sim69$ 歳が 4 名、 $70\sim74$ 歳が 15 名、 $75\sim79$ 歳が 14 名、 $80\sim85$ 歳が 1 名である.

実験の前に全被験者に対し簡易聴力検査を行った. 聴力検査にはオージオメータを用い, 125~8kHz までの 1 オクターブごとの純音について聴力レベルを 5dB 刻みで測定した. 図 5.28 に被験者の両耳の平均オージオグラムを示す. 4kHz 以上の高周波数で聴力レベルが上昇しており, 老人性難聴の傾向を示している[71].

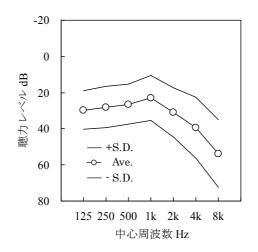


図 5.28 実験 10 で用いた被験者の両耳の平均オージオグラム

F. 提示方法

実験9と同様である.

G. 回答方法

実験9と同様である.

5.4.2 結果と考察

A. 単語了解度

回答結果より、単語を正しく聴取できた割合である単語了解度を算出した。発話速度および音声レベルの組み合わせと単語了解度の関係を図 5.29 に示す。図(A)(B)(C)(D)はそれぞれ ImpD, Imp1, Imp2, Imp3 の結果をあらわしている。なお、図の縦軸と横軸はそれぞれ単語了解度と発話速度をあらわし、凡例の違いは音声レベルの違いをあらわす。

単語了解度は提示条件の違いによって約 20%~100%の範囲で変化する. 全体として,図(A),(B),(C),(D)の順に単語了解度が低下し,また,発話速度の影響が大きくなる傾向がみられる. 各インパルス応答では,程度の違いはみられるものの,同一発話速度において音声レベルが高いほど単語了解度が高くなる傾向がみられる. 一方,同一音声レベルにおける発話速度の影響はインパルス応答によって異なる傾向がみられる. 図(A)および(B)では,発話速度が速くなるほど単語了解度は低下するが,図(C)および(D)では,発話速度が最も遅い 4.5 syl/s の場合にも単語了解度が低下する.

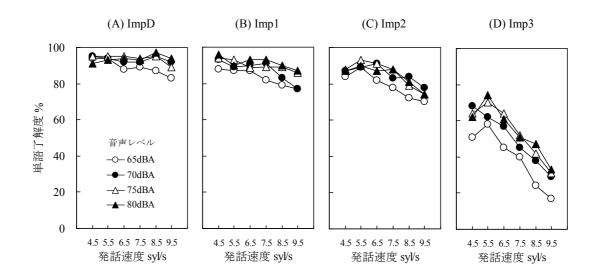


図 5.29 発話速度および音声レベルの組み合わせと単語了解度の関係(高齢者)

統計を用いてこの結果を検討する.

まず,各インパルス応答について,発話速度と音声レベルを要因とした2要因の分散分析 結果を表5.35 示す.ここでは,試行回数ごとの単語了解度を被験者内誤差としている.表 中の*は有意水準5%で有意であることをあらわす.

ImpD は音声レベルの主効果が有意であり、Imp1、Imp2、Imp3 は発話速度および音声レベルの主効果が有意である.なお、交互作用はいずれの場合も有意ではなかった.すなわち、単語了解度は STI が非常に高い音場 (ImpD) においては音声レベルのみの影響を受け、それ以外の音場 (Imp1、Imp2、Imp3) においては発話速度と音声レベルのいずれにも影響を受ける.また、交互作用がみられないことから、発話速度と音声レベルはそれぞれが独立して単語了解度に影響する.

次に、発話速度が有意であった音場に関して Tukey の HSD 検定による単語了解度の多重比較を行った。結果を表 5.36 に示す。表中の*はその組み合わせに有意水準 5%で有意差が認められたことを意味する。Impl では発話速度 4.5 syl/s と 8.5 syl/s の間,4.5 syl/s~7.5 syl/s のそれぞれと 9.5 syl/s の間に有意差が認められた。Imp2 では 5.5 syl/s および 6.5 syl/s のそれぞれと 8.5 syl/s の間,4.5 syl/s~7.5 syl/s のそれぞれと 9.5 syl/s の間,4.5 syl/s~7.5 syl/s のそれぞれと 7.5 syl/s の間,4.5 syl/s の間,4.5 syl/s の間,4.5 syl/s のそれぞれと 7.5 syl/s の間,4.5 syl/s の間に有意差が認められた。Imp3 では 5.5 syl/s と 6.5 syl/s の間,4.5 syl/s~6.5 syl/s のそれぞれと 7.5 syl/s の間,4.5 syl/s のそれぞれと 9.5 syl/s の間に有意差が認められた.

表 5.35 単語了解度に対する 2 要因分散分析結果(高齢者)

ImpD

変動因	平方和	自由度	普遍分散	F値
被験者S	15.77	2	7.89	
発話速度 A	169.20	5	33.84	2.10
誤差A×S	161.01	10	16.10	
音声レベル B	267.55	3	89.18	4.88 *
誤差B×S	109.58	6	18.26	
交互作用 A×B	280.93	15	18.73	1.22
誤差 A×B×S	459.64	30	15.32	
全体 T	1463.69	71	20.62	

*p<0.05

Imp1

P				
変動因	平方和	自由度	普遍分散	F値
被験者S	298.44	2	149.22	
発話速度 A	906.29	5	181.26	8.45 *
誤差 A×S	214.52	10	21.45	
音声レベル B	693.44	3	231.15	11.71*
誤差 B×S	118.41	6	19.73	
交互作用 A×B	243.37	15	16.22	0.50
誤差 A×B×S	970.63	30	32.35	
全体 T	3445.09	71	48.52	

*p<0.05

Imp2

-				
変動因	平方和	自由度	普遍分散	F値
被験者S	374.46	2	187.23	
発話速度 A	2187.44	5	437.49	12.84*
誤差A×S	340.61	10	34.06	
音声レベル B	484.37	3	161.46	8.30*
誤差 B×S	116.68	6	19.45	
交互作用 A×B	272.01	15	18.13	0.75
誤差 A×B×S	723.18	30	24.11	
全体 T	4498.75	71	63.36	

*p<0.05

Imp3

変動因	平方和	自由度	普遍分散	F値
被験者S	1342.22	2	671.11	
発話速度 A	13108.32	5	2621.66	104.61*
誤差 A×S	250.60	10	25.06	
音声レベル B	2745.62	3	915.21	25.82*
誤差B×S	212.65	6	35.44	
交互作用 A×B	466.70	15	31.11	0.35
誤差 A×B×S	2660.98	30	88.70	
全体 T	20787.09	71	292.78	

表 5.36 発話速度に対する単語了解度の多重比較結果(高齢者)

Imp1 HSD=6.57

発話速度(syl/s) 4.5 5.5 6.5 7.5 8.5 9.5 4.5 - * * * 5.5 - * * * 6.5 - * * * 7.5 - * * 8.5 - - - 9.5 - - -	P						
5.5 - * 6.5 - * 7.5 - * 8.5	発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
6.5 - * 7.5 - * 8.5 -	4.5	-				*	*
7.5 - * 8.5 -	5.5		-				*
8.5	6.5			-			*
	7.5				-		*
9.5	8.5					-	
	9.5						-

*p < 0.05

Imp2 HSD=8.28

発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-					*
5.5		-			*	*
6.5			-		*	*
7.5				-		*
8.5					-	
9.5						-

*p < 0.05

Imp3 HSD=7.10

発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-			*	*	*
5.5		-	*	*	*	*
6.5			-	*	*	*
7.5				-	*	*
8.5					-	*
9.5						-

*p < 0.05

ここで、多重比較の結果に基づき、各インパルス応答について発話速度を2つのグループ に分類する.2つのグループとは、各インパルス応答において単語了解度が最も高くなる発 話速度、および、その単語了解度と有意差を生じない発話速度で構成される単語了解度が高 いグループとそれ以外の発話速度で構成される単語了解度が低いグループである.

発話速度と単語了解度の関係を図 5.30 に示す. 発話速度と音声レベルはそれぞれが独立して単語了解度に影響することから、ここでは、音声レベルの違いを考慮していない. 図中の凡例は「○」が単語了解度の低いグループをあらわし、「●」が単語了解度の高いグループをあらわす. なお、発話速度が有意ではない ImpD は全ての発話速度が単語了解度の高いグループとみなす.

図 5.30 に示すように、単語了解度の高いグループは ImpD が 4.5 syl/s~9.5 syl/s, Imp1 お

よび Imp2 が 4.5 syl/s \sim 7.5 syl/s, Imp3 が 4.5 syl/s \sim 5.5 syl/s である. 以上の範囲が単語了解度に基づく高齢者の最適発話速度と考えられる.

次に、音声レベルが有意であった音場に関して Tukey の HSD 検定による単語了解度の多重比較を行った。結果を表 5.37 に示す。表中の*はその組み合わせに有意水準 5%で有意差が認められたことを意味する。ImpD では全ての組み合わせが有意ではなかった。Imp1 では音声レベル 65dBA と 75dBA および 80dBA のそれぞれの間に有意差がみられた。Imp2 および Imp3 では音声レベル 65dBA と $70dBA \sim 80dBA$ のそれぞれの間に有意差が認められた。

ここで、多重比較の結果に基づき、各インパルス応答について音声レベルを2つのグループに分類する.2つのグループの構成は発話速度の場合と同様である.

音声レベルと単語了解度の関係を図 5.31 に示す. 発話速度と音声レベルはそれぞれが独立して単語了解度に影響することから、ここでは、発話速度の違いを考慮していない. 図中の凡例は「○」が単語了解度の低いグループをあらわし、「●」が単語了解度の高いグループをあらわす. なお、発話速度が有意ではない ImpD および Imp1 は全ての音声レベルが単語了解度の高いグループとみなす.

図 5.31 に示すように、単語了解度の高いグループは ImpD が 65dBA~80dBA, Imp1, Imp2 および Imp3 が 70dBA~80dBA である. 以上の範囲が単語了解度に基づく高齢者の最適音声レベルと考えられる.

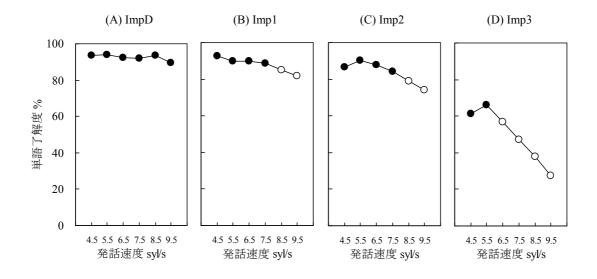


図 5.30 発話速度と単語了解度の関係(高齢者)

- O 単語了解度の低いグループ
- 単語了解度の高いグループ

表 5.37 音声レベルに対する単語了解度の多重比較結果(高齢者)

ImpD HSD=4.93

音声レベル(dBA)	65	70	75	80
65	-			
70		-		
75			-	
80				-

*p<0.05

Imp1 HSD=5.13

音声レベル(dBA)	65	70	75	80
65	-		*	*
70		-		
75			-	
80				-

*p < 0.05

Imp2 HSD=5.09

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-		
75			-	
80				-

*p<0.05

Imp3 HSD=6.87

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-		
75			-	
80				-

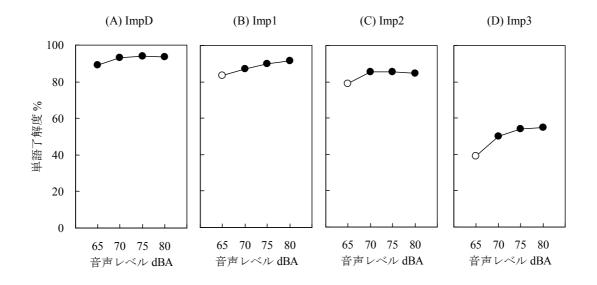


図 5.31 音声レベルと単語了解度の関係(高齢者)

- O 単語了解度の低いグループ
- 単語了解度の高いグループ

B.「聴き取りにくさ」

回答結果より、表 5.5 に示した聴き取りにくさのスケールにおいて $2\sim4$ と回答した割合である「聴き取りにくさ」を算出した.発話速度および音声レベルの組み合わせと「聴き取りにくさ」の関係を図 5.32 に示す.図 (A) (B) (C) (D) はそれぞれ ImpD, Imp1, Imp2, Imp3 の結果をあらわしている.なお,図の縦軸と横軸はそれぞれ「聴き取りにくさ」と発話速度をあらわし,凡例の違いは音声レベルの違いをあらわす.

「聴き取りにくさ」は提示条件の違いによって $0\%\sim100\%$ の範囲で大きく変化する. 図(A), (B), (C), (D)の順に「聴き取りにくさ」が大きくなる傾向がみられるが,各インパルス応答において発話速度と音声レベルが「聴き取りにくさ」に及ぼす影響には同様の傾向がみられる. すなわち,同一音声レベルの「聴き取りにくさ」は発話速度 5.5 syl/s ~7.5 syl/s のいずれかで最小となり,その発話速度よりも速くても遅くても「聴き取りにくさ」が低下する. 一方,同一発話速度の「聴き取りにくさ」は音声レベルが小さくなるにつれて大きくなる.

統計を用いてこの結果を検討する. 方法は単語了解度の場合と同様である.

各インパルス応答について,発話速度と音声レベルを要因とした2要因の分散分析結果を表5.38示す.ここでは,試行回数ごとの「聴き取りにくさ」を被験者内誤差としている.表中の*は有意水準5%で有意であることをあらわす.

全てのインパルス応答において発話速度と音声レベルの主効果が有意であり、Imp3 では、 発話速度と音声レベルの交互作用も認められた.

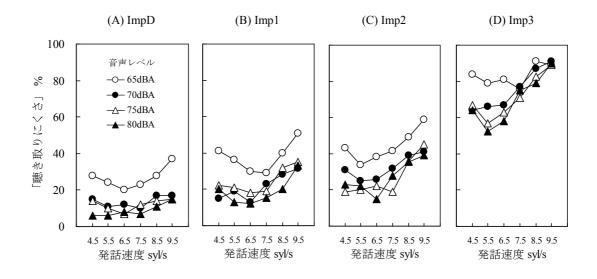


図 5.32 発話速度および音声レベルの組み合わせと「聴き取りにくさ」の関係(高齢者)

次に、発話速度が有意であった音場に関して Tukey の HSD 検定による「聴き取りにくさ」の多重比較を行った。結果を表 5.39 に示す。表中の*はその組み合わせに有意水準 5%で有意差が認められたことを意味する。 ImpD では発話速度 5.5 syl/s \sim 7.5 syl/s のそれぞれと 9.5 syl/s の間,6.5 syl/s と 8.5 syl/s の間に有意差が認められた。 Impl では発話速度 4.5 syl/s \sim 7.5 syl/s のそれぞれと 9.5 syl/s の間,6.5 syl/s の間に有意差が認められた。 Imp2 では発話速度 4.5 syl/s \sim 7.5 syl/s のそれぞれと 9.5 syl/s の間,5.5 syl/s および 6.5 syl/s のそれぞれと 8.5 syl/s の間に有意差が認められた。 Imp3 では発話速度 4.5 syl/s \sim 6.5 syl/s のそれぞれと 8.5 syl/s の間,4.5 syl/s \sim 7.5 syl/s のそれぞれと 9.5 syl/s の間に有意差が認められた。

ここで、多重比較の結果に基づき、各インパルス応答について発話速度を2つのグループに分類する.2つのグループとは、各インパルス応答において「聴き取りにくさ」が最も小さくなる発話速度、および、その「聴き取りにくさ」と有意差を生じない発話速度で構成される「聴き取りにくさ」が小さいグループとそれ以外の発話速度で構成される「聴き取りにくさ」が高いグループである.

音声レベルの違いを考慮しない場合の発話速度と「聴き取りにくさ」の関係を図 5.33 に示す. 図中の凡例は「○」が「聴き取りにくさ」の高いグループをあらわし,「●」が「聴き取りにくさ」の低いグループをあらわしす.

図 5.33 に示すように、「聴き取りにくさ」の小さいグループは全てのインパルス応答において 4.5 syl/s~7.5 syl/s である. よって、発話速度と音声レベルの交互作用が認められない ImpD、Imp1、Imp2 において、「聴き取りにくさ」に基づく若年者の最適発話速度は 4.5 syl/s~7.5 syl/s と考えられる. なお、発話速度と音声レベルの交互作用が認めらた Imp3 については別途検討が必要である.

表 5.38 「聴き取りにくさ」に対する 2 要因分散分析結果(高齢者)

ImpD

変動因	平方和	自由度	普遍分散	F値
被験者S	203.79	2	101.90	
発話速度 A	740.24	5	148.05	10.85*
誤差 A×S	136.41	10	13.64	
音声レベル B	3305.66	3	1101.89	32.80*
誤差 B×S	201.57	6	33.59	
交互作用 A×B	248.91	15	16.59	0.88
誤差 A×B×S	565.99	30	18.87	
全体 T	5402.57	71	76.09	

*p<0.05

Imp1

変動因	平方和	自由度	普遍分散	F 値
被験者S	517.33	2	258.66	
発話速度 A	2953.12	5	590.62	12.88*
誤差 A×S	458.56	10	45.86	
音声レベル B	3835.61	3	1278.54	28.72*
誤差 B×S	267.10	6	44.52	
交互作用 A×B	499.61	15	33.31	0.78
誤差 A×B×S	1276.09	30	42.54	
全体 T	9807.43	71	138.13	

*p<0.05

Imp2

mp2				
変動因	平方和	自由度	普遍分散	F値
被験者S	1056.41	2	528.21	_
発話速度 A	4288.45	5	857.69	11.21*
誤差 A×S	764.79	10	76.48	
音声レベル B	3541.58	3	1180.53	141.34*
誤差B×S	50.12	6	8.35	
交互作用 A×B	539.67	15	35.98	0.54
誤差 A×B×S	1981.40	30	66.05	
全体 T	12222.42	71	172.15	

*p<0.05

Imp3

変動因	平方和	自由度	普遍分散	F値
被験者S	306.21	2	153.10	
発話速度 A	6450.73	5	1290.15	15.73 *
誤差 A×S	820.16	10	82.02	
音声レベル B	1950.99	3	650.33	17.79*
誤差 B×S	219.33	6	36.55	
交互作用 A×B	1290.76	15	86.05	3.61 *
誤差 A×B×S	714.15	30	23.80	
全体 T	11752.32	71	165.53	

表 5.39 発話速度に対する「聴き取りにくさ」の多重比較結果(高齢者)

ImpD	HSD=5.2	24
шир	113D-3.4	۷,

発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-					
5.5		-				*
6.5			-		*	*
7.5				-		*
8.5					-	
9.5						-
					. 1	<0.05

 $*p\!<\!0.05$

Imp1 HSD=9.60

-						
発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-					*
5.5		-				*
6.5			-		*	*
7.5				-		*
8.5					-	
9.5						-

*p<0.05

Imp2 HSD=12.40

発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-					*
5.5		-			*	*
6.5			-		*	*
7.5				-		*
8.5					-	
9.5						-

*p < 0.05

Imp3 HSD=12.84

発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-				*	*
5.5		-			*	*
6.5			-		*	*
7.5				-		*
8.5					-	
9.5						-

*p<0.05

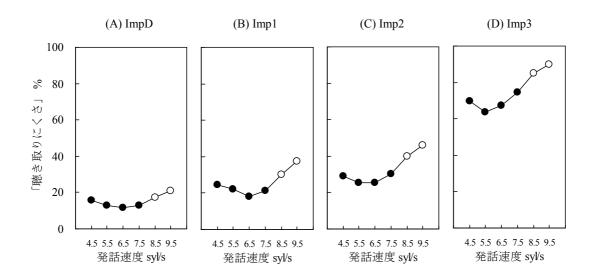


図 5.33 発話速度と「聴き取りにくさ」の関係(高齢者)

- 「聴き取りにくさ」の高いグループ
- 「聴き取りにくさ」の低いグループ

次に、音声レベルが有意であった音場に関して Tukey の HSD 検定による「聴き取りにくさ」の多重比較を行った。結果を表 5.40 に示す。表中の*はその組み合わせに有意水準 5%で有意差が認められたことを意味する。ImpD、Imp1 および Imp3 では、音声レベル 65dBA と $70dBA \sim 80dBA$ のそれぞれの間に有意差が認められた。Imp2 では音声レベル 65dBA と $70dBA \sim 80dBA$ のそれぞれの間,音声レベル 70dBA と 75dBA および 80dBA のそれぞれの間に有意差が認められた。

ここで、多重比較の結果に基づき、各インパルス応答について音声レベルを2つのグループに分類する.2つのグループの構成は発話速度の場合と同様である.

発話速度の違いを考慮しない場合の音声レベルと「聴き取りにくさ」の関係を図 5.34 に示す. 図中の凡例は「○」が「聴き取りにくさ」の高いグループをあらわし、「●」が「聴き取りにくさ」の小さいグループをあらわす.

図 5.34 に示すように、、「聴き取りにくさ」の小さいグループは ImpD, Imp1, Imp3 が 70dBA ~80dBA であり、Imp2 が 75dBA および 80dBA である.よって、発話速度と音声レベルの交互作用が認められない ImpD, Imp1, Imp2 においては、これらの範囲が「聴き取りにくさ」に基づく若年者の最適音声レベルと考えられる.なお、発話速度と音声レベルの交互作用が認められた Imp3 については別途検討が必要である.

表 5.40 音声レベルに対する「聴き取りにくさ」の多重比較結果(高齢者)

ImpD HSD=6.69

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-		
75			-	
80				-
		•	*	p < 0.05

Imp1 HSD=7.70

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-		
75			-	
80				-

*p < 0.05

Imp2 HSD=3.33

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-	*	*
75			-	
80				-

*p < 0.05

Imp3 HSD=6.98

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-		
75			-	
80				-

*p<0.05

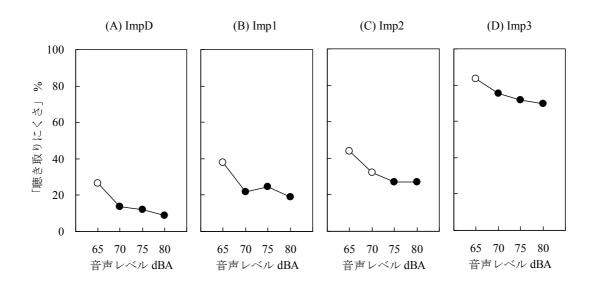


図 5.34 音声レベルと「聴き取りにくさ」の関係(高齢者)

- 「聴き取りにくさ」の高いグループ

C. 交互作用について

発話速度と音声レベルの交互作用が認められた Imp3 について、単純主効果の検定を行った.まず、発話速度に関する単純主効果検定結果を表 5.41 に示す。表中の*はその組み合わせに有意水準 5%で有意差が認められたことを意味する。いずれの音声レベルにおいても有意であることが示された。ただし、音声レベル 65dBA の場合の F 値が他の音声レベルの F 値と比較して明らかに小さいことは音声レベル 65dBA の「聴き取りにくさ」に発話速度が及ぼす影響は小さいことを意味している。ここで Imp3 における音声レベル 65dBA が「聴き取りにくさ」の高いグループに属している(図 5.34)ことを考慮すれば、「聴き取りにくさ」に基づいた高齢者の最適音声レベルは 70dBA~80dBA の範囲と考えられる。

この範囲についての発話速度の多重比較結果を表 5.42 示す。音声レベル 70dBA では 4.5 syl/s \sim 6.5 syl/s のそれぞれと 8.5 syl/s および 9.5 syl/s のそれぞれの間に有意差が認められた。音声レベル 75dBA では 4.5 syl/s \sim 7.5 syl/s のそれぞれと 9.5 syl/s の間, 5.5 syl/s および 6.5 syl/s のそれぞれと 8.5 syl/s の間に有意差が認められた。音声レベル 80dBA では 4.5 syl/s \sim 6.5 syl/s のそれぞれと 9.5 syl/s の間, 5.5 syl/s および 6.5 syl/s のそれぞれと 9.5 syl/s の間, 5.5 syl/s および 6.5 syl/s のそれぞれと 7.5 syl/s および 8.5 syl/s のそれぞれの間に有意差が認められた。

表 5.41 「聴き取りにくさ」に対する発話速度の単純主効果検定結果

変動因	平方和	自由度	普遍分散	F値
65dBA おける発話速度の効果	514.74	5	102.95	2.68*
70dBA おける発話速度の効果	2024.28	5	404.86	10.55*
75dBA おける発話速度の効果	2233.01	5	446.60	11.64*
80dBA おける発話速度の効果	2969.46	5	593.89	15.48*
誤差		40	38.36	

*p<0.05

表 5.42 Imp3 の発話速度に対する「聴き取りにくさ」の多重比較結果(高齢者)

音声レベル 70dBA HSD=16.55

<u> </u>	1100	0.00				
発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-				*	*
5.5		-			*	*
6.5			-		*	*
7.5				-		
8.5					-	
9.5						-

*p<0.05

音声レベル 75dBA HSD=16.55

発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-					*
5.5		-			*	*
6.5			-		*	*
7.5				-		*
8.5					-	
9.5						-

*p<0.05

音声レベル 80dBA HSD=16.55

д / ООФЕТТ	1100 1	0.00				
発話速度(syl/s)	4.5	5.5	6.5	7.5	8.5	9.5
4.5	-					*
5.5		-		*	*	*
6.5			-	*	*	*
7.5				-		
8.5					-	
9.5						-

*p<0.05

以上の結果に基づき、Imp3 の各音声レベルについて発話速度を 2 つのグループに分類する. 2 つのグループの構成は交互作用のない場合と同様である.

各音声レベルにおける発話速度と「聴き取りにくさ」の関係を図 5.35 に示す. 図中の凡例は「○」が「聴き取りにくさ」の高いグループをあらわし、「●」が「聴き取りにくさ」の低いグループをあらわす.

図 5.35 に示すように、「聴き取りにくさ」の小さいグループは音声レベル 70dBA および 75dBA が $4.5\sim7.5$ syl/s、音声レベル 80dBA が $4.5\sim6.5$ syl/s である. 以上の範囲が Imp3 に おいて「聴き取りにくさ」に基づく高齢者の最適発話速度と考えられる.

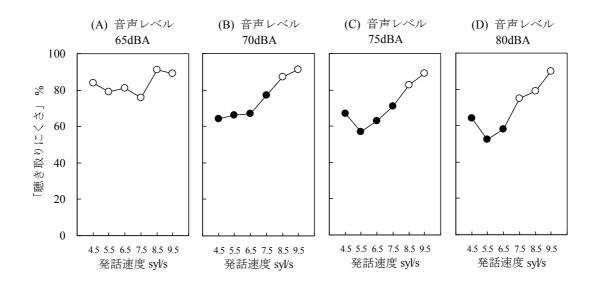


図 5.35 Imp3 における発話速度と「聴き取りにくさ」の関係(高齢者)

- O 「聴き取りにくさ」の高いグループ
- 「聴き取りにくさ」の低いグループ

次に、音声レベルに関する単純主効果検定結果を表 5.43 に示す。表中の*はその組み合わせに有意水準 5%で有意差が認められたことを意味する。発話速度 4.5syl/s, 5.5syl/s, 6.5syl/s および 8.5syl/s において有意であることが示された。ただし、発話速度 8.5syl/s の場合の F 値が発話速度 4.5syl/s~6.5syl/s の F 値と比較して明らかに小さいことは発話速度 8.5syl/s の「聴き取りにくさ」に音声レベルが及ぼす影響が小さいことを意味する。ここで Imp3 における発話速度 8.5syl/s が「聴き取りにくさ」の高いグループに属している(図 5.33)ことを考慮すれば、「聴き取りにくさ」に基づいた高齢者の最適発話速度は 4.5syl/s~7.5syl/s の範囲と考えられる。

単純主効果検定で有意差の認められた発話速度 4.5syl/s~6.5syl/s について, 音声レベルに

対する多重比較の結果を表 5.44 に示す. 発話速度 4.5 syl/s および 6.5 syl/s は音声レベル 65dBA と 70dBA~80dBA のそれぞれの間に有意差が認められた. 発話速度 5.5 syl/s は音声レベル 65dBA と 70dBA~80dBA のそれぞれの間, 音声レベル 70dBA と 80dBA の間に有意差が認められた.

表 5.43 「聴き取りにくさ」に対する音声レベルの単純主効果検定結果

変動因	平方和	自由度	普遍分散	F 値
4.5syl/s おける音声レベルの効果	828.19	3	276.06	10.65*
5.5syl/s おける音声レベルの効果	1223.84	3	407.95	15.73 *
6.5syl/s おける音声レベルの効果	875.56	3	291.85	11.26*
7.5syl/s おける音声レベルの効果	61.33	3	20.44	0.79
8.5syl/s おける音声レベルの効果	244.19	3	81.40	3.14*
9.5syl/s おける音声レベルの効果	8.65	3	2.88	0.11
誤差		36	25.93	

*p < 0.05

表 5.44 Imp3 の音声レベルに対する「聴き取りにくさ」の多重比較結果(高齢者)

発話速度 4.5syl/s HSD=12.03

 <u> </u>				
 音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-		
75			-	
80				-
				/ 0 05

*p < 0.05

発話速度 5.5syl/s HSD=12.03

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-		*
75			-	
80				-

*p < 0.05

発話速度 6.5syl/s HSD=12.03

音声レベル(dBA)	65	70	75	80
65	-	*	*	*
70		-		
75			-	
80				-

*p < 0.05

以上の結果に基づき、Imp3 の各発話速度について音声レベルを 2 つのグループに分類する. 2 つのグループの構成は交互作用のない場合と同様である.

各発話速度における音声レベルと「聴き取りにくさ」の関係を図 5.36 に示す. 図中の凡例は「○」が「聴き取りにくさ」の高いグループをあらわし、「●」が「聴き取りにくさ」の低いグループをあらわす. なお、発話速度 7.5 syl/s については、図 5.34 の結果に基づき、音声レベル 70dBA~80dBA を「聴き取りにくさ」の小さいグループとした.

図 5.36 に示すように、「聴き取りにくさ」の小さいグループは発話速度 4.5 syl/s、6.5 syl/s および 7.5 syl/s においては音声レベル $70dBA \sim 80dBA$ 、発話速度 5.5 syl/s においては音声レベル 75dBA と 80dBA である.以上の範囲が Imp3 において「聴き取りにくさ」に基づく高齢者の最適音声レベルと考えられる.

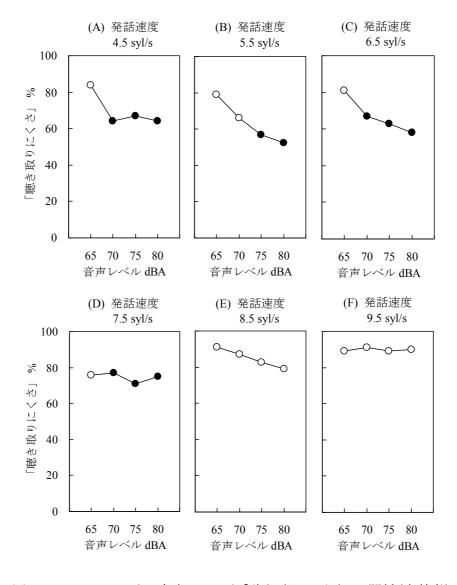


図 5.36 Imp3 における音声レベルと「聴き取りにくさ」の関係(高齢者)

- O 「聴き取りにくさ」の高いグループ
- 「聴き取りにくさ」の低いグループ

D. 高齢者に最適な発話速度と音声レベル

高齢者に最適な発話速度と最適音声レベルを検討する.

表 5.45 は単語了解度および「聴き取りにくさ」のそれぞれに基づく高齢者の最適発話速度と両者に共通する範囲である。単語了解度に基づく高齢者の最適発話速度は ImpD が 4.5 syl/s~9.5 syl/s、Imp1 および Imp2 が 4.5 syl/s~7.5 syl/s、Imp3 が 4.5 syl/s~5.5 syl/s である。一方、「聴き取りにくさ」に基づく高齢者の最適発話速度は ImpD、Imp1、Imp2 が 4.5 syl/s~7.5 syl/s、Imp3 が 4.5 syl/s~7.5 syl/s(音声レベル 70dBA および 75dBA)または 4.5 syl/s~6.5 syl/s(音声レベル 80dBA)である。両者に共通する範囲は ImpD、Imp1、Imp2 が 4.5 syl/s~7.5 syl/s、Imp3 が 4.5 syl/s~5.5 syl/s(音声レベル 70dBA~80dBA)であり、Imp1、Imp2 についてはこの範囲が高齢者に最適な発話速度である。

表 5.46 は単語了解度および「聴き取りにくさ」のそれぞれに基づく高齢者の最適音声レベルと同者に共通する範囲である。単語了解度に基づく高齢者の最適音声レベルは ImpD が 65dBA~80dBA, Imp1, Imp2 および Imp3 が 70dBA~80dBA である。一方、「聴き取りにくさ」に基づく高齢者の最適音声レベルは ImpD および Imp1 が 70dBA~80dBA, Imp2 が 75dBA および 80dBA, Imp3 が 70dBA~80dBA (発話速度 4.5 syl/s, 6.5 syl/s および 7.5 syl/s) または 75dBA~80dBA (発話速度 5.5 syl/s) である。両者に共通する範囲は ImpD および Imp1 が 70dBA~80dBA, Imp2 が 75dBA および 80dBA, Imp3 が 70dBA~80dBA (発話速度 4.5 syl/s, 6.5 syl/s) または 75dBA~80dBA (発話速度 5.5 syl/s) であり、ImpD, Imp1, Imp2 についてはこの範囲が高齢者に最適な発話音声レベルである。

なお、Imp3 については、表 5.45 と表 5.46 のそれぞれに示された発話速度と音声レベルの組み合わせのうち、両者に共通する発話速度 4.5 syl/s と音声レベル $70\sim80$ dBA、または、発話速度 5.5 syl/s と音声レベル $75\sim80$ dBA が高齢者に最適な発話速度と音声レベルである.

表 5.45 音声伝達に最適な発話速度(高齢者)

syl/s

主観的評価指標	ImpD	Imp1	Imp2	Imp3
単語了解度	4.5-9.5	4.5-7.5	4.5-7.5	4.5-5.5
「聴き取りにくさ」	4.5-7.5	4.5-7.5	4.5-7.5	4.5-7.5 (70dBA)
				4.5-7.5 (75dBA)
				4.5-6.5 (80dBA)
共通	4.5-7.5	4.5-7.5	4.5-7.5	4.5-5.5 (70dBA)
				4.5-5.5 (75dBA)
				4.5-5.5 (80dBA)

表 5.46 音声伝達に最適な音声レベル(高齢者)

dBA

主観的評価指標	ImpD	Imp1	Imp2	Imp3
単語了解度	65-80	70-80	70-80	70-80
「聴き取りにくさ」	70-80	70-80	75-80	70-80 (4.5syl/s)
				75-80 (5.5syl/s)
				70-80 (6.5syl/s)
				70-80 (7.5syl/s)
共通	70-80	70-80	75-80	70-80 (4.5syl/s)
				75-80 (5.5syl/s)
				70-80 (6.5syl/s)
				70-80 (7.5syl/s)

5.4.3 まとめ

実験 10 では、残響と騒音を同時に付加した音場における高齢者に最適な発話速度と音声 レベルを検討し、騒音レベル 60dBA の場合について以下を明らかにした。

- 1. 単語了解度に対しては、音場によらず、発話速度と音声レベルがそれぞれ独立して影響を及ぼす.
- 2. 「聴き取りにくさ」に対しては、STI が 0.71 以上の場合、発話速度と音声レベルがそれ ぞれ独立して影響を及ぼす。STI が 0.51 の場合、発話速度と音声レベルの間に交互作 用が生じる.
- 3. 音声伝達に最適な発話速度と音声レベルは室内音響特性によって以下のように変化する.

STI=1.00 の場合・・・発話速度 4.5~7.5 syl/s, 音声レベル 70~80dBA

STI=0.80 の場合・・・発話速度 4.5~7.5 syl/s, 音声レベル 70~80dBA

STI=0.71 の場合・・・発話速度 4.5~7.5 syl/s, 音声レベル 75~80dBA

STI=0.51 の場合・・・発話速度 4.5 syl/s, 音声レベル 70~80dBA, または,

発話速度 5.5 syl/s, 音声レベル 75~80dBA

5.5 総合的考察-公共空間における音声伝達に最適な発話速度と音声レベル

実験 9 および実験 10 の結果に基づき、公共空間における音声伝達に最適な発話速度と音声レベルを検討する.

公共空間は不特定多数が活動する場であるため、受聴者を特定することは難しい. そこで若年者と高齢者のいずれにとっても最適な発話速度と音声レベルを公共空間における音声 伝達に最適な発話速度および音声レベルと考える.

表 5.47 は若年者および高齢者の最適発話速度と両者に共通する範囲である。若年者の最適発話速度は ImpD が 5.5 syl/s~8.5 syl/s, Imp1 が 5.5 syl/s~7.5 syl/s, Imp2 が 4.5 syl/s~6.5 syl/s である。一方,高齢者の最適発話速度は ImpD,Imp1,Imp2 が 4.5 syl/s~7.5 syl/s, Imp3 が 4.5 syl/s~7.5 syl/s(音声レベル 70dBA)または 4.5 syl/s~7.5 syl/s(音声レベル 75dBA~80dBA)である。両者に共通する範囲は ImpD,Imp1 が 5.5 syl/s~7.5 syl/s,Imp2 が 4.5 syl/s~7.5 syl/s,Imp3 が 4.5 syl/s(音声レベル 70dBA)または 4.5 syl/s~7.5 syl/s(音声レベル 70dBA)または 4.5 syl/s~7.5 syl/s(音声レベル 70dBA)または 4.5 syl/s~7.5 syl/s(音声レベル 70dBA)または 4.5 syl/s~7.5 syl/s(音声レベル 70dBA)をあり,Imp1,Imp2 についてはこの範囲が公共空間における音声伝達に最適な発話速度である。

表 5.48 は若年者および高齢者の最適音声レベルと両者に共通する範囲である。若年者の最適音声レベルは ImpD, Imp1, Imp2 および Imp3 とも 75dBA~80dBA である。一方, 高齢者の最適音声レベルは ImpD および Imp1 が 70dBA~80dBA, Imp2 が 75dBA~80dBA, Imp3 が 70dBA~80dBA (発話速度 4.5 syl/s)または 75dBA~80dBA (発話速度 5.5 syl/s)である。両者に共通する範囲は ImpD, Imp1, Imp2 が 75dBA~80dBA, Imp3 が 75dBA~80dBA (発話速度 4.5 syl/s~5.5 syl/s)であり,ImpD, Imp1, Imp2 についてはこの範囲が公共空間における音声伝達に最適な音声レベルである。

なお、Imp3 については、表 5.47 と表 5.48 のそれぞれに示された発話速度と音声レベルの組み合わせのうち、両者に共通する話速度 4.5 syl/s \sim 5.5 syl/s と音声レベル $70\sim$ 80dBA の組み合わせが公共空間における音声伝達に最適な発話速度と音声レベルである.

以上をまとめると、公共空間における音声伝達に最適な発話速度は ImpD(STI=1.00) および Imp1(STI=0.80) が 5.5 syl/s \sim 7.5 syl/s, Imp2(STI=0.71) が 4.5 syl/s \sim 7.5 syl/s, Imp3(STI=0.51) が 4.5 syl/s \sim 5.5 syl/s であり、最適な音声レベルはインパルス応答によらず $75dBA\sim80dBA$ である. なお、実験 9 および実験 10 で用いた騒音レベルが 60dBA であることから、上記の最適音声レベルは $SN+15\sim+20dB$ に相当する. これは、第 3 章で明らかにした騒音レベルが 40dBA 以上の場合の最適音声レベルと一致する. すなわち、音声伝達に最適な発話速度は騒音を除いた空間の音響特性によって決定し、音声伝達に最適な音声レベルは騒音レベルによって決定すると考えられる.

表 5.47 音声伝達に最適な発話速度

syl/s

				2
聴取者	ImpD	Imp1	Imp2	Imp3
若年者	5.5-8.5	5.5-7.5	4.5-7.5	4.5-6.5
高齢者	4.5-7.5	4.5-7.5	4.5-7.5	4.5 (70dBA)
				4.5-5.5 (75dBA)
				4.5-5.5 (80dBA)
共通	5.5-7.5	5.5-7.5	4.5-7.5	4.5 (70dBA)
				4.5-5.5 (75dBA)
				4.5-5.5 (80dBA)

表 5.48 音声伝達に最適な音声レベル

dBA

主観的評価指標	ImpD	Imp1	Imp2	Imp3
若年者	75-80	75-80	75-80	75-80
高齢者	70-80	70-80	75-80	70-80 (4.5syl/s)
				75-80 (5.5syl/s)
共通	75-80	75-80	75-80	75-80 (4.5syl/s)
				75-80 (5.5syl/s)

5.6 総合的考察 - 発話速度が文脈効果に及ぼす影響

発話速度を変化させた実験 8 および実験 9 の結果より,同一提示条件に対する若年者の単語了解度と「聴き取りにくさ」を比較する. 図 5.37 は実験 8 と実験 9 で得られた単語了解度と「聴き取りにくさ」をそれぞれ \mathbf{Z} 値に変換したものである. 縦軸が実験 8 の結果をあらわし、横軸が実験 9 の結果をあらわす. 図中に回帰式と相関係数を示す.

単語了解度の場合,全ての提示条件がほぼ対角線上に分布しており,実験8と実験9で用いられた同一提示条件に対する値がほぼ等しい.一方,「聴き取りにくさ」の場合,全ての提示条件が対角線より下に分布している.これは実験9で得られた「聴き取りにくさ」が実験8よりも大きいことをあらわしている.

同一提示条件に対する「聴き取りにくさ」が実験 8 と実験 9 で異なる理由として、基準刺激の違いが考えられる。本論文の第 4 章の結果に基づき、実験 8 と実験 9 では基準刺激を加えることで「聴き取りにくさ」に生じる文脈効果の低減を図っている。 両実験で用いた「聴き取りにくさ」が 100%になる基準刺激はインパルス応答、音声レベル (65dBA) および騒音レベル (60dBA) が同一であるが、発話速度は異なる。実験 8 で用いた基準刺激の発話速度は 5.5 syl/s であり、実験 9 は 8.5 syl/s である。一方、実験 8 および実験 9 では、若年者の「聴き取りに

くさ」が音声伝達性能の低い音場において発話速度 8.5 syl/s 以上で有意に低下することが示されている。このことから、両実験で用いた基準刺激に対する「聴き取りにくさ」に有意差が生じており、その結果、実験 8 と実験 9 で用いた同一提示条件の「聴き取りにくさ」に文脈効果[61,62]が生じたと考えられる。なお、図 5.37 では、「聴き取りにくさ」が小さい提示条件ほど両実験で得られた値の差が小さくなる傾向が示された。これは実験 8 と実験 9 で用いた「聴き取りにくさ」が 0%になる基準刺激によって、文脈効果の抑制が生じたためと考えられる。

次に、同一提示条件に対する高齢者の単語了解度と「聴き取りにくさ」を比較する. 被験者に高齢者とし、実験8と同一の実験方法を用いた平田ら[72]の実験と本論文における実験10の結果を比較する. 図5.38は両実験で得られた単語了解度と「聴き取りにくさ」をそれぞれZ値に変換したものである. 縦軸が平田ら[72]の実験結果をあらわし、横軸が実験10の結果をあらわす. 図中に回帰式と相関係数を示す.

単語了解度の場合,全ての提示条件がほぼ対角線上に分布しており,異なる2つの実験で用いられた同一提示条件に対する値がほぼ等しい.「聴き取りにくさ」の場合も,若年者の場合とは異なり,全ての提示条件がほぼ対角線上に分布している.

若年者で生じた文脈効果が高齢者で生じない理由として、高齢者は両実験で用いた「聴き取りにくさ」が 100%になる基準刺激の違いを知覚出来なかったことが考えられる. 若年者の場合と同様、高齢者の実験にも基準刺激を加えることで「聴き取りにくさ」に生じる文脈効果の低減を図っている. 両実験で用いた「聴き取りにくさ」が 100%になる基準刺激はインパルス応答、音声レベル(65dBA)および騒音レベル(60dBA)が同一である. ただし、平田ら[72]の実験では発話速度 5.5 syl/s を用い、実験 10 では 8.5 syl/s を用いた. 一方、実験 10 では、音声伝達性能が低い音場において発話速度が高齢者の「聴き取りにくさ」にほとんど影響しないことが示されている. 基準刺激は実験 10 の音場よりもさらに音声伝達性能が低い音場であるため、両実験で用いた基準刺激に対する「聴き取りにくさ」に差がみられず、同一提示条件に対する「聴き取りにくさ」に文脈効果[61,62]が生じなかったと考えられる.

発話速度は「聴き取りにくさ」に影響を及ぼす要因である.よって、「聴き取りにくさ」を用いて音声伝達性能を絶対評価するためには、聴取実験で用いる基準刺激の発話速度にも配慮が必要である.

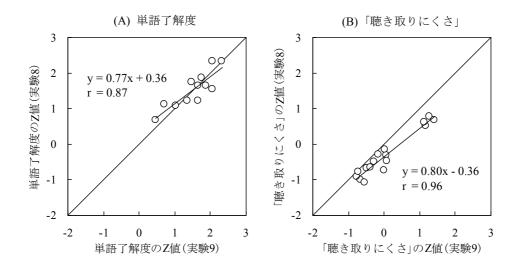


図 5.37 実験 8 と実験 9 の両実験で用いた音場の単語了解度と「聴き取りにくさ」(若年者)

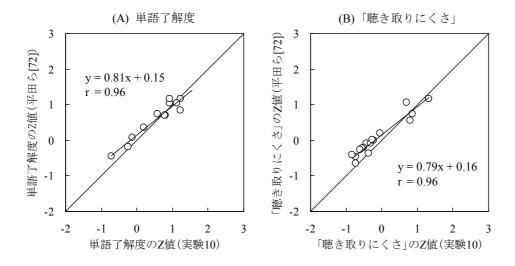


図 5.38 実験 8 と実験 9 の両実験で用いた音場の単語了解度と「聴き取りにくさ」(高齢者)

5.7 結論

第5章では、公共空間における音声伝達に最適な発話速度と音声レベルについて検討し、 以下を明らかにした。

- 1. 最適な発話速度は空間の音響特性によって決定し、音声伝達に最適な音声レベルは騒音レベルによって決定する
- 2. 騒音レベルが 60dBA の場合,音声伝達に最適な発話速度と音声レベルは次のとおりである.

STI=1.00 の場合・・・発話速度 5.5~7.5 syl/s, 音声レベル 75~80dBA

STI=0.80 の場合・・・発話速度 5.5~7.5 syl/s, 音声レベル 75~80dBA

STI=0.71 の場合・・・発話速度 4.5~7.5 syl/s, 音声レベル 75~80dBA

STI=0.51 の場合・・・発話速度 4.5~5.5 syl/s, 音声レベル 75~80dBA

3. 公共空間および公共放送で実際に用いられているアナウンスの発話速度は概ね 4.0 syl/s~10.0 syl/s の範囲に分布する. したがって, 一部の公共空間および公共放送では, アナウンスの発話速度を変化させることでより良い音声伝達が実現できる.

第6章 総括

第1章では、音声伝達性能の主観的評価指標、および、音声伝達に影響を及ぼす物理的要因に関する既往の研究を紹介し、以下の問題点を明らかにした。

- 1. 音声伝達性能が比較的高い音場間の違いをあらわし、かつ、絶対評価のできる主観的評価指標がない.
- 2. 音声伝達に影響を及ぼす要因のうち、発声系に関する要因、すなわち、音声レベルや発話速度の最適値が明らかにされていない。

第2章から第5章では、これらの問題点について検討した。

第2章では、音声伝達性能の主観的評価指標として、単語に対する「なじみの程度」、すなわち、親密度が最も高い単語を聴き取りにくいと感じた人の割合である「聴き取りにくさ」を提案し、残響および騒音付加音場における「聴き取りにくさ」と単語了解度を比較・検討した。その結果、単語了解度が100%であっても聴き取りにくいと感じている人がいることを明らかにした。この結果は音声伝達を必要とする空間において目指すべき状況が単語了解度100%ではなく、「聴き取りにくさ」が0%の状態であることを示している。さらに、音声伝達性能が良い場合は「聴き取りにくさ」の方が単語了解度よりも感度良く、かつ、厳しく音声伝達性能を評価できることを明らかにした。

第3章では、音声レベルが「聴き取りにくさ」に及ぼす影響を検討し、音声伝達に最適とされる残響時間 0.5s において、騒音レベルと最適音声レベルの関係を明らかにした。「聴き取りにくさ」に基づけば、音声伝達に最適な音声レベルは騒音レベル 40dBA 以下の場合が55dBA で一定であり、騒音レベル 40dBA 以上の場合は SN 比+15dB となる音声レベルである。また、良好な音声伝達を行うために、最適な音声レベルを確保するだけでなく、騒音レベルを小さくする必要があることを明らかにした。

第4章では、「聴き取りにくさ」の実験方法について検証した。その結果、同一被験者に同一音表を繰り返し提示しても「聴き取りにくさ」に学習効果はあらわれないこと、および、刺激文脈に基準刺激を加えることで、「聴き取りにくさ」の文脈効果を抑制できることを明らかにした。これらの結果は、聴取実験で用いる刺激群に基準刺激を加えることによって、「聴き取りにくさ」が音声伝達性能を絶対評価できることを示している。

第5章では、発話速度が「聴き取りにくさ」に及ぼす影響を検討するとともに、公共空間における音声伝達に最適な発話速度と音声レベルを検討した。その結果、音声伝達性能の低い空間ほど発話速度を遅くすることが望ましいこと、および、音声レベルは騒音レベルに応じて最適な値が決定することを明らかにした。また、騒音レベル 60dBA の場合、STI が 0.5以上の音場では、発話速度 5.5 syl/s と音声レベル 75dBA~80dBA が音声伝達に最適な発話速度と音声レベルであることを示した。実際の公共空間および公共放送で用いられているア

ナウンスの発話速度が概ね 4.0 syl/s~10.0 syl/s の範囲に分布しているという調査結果に基づけば,一部の公共空間および公共放送では,アナウンスの発話速度を現状よりも遅くすることでより良い音声伝達が実現できると考えられる.

以上,本研究で得られた成果は良好な音声伝達性能を有する空間の実現に有用であると考える. ただし,音声の周波数特性や受聴者の態度のように,音声伝達に影響を及ぼすと考えられながら本論文では扱っていない要因が多数存在する. 良好な音声伝達を実現するためにはこれらの要因が及ぼす影響について明らかにするとともに,得られた知見を実現するための設計方法を確立することが必要である.

今後も、より良い音環境の実現を目指して研究を続ける所存である.

引用文献

- [1] 佐藤洋, "室内公共空間における音声伝達性能の評価法に関する研究," 東北大学博士学位論文, (1997)
- [2] H. Fletcher and J. C. Steinberg, "Articulation Testing Methods," J. Acoust. Soc. Am. 1, 17-21 (1930)
- [3] 久我新一,幸田彰,"講演室の明瞭度試験の性能について,"日本建築学会論文報告集 22,249,(1954)
- [4] 日本音響学会明瞭度委員会, 明瞭度試験法の基準, (1956)
- [5] 日本音響学会明瞭度委員会, 明瞭度標準テープ(1965)の製作経過ならびに取扱要領について, (1965)
- [6] 日本音響コンサルタント協会, 単音節明瞭度テープ[解説], (1979)
- [7] 小川有子, 西隆司, 古川宣一, "無意味三連音節による明瞭度試験," 日本音響学会第 1 回シンポジウム「試験用音声の標準化」, 10-16 (1985)
- [8] 中島立視,福山和男,前田節雄,"室内での音声の「聴き取りやすさ」と STI(1)ーマスカー付加による単音節明瞭度試験用音源改善の試みー,"日本音響学会秋季発表会講演論文集,553-554 (1985)
- [9] 是永雄二, 中島立視, 安藤四一, "明瞭度試験におけるマスカーの効果," 日本音響学会 秋季研究発表会講演論文集, 853-854 (1992)
- [10] 橋本修, 木村翔, 宇津木淳一, "会話音声の発声レートを考慮した三連音節明瞭度試験 用音源による室内音場の明瞭度評価について," 日本建築学会計画系論文集 **456**, 1-8 (1994)
- [11] T.Houtgast, "The effect of ambient noise on speech intelligibility in classrooms," Appl. Acoust.14, 15-25 (1981)
- [12] V. M. A. Peutz, "Articulation loss of consonants as a criterion for speech transmission in a room," J. Audio. Eng. Soc. **19**, 915-919 (1971)
- [13] J. S. Bradley, "Speech intelligibility studies in classrooms," J. Acoust. Soc. Am. **80**, 846-854 (1986)
- [14] J. S. Bradley, "On the combined effects of signal-to-noise ratio and room acoustics on speech intelligibility," J. Acoust. Soc. Am. **106**, 1820-1828 (1999)
- [15] J. S. Bradley, "Predictors of speech intelligibility in rooms," J. Acoust. Soc. Am. **80**, 837-845 (1986)
- [16] S. R. Bistafa and J. S. Bradley, "Reverberation time and maximum background-noise level for classrooms from a comparative study of speech intelligibility metrics," J. Acoust. Soc. Am. **107** (2), 861-875 (2000)

- [17] H. G. Latham, "The signal-to-noise ratio for speech intelligibility an auditorium acoustics design index," Appl. Acoust. **12**, 253-320 (1979)
- [18] D. N. Kalikow, K. N. Stevens and L. L. Elliott, "Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability," J. Acoust. Soc. Am. 61, 1337-1351 (1977)
- [19] Jeffrey H. Owen, "Influence of acoustical and linguistic factors on the SPIN test difference score," J. Acoust. Soc. Am. **70**, 678-682 (1981)
- [20] R. Plomp and A. M. Mimpen, "Speech-reception threshold for sentences as a function of age and noise level," J. Acoust. Soc. Am. **66**, 1333-1342 (1979)
- [21] R. Plomp and A. M. Mimpen, "Effect of the Orientation of the Speaker's Head and the Azimuth of a Noise Source on the Speech-Reception Threshold for Sentences," Acustica. **48**, 325-328 (1981)
- [22] A. W. Bronkhorst and R. Plomp, "Effect of multiple speechlike maskers on binaural speech recognition in normal and impaired hearing," J. Acoust. Soc. Am. **92**, 3132-3139 (1992)
- [23] Brigitta Gabriel and Markus Meis, "Control if hearing aid fittings are successful(II)," Refarate des Horgerate-Akustiker-Kongresses, (2001)
- [24] M. Picard and J. S. Bradley, "Revisiting Speech Interference in Classrooms," Audiology **40**, 221-244 (2001)
- [25] 戸井田義徳, "野外拡声装置の明瞭度改善に関する研究," 東京都立大学博士学位請求論文, (1984)
- [26] 田中美郷, "補聴器適合評価機器の試作に関する研究," 昭和 63 年度科学研究費補助金 研究成果報告書 (1989)
- [27] 坂本修一,鈴木陽一,天野成昭,小澤賢司,近藤公久,曽根敏夫,"親密度と音韻バランスを考慮した単語了解度試験用リストの構築,"日本音響学会誌 **54**,842-849 (1998)
- [28] 天野成昭, 近藤公久, 日本語の語彙特性(三省堂, 東京, 1999)
- [29] 中島立美, 前田節雄, "室内での音声の「聞き取り易さ」と STI," 日本音響学会建築音響研究委員会資料 AA84-30 (1984)
- [30] 佐藤洋, 長友宗重, 吉野博, 矢島吉紀, "残響・騒音の音声聴取に及ぼす影響の評価に関する実験的検討," 日本建築学会計画系論文集 484, 1-8 (1996)
- [31] L. L. Beranek, Noise and Vibration Control (McGraw-Hill, New York, 1971)
- [32] F. B. Stumpf, Analytical Acoustics (Ann Arbor Science, Ann Arbor, MI, 1980)
- [33] I. Sharland, Woods Practical Guide to Noise Control (Woods of Colchester, Great Britain, 1972)
- [34] P. H. Parkin and H. R. Humphreys, Acoustics, Noise and Buildings (Faber, London, 1969)
- [35] W. Burns, Noise and Man (John Murray, London, 1968)
- [36] G. A. Studebaker, R. L. Sherbecoe, D. M. McDaniel, and C. A. Gwaltney, "Monosyllabic word

- recognition at higher-than-normal speech and noise levels," J. Acoust. Soc. Am. **105**, 2431-2444 (1999)
- [37] H. Fletcher, Speech and hearing, (Van Nostrand, New York, 1929)
- [38] W. D. Garvey, "The intelligibility of speeded speech," J. Exper. Psychol. 45, 102-108 (1953)
- [39] G. Pestalozzi and I. Shore, "Clinical evaluation of presbyacusis on the basis of different tests of auditory faction," Laryngoscope **65**, 1136-1163 (1955)
- [40] E. Bocca and C. Calearo, "Aspetti della pathologia reditiva centrale nel vecchio (Aspects of auditory pathology of central origin in aged subjects)," Ann. Loring. 55, 365-369 (1956)
 Cited in Oto-Rhino-Laryngology Section XI of Excerpta Medica 10, 6, 231 (1957)
- [41] G. Fairbanks, W. L. Everitt and R. P. Jaeger, "Method for time or frequency compression-expansion of speech," Trans. I. R. E., 7-12 (1954)
- [42] C. Calearo and A. Lazzarone, "Speech intelligibility in relation to the speed of message," Laryngoscope **67**, 410-419 (1957)
- [43] J. B. de. Quiros, "Accelet¥rated speech audiometry, an examination of test results," Transl. Beltone Inst. Hear. Res. 17, (1964)
- [44] G. Fairbanks, N. Guttman and M. D. Miron, "Effects of time compression upon the comprehension of connected speech," J. Speech and Hearing Disorders 22, 10-19 (1957)
- [45] E. Foulke, "Listening comprehension as a function of word rate," J. Communication **18**, 198-206 (1968)
- [46] A. Wingfield, "Acoustic redundancy and the perception of time- compressed speech," J. Speech Hear. Res. **18**, 96-104 (1975)
- [47] D. M. Luterman, O. L. Welsh and J. Melrose, "Responses of aged males to time-altered speech stimuli," J. Speech Hear. Res. 9, 226-230 (1966)
- [48] T. D. Schon, "The effects on speech intelligibility of time-compression and expansion on normal hearing, hard of hearing, and aged males," J. Auditory Res. **10**, 263-268 (1970)
- [49] L. M. Di Carlo and H. A. Taub, "The influence of compression and expansion on the intelligibility of speech by young and aged aphasic (demonstrated CVA) individuals," J. Communication Disorders 5, 299-306 (1972)
- [50] Y. Nejime and B. C. J. Moore, "Evaluation of the effect of speech-rate slowing on speech intelligibility in noise using a simulation of cochlear hearing loss," J. Acoust. Soc. Am. **103**, 572-576 (1998)
- [51] 橋本修,木村翔,宇津木淳一,"音声分析手法を用いた三連音節明瞭度試験用音源におけるスピーチレート可変についての検討,"日本音響学会秋季研究発表会講演論文集,851-852 (1992)
- [52] 翁長博,池田哲朗, "発声レートが青年および高齢者の了解度に及ぼす影響およびそれを考慮した物理指標の試み,"日本建築学会計画系論文集 **520**, 17-23 (1999)

- [53] 津村光美,田中章浩,坂本修一,鈴木陽一,"話速変換による話者映像のずれが単語了解度に及ぼす影響,"日本音響学会秋季研究発表会講演論文集,473-474 (2005)
- [54] 沼畑俊, 坂本修一, 田中章浩, 鈴木陽一, "7,8モーラ単語了解度に対する音声伸長量と 話者映像の影響," 日本音響学会秋季研究発表会講演論文集,505-506 (2007)
- [55] 今井篤, 清山信正, 都木徹, 宮坂栄一, 小野博, "高齢者を対象とした話速変換音声の評価実験," 日本音響学会春季研究発表会講演論文集, 367-368 (1999)
- [56] 鈴木陽一, 近藤公久, 坂本修一, 天野成昭, 小澤賢司, 曽根敏夫, "親密度を統制した単語了解度試験における反応傾向," 日本音響学会聴覚研究会資料 H-98-47 (1998)
- [57] H. Haas, "The Influence of a Single Echo on the Audibility of Speech," J. Acoust. Soc. Am. **20**, 146-159 (1972)
- [58] 西川嘉雄, 佐藤洋, 兼子紳一郎, "電気音響設備を用いた場合の音声伝送品質評価の試み-文化ホールにおける音声伝送品質評価に関する研究-,"日本音響学会建築音響研究委員会資料 AA99-49 (1999)
- [59] D. F. Hoth, "Room noise spectra at subscribers' telephone locations," J. Acoust. Soc. Am. 12, 499-504 (1982)
- [60] V. O. Knudsen, Architectural Acoustics (Wiley, New York, 1932)
- [61] 難波精一郎, 音色の測定・評価法とその適用例(産業科学システムズ, 東京, 1992)
- [62] 難波精一郎, 桑野園子, 音の評価のための心理学的測定法(コロナ社, 東京, 1998)
- [63] 佐藤逸人, 佐藤洋, 鈴木陽一, 天野成昭, 近藤公久, "若年者と高齢者の単語親密度の差について," 日本音響学会秋季研究発表会講演論文集, 281-282 (2000)
- [64] Ha. Sato, M. Morimoto, M. Wada and Hi. Sato, "Objective measures for estimating listening difficulty ratings for young and elderly listeners in public spaces," CD-ROM Proceedings of WESPAC IX, Seoul, Korea, 6 (2006)
- [65] T.Houtgasut and H.J.M.Steeneken, "The modulation transfer function in room acoustics as a predictor of speech intelligibility," Acustica. **28**, 66-73 (1973)
- [66] 西川嘉雄, 佐藤洋, 井上諭, 小林好人, "建築空間におけるインパルス応答を用いた音声伝送性能評価 各種物理指標の関係," 日本建築学会計画系論文集 605, 9-14 (2006)
- [67] 佐藤洋, 西川嘉雄, 佐藤逸人, 森本政之, "音声伝送品質評価のためのインパルス応答データベースの活用-主観的評価値と物理量の対応関係-,"日本音響学会建築音響研究委員会資料 AA2006-23 (2006)
- [68] Ha. Sato, R. Ota, M. Morimoto and Hi. Sato, "Optimal speech level for speech transmission in noisy environment for young adults and aged persons," J. Acoust. Soc. Am. 117, 2364 (2005)
- [69] 高橋杏子, 大西豊, 佐藤逸人, 森本政之, "公共空間の音環境の類型化に関する研究 地下鉄および空港の音環境," 日本音響学会騒音・振動研究会資料 N2007-03 (2007)
- [70] 佐藤逸人, 佐藤洋, 吉野博, 森本政之, "加齢による聴力損失が単語了解度及び「聴き取りにくさ」に与える影響," 日本建築学会東北支部研究報告集, 9-12 (2001)

- [71] ISO 7029:2000, Acoustics Statistical Distribution of Hearing Thresholds as a Function of Age, (International Organization for Standardization, Geneva, 2000)
- [72] 平田真, "音声の発話速度が高齢者の聴き取りにくさに及ぼす影響," 神戸大学卒業論 文, (2007)
- [73] 天野成昭,近藤公久, 第一彦,"日本語単語の親密度の大規模評定実験,"日本音響学会 春季研究発表会講演論文集,345-346 (1994)

付録

A. 親密度を統制した単語リスト

用いた単語リストは天野らの研究[73]を更に発展させた日本語親密度データベースに含まれる音声提示時の親密度に基づいて作成されている。このデータベースは、新明解国語辞典第4版所載の見出し語及び小見出し語内の自立語約8万語に対して、音声提示時、文字提示時、音声文字同時提示時の三つの場合における親密度を収録している。親密度は、20代の被験者32名の7段階による評定値(1:低親密度、7:高親密度)の平均値である。この約8万語のうち、4モーラの単語25,962語を対象として以下の処理を行い単語リスト作成に使用する語を選択したものである。

1. アクセント型の統一

具体的には、0型と4型(ともにLHHHという無アクセント型)以外のアクセントで発音される可能性がある単語を削除し、さらにこれら削除された単語の同音異字語も削除している。アクセント型を統一しているのは、アクセント型が複数ある単語を用いると、被験者自身のアクセントとの相違により親密度及び了解度が異なる可能性があるためである。また、アクセント型を0型と4型の単語に限定しているのは単語数が最も多いためである。さらに、0型と4型以外のアクセントで発音される可能性がある単語だけでなく、その同音異字語も削除している。了解度試験においては、単語が音声だけで提示される。そのため0型と4型以外の型で発音される可能性があるとして削除された単語の同音異字語が、たとえ0型、4型だけのアクセント型を持つとしても、先の処理で削除された単語と聞いても区別がつかないからである。

- 2. 犯罪や病気に関係のある単語等,試験用単語として不適切と思われる単語の削除 実験が音声提示で行われることを考え,それらの同音異字語も除外している.これは 元来,この単語リストを用いて行った補聴器適合のような臨床実験の場において,社 会的に負のイメージのある単語は,聴き取りができたとしても回答しづらいといった 先入観が被験者にかかる恐れや,難聴者にとっては病気に関する単語の親密度がデー タベース構築に参加した被験者と大きく異なる恐れを排除するための処理である.
- 3. 1と2の処理を経て残った同音異字語について重複するものの削除 実験は音声提示により行われ、被験者はカナで回答するため、同音異字語が存在する 語を聴取した場合に、被験者は自分にとって最も親密度が高いものを回答すると考え られる. それゆえ、同音異字語のうちどれを採用するかは実質的な問題とはなりえな いが、ここでは音声文字同時提示時に親密度が最も高い語を採用している. この操作

は、リストに同音異字語が現れた場合に、被験者が同じ読みの単語を複数回聴取することによって困惑するだけでなく、実験者にとっても新たな情報は得られないという不都合を排除するためにおこなっている。なお、同音異字語が存在することによって被験者が複数の単語を思い浮かべるという不定性は否定できない。そういった意味では同音異字語はすべて排除することが望ましい。しかしその場合、8034 語が削除されてしまうことになり、リスト作成時の自由度が低くなることを懸念し、あえて同音異字語のうち一つだけを採用している。

以上の処理を経て得た単語群 13,607 語を親密度が $7.0\sim5.5$, $5.5\sim4.0$, $4.0\sim2.5$ 及び $2.5\sim1.0$ の 4 段階に分割する. それぞれの段階において音韻バランスを考慮し、また単語の重複を許さずに、各 50 単語からなる 20 種類の単語リスト(音表ともいう. すなわち 1 音表は 50 単語)を作成している[27].

B. アナウンスの発話速度調査結果

表 B.1 鉄道駅の発話速度調査結果(鉄道会社ごと)

調査対象	種類	平均值(syl/s)	標準偏差(syl/s)	サンプル数
札幌市営地下鉄	1	8.2	1.7	19
	3	6.8	0.9	44
仙台市営地下鉄	1	8.0	1.5	9
	3	6.6	1.0	11
	4	6.0	1.1	13
名古屋市営地下鉄	1	7.8	0.9	36
	2	6.8	1.0	40
	3	5.9	0.6	60
神戸市営地下鉄	1	8.2	1.2	26
	3	6.4	1.1	16
	4	7.1	1.0	27
京都市営地下鉄	1	7.4	1.0	16
	3	6.0	0.9	80
	4	6.4	0.9	25
大阪市営地下鉄	1	8.4	1.7	86
	3	6.6	1.2	72
	4	7.1	1.0	37
JR(新幹線)	3	4.5	1.6	22
	4	5.1	1.1	35
JR(在来線)	1	7.9	1.7	129
	2	6.8	1.6	83
	3	5.3	1.1	151
	4	4.8	1.2	30
近鉄電車	2	6.4	1.3	24
	3	5.5	1.1	58
京阪電車	3	5.7	0.9	9
阪急電鉄	3	5.2	0.7	19
つくばエクスプレス	3	5.7	1.3	29

種類については表 5.20 参照

表 B.2 鉄道車内の発話速度調査結果(鉄道会社ごと)

調査対象	種類	平均値(syl/s)	標準偏差(syl/s)	サンプル数
神戸市営地下鉄	1	6.6	1.4	137
(山手線)	2	7.2	1.2	27
仙台市営地下鉄	3	5.2	1.0	97
(海岸線)	4	6.1	1.1	47

表 B.2 鉄道車内の発話速度調査結果(鉄道会社ごと)(つづき)

調査対象	種類	平均值(syl/s)	標準偏差(syl/s)	サンプル数
JR(新幹線)	1	6.9	1.4	74
	2	6.8	1.8	17
	3	4.0	1.0	41
JR(在来線)	1	6.1	1.4	83
	2	8.4	1.0	20
近鉄電車	1	6.6	1.8	11
	2	6.4	1.0	12
阪急電鉄	1	6.5	2.0	121
	2	7.7	1.7	22
神戸ポートライナー	3	6.5	1.1	10
南海電鉄	1	6.3	1.5	69
京浜急行電鉄	1	6.4	1.6	25
都営地下鉄	3	6.1	1.8	11

種類については表 5.20 参照

表 B.3 鉄道駅および車内の発話速度調査結果

調査対象	種類	平均値(syl/s)	標準偏差(syl/s)	サンプル数
駅	1	8.0	1.5	321
	2	6.9	1.4	147
	3	5.8	1.2	571
	4	6.1	1.4	167
車内	1	6.6	1.7	516
	2	7.1	1.5	101
	3	5.5	1.2	159

種類については表 5.20 参照

表 B.4 空港の発話速度調査結果

調査対象	種類	平均値(syl/s)	標準偏差(syl/s)	サンプル数
関西国際空港	1	6.0	1.8	93
	2	5.3	1.1	45
中部国際空港	1	9.0	1.5	363
	2	6.3	1.4	316
羽田空港	1	7.6	1.5	82
	2	6.9	0.9	28

種類については表 5.21 参照

本論文に関する発表論文

A. 原著論文

第2章

M. Morimoto, Hi. Sato and M. Kobayashi

Listening difficulty as a subjective measure for evaluation of speech transmission performance in public spaces

Journal of the Acoustical Society of America 116, 1607-1613 (2004)

第3章

M. Kobayashi, M. Morimoto, Hi. Sato and Ha. Sato Optimum speech level to minimize listening difficulty in public spaces Journal of the Acoustical Society of America 121, 251-256 (2007)

第4章

佐藤逸人, 森本政之, 袴田篤史, 小林正明, 佐藤洋 単語の聴き取りにくさの聴感試験法について-学習効果の検証および文脈効果の低減-神戸大学大学院自然科学研究科紀要 22-B, 47-57 (2004)

B. 学会発表等

第2章

小林正明, 森本政之, 佐藤洋

親密度を統制した単語の了解度と聴き取りにくさの関係

日本建築学会近畿支部研究発表会 (2000)

森本政之, 小林正明, 佐藤洋

親密度を統制した単語の了解度と聴き取りにくさの関係ー親密度を統制した単語リストを 用いた音声伝達性能評価に関する研究 その2-

日本建築学会大会学術講演会(2000)

小林正明

親密度を統制した単語の了解度と聴き取りにくさの関係 第2回近畿環境工学シンポジウム (2000) 森本政之, 佐藤洋, 小林正明

音声伝達性能の主観的評価指標としての聴き取りにくさー親密度を統制した単語の了解度 と聴き取りにくさの関係-

シンポジウム 音声伝送品質の評価と設計 現状と今後-建築学会音声伝送SWG活動成果報告会(2003)

M. Morimoto, M. Kobayashi and Hi. Sato

Listening difficulty as a subjective measure for evaluation of speech transmission performance (invited)

第 9 回西太平洋音響学会議 WESPAC 9 (2006)

第3章

袴田篤史,小林正明,森本政之,佐藤洋 音声レベルと暗騒音レベルが単語の聴き取りにくさに及ぼす影響 日本建築学会近畿支部研究発表会(2002)

M. Kobayashi, M. Morimoto, Hi Sato and Ha. Sato

Effects of speech to noise ratio on listening difficulty in reverberant sound fields International Symposium on Room Acoustics: Design & Science (2004)

第4章

袴田篤史, 森本政之, 佐藤洋, 小林正明

単語の了解度と聴き取りにくさの聴感試験について一同一音表を繰り返し提示した場合ー 日本建築学会近畿支部研究発表会(2001)

M. Kobayashi, M. Morimoto, A. Hakamada, H. Sato

The effects of repeating the same word-list in listening test of word intelligibility and listening difficulty

17th International Congress on Acoustics (2001)

小林正明, 袴田篤史, 森本政之, 佐藤洋

単語の了解度と聴き取りにくさの聴感試験について一同一音表を繰り返し提示した場合ー 日本建築学会大会学術講演会(2001)

佐藤逸人, 森本政之, 袴田篤史, 小林正明, 佐藤洋

聴き取りにくさの測定法に関する研究ー刺激文脈の統制による文脈効果の低減ー

日本建築学会近畿支部研究発表会(2003)

佐藤逸人, 森本政之, 袴田篤史, 小林正明, 佐藤洋 単語の聴き取りにくさの聴感試験法について-学習効果の検証および文脈効果の低減-日本音響学会建築音響研究委員会 (2003)

第5章

四釜奈緒, 森本政之, 佐藤逸人, 小林正明, 佐藤洋 音声の聴き取りにくさと音響物理指標の関係(4) - 発話速度を考慮した場合 - 日本音響学会春季研究発表会 (2006)

四釜奈緒, 森本政之, 佐藤逸人, 小林正明, 佐藤洋音声の発話速度が聴き取りにくさに及ぼす影響日本音響学会建築音響研究委員会 (2006)

四釜奈緒, 森本政之, 佐藤逸人, 小林正明, 佐藤洋 発話速度が音声の聴き取りにくさに及ぼす影響 日本音響学会関西支部 若手研究者交流研究発表会 (2006)

平田真,森本政之,佐藤逸人,小林正明,佐藤洋,四釜奈緒 音声の発話速度が高齢者の聴き取りにくさに及ぼす影響 日本音響学会秋季研究発表会 (2007)

小林正明,四釜奈緒,森本政之,佐藤逸人,佐藤洋 公共空間におけるアナウンスの最適発話速度と音声レベル 日本音響学会建築音響研究委員会 (2008)

小林正明,四釜奈緒,森本政之,佐藤逸人,佐藤洋 公共空間におけるアナウンスの最適発話速度と音声レベル 日本建築学会大会学術講演会 (2008)

謝辞

神戸大学 森本政之教授には、本研究の実施の機会を与えて頂くとともに、その遂行にあたり、終始懇切なる御指導・御鞭撻を頂きました。研究を通じて学んだ物事の捉え方や課題 克服への取り組み方はこれからの筆者の社会活動の礎となるものと考えます。深く感謝いた します。

神戸大学 阪上公博准教授には、本研究の遂行にあたり、幅広い視点から数多くの貴重な御意見・御指導を頂きました。

産業技術総合研究所 佐藤洋博士(元東北大学)には、聴取実験の方法を基礎から指導して頂くとともに研究上の問題点について有益な御意見を頂きました。また、原著論文をまとめる際にも懇切丁寧な御指導を頂きました。深く感謝いたします。

広島国際大学 中西伸介准教授(元神戸大学)には,筆者の学生時代に計算機や実験装置の扱い方を指導して頂きました.

神戸大学 佐藤逸人助教には、本論文の作成に際し、様々な御援助を頂きました.

神戸大学環境音響学研究室の後輩であり、共同研究者である袴田篤史氏(現旭化成ホームズ)、四釜奈緒氏(現関西電力)、平田真氏には、本論文をまとめるうえで多大な御協力を頂きました.

研究室の先輩である道下和明博士(現きんでん),伊藤元邦博士(現パナソニック)には, 筆者の学生時代に数多くの有益な御助言を頂きました.

同じく研究室の先輩である林英吾氏(現日本化薬),山口善三氏(現神戸製鋼),神谷宗宏氏(現京都市役所)および同輩である阪上英士氏(現旭化成ホームズ),中嶋登氏(現鹿島建設)には,筆者の学生時代に日々の議論を通じて新たな視点を与えて頂きました。また,研究室の諸氏には,研究の遂行にあたり,様々な御協力を頂きました。

戸田建設株式会社 山下雅己技術統轄部長,同社技術研究所 千葉脩常勤顧問,伊勢本昇昭 所長には、研究の機会を与えて頂きました.

同社技術企画部 大阪谷彰部長,同社技術研究所 松岡明彦主管,土屋裕造主管には,業務上,多くの便宜を取り計らって頂くとともに,温かい励ましの御言葉を頂きました。また,同社技術研究所の諸氏には、様々な御支援と御協力を頂きました。

同社技術研究所の大先輩である渡邉秀夫博士(現音・環境研究所),福山忠雄氏(現早稲田大学)には、研究に関する多くの御助言を頂きました。また、折に触れ、本論文の進捗状況についてお声を掛けていただきましたことは大きな励みとなりました。

日本建築学会音声伝送品質研究 SWG には、第5章で用いたインパルス応答データベース

の使用を快く承諾して頂きました。また、主査である長野高専西川嘉雄博士(元鴻池組)をはじめとする委員の皆様には日頃から叱咤激励を頂きました。

本研究の遂行および論文作成には、ここに記すことのできなかった多くの方々にも御助言・御協力を頂きました.

最後に、常に筆者を温かく見守り、また、支えてくれた両親と妻 薫に感謝いたします.