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Chapter Ⅰ 

General Introduction 

 

Food safety is very important for our social life. Once they were threaten, 

we would not live normal social life. In order to prevent threat, several ways of 

approaching this problem are required. For example, we have to reduce 

“foodborne-incidents” with infected invisible things such as virus and 

micro-organism by proper way based on science technology such as bacteriology. 

Figure 1 shows the number of foodborne-illness incidents in Japan (Japanese 

Government Bulletin). The biggest number of them is origin from bacteria, 

indicating that safety measures against this origin is most important. 
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Figure 2 The number of Foodborne incidents on several year 

(Health, Labour and Welfare Ministry of Japan HP) 
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Figure 1    The Number of Foodborne Incidents 
                   (2010 Japanese Government Bulletin HP ) 
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Most of foodborne-incidents by bacteria comes from Salmonella, 

pathogenic E. coli such as O-157, Campylobacter and Vibrio.  Figure 2 shows 

the number of incidents for foodborne-incidents from bacteria on recent years in 

Japan (Ministry of Health, Labor and Welfare, Japan HP, 2013). The number 

from Campylobacter is biggest one, and next one is from Salmonella. However, 

Salmonella incident is the most popular foodborne incident in the USA (Figure 

3, Centers for Disease Control and Prevention). These observations suggest 

that adequate measures should be taken to prevent Salmonella incident 

worldwide. 
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Figure 3  The number of Foodborne incidents on several year 

(CDC in USA) 
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Table 1, which shows bacteria infection of  several foods in 2010, indicates 

that most of Salmonella infection comes from animal foods, especially in 

chicken. Host domestic animals are, in many case, infected during feeding 

period in a farm, and then they were tranfered to slaughter house and meat 

processing center with a bactreia. Sometimes  contamination of meat occurred 

in the house and center,  and then the contamination is increased by touching 

each other. To prevent the infection of pathogenic these bacterias from a 

stockbreeding, in general, three principles are proposed in a farm: “No 

invasion”, “No propagating”, and “No carrying out” . No invasion means that no 

contaminated feed with bacteria and no host animal such as mice in a farm. No 

propagating means that once some bactreria invase to a farm, no propagating 

will be done untill it become hamful for human. No carrying out means no 

carrying infected animal out from a farm. Thus, antibiotics have been applied 

widely in the human and domestic animal. In feed antibiotics have been used 

with the aim of not only curing infected animals but also promoting growth of 

animals. However, recently it is getting bigger that social issue for appearing 

drug-resistance strain of bacteria on several antibiotics. For example, NARMS 

(National Antimicrobial Resistance Monitoring System) Retail Meat Annual 

Report 2011 showed that 69% of pork chop, 55% of ground beef, 39% of chicken 

Table 1 Bacteria infection of several foods that are designated by Wefare Ministry of Japan(2011)

(Health, Labour and Welfare Ministry of Japan HP)


Product name Products No.
E. coli Salmonella Pathogenic E. coli Campylobacter

Vegetable Alfalfa 13 3 - - -

Radish Sprouts 91 15 - - -

Cutting Vegetable 150 12 - - -

Cucumber 112 7 - - -

Mitstba 58 20 1 - -

Sprout 103 41 - - -

Lettuce 103 12 - - -

Vegetable Pickles 158 16 - - -

Meat Mince(Cow) 102 67 3 - -

Mince(Swine) 144 99 2 - -

Mince(Mixed) 103 72 3 - -

Mince(Chicken) 159 127 88 - 60

Cow Lever(be cooked) 225 159 2 - 34

Steak Meat(cutting) 52 21 - - -

Seared Beaf 13 3 - - -

Seared Chicken 33 29 1 - 4

Horse Sashimi 78 8 - - -

Loasted Beaf 108 3 - - -

Total 1805 714 100 0 98

Results(Negative No.)
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breast and 81% of ground turkey had a drug resitance strain of bacteria. 

Salmonella and Campylobacter were found so many there. The Pew Charitable 

Trusts reported on their web site that sold antibiotics for animals in 2010 is 

more than 13,000 ton, and one for human is only about 3,500 ton in USA (Pew 

Charitable Trusts). European community banned using all antibiotics for 

animal feeding as purpose of growth promoting on 2005 (Dibner and Richard, 

2005), and FDA ban using some antibiotics as same purpose as well (Ohshima, 

2006). From above social situation, most important thing is to find out an 

effective and safety material alternative to antibiotics. 

Mannose and mannose-based oligosaccharides have been extensively 

explored in poultry because of its inhibitory properties to the FimH adhesins 

present in enteric salmonellas (Fernandez et al., 2002; Oyofo et al., 1989a; 

Oyofo et al., 1989b). Particularly mannose has more active-point to adhere with 

Salmonella comparing to Mannose-based oligosaccharides. However, mannose 

is very unstable in the intestine when compared to mannobiose. because it is 

degraded faster by intestinal bacterial flora than β1,4 mannobiose (MNB) 

which is coming from mannanase hydrolyzed copra meal (MCM). (Morikoshi et 

al. 2003). Therefore it is possible that MNB and MCM can be used as an 

alternative to antibiotics.  

 

The structure of MNB is shown on Figure 4. MNB, one of the 

disaccharides, has an interesting structure: upper side is like a hydrophilic and 

under side like a hydrophobic. 

Figure 4   Structure of MNB 
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The flow chart of production of MCM is on Figure 5. Copra Meal (CM), 

de-fated or expellered coconuts as the by-product of oil, is generally granule 

powder form. Typical composition of CM is shown in Table 2. It contains about 

20% of crude protein, 12% of crude fat, and 30% of mannan as raw material of 

MNB. MNB is produced from CM by mannanase treatment. The author 

designed the MCM including MNB as “MCM-B1” (11.4% MNB), “MCM-B2” 

(67.8% MNB), and  “MNB” ( 99% MNB) 

The aim of this study is that the the evaluation of  the natural feed 

ingredients MNB and MCM as alternatives of antibiotics or growth promoters 

in poultry industry.  

 

 

 

 

 

 

 

 

 

 

 

 

Table2  Typical Content of Copra meal(%)

Crude Protein 20

Crude Fat 12

Crude fiber 8

Ash 6

Moisture 6

Glucide 18

Mannan 30
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Chapter Ⅱ 

Effect of dietary β1,4 mannobiose (MNB) in the prevention of Salmonella 

enteritidis infection in broilers 

 

Introduction 

Salmonella enterica serovar Enteritidis (SE) is widely distributed in 

commercial chicken flocks and high levels of cecal carriage and shedding may 

lead to broiler meat contamination. Recently, chicken consumption is a newly 

identified risk factor in SE infection in humans (Kimura et al., 2004).  The 

uses of oligosaccharides in domestic animal species including horses (Spearman, 

2004), dairy cattle (Franklin et al., 2005), pigs (LeMieux et al., 2003) and 

poultry (Fernandez et al., 2002) have been very popular in the last decade.  In 

human research, oligosaccharides gained a significant level of interest because 

of its potential impact on nutritional immunology (Watzl et al., 2005).  A 

number of different oligosaccharides have emerged with variable effects in the 

general health and immune response to pathogens in both humans and animals.  

In poultry, oligosaccharides have been well documented as an alternative to 

antimicrobials in the reduction of SE, a major causative agent in enteritis 

outbreaks associated with the consumption of SE-contaminated broiler meats. 

A range of oligosaccharides is used as “prebiotics” in both humans and 

animals.  These are “non-digestible food ingredient that beneficially affects the 

host by selectively stimulating the growth and/or activity of one or a limited 

number of bacteria in the colon” (Gibson and Roberfroid, 1995; Gibson et al., 

1995).  These carbohydrates are basically derived from various plants sources 

and can resist hydrolysis and digestion in the upper gastrointestinal tract but 

are hydrolyzed and fermented in the large intestines (Delzenne, 2003).  Some 

of the oligosaccharide evaluated in food animals include: 

fructose-oligosaccharides (Chambers et al., 1997; Bailey et al., 1991), 

galactose-oligosaccharides (Smiricky-Tjardes et al., 2003a), 

sucrose-oligosaccharides (Orban et al., 1997a; Orban et al., 1997b), 

isomalto-oligosaccharides (Chung and Day, 2004), and mannan- 
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oligosaccharides (Franklin et al., 2005; Spearman, 2004).  Oligosaccharides 

are used alone or sometimes in combination with probiotics (Fukata et al., 

1999), growth promoting antimicrobials (Sims et al., 2004; Parks et al., 2001), 

polyunsaturated fatty acids (Bomba et al., 2003), and micronutrients (David et 

al., 2002).  

A review of various animal studies suggests that continuous feeding of 

oligosaccharides can result to an increased production of short chain fatty acids 

(SCFA) such as acetate, lactate, propionate, and butyrate, leading to 

proliferation of beneficial bacteria such as Bifidobacterium and Lactobacillus 

(Delzenne, 2003) in the distal intestines.  A substantial population of 

Bifidobacterium and Lactobacillus is required for the formation of mucosal 

biofilm, which serves as a barrier in the gut mucosa against pathogenic insults 

(Kleessen and Blaut, 2005).  It has been demonstrated that oligosaccharides, 

regardless of its chain length are readily fermentable but varied in amount and 

type of SCFA produced (Smiricky-Tjardes et al., 2003b). 

Mannose-containing oligosaccharide (MOS, mannanoligosaccharide) is 

one of the most popular and commercially available prebiotics for poultry use 

(Ferket, 2004).  MOS exerts various health benefits in two of the economically 

important food animal species – poultry and swine.  MOS depresses the 

proliferation of Clostridium perfringens, the causative agent of necrotic 

enteritis in broilers which remains as the most important Gram-positive 

bacterium in intensive commercial broiler operations following the banning of 

antimicrobial growth promotants (Denev et al., 2005).  In birds vaccinated 

with Infectious Bursal Disease (Gumboro) and Newcastle Disease Virus (NDV, 

Fowl plague), the feeding of MOS improves the vaccinal response, improving 

the resistance of birds to field challenge with these pathogens.  The nutritional 

status of the bird is also influenced by the addition of MOS in the diet, 

exemplified by morphological changes in the intestinal villi increasing the 

surface area for nutrient resorption.  In the presence of bacterial (S. 

Typhimurium) and protozoal (Eimeria spp.) organisms, MOS can effectively 

maintain the targeted feed conversion rate (FCR), therefore reducing the 
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impact on performance during a disease challenge (Rios et al., 2005).  In birds 

fed diets contaminated with aflatoxin, MOS can increase adsorption and 

degradation of aflatoxins (Zaghini et al., 2005), therefore reducing liver 

pathology and enteritis.  In breeder flocks, MOS feeding improves production 

efficiency parameters, vaccine response, and; passive transfer of antibodies to 

the progeny (Shashidhara and Devegowda, 2003). 

Mannose and mannose-based oligosaccharides have been extensively 

explored in poultry because of its inhibitory properties to the FimH adhesions 

present in enteric salmonellas (Fernandez et al., 2002; Oyofo et al., 1989a; 

Oyofo et al., 1989b).  MNB is a disaccharide and a potential inhibitor of FimH 

adhesion. Unlike D-Mannose, its specific functional health benefits to both 

humans and animals have not been described.  MNB is found in wood and 

plant seeds (Twaddle et al., 2003) and linkage-specific glycosidases are required 

for its production (Kremnicky et al., 1996).  Potentially useful FimH 

receptor-active manno-oligosaccharides of the α- linkage group have been 

described using enzymes derived from Penicillum citrinum, Aspergillus 

phoenicis, and almond (Maitin et al., 2004). In addition to its potential use as 

an anti-adhesive against poultry pathogens, mannobiose may modulate the 

immune response of birds to SE infection, however, its immunological function 

has not been documented in poultry. 

The objectives of this chapter were 1) to determine if MNB supplemented 

feed is effective in the prevention of SE infection in growing broilers by 

characterization of the kinetics of SE infection within a three-week observation 

time post-challenge, 2) to determine the response of chicken fed with the 

different diets on the secretary IgA, and 3) to be able to correlate the resolution 

of the disease by analyzing histological changes in the cecal mucosa and cecal 

tonsils. 

 

Materials and Methods 

Source of feed additive 

The feed supplements MNB , and D-Mannose derived from copra meal by 
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enzymatic digestion were provided by Fuji Oil, Ltd. (Osaka, Japan).  The feed 

supplements contains 11.4% MNB.  The other one, on the other hand, contains 

10% D-mannose.  Since mannobiose and mannose are the major components of 

the crude feed additives, these feed supplements shall be designated as 

MCM-B1 (MNB as main component) and MAN (D-mannose as main 

component ), respectively. 

 

Experimental diets 

The supplements were directly mixed in the broiler starter/grower 

crumble formulation resulting to a final mixture of 0.1% MCM-B1 or 0.1% MAN.  

The starter or grower crumble feeds used in this chapter were without 

antibiotics or anticoccidial drug (Table 3).  All feeds used in this chapter were 

prepared at the Arkell Research Station, University of Guelph, Guelph, Ontario.  

The feeds used tested negative to Salmonella spp. 

 

Animals 

One hundred twenty 1-day-old chicks (Ross x Ross) were obtained from a 

local commercial hatchery and were screened for Salmonella spp. by cloacal 

swabbing prior to placement.  Animals were housed at the Animal Isolation 

Unit, University of Guelph, The animal experiment was conducted in 

accordance to the animal care guidelines and with the approval of the Animal 

Care Committee, University of Guelph. 

 

Bacterial culture 

SE PT4 SA992212 resistant to novobiocin, a gift from Dr. Cornelius Poppe 

(Health Canada) and originally isolated from chickens was used in this chapter.  

The bacterial culture was retrieved from a bacterial stock and grown in Brain 

Heart Infusion Agar (BD Diagnostic System, Oakville, ON, Canada) overnight 

at 37 ℃ with shaking.  The overnight culture was adjusted to the desired 

colony forming units (CFU) per ml by calorimetric technique (Biomerìeux Vitek, 

Inc. Hazelwood, MO, USA) and confirmed by plating on Brilliant Green Agar 
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(BGA, BD Diagnostic System, Oakville, ON, Canada).  The methods described 

in the FDA Bacteriological Analytical Manual (Wallace et al. 1995) were used to 

confirm SE. 

 

Table 3  Nutrient compositions of the different diets.   

Ingredients   Starter          Grower   Finisher 

    (g/kg)    (g/kg)    (g/kg) 

Corn    494.3    596.4    638.3 

Soymeal Hi-Pro   276.7    276.0    229.0 

Wheat     75.0     75.0     75.0 

Shorts/wheat Midds   58.9      ‐      ‐ 

Canola meal    50.0      ‐      ‐      

Dicalcium phosphate   16.2              12.5       10.3 

Calcium carbonate   14.9     14.6     13.3  

Fat       ‐              12.7      21.1 

Pellet binder     6.3     6.3      6.3 

Salt      4.1            4.2      4.2 

Liquid methionine (MHA)   1.8      1.6      1.2 

Broiler trace mineral ultra   1.0      ‐             0.5  

Liquid choline chloride    0.8      0.6      0.4 

Lysine pure     ‐      0.1      0.4 

Total          1000.0   1000.0          1000.0 

Note: The regular diet contained all the listed ingredients. The treatment diets contained 

all these plus 0.1% (w/w) MCM-B1 or MAN. 

 

Animal experiments 

In this trial, the purpose of feeding MCM-B1 and MAN during the first 

two weeks of the growing period was to determine if a 2-week feeding can 

reduce the susceptibility of growing birds until they are marketed.  Three 

groups of 20 chicks were placed in wire cages with unlimited access to feed and 

water.  Treatment diets were fed for 2 weeks.  Prior to inoculation, feeds and 
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water were withdrawn overnight.  After this period, birds were then orally 

inoculated with 2 x 107 cfu/ml of SE.   SE fecal shedding was monitored by 

faecal collection and culture every two days starting on the first day up to 19 

days post-infection (p.i.).  Post mortem was conducted in 3 to 5 birds per group 

prior to infection, and at days 1, 7, 14 and 23 days p.i.  Various organs were 

collected for SE enumeration.  The ceca and cecal tonsils were selected for 

histopathological examination. Bile and cecal contents were collected for 

SE-specific IgA assay. 

 

Bacterial count 

Overnight faecal droppings were collected in sterilized aluminum foil (12 

x 12”) randomly placed in three different locations in trays underneath the wire 

flooring and aliquoted for the different bacteriological enumeration. Twenty 

five grams of faeces from each collection site was mixed with 225 ml of 

tetrathionate brilliant green (TBG, BD Diagnostic Systems, Oakville, ON, 

Canada) broth supplemented with 0.02 μg/ml novobiocin (BD Diagnostic 

Systems, Oakville, ON, Canada) and thoroughly mixed in a kitchen blender 

(Osterizer®) for 5 minutes.  Samples were incubated overnight at 41 ℃.   

Cultures were serially diluted 1:10 from 102 to 107 in 1% buffered peptone 

water (BD Diagnostic Systems, Oakville, ON, Canada) and plated in duplicates 

on BGA with 20 mg of novobiocin.   Plates were incubated aerobically at 37 ℃ 

overnight.  For bacterial enumeration in liver, spleen and cecal contents, 

pre-weighed 10 ml culture tubes (Simport®, Fisher Scientific, Neopan, ON, 

Canada) were used to collect samples during necropsy, stored on ice, 9 parts 

TBG with novobiocin added, and homogenized for one minute using Polytron® 

homogenizer (Brinkman Instruments, Inc., Missisauga, ON, Canada).  For the 

enumeration of SE from samples of the cecal wall, samples were suspended in 

10 ml of phosphate buffered saline (PBS, Gibco®, Invitrogen Canada Inc., 

Burlington, ON, Canada), stored on ice and washed 3x with PBS for removal of 

adherent bacteria and debris prior to homogenization.  Succeeding incubation 

steps were similar to the procedure described for the enumeration of feces, but 
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Salmonella Shigella Agar (SS Agar, BD Diagnostic Systems, Oakville, ON, 

Canada) was used instead of BGA for plating. 

 

Enzyme-linked immunosorbent assay 

Bile, and cecal contents were analyzed for SE-specific IgA antibodies 

using SE whole cell antigen. For antigen preparation, bacterial stock previously 

stored at -80 ℃ in 20% glycerol was thawed and a loopful was plated on BGA.  

After an overnight incubation at 37 ℃, a colony was inoculated in 500 ml of 

BHI and incubated at 37 ℃ for 18 hours with shaking.  The broth culture was 

centrifuged at 2,500 x g at 4 ℃  for 5 minutes.  The supernatant was 

discarded and the pellet was washed 3 times with ice-cold PBS.  The pellet 

was inactivated with 3.8% buffered formalin overnight at room temperature.   

After inactivation, the pellet was harvested by centrifugation and washed 3 

times with ice-cold Milli-Q water to remove the formalin.  The final pellet was 

frozen overnight at -80 ℃ and freeze dried for 24 hours.  The SE whole cells 

were used as a coating antigen. 

For bile collection, the liver was removed and the bile was aseptically 

aspirated from the gall bladder using a 3 ml syringe with gauge 18 needle.  

For cecal contents, the left side of the ceca was squeezed from the distal blunt 

end to the proximal end and was incised above the cecal tonsils.  

Approximately 0.5 to 1 g of the cecal content was placed in pre-weighed sterile 2 

ml microcentrifuge tubes.  The contents were weighed and added with an 

equal amount (1:1) of complete™ Protease Inhibitor Cocktail Tablet (Roche 

Diagnostics Canada), diluted according to manufacturer’s suggestions.  The 

bile and cecal samples were stored as above until use.  Test samples were 

thawed at room temperature and diluted to 1:100 with Tris Buffered Saline 

(TBS) with 1% Bovine Serum Albumin (BSA) prior to analyzes. 

For SE specific IgA analysis, 96 well plates (Corning Costar Corp., 

Cambridge, MA, USA) were coated with 100 microliters (ml) of SE whole cell 

antigen (10 mg/ml) in carbonate-bicarbonate buffer (pH 9.6) and incubated 

overnight at 4 ℃ and washed four times with Tris Buffered Saline with Tween 
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20 (TBST, pH 8) in a plate washer (Immunowash® Bio-Rad, Hercules, Canada).   

Blocking of non-specific binding sites was carried out with 150 ml of 1% BSA in 

TBS (pH 8) for one hour and washed four times. One hundred microliters of test 

samples: bile (1:100) and cecal contents (1:100) diluted in sample diluent (TBS 

+ 1% BSA) was incubated into the designated wells for 1 hour, followed by four 

washes of TBST. The plates were incubated for one hour using with 100 ml of 

Rabbit Antichicken IgA conjugated Horseradish Persoxidase (Bethyl 

Laboratories, Inc., Montgomery, TX, USA) diluted 60,000 times. Plates were 

subsequently washed 6 times with TBST.  All incubations were carried out at 

37℃ with shaking.  For color development, 50 ml of 3, 3’, 5, 5’ Tetramethyl 

benzidine (TMB) Liquid Substrate System (Sigma-Aldrich, St. Louis, MO,USA) 

was incubated for 1 hour and the enzymatic reaction was stopped using 50 ml 

of 0.5 M H2S04.    Plates were read in an ELISA reader (Bio-Rad®) with an 

absorbance set to 450 nm.  All samples were tested in triplicates and the SE 

specific antibodies were arbitrarily expressed as the average absorbance of the 

three replicates. 

 

Histopathology  

At 23 days p.i., sections of the liver, spleen, bursa of Fabricius, cecal 

tonsils and ceca (cross-section) were fixed in 10% buffered formalin for 24 hours, 

sectioned at 4 mm thickness, and embedded in paraffin.  Slides were stained 

using routine Hematoxylin and Eosin (H & E) stain and Giemsa stain and then 

examined under light microscope [Nikon® Digital Camera DXM 1200F 

microscope (Melville, New York) equipped with Nikon Eclipse® E8000 Camera].  

A scoring system for the cecal tonsils was applied.  The quantification of 

intraepithelial lymphocytes was based on the protocol described by Sheela et al., 

(2003).  Typical enteric Salmonella paratyphoid lesions were evaluated and 

were judged on the basis of inflammation, hyperplasia of mucous gland cells, 

intraepithelial mononuclear cells in the intestinal villi flanking the cecal tonsils, 

and population of lamina proprial cells (Gast, 2003).  The presence of 

granuloma was also recorded (Desmidt et al., 1998a).  In each of the three to 
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five birds necropsied, five different intestinal villi flanking the cecal tonsils 

were selected at random and the following parameters were evaluated: a) 

Inflammation: (3)-severe, multifocal coalescing areas of hemorrhages and 

edema, (2)-moderate, focal to multifocal areas of hemorrhages and edema, 

(1)-mild, focal areas of hemorrhages and edema. b) Mucous gland cells: 

(3)-severe, generalized hyperplasia and hypertrophy of mucous gland cells, 

(2)-moderate, focal to multifocal areas with hyperplastic and hypertrophied 

mucous gland cells, mostly confined in hemorrhagic and edematous areas, 

(1)-mild, focal areas of hyperplastic and hypertrophic mucous gland. c) 

Intraepithelial mononuclear cells: counted from 5 different microscopic fields at 

40x magnification:  (3)-Increased, presence of 35 to 50 cells per microcopic field, 

(2)-Moderate, presence of 20 to 34 cells per microscopic field, (1) Mild, presence 

of less than 20 cells per microscopic field. d) Lamina proprial cell population:  

(3)-increased, lamina propria was densely infiltrated with mononuclear cells 

consisting of mature lymphocytes, plasma cells, and macrophages (2)-moderate, 

lamina propria was moderately infiltrated with mononuclear cells (1)-mild, 

lamina propria was mildly infiltrated with mononuclear cells. The slides 

stained with H & E were used in the evaluation of parameters a, b, and d. 

Giemsa stained slides were used in the enumeration of intraepithelial 

mononuclear cells.  

 

Statistical analyzes 

Statistical differences between treatment groups were determined by one 

way analysis of variance (ANOVA).  The means derived from the 

quantification of bacteria from faecal samples and organs, IgA and IgG 

absorbances were analyzed on each sampling schedule and were further 

separated for significance with an all pairwise multiple comparison applying 

the Tukey- Kramer test (P < 0.05, Graphpad Instat 3®, California, USA).  

Histopatho-  logical scores,where applicable were analyzed using 

Kruskall-Wallis test for non-parametric ANOVA (P < 0.05) using the same 

software.  
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Results and Discussion 

SE shedding and bacterial count in organs 

The body weights are summarized in Figure 6.  The objective of this trial 

is not to ascertain dietary effects on broiler weight gain but this information 

may provide economic justification of the cost of the additive and baseline 

insights for future studies (i.e. egg layer and broiler breeder performances).  

MAN-fed birds exhibited the heaviest final body weights that averaged to 1746 

grams followed by the control birds with an average weight of 1672 grams. The 

MCM-B1-fed birds exhibited heavier body weight gain at days 21 and 28 yet 

averaged to a final body weight of 1561 grams. The weight gain was influenced 

by age “effect” (p = 0.0001), and not as a result of diet and age interaction (p = 

0.1546), or diet effect (p = 0.1329).  This is similar to the observations of 

Juskiewicz et al., (2003), in MOS-fed turkeys, where no significant influence on 

weight gain and growth rate observed during the first four weeks of life.  The 

dose and duration of feeding may also affect the over-all influence of the diet 

(Zdunczyk et al., 2005), as was observed in the weights of MCM-B1-fed birds 

after the end of the two week of feeding but not at end-point. 

The faecal shedding in birds fed MCM-B1 (6.36 log10CFU, P≤0.001) and 

MAN (6.48 log10CFU, P≤0.01) at 24 hours post-infection (p.i.) were slight lower 

compared with the control (8.38 log10CFU) (Figure 7), but thereafter, the MAN- 

and MCM-B1-fed birds exhibited different shedding patterns towards the 

resolution of the infection.  SE shedding peaked at 4 day p.i. then decreased 

gradually in both groups but a marked decrease in shedding observed in birds 

fed MCM-B1 as early as 7 days p.i. ( 2.25 log10CFU, P < 0.001), and thereafter 

until 19 days p.i. (< 0.10 log10CFU, P < 0.001). In contrast, birds fed MAN 

displayed a more protracted SE shedding, having significantly reduced SE 

levels at 19 days p.i. (3.68 log10CFU, P < 0.05).  

 



１７ 

 

To obtain a more accurate estimate of the intestinal SE, at each necropsy, 

the cecal SE levels were analyzed (Table 4). In MCM-B1-fed birds, the cecal 

contents analyzed at various time points reflected the fecal shedding.  
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Figure 6   Change of average body weight from prevention trial comparing three 

different diets. Vertical bars represent standard error.  n=5.  Diet effect: p 

= 0.1329, age effect:  p = 0.0001, diet and age interaction: p = 0.1546. 

 

Figure 7   Faecal Salmonella Enteritidis counts from prevention trial 

Mean SE log10 CFU/gram ± S.E.M.(n=5). a- significant differences with 

control. b- significant differences with Mannose (MAN) (P < 0.05, Tukey 

Kramer Test, Graphpad Instat 3™) 
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Interestingly, at 14 days p.i., the cecal levels were slightly higher than the 

faecal shedding at 13 days p.i. (4.77 log10 CFU).  By 23 days p.i., the CFU level 

in the ceca was below the detection limit in all birds necropsied (< 0.10 

log10CFU, P≤0.001) and reflected the levels of SE in the faeces (<       

0.10 log10CFU).  MAN-fed birds on the other hand, have ower mean SE cecal 

carriage at day 23 (2.89 log10CFU) compared with the control (6.34 log10CFU), 

but these levels were not statistically significant. The SE levels in the liver was 

reduced in birds fed MAN (P < 0.05) and MCM-B1 (P < 0.05) starting at 7 days 

p.i. and thereafter, with mean SE not exceeding 2.5 log10CFU compared with 

the control (ranged from 4.89 to 6.71 log10CFU) (Table 4). 

 

Table 4  The effect of dietary MCM-B1 or MAN provided for two weeks after hatching on the numbers of 

Salmonella Enteritidis in the liver and cecal contents of broilers infected at 15d of age1. 

                                                                                     

Days post-infection 

                                                                                     

1    7  14           23 

                                                                                              

Liver 

MAN   4.19 ± 0.43 (5/5)a       < 0.1  (0/5)a     1.15 ± 0.66(2/5)a  2.46 ± 0.05(5/5)a 

MCM-B1   5.61 ± 0.38 (3/5)    1.64 ± 0.71 (2/5)a     1.61 ± 0.48 (2/5)a  1.76 ± 0.54 (5/5)a 

 CONT.     5.52 ± 0.17 (3/5)    4.89 ± 0.29 (5/5)     5.90 ± 0.21 (5/5)     6.71 ± 0.51 (5/5) 

 

Cecal contents 

 MAN   5.78 ± 0.22 (5/5)    7.09 ± 0.82 (5/5)     3.73 ± 1.21 (2/5)     2.89 ± 1.10 (2/5) 

 MCM-B1   7.74 ± 0.23 (5/5)    5.39 ± 0.71 (5/5)     4.77 ± 0.55 (5/5)       < 0.1   (0/5)a 

 CONT.   7.50 ± 0.47 (5/5)    5.85 ± 0.75 (5/5)     4.99 ± 0.69 (3/5)     6.34 ± 1.98 (3/5) 

                                                                                                

1Chicks were inoculated with 2×107 cfu with Salmonella enteritidis at 15d of age. 

Mean SE log10 CFU/gram ± standard error of the mean (S.E.M.), (n=5). 

asignificant differences with control.  (P < 0.05, Tukey Kramer Test, Graphpad Instat 3™). 
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The protracted nature of SE clearance in the ceca of MAN fed birds was 

similar to the findings of Fernandez et al (2002) in birds MOS, where 

significant reduction in SE cecal carriage was observed in the later stages of 

infection.  The colonization of SE in the liver was reduced in MAN- and 

MCM-B1-fed birds indicating a restrained systemic dissemination of the  

organism. The spleen results were eliminated from the table as positive spleens 

were detected occasionally in all experimental groups. The exact influence of 

MAN and the mannose-oligosaccharides in the systemic colonization of 

pathogens is yet to be ascertained. Newman (1994) proposed that mannose 

stimulates the secretion of mannose-binding proteins.  Mannose-binding 

protein secretion can bind to bacteria resulting to the trigger of the complement 

cascade pathway of the bird immune system.   

In various investigations of the effects of oligosaccharide feeding on the 

immune system, IgA production was extensively explored as IgA is an 

important component of mucosal defense against enteric pathogens and 

maintenance of the integrity of the mucosal biofilm (Bollinger et al., 2003).  In 

turkeys fed mannan- oligosaccharides, bile IgA levels were increased (Savage et 

al., 1996), while in mice models, derivatives of mannan-oligosaccharides such 

as glucomannan (Kudoh et al., 1999), and water soluble konjak mannan (Lim et 

al., 1997) have been reported to modulate IgA production.  However, 

information has been lacking regarding carbohydrate feeding and the 

production of pathogen specific IgA response and if the same 

immunomodulatory effects are achieved in the presence of an enteric infection.  

IgA is required to abate infection by interacting with pathogens in the lumen 

allowing their exclusion from the gut and prevention of further colonization 

(Brandtzaeg et al., 1987).  SE-specific IgA, in particular has been 

demonstrated to block the penetration of SE in intestinal cells in vitro 

(Sugita-Konishi et al., 2000).  In this present study, simultaneous detection of 

cecal and bile IgA antibodies were applied at various time points to characterize 

the dynamics of SE-specific IgA production in response to SE infection.  The 

cecal IgA levels in MAN, MCM-B1, and control groups peaked at 14 dpi. (Figure 
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8a).  A waning IgA levels in the cecal contents were detected in the control 

birds but the IgA levels persisted until 23 days p.i. in birds fed MAN and 

MCM-B1.  In the bile (Figure 8b), an increasing trend of SE IgA levels were 

detected and peaked at 23 days in MAN- and MCM-B1-fed birds.  In contrast, 

a transitory increase (day 7) in bile IgA were detected in the control birds with 

levels tapering off at 14 and 23 days p.i.  The high and persistent SE IgA 

response of MCM-B1- and MAN-fed birds paralleled the decline in SE shedding 

and cecal carriage at the later stages of infection indicating an influence of the 

diet on IgA production and SE clearance.  Other aspects of mucosal immunity 

associated with oligosaccharide feeding have been extensively reviewed (Gibson 

et al. 2005;  Kleessen & Blaunt 2005;  Schley & Field 2002;  Watzl et al. 

2005) and different immunomodulatory mechanisms have been hypothesized 

including: 1) selective increase/decrease in specific bacteria which modulate 

cytokine and antibody production; 2) increased in intestinal SCFA production to 

G-coupled protein receptors on leukocytes, and; 3) interaction with 

carbohydrate lectins.  However at this point, the exact immunological 

mechanisms underlying the production of IgA in oligosaccharide-fed animals 

are not well defined.  

 

 

     

 

 

 

 

Figure 8   Specific IgA levels in cecal and bile contents. Mean absorbance of cecal IgA (a), 

and bile IgA (b). Vertical bars represent standard error of the mean (n=5).  

a – significant difference with the control (P < 0.05, Graphpad Instat 3™). 
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Histological scores  

Information on the histological changes associated with the feeding of 

MAN/MCM-B1 in the face of an infection has been lacking.  It is worthwhile to 

mention here that MAN/MCM-B1 and SE are both recognized by the mucosal 

immune cells as foreign (Iqbal et al., 2005) and at this stage of infection, the 

effects of either MAN/MCM-B1 or SE can not be delineated.  However, the 

purpose of the histological evaluation was to compare the effects of the diet on 

mucosal damage and repair, inflammation, and activity of the gut associated 

lymphoid tissue (GALT) towards the resolution of SE infection.  This data 

provides insights and possible correlation to the bacterial isolations and 

serological analyzes.  The histological scores are summarized in Table 5.   

 

Table 5  Histopathological examination at 23 days p.i. from prevention trial. 

                                                                                                         

                           MCM-B1     MAN       CONTROL 

                                                                                                                                                                                                               

Parameters  

Inflammation            Mild (0.00)*          Mild (0.33)*    Moderate (2.66) 

Mucous gland cell hyperplasia     Mild (1.00)*  Mild (1.00)*    Moderate(2.00) 

Intraepithelial mononuclear cells  Increased (2.00)*  Moderate (2.00)*     Mild (1.00) 

  

Lamina proprial cell population  Increased (2.66)*  Moderate (2.00)    Moderate(1.66) 

Other lesions: 

Necrosis of villous tips   Mild   Mild     Mild to moderate 

Granuloma (cecal tonsils)  None   Yes     Yes  

                                                                                                                                                                                                               

Values in parentheses indicate average histopathological scores.  * significant difference with the control (P  

< 0.01, Kruskall Wallis for non-parametric analysis, Graphpad Instat®).  

 

A lower inflammation score characterized by a mild focal hemorrhage and 

edema and mild mucous gland cell hyperplasia were observed in birds fed 
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MCM-B1 and MAN indicating a subtle inflammatory change and apparent 

clearance of the offending organism compared with the control where a 

multifocal moderate to severe hemorrhages were observed.  Chronic 

granulomatous lesions in the cecal tonsils was found in f the control and MAN 

fed birds, a common finding in SE phage type 4 infection in birds (Desmidt et 

al., 1998a) indicating a persistent infection and uncontrolled colonization 

(Figure 9).  A significantly increased number of intraepithelial mononuclear 

cells (mature lymphocytes and macrophages) were observed in the lining 

epithelium of birds fed MCM-B1 and accompanied by an increased number of 

lamina proprial (lp) cells.  The MAN-fed birds exhibited a moderate increase 

in intraepithelial mononuclear cell population but insignificant population of lp 

cells (Table 5).  This moderate to increased population of lp cells in MCM-B1 

and MAN-fed birds confirmed the IgA levels detected by ELISA. The 

histological changes exhibited by birds fed MCM-B1 demonstrated increase 

mucosal protection to SE, exhibited by the presence of mild focal hemorrhages 

(Figure 10a).  Moderate to severe multifocal hemorrhages with early 

formation of granulomas were observed in birds fed MAN and regular diet 

(Figure 10 b,c).   Improved cell mediated immune responses (i.e. presence of 

mature lymphocytes) may explain the clinical recovery to SE (cecal carriage 

and fecal SE).  Robust lymphoid response in the gut mucosa exhibited by 

turkeys fed dietary MOS (Sims et al., 2004), and mice models fed various types 

of non-digestible oligosaccharides (Hosono et al., 2003; Lim et al., 1997), but the 

exact changes occurring in the event of an infection in most dietary 

interventions has not been described elsewhere limiting the interpretation of 

the histological changes.   

In conclusion, this chapter indicates that feeding MCM-B1 during the 

first two weeks of growing reduces the susceptibility of birds to SE by 

influencing antibody responses, and integrity of the gut mucosa.  When 

MCM-B1 is fed in the face of an infection, 2 weeks of feeding can significantly 

reduce the cecal carriage and shedding of broiler birds but up to 3 weeks of 

feeding may be necessary for MAN to bring the SE to a significantly low level.  
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MCM including MNB is therefore safe, practical, and economical alternative to 

antimicrobials for the reduction of SE in broilers. 

This is an Author’s Accepted Manuscript of an article published in the 

British Poultry Science ( Effect of dietary MNB in the prevention of Salmonella 

enteritidis infection in broilers), published online , at 19 June 2007, available 

online at http://www.tandfonline.com/ doi/full/10.1080/00071660701 370442, 

and the copyright of the paper of British Poultry Science Limited. 

http://www.tandfonline.com/%20doi/full/10.1080/00071660701%20370442
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Figure 9   Chronic granulomatous inflammation in the cecal tonsils (black arrows).   

Control bird (a), MAN-fed bird (b), MCM-B1-fed bird (c). The scale bar is 100 μm. 
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Figure 10   Histopathological examination at 23 days p.i. of cecal tonsils.  

Villi flanking the cecal tonsils of birds fed MCM-B1 (a), MAN (b), and control (c).   

Black arrows indicate hemorrhagic lesions, White arrows in (c) indicates early 

granulomas. The scale bar is 100 μm. 
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Chapter Ⅲ 

Analysis of gut immune-modulating activity of β1,4 mannobiose (MNB) using 

microarray and real-time RT-PCR 

 

Introduction 

Normal functioning of the immune system is crucial to overall health, and 

diet is one of the major exogenous factor modulating individual 

immunocompetence. Enteric diseases are an important concern to the poultry 

industry because of lost productivity, increased mortality, and the associated 

contamination of poultry products for human consumption. With increasing 

concerns about antibiotic resistance, the ban on sub-therapeutic antibiotic 

usage in Europe and the potential for a ban in the United States, there is 

increasing interest in finding alternatives to antibiotics for poultry production. 

The gastrointestinal tract is the largest immune system; it contains 80% of all 

antibody-producing cells and produces antibodies more efficiently than any 

other part of body (Helgeland and Brandtzaeg, 1999). The chicken intestine has 

a organized scattered immune cells called gut-associated lymphoid tissues 

(GALT), comprised of Peyer’s patches, (PP),  lamina propria lymphocyte (LP), 

intraepithelial lymphocytes (IEL) and cecal tonsil (CT) (Shira et al., 2005).   

The intestinal microbiota, epithelium, and immune system provide 

resistance to enteric pathogens. Recent data suggest that resistance is not 

solely due to the sum of the components, but that cross-talk between these 

components is also involved in modulating this resistance. Inhibition of 

pathogens by the intestinal microbiota has been called bacterial antagonism, 

bacterial interference, barrier effect, colonization resistance, and competitive 

exclusion (Patterson and Burkholder, 2003). Probiotics and prebiotics are 

components present in foods, or that can be incorporated in to foods, which 

beneficially modulate gut immune responses. Recently, probiotics and 

prebiotics have attracted a great deal of notice for their effects on health 

promotion via changes in human-intestinal microbiota. Prebiotics are expected 

to exert beneficial effects on the prevention of pathogenic bacteria growth, the 
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production of antimicrobial agents, and the stimulation of mucosal barrier 

function in the initial developmental stage and immunomodulating effects in 

the late stage (Novak and Katz, 2006). No information, however, is available on 

how host organisms recognize ingested prebiotics in the process of expressing 

the immunomodulating effects and subsequent events. 

The dominant prebiotics are fructo-oligosaccharide products (FOS, 

oligo-fructose, inulin). However, trans- galacto-oligosaccharides, gluco- 

oligosaccharides, glycol-oligosacchriades, lactulose, lactitol, maltooligo- 

saccharides, xylo-oligosaccharides, stachyose, raffinose, and sucrose thermal 

oligosaccharides have also been investigated (Collins and Gibson, 1999; 

Patterson et al., 1997). Mannan oligosaccharides (MOS) are one of the most 

popular commercially available prebiotics for poultry use (Ferket, 2004). 

Although MOS have been used in the same manner as the prebiotics listed 

above, they do not selectively enrich for beneficial bacterial populations. 

Instead, they are thought to act by binding and removing pathogens from the 

intestinal tract and by stimulation of the intestinal immune system (Spring et 

al., 2000; Shashidhara and Devegowda, 2003).  

We have previously demonstrated that dietary supplementation of MCM 

including the disaccharide MNB could prevent SE infection in broilers, by 

increasing IgA production and improving SE clearance (Agunos et al., 2007). 

However, the mechanism of action of MNB has yet to be elucidated. It is thus 

important to clarify the mechanisms of the immunomodulating effects of MNB 

in the host intestine in order to understand how host intestinal immune 

systems are modulated by food components. DNA microarray technology allows 

the analysis of the expression of many genes simultaneously, in order to further 

examine the effect of MCM including MNB on the intestine, as well as to 

identify potential novel biomarkers associated with its physiological function. 

The objectives of this chapter were to confirm the immunomodulatory 

effects of MCM including MNB in chickens and carry out a comprehensive 

analysis to determine the effects of MNB on gene expression in the intestine 

and mucosal immune system by microarray and quantitative real-time 
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RT-PCR. 

 

Materials and Methods 

Animals and experimental design 

One-day-old chicks (Ross x Ross) were obtained from a local commercial 

hatchery. Chicks were randomly divided into two groups (n = 12)  and housed 

at the Animal Isolation Unit (University of Guelph, Guelph, Ontario) in raised 

wire cages with free access to feed and water. Foil was placed under the wire 

cages to collect droppings. The starter or grower crumble feeds used in this 

chapter did not contain antibiotics or anticoccidial drugs and were prepared at 

the University of Guelph, Guelph, Ontario. All experiments were approved by 

the University of Guelph Animal Care Committee and carried out in accordance 

with the Canadian Council of Animal Care Guide to the Care and Use of 

Experimental Animals. 

 

Supplementation with MNB 

MNB (MCM-B2) was derived from copra meal by enzymatic digestion, and 

was provided by Fuji Oil, Ltd. (Osaka, Japan). The supplement contained 

67.8% MNB (w/w), with the remainder composed of mannose (8.9%), arabinose 

(0.4%), galactose (2.6%), glucose (5%), fructose (2.3%), sucrose (0.2%), protein 

(9.7%) and ash (3.1%) (Data provided from Fuji R&D). MCM-B2 was 

administered three times per week via oral gavage for four weeks, at the 

following doses: 3, 8, 15, and 18 mg/chick during weeks 1, 2, 3, and 4, 

respectively. MCM-B2 dose was based on previously reported supplementation 

of chicks with 0.1% MCM-B1 in feed (Agunos et al., 2007). Negative control 

animals received the same volume of vehicle (sterile water) by oral gavage. 

 

Body weight and histopathology 

Body weights were recorded weekly. On day 14 and 28, half of the animals 

in each group were humanely euthanized, and weights of spleen and bursa of 

Fabricius were recorded. Results were expressed as the percent organ weight 
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relative to body weight for each animal. Samples of ileum, jejunum, cecum, 

spleen, thymus and bursa of Fabricius were fixed in 10% formalin followed by 

staining with hematoxylin and eosin (H&E).  

 

Collection and processing of fecal samples  

Fecal samples were taken weekly from each group by collecting droppings 

from five random locations beneath each cage, and were stored at -80°C until 

analysis. Samples were weighed, diluted 1:3 with PBS and mixed thoroughly. 

Clarified supernatant was obtained by centrifuging at 4000 rpm for 20 min at 

4°C, and was stored at -80°C until IgA concentrations were measured (Tress et 

al., 2006).  

 

IgA enzyme-linked immunosorbent assay  

Fecal total IgA quantification was carried out using a Chicken IgA ELISA 

Quantitation Set according to the manufacturer’s instructions (Bethyl 

Laboratories, Inc., Montgomery, TX). Briefly, 96-well plates (Corning Inc., 

Corning, NY) were coated with 100 μL of anti-chicken IgA capture antibody, 

diluted 1:100 in 0.05 M sodium carbonate buffer, pH 9.6, and incubated for 1 hr 

at 37°C. Plates were then washed with TBS containing 0.05% Tween-20 (TBST) 

and blocked for 30 min with TBS containing 1% (w/v) BSA (Thermo Fisher 

Scientific, Inc., Waltham, MA). IgA standards and samples were diluted in 

TBST containing 1% (w/v) BSA, and 100 μL/well was added to the plates and 

incubated for 1 hr at 37°C. Plates were washed and then incubated for 1 hr at 

37°C with HRP-conjugated chicken IgA detection antibody, diluted 1:50000 in 

PBST containing BSA. Detection was carried out using 3, 3’, 5, 5’- 

tetramethylbenzidine (TMB) (Sigma-Aldrich, St. Louis, MO). The reaction was 

stopped with 2 M sulfuric acid (Thermo Fisher Scientific) and absorbances read 

at 450 nm. 
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Microarray and RT-PCR analysis 

On day 28 birds were euthanized and the ileum was removed and stored 

in RNAlater® (Applied Biosystems, Austin, TX) at -20°C until use. Total RNA 

was isolated from ileum samples using QIAGEN RNeasy Mini Kit according to 

the manufacturer’s instructions (Qiagen Inc., Mississauga, Ontario). RNA 

quality was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies 

Inc., Palo Alto, CA) and the RNA 6000 Nano kit (Caliper Life Sciences, 

Mountain View, CA). 

For microarray analysis, all GeneChips were processed at the London 

Regional Genomics Centre (Robarts Research Institute, London, Ontario, 

Canada; http://www.lrgc.ca). Biotinylated complimentary RNA (cRNA) was 

prepared from 1.0 μg of total RNA using the MessageAmp II-Biotin Enhanced 

Single Round aRNA Amplification kit (Applied Biosystems, Austin, TX). Ten μg 

of labeled cRNA was hybridized to the GeneChip® Chicken Genome Array 

(Affymetrix, Santa Clara, CA) for 16 hours at 45°C as described in the 

Affymetrix Technical Analysis Manual. GeneChips were stained with 

Streptavidin-Phycoerythrin, followed by an antibody solution and a second 

Streptavidin-Phycoerythrin solution, with all liquid handling performed by a 

GeneChip Fluidics Station 450, and were scanned with the Affymetrix 

GeneChip Scanner 3000 (Affymetrix). Probe signal intensities were generated 

using GCOS1.3 (Affymetrix) using default values for the Statistical Expression 

algorithm parameters and a Target Signal of 150 for all probe sets and a 

Normalization Value of 1. Gene level data was generated using the RMA 

preprocessor in GeneSpring GX 7.3.1 (Agilent Technologies Inc.).  Data were 

then transformed (measurements less than 0.01 set to 0.01) and normalized per 

chip to the 50th percentile, and per gene to control samples.  Fold change and 

t-tests were then run using GeneSpring GX. 

First-strand cDNA synthesis was carried out using the iScript™ cDNA 

Synthesis Kit (Bio-Rad Laboratories, Inc.) according to the manufacturer’s 

instructions. Real-time PCR was carried out using iQ™ SYBR Green Supermix 

(Bio-Rad Laboratories, Inc.) on a MyiQ™ Single Color Real-Time PCR Detection 
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System (Bio-Rad Laboratories, Inc.) using the following conditions: 

denaturation 15 s at 95°C, annealing 15 s at 56 °C, and extension 30 s at 72 °C. 

Primers for chicken GAPDH, interferon regulatory factor (IRF)-1, IRF-7, major 

histocompatibility complex (MHC) beta 1 doman (BLB-1), MHC class I 

glycoprotein (BF-2), tumor necrosis factor (TNF) (ligand) superfamily member 

15 (TNFSF15), and Toll like receptor (TLR) 3 (Table 6) were designed using 

Primer3 v.0.4.0 (Rozen and Skaletsky, 2000) and synthesized by the University 

of Guelph Laboratory Services Molecular 

 

 Table 6  Chicken primers used for real-time RT-PCR. 

 

Biology Section (Guelph, ON). Results are expressed as relative mRNA levels 

compared to GAPDH. 

 

Statistical analysis  

Statistical analyzes to compare MCM-B2-treated and control groups were 

carried out using Student’s t test. Statistical significance was determined using 

the GraphPad Prism statistical software (San Diego, CA, USA). A P-value of less 

than 0.05 was defined as significant. 

 

Gene 

 

Forward primer (5’-3’) 

 

Reverse primer (5’-3’) 

Product 

(bp) 

Accession 

number 

GAPDH CAA CAT CAA ATG GGC AGA TG AGC TGA GGG AGC TGA GAT GA 130 NM_204305 

IRF-1 GGA GGA GTC AGC AGA ACG AC CGC AGG ACG AGA GGT CTA AG 131 NM_205415   

IRF-7 TCA GGG TGT TTT GCA CAG AG ACC AGC TTC ACC AGG ATG AG 142 NM_205372 

BLB-1 ATG CAG TGG ATA CGT TCT GC GGT AGA AGC CCG TCA CGT AG 153 NM_001044694 

BF-2 ATC GTG GTT GGT GTT GGA TT GTG TGG ACT GTT GGC TCC TT 168 NM_001031338 

TNFSF15 AAG CCA AGA GCA CAC CTG AC CAG GTA TCA CCA GTG CGT TG 148 NM_001024578 

TLR3 GAT CCA TGG TGC AGG AAG TT GCA CAG GGG GCA CTT TAC TA 250 NM_001011691 
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Results 

Body weights were recorded weekly, and are summarized in Figure 11. No 

significant difference was observed between the weight gain in chicks fed the 

control diet and those supplemented with 0.1% MCM-B2 over 4 weeks. 

Likewise, no significant difference was observed in the relative organ weights 

of spleen (Figure 12A) and bursa of Fabricius (Figure 12B) between the two 

groups on day 14 or day 28. No significant histopathological changes were 

observed in any of the tissues examined (ileum, jejunum, caecum, spleen and 

bursa of Fabricius) from either control or MNB-treated animals (data not 

shown). 

Fecal samples were collected weekly, and the concentrations of fecal total 

IgA levels were measured by ELISA (Figure 13). While total IgA levels 

continued to increase throughout the duration of the trial in both groups, 

MNB-supplemented animals showed higher (P < 0.05) concentrations of fecal 

IgA at all time points when compared to animals fed the control diet, further 

supporting the immunomodulatory role of MNB.    

Analysis of microarray data revealed that the ileum expression of 171 of 

the 38,535 genes studied was significantly influenced by the administration of 

MNB for four weeks. Affected genes were investigated for their involvement in 

biological functions and classified based on known biological functions 

according to Gene Ontology (Table 7). Up- and down-regulated genes are 

summarized in Tables 8 and 9. The identified up- or down-regulated genes were 

found to be related to a number of different cellular functions (Table 8). Among 

the genes that were significantly up-regulated by MCM-B2 administration, 30 

were directly related to immune response and host defense, including MHC 

class I and II, TNFSF15, interferon (IFN) and IFN regulatory factors (IRF-1, 

IRF-7, IFIT5 and IFITM1), as well as genes involved in pathogen recognition 

(TLR3) and innate immunity and host defense (lysozyme and Mx protein). 

However, several genes classified as participating in other cellular functions, 

such as signal transduction and physiological processes and cellular 

metabolism, are also indirectly related to immune responses and were found to 
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be up-regulated by MCM-B2. These genes included cysteine-rich angiogenic 

inducer 61 (CYR61), signal transducer and activator of transcription 1 (STAT1), 

complement component 1, radical S-adenosyl methionine domain containing 2 

(RSAD2), and CD69. As a result, the number of up-regulated genes directly or 

indirectly related to immune responses was 37 out of 171, or 22% of 

significantly influenced genes. 

In order to validate the microarray data, real-time quantitative RT-PCR 

was carried out on six genes selected as candidate biomarkers of MNB activity. 

BLB-1 BF-2, IRF-1, IRF-7, TNFSF15 and TLR3 were all up-regulated (P < 0.05) 

(Figure 14) in the ileum of MCM-B2-treated birds, consistent with the 

microarray data. Their up-regulation observed here, as well as the importance 

of the genes in host defense and immune responses would suggest that these 

genes may serve as markers of the physiological and immunomodulating 

activities of MNB. 

 

Discussion 

Mannose-containing oligosaccharides are one of the most common 

commercially available prebiotics for poultry use, however, little is known 

about their effect on the intestinal immune system. We previously observed 

that chickens fed MCM including MNB had increased IgA production and 

improved S. enteritidis clearance (Agunos et al., 2007), suggesting that it may 

act as an immunomodulatory agent to enhance innate and adaptive immune 

responses. In the present study, we evaluated the effect of the administration of 

MCM including MNB alone, without bacterial challenge, in order to elucidate 

the role of MNB on the intestinal immune system, and carry out a 

comprehensive evaluation of the effect of MNB on gene expression in the 

intestine by microarray analysis. 
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Table 7 Function-based classifications of genes for which expression in ileum were 

significantly influenced by administration of MCM-B2 for 28 days. 

 

 Number of genesa 

Function up-regulated down-regulated 

Immune response 30 0 

Physiological processes and metabolism 16 25 

Signal transduction 6 1 

Protein complex and signal translation 3 0 

Catalytic activity 7 14 

Nucleotide binding 16 4 

Others 24 21 

Unknown 2 2 

   

Total 104 67 

a Number of genes significantly influenced by MCM-B2 administration (P < 0.05) 

 

Figure 11 Change in mean body weights of chicks fed control diet (open bars) or 

supplemented with MCM-B2 (shaded bars) for 28 days. Bars represent means ± 

SEM of n = 12 (days 1, 7 and 14) or n = 6 (days 21 and 28) animals. 

 

No significant changes were observed in body or organ weight between 
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MCM-B2-treated and untreated birds. This is consistent with reports by 

Agunos et al. (2007) and Juskiewicz et al. (2003), in which supplementation 

with mannose-containing oligosaccharides had no noticeable effect on weight 

gain.  

Secretory IgA plays an important role in protecting against infection in 

the intestinal immune system, and its secretion was previously shown to be 

increased by dietary MNB in chickens infected with SE (Agunos et al., 2007). 

Here we found that administration of MNB induced a similar increase in fecal 

IgA levels. This is in line with previous reports of increased IgA production in 

mice fed dietary FOS (Hosono et al., 2003; Nakamura et al., 2004), where it was 

observed that FOS could alter the microbial environment of the gut, and 

up-regulate both mucosal immune responses for protective immunity, but also 

systemic immune responses (Hosono et al., 2003).   

Among the genes that were significantly up-regulated by MNB 

administration, 37 (22% of all affected genes) were directly or indirectly related 

to immune responses. This suggests that one of the major physiological roles of 

MNB administration is immunomodulation in the small intestine.   

Four out of the five represented genes relating to antigen presentation 

(both MHC I and II) and processing were up-regulated. The MHC molecule 

plays an important role in the regulation of the immune response by 

communicating among different cellular components of the immune system 

(Lamont, 1998). Expression of MHC class I antigen on the cell surface requires 

expression of multiple genes and peptide transporters associated with antigen 

processing, including (TAP-1) and TAP-2 (Guo et al., 2002), which was found to 

be up-regulated here by MCM-B2, suggesting MNB may act as an essential 

factor for expression of MHC molecule on cell surfaces. Studies have 

demonstrated an association between the chicken MHC and antibody 

production against variety of antigens (Dunnington et al., 1992; Weigend et al., 

2001) and Zhou and Lamont (2003) reported the genomic region bearing MHC 

class I and II genes had significant effects on antibody response kinetics to 

SRBC and Brucella abortus and antibody levels to SE vaccination.  
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Of the ten represented genes associated with host defense against 

organisms, MCM-B2 administration up-regulated all ten, including lysozyme, 

an antimicrobial protein important in innate defense which functions to protect 

against microbial attack in the gastrointestinal tract (Ganz, 2004), and 

TNFSF15, which is primarily expressed in spleen, liver, intestinal epithelial 

lymphocytes (IEL), peripheral blood lymphocytes and bursa (Park et al., 2007), 

and is involved in the differentiation, proliferation and apoptosis of immune 

cells (Collette et al., 2003). Like human TNFSF15, it has been reported that 

chicken TNFSF15 also possess cytotoxic activity against tumor cells and it has 

been reported that TNFSF15 transcripts were primarily expressed in CD4+ 

intraepithelial lymphocytes in the duodenum and jejunum following E. maxima 

infection in chickens (Park et al., 2007).  

Interferons (IFN) are important cytokines which regulate antiviral, cell 

growth, immune-modulation and anti-tumor functions, and several IFN-related 

genes were found here to be up-regulated by MCM-B2, including the 

transcription factors IRF-1 and IRF-7. Type I interferons (IFN-α and -β) are 

typically produced upon viral infection and affect the release of 

pro-inflammatory cytokines and nitric oxide by dendritic cells and macrophages 

(Bogdan, 2000). IFN and MHC II also play an important role in the expression 

of secretory IgA in the lamina propria, and increases in both MHC and 

IFN-related genes and IgA production have been observed in mice (Hosono et 

al., 2003; Nakamura et al., 2004; Fukasawa et al., 2007) , and may in part 

explain the concomitant increase in fecal IgA levels and MHC and IFN-related 

gene expression observed in the present study. IRF-1 regulates the expression 

of several genes involved in both innate and acquired immunity. Induced by 

STAT1 (Saha et al., 2009), it also regulates IFN-α/β, IFN-γ, inducible nitric 

oxide synthase (iNOS), MHC class I molecule and beta 2 microglobulin. On the 

other hand, IRF-1 is induced by IFN-α/β, IFN-γ and interleukin (IL)-12 

therefore IRF-1 seems to be positioned at the intersection of different pathways 

leading to a Th1 response and host defense against intracellular 

microorganisms (Miyamoto et al., 1988; Galon et al., 1999). Furthermore, 
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Fantuzzi et al. (2001) reported that IRF-1 is an important regulator of IL-18 

production and participates in the production of IFN-γ. IRF-7 is the master 

regulator of type-1 IFN-dependent immune responses, and is essential for the 

induction of IFN-α/β genes via the virus-activated MyD88-independent 

pathway and the TLR-activated MyD88-dependent pathway (Honda et al., 

2005). The potent activity of IFN-α/β against viral infections requires the 

expression of IFN-inducible protective genes including 2–5 oligoadenylate 

synthetase (OAS) and MxA protein, both of which were up-regulated by 

MCM-B2, and confer cellular resistance, inhibit viral replication and impede 

viral dissemination, as well as exerting other immunomodulatory effects (Sen 

and Ransohoff, 1993; van den Broek et al., 1995; Hefti et al., 1999) .  

Interestingly, some of the up-regulated genes observed here have also 

been found to be up-regulated in response to infection with Marek’s disease 

virus (MDV) in vitro, including interferon inducible protein, lymphocyte 

antigen 6 complex locus E (LY6E), and macrophage inflammatory protein (MIP) 

(Morgan et al., 2001). Likewise, RSAD2, an IFN-inducible antiviral protein 

(Chin and Cresswell, 2001) was also up-regulated, further supporting the 

potential induction of anti-viral responses by MNB administration.  

 Of these up-regulated genes, 6 were chosen for validation by RT-PCR,as  

possible biomarkers of MNB activity. The up-regulation of BLB-1, BF-2, 

IRF-1, IRF-7, TNFSF15, and TLR3 observed both by microarray and 

RT-PCR, along with the significant up-regulation of a number of genes 

involved in immune response and host-defense would suggest that MCM-B2 

administration may exert a combination effect on the modulation of the 

intestinal immune system. These results are further supported by the 

increased production of IgA observed here, as well as previous observations 

that MCM including MNB could prevent SE infection and improve integrity of 

the gut mucosa in MCM including MNB-fed chickens, indicating that MNB is a 

potent modulator of intestinal immune responses, and further work will be 

required to fully elucidate the mechanism of action of MNB in modulating 

intestinal immune responses. 
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  (A)                                  (B) 

Figure 12  Weights of spleen (A) and bursa of Fabricius (B) in chicks fed control diet (open 

bars) or supplemented with MCM-B2 (shaded bars) for 14 or 28 days. Results are 

expressed as percent organ weight relative to body weight of each animal. Bars 

represent means ± SEM of n = 6 animals. 

 

 

 

 

Figure 13  Fecal IgA concentrations from chicks fed control diet or supplemented with 

MCM-B2 for 28 days. Data points represent means ± SEM of n = 12 (days 7 and 

14) or n = 6 (days 21 and 28) animals. *, P < 0.05. 
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 Table 8  Genes significantly up-regulated by MNB administration. 

Functional Grouping Affymetrix ID Gene Description 
Fold 

change 

Immune function    

  Antigen presentation and    GGA.9239.1.S1_S_AT 

similar to MHC 

rfp-y class i alpha 

chain 

2.66 

  processing GGA.417.1.S1_AT MHC class I glycoprotein (BF-2)a 1.83 

 GGA.5137.1.S1_X_AT MHC class II antigen b-l beta 3.54 

 GGA.517.1.S1_X_AT MHC class II beta 1 domain (BLB-1) 4.51 

    

 Defense against organisms GGA.131.1.S1_AT 
myxovirus (influenza virus) resistance 1, 

interferon-inducible protein p78 (mouse) (MX1) 
2.99 

 GGA.5153.2.S1_AT MHC class I antigen (YFV) 1.73 

 GGA.418.1.S1_X_AT 
major histocompatibility complex class I glycoprotein 

(BF2) 
1.78 

 GGA.12614.1.S1_AT 
tumor necrosis factor (ligand) superfamily, member 15 

(TNFSF15) 
1.54 

 GGA.11252.1.S1_AT 

similar to Small inducible cytokine A19 precursor 

(CCL19) (Macrophage inflammatory protein 3 beta) 

(MIP-3-beta) (EBI1-ligand chemokine) (ELC) (Beta 

chemokine exodus-3) (CK beta-11) 

1.99 

 GGA.3357.2.S1_A_AT lysozyme G like 2 1.67 

 GGA.536.1.S1_A_AT 2'-5'-oligoadenylate synthetase-like (OASL) 3.19 

 GGA.518.1.S1_X_AT MHC class II antigen B-F minor heavy chain (BLB1) 2.00 

 GGA.9103.1.S1_AT similar to Lysozyme G (1,4-beta-N-acetylmuramidase) 4.96 

 GGAAFFX.25059.1.S1_AT similar to Lysozyme G (1,4-beta-N-acetylmuramidase) 6.31 

    

        Interferon-related GGA.791.1.S1_AT interferon regulatory factor 1 (IRF-1) 1.51 

 GGA.1087.1.S1_AT interferon regulatory factor 7 (IRF-7) 1.53 

 GGA.16457.1.S1_S_AT interferon induced with helicase C domain 1 (IFIH1) 2.16 

 GGAAFFX.21915.1.S1_AT 
similar to interferon-induced protein with 

tetratricopeptide repeats 5 (IFIT-5) 
2.22 

 GGA.8227.1.S1_S_AT 
putative isg12-1 protein/similar to interferon induced 

transmembrane protein 1 (IFITM1) 
2.50 

 GGA.6201.1.S1_AT putative isg12-2 protein/similar to interferon, 2.64 
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alpha-inducible protein 6 

 GGAAFFX.23449.1.S1_AT interferon induced with helicase C domain 1  

    

      Other immune functions GGA.2865.1.S1_AT transporter associated with antigen processing 2 (TAP2) 1.52 

 GGA.4225.1.S1_AT leukocyte cell-derived chemotaxin 2 (LECT2) 1.54 

 GGAAFFX.8585.3.S1_S_AT toll-like receptor 3 (TLR3) 1.61 

 GGAAFFX.26422.2.S1_AT 
similar to immune associated nucleotide 6; immune 

associated nucleotide 
1.62 

 GGAAFFX.20099.1.S1_AT heat shock protein 25 (HSP25) 1.70 

 GGA.985.1.S1_S_AT heat shock protein 25 1.72 

 GGA.16267.1.S1_S_AT similar to class i alpha chain 1.86 

 GGA.380.1.S1_AT 
IgA h-immunoglobulin alpha heavy chain [chickens, 

mrna, 1866 nt] 
1.96 

 GGA.1171.1.S1_AT lymphocyte antigen 6 complex locus E (LY6E) 3.57 

    

Protein complex and signal  GGAAFFX.9499.1.S1_AT 
general transcription factor IIE, polypeptide 1, alpha 

56kDa (GTF2E1) 
1.56 

transduction GGAAFFX.10104.2.S1_S_AT 
ATPase, H+ transporting, lysosomal 38kDa, V0 subunit 

D2 (ATP6V0D2) 
1.76 

 GGAAFFX.13119.1.S1_S_AT ribosomal protein S14 (RPS14) 1.52 

    

Nucleotide binding GGA.17642.1.S1_AT ring finger protein 213 (RNF213) 1.62 

 GGA.11337.1.S1_AT 
similar to Torsin B precursor (Torsin family 1 member B) 

(FKSG18 protein) 
1.59 

 GGAAFFX.25830.1.S1_AT K(lysine) acetyltransferase 2A (KAT2A) 1.64 

 GGA.13972.1.S1_S_AT lupus brain antigen 1 (LBA1) 1.58 

 GGAAFFX.8378.1.S1_S_AT 
similar to immune associated nucleotide 6; immune 

associated nucleotide 
1.66 

 GGAAFFX.22137.1.S1_AT PX domain containing serine/threonine kinase (PXK) 1.54 

 GGA.4870.3.S1_A_AT actin, alpha, cardiac muscle 1 (ATCTC1) 1.81 

 GGA.9292.1.S1_AT 
eukaryotic translation initiation factor 2-alpha kinase 2 

(EIF2AK2) 
1.55 

 GGA.8244.1.S1_AT 
cytidine monophosphate (UMP-CMP) kinase 2, 

mitochondrial (CMPK2) 
3.29 

 GGAAFFX.22996.1.S1_AT similar to hypothetical protein flj20035 4.08 

 GGA.9486.1.S1_S_AT La ribonucleoprotein domain family, member 5 (LARP5) 1.66 
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 GGAAFFX.6546.1.S1_AT 
similar to hect domain and RLD 5; cyclin-E binding 

protein 1 
2.75 

 GGAAFFX.11512.1.S1_AT TRAF-type zinc finger domain containing 1 (TRAFD1) 1.51 

 GGAAFFX.23767.1.S1_AT lupus brain antigen 1 (LBA1) 1.99 

 GGAAFFX.6052.1.S1_S_AT hypothetical LOC422427 4.92 

 GGAAFFX.10498.1.S1_AT 
radical S-adenosyl methionine domain containing 2 

(RSAD2) 
5.11 

    

Signal transduction GGA.2200.1.S1_AT cysteine-rich, angiogenic inducer, 61 (CYR61) 1.99 

 GGA.701.1.S1_AT leukocyte ribonuclease A-2 (RSFR) 1.55 

 GGA.729.1.S1_AT mature avidin 2.24 

 GGA.11597.1.S1_S_AT 
signal transducer and activator of transcription 1, 

91kDa (RCJMB04_17i9) 
1.93 

 GGAAFFX.22313.1.S1_S_AT signal transducer and activator of transcription 1 1.88 

 GGA.1182.1.S1_S_AT 
Mov10, Moloney leukemia virus 10, homolog (mouse) 

(RCJMB04_17i9) 
1.64 

    

Physiological processes and  GGAAFFX.9256.1.S1_S_AT complement component 1, s subcomponent (C1S) 1.51 

cellular metabolisim GGAAFFX.7658.1.S1_AT poly (ADP-ribose) polymerase family, member 9 (PARP9) 1.54 

 GGAAFFX.24484.2.S1_S_AT complement component 1, r subcomponent (C1R) 1.73 

 GGAAFFX.20966.1.S1_S_AT 
similar to hect domain and RLD 5; cyclin-E binding 

protein 1 
2.36 

 GGAAFFX.20602.1.S1_AT zinc finger CCCH-type, antiviral 1 (RCJMB04_23i8) 1.58 

 GGA.990.1.S1_AT hypothetical protein LOC770777 3.75 

 GGA.13502.1.S1_AT PHD finger protein 11 (PHF11) 1.67 

 GGAAFFX.6883.4.S1_S_AT hook homolog 1 (Drosophila) (HOOK1) 1.59 

 GGAAFFX.26344.1.S1_AT zinc finger, NFX1-type containing 1 (ZNFX1) 2.12 

 GGA.1111.1.S1_A_AT ubiquitin specific peptidase 18 (USP18) 2.92 

 GGAAFFX.13227.1.S1_S_AT 
ATPase, H+ transporting, lysosomal 38kDa, V0 subunit 

D2 
1.53 

 GGA.11554.1.S1_AT 
asparagine-linked glycosylation 2 homolog (S. cerevisiae, 

alpha-1,3-mannosyltransferase) (ALG2) 
1.68 

 GGA.3236.1.S1_AT PHD finger protein 11 (PHF11) 1.54 

 GGA.10666.1.S1_AT 
ATPase, H+ transporting, lysosomal 13kDa, V1 subunit 

G3 
1.55 

 GGAAFFX.21777.1.S1_S_AT intestinal zipper protein 2.27 
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 GGAAFFX.6058.1.S1_AT aminoadipate aminotransferase (AADAT) 1.59 

    

Sugar-binding GGA.4900.6.S1_X_AT CD69 molecule /// similar to C-type lectin-like receptor 1.57 

    

Catalytic activity GGA.12925.1.S1_AT 
structural maintenance of chromosomes flexible hinge 

domain containing 1 (SMCHD1) 
1.64 

 GGAAFFX.10187.1.S1_AT dpy-19-like 4 (C. elegans) (DPY19L4) 1.52 

 GGAAFFX.25763.1.S1_AT tripartite motif-containing 25 (TRIM25) 1.63 

 GGA.1746.1.S1_S_AT similar to kinesin, putative 2.58 

 GGA.12561.1.A1_AT dermatan sulfate epimerase (DSE) 2.07 

 GGAAFFX.1838.1.S1_AT motilin (MLN) 1.73 

 GGAAFFX.5967.1.S1_AT sterile alpha motif domain containing 9-like (SAMD9L) 10.02 

    

Others GGA.12409.1.S1_S_AT similar to gag/env fusion protein 2.06 

 GGAAFFX.4249.1.S1_X_AT WAP four-disulfide core domain 2 (WFDC2) 1.93 

 GGA.10351.1.S1_S_AT 
chromosome 19 open reading frame 12 /// similar to 

RIKEN cDNA 1600014C10 
1.90 

 GGA.10903.1.S1_AT finished cdna, clone chest789c2 1.91 

 GGA.11753.1.S1_AT finished cdna, clone chest393a1 2.92 

 GGA.12098.1.S1_A_AT 
hypothetical gene supported by BX933262; BX935476; 

CR406074 
1.59 

 GGA.12360.1.S1_AT transmembrane protein 213 (TMEM213) 1.61 

 GGA.13146.1.S1_AT epithelial stromal interaction 1 (breast) (EPSTI1) 2.17 

 GGA.13280.1.S1_AT hypothetical protein LOC768499 1.50 

 GGA.14299.1.S1_AT finished cdna, clone chest149k6 4.44 

 GGA.1442.1.S1_AT transcribed locus 1.73 

 GGA.15728.1.S1_AT RCSD domain containing 1 1.66 

 GGA.16084.1.S1_AT similar to promyelocytic leukemia protein 1.63 

 GGA.16635.1.S1_AT sperm associated antigen 4 (SPAG4) 1.88 

 GGA.16860.1.S1_AT hypothetical gene supported by CR391572 1.57 

 GGA.3263.1.S1_AT hypothetical gene supported by cr391572 3.26 

 GGA.4590.1.S2_AT finished cdna, clone chest75j21 1.65 

 GGA.4832.1.S1_AT hypothetical protein LOC770612 1.82 

 GGA.6433.1.S1_AT claudin 2 (CLDN2) 1.60 

 GGA.6770.2.S1_A_AT loc419325 1.53 

 GGA.9930.1.S1_AT finished cdna, clone chest927g24 2.27 
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 GGAAFFX.10735.1.S1_AT 
MIT, microtubule interacting and transport, domain 

containing 1 (MITD1) 
1.56 

 GGAAFFX.20778.1.S1_AT coiled-coil domain containing 107 (CCDC107) 1.91 

 GGAAFFX.21332.1.S1_S_AT similar to hypothetical protein flj20035 6.59 

    

Unknown AY013303.CDS3.S1_S_AT loc417860 2.96 

 GGA.14508.1.S1_AT 
DnaJ (Hsp40) homolog, subfamily B, member 5 

(DNAJB5) 
1.58 

a Bold text indicates genes chosen for further analysis by real-time RT-PCR 

 

 

Table 9     Genes significantly down-regulated by MNB administration. 

Functional Grouping Affymetrix ID Gene Description 
Fold 

change 

Physiological processes and GGAAFFX.22947.1.S1_S_AT sucrase-isomaltase (alpha-glucosidase) (SI) -2.15 

cellular metabolisim GGA.4248.1.S1_AT lipoprotein lipase (LPL) -1.63 

 GGA.8817.1.S1_S_AT farnesyl-diphosphate farnesyltransferase 1 (FDFT1) -1.64 

 GGAAFFX.26670.1.S1_AT 
solute carrier family 5 (sodium/glucose cotransporter) 

(SLC5A11) 
-1.50 

 GGA.10771.1.S1_S_AT membrane metallo-endopeptidase (MME) -1.89 

 GGA.4447.1.S1_AT phosphoenolpyruvate carboxykinase 1 (soluble) (PCK1) -1.64 

 GGA.11459.1.S1_AT hexokinase domain containing 1 (HKDC1) -1.52 

 GGAAFFX.711.1.A1_AT 
ST3 beta-galactoside alpha-2,3-sialyltransferase 4 

(ST3GAL4) 
-1.63 

 GGA.8851.1.S1_A_AT isopentenyl-diphosphate delta isomerase 1 (IDI1) -1.60 

 GGAAFFX.8317.3.S1_AT 
dopa decarboxylase (aromatic L-amino acid decarboxylase) 

(DDC) 
-1.54 

 GGAAFFX.23557.10.S1_S_AT 
solute carrier family 4, sodium bicarbonate cotransporter, 

member 7 (SLC4A7) 
-1.79 

 GGAAFFX.3997.1.S1_S_AT 
ADP-ribosyltransferase 1 /// GPI-anchored 

ADP-ribosyltransferase (ART1 /// ART7B) 
-1.64 

 GGAAFFX.10596.2.S1_S_AT BMX non-receptor tyrosine kinase (BMX) -1.88 

 GGAAFFX.11774.1.S1_AT serine/threonine kinase 38 like (STK38L) -1.64 

 GGAAFFX.8887.1.S1_S_AT vanin 1 /// vanin 1 (RCJMB04_35g11 /// VNN1) -1.76 

 GGA.2896.1.S1_AT carbonyl reductase 1 (CBR1) -1.58 
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 GGAAFFX.7796.1.S1_AT 
solute carrier family 39 (zinc transporter), member 8 

(SLC39A8) 
-1.50 

 GGAAFFX.20374.1.S1_AT succinate-CoA ligase, GDP-forming, beta subunit (SUCLG2) -4.33 

 GGA.4990.1.S1_AT collagen, type IX, alpha 1 (COL9A1) -1.62 

 GGAAFFX.25502.1.S1_S_AT 
solute carrier family 2 (facilitated glucose/fructose 

transporter), member 5 (SLC2A5) 
-1.65 

 GGAAFFX.7519.2.S1_S_AT 
solute carrier family 6 (proline IMINO transporter), member 

20 (SLC6A20) 
-4.37 

 GGAAFFX.6121.1.S1_S_AT asparagine synthetase (ASNS) -1.54 

 GGAAFFX.24270.1.S1_AT dermatan sulfate epimerase-like (DSEL) -1.50 

 GGAAFFX.25206.4.S1_S_AT 
folate hydrolase (prostate-specific membrane antigen) 1 

(FOLH1) 
-2.03 

 GGAAFFX.9792.1.S1_AT similar to methionine adenosyltransferase ii, alpha -1.52 

    

Signal transduction GGA.13328.1.S1_AT 

similar to nuclear hormone receptor nor-1 (neuron-derived 

orphan receptor 1) (mitogen induced nuclear orphan 

receptor) 

-1.99 

 

    

Nucleotide binding GGA.5413.1.S1_AT 
DNAJ (Hsp40) homolog, subfamily C, member 15 

(DNAJC15) 
-1.51 

 GGA.6183.1.S1_AT regenerating islet-derived family, member 4 (REG4) -1.63 

 GGA.4939.1.S1_S_AT fatty acid binding protein 4, adipocyte (FABP4) -4.46 

 GGA.10658.1.S1_AT similar to kiaa2019 protein -1.53 

    

Catalytic activity GGA.9991.1.S1_AT sorbitol dehydrogenase (SORD) -1.52 

 GGA.1388.1.S1_S_AT 
alcohol dehydrogenase 1B (class I), beta polypeptide 

(ADH1B) 
-2.04 

 GGAAFFX.5988.1.S1_S_AT sucrase-isomaltase (alpha-glucosidase) (SI) -1.65 

 GGAAFFX.4985.1.S1_AT similar to apical early endosomal glycoprotein precursor -1.79 

 GGA.8880.2.S1_S_AT membrane metallo-endopeptidase (MME) -1.68 

 GGAAFFX.24663.2.S1_S_AT 
similar to huntingtin-interacting protein-1 protein 

interactor; vestrogen-related receptor beta like 1 
-1.51 

 GGA.14230.1.S1_AT dermatan sulfate epimerase-like (DSEL) -1.60 

 GGA.14579.1.S1_AT cubilin (intrinsic factor-cobalamin receptor) (CUBN) -1.66 

 GGA.11227.1.S1_AT bone marrow stromal cell antigen 1 (BST1) -1.55 

 GGA.19409.1.S1_AT collagen, type IV, alpha 2 (COL4A2) -1.50 
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 GGAAFFX.8477.1.S1_AT 
solute carrier family 5 (sodium/glucose cotransporter), 

member 12 (SLC5A12) 
-2.62 

 GGA.4115.1.S1_AT 

alcohol dehydrogenase 1B (class I), beta polypeptide /// 

alcohol dehydrogenase 1C (class I), gamma polypeptide 

(ADH1B /// ADH1C) 

-1.63 

 GGAAFFX.23840.1.S1_S_AT 
alcohol dehydrogenase 1C (class I), gamma polypeptide 

(ADH1C) 
-1.50 

 GGA.3415.1.S1_AT similar to alcohol dehydrogenase adh-f -1.81 

    

Others GGA.4195.1.A1_AT Similar to BWK-1 -2.22 

 GGA.6324.1.S1_AT retinol binding protein 2, cellular (RBP2) -2.61 

 GGA.9386.1.S1_AT retinol binding protein 7, cellular (RBP7) -1.61 

 GGA.10858.1.S1_S_AT 
serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, 

antitrypsin), member 1 (SERPINA1) 
-2.15 

 GGA.12648.1.S1_AT 
six transmembrane epithelial antigen of the prostate 1 

(STEAP1) 
-1.57 

 GGA.16172.1.S1_S_AT hypothetical gene supported by CR385555 -1.91 

 GGA.16552.2.S1_A_AT hypothetical gene supported by CR387685 -1.59 

 GGAAFFX.11018.1.S1_S_AT matrix metallopeptidase 1 (interstitial collagenase) (MMP1) -1.63 

 GGA.10034.2.S1_A_AT 
Serpin peptidase inhibitor, clade B (ovalbumin), member 2 

(SERPINB2) 
-1.54 

 GGA.11602.1.S1_AT transcribed locus -1.54 

 GGA.16043.1.S1_S_AT CSRP2 binding protein (CSRP2BP) -1.58 

 GGA.1725.2.S1_A_AT finished cdna, clone chest592m12 -1.58 

 GGA.17737.1.S1_AT finished cdna, clone chest1025a6 -1.66 

 GGA.19101.1.S1_AT finished cdna, clone chest926n8 -1.69 

 GGA.19476.1.S1_AT finished cdna, clone chest883k3 -1.62 

 GGA.2890.1.S1_AT finished cdna, clone chest1021c11 -2.18 

 GGA.6292.1.S1_A_AT transmembrane 4 L six family member 4 (TM4SF4) -1.81 

 GGA.6666.1.S1_AT similar to serine protease inhibitor Kazal type 9 -1.63 

 GGA.8082.1.S1_AT RNA binding motif protein 45 (RBM45) -1.51 

 GGA.8540.1.S1_AT finished cdna, clone chest879k19 -1.68 

 GGAAFFX.9703.1.S1_AT hypothetical protein LOC770012 -1.54 

    

Unknown GGAAFFX.1602.1.A1_X_AT  -1.51 

 GGA.9024.1.S1_AT chromosome 8 open reading frame 22 -1.51 
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Figure 14  Relative mRNA levels of B-LB1, BF-2, IRF-1, IRF-7, TNFSF 15 and TLR3 in the 

ilea of chicks fed control diet (open bars) or supplemented with 0.1% MCM-B2 

(shaded bars) for 28 days. Bars represent means ± SEM of n = 6 animals. *, P < 0.05. 
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Chapter Ⅳ 

β1,4 mannobiose (MNB) enhances Salmonella-killing activity and activates 

innate immune responses in chicken macrophages 

 

Introduction 

Salmonella enteritidis (SE) is a foodborne-illness pathogen that 

negatively affects both animal and human health. SE can infect poultry, and is 

one of the most common causes of food poisoning in the United States. Bans or 

reductions in antibiotic use have necessitated the identification of novel 

compounds for the control of SE (Malek et al., 2004). Recent trends in food 

animal health research suggest an increased awareness and need of ‘natural’ 

dietary additives versus chemicals or antibiotics for the purpose of improving 

animal health and performance (Al-Batshan et al., 2001). Food-derived 

compounds that can stimulate or enhance innate immune responses to 

pathogens are therefore an attractive alternative to antibiotics. 

Macrophages are a central arm of the innate immune defense system 

against intracellular pathogens. Stimulated macrophages undergo a process of 

activation involving an increase in size and motility, enhanced phagocytic 

potential, bactericidal, and tumoricidal activity (Bliss et al., 2005). Among the 

antimicrobial mechanisms associated with macrophages, the generation of 

reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as 

H2O2 and NO, plays a major role in intracellular bacterial killing (Lim et al., 

2004). Despite this array of antimicrobial activity of macrophages, some 

intracellular bacteria, including Salmonella, Leishmania and Mycobacteria, are 

able to survive within the phagosome. Activated macrophages, therefore, 

depend on a complex array of oxygen-dependent antimicrobial molecules to 

inhibit or kill intracellular Salmonella. An early phase of Salmonella killing is 

mediated through contribution of the NADPH phagocyte oxidase (phox, NOX-1) 

and subsequent sustained bacteriostatic effect, which is dependent on inducible 

nitric oxide synthase (iNOS), responsible for the production of NO 

(Vazquez-Torres et al., 1999). In mice, a single dominant gene termed natural 
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resistance associated macrophage protein 1 (NRAMP1) controls innate 

resistance to such pathogens (Alter-Koltunoff et al., 2008). The NRAMP1 gene 

is exclusively expressed in monocytes/macrophages and its importance in 

killing the intraphagosomal pathogens was reported both in vitro and in vivo 

(Vidal et al., 1993; White et al., 2005).  

Prebiotics, including mannan oligosaccharides (MOS), one of the most 

popular commercially available prebiotics for poultry use (Ferket, 2004), have 

shown considerable promise for modulating innate immune responses in the 

gut and preventing bacterial infection. We previously demonstrated that MCM 

including MNB could act as an immunomdulatory agent in vivo, preventing SE 

infection in broilers by increasing IgA production and improving SE clearance 

(Agunos et al., 2007). The objectives of the present study were to examine the in 

vitro innate immunomodulating effects of MNB using the chicken macrophage 

cell line MQ-NCSU. MNB-induced phagocytic and Salmonella-killing activity, 

production of antimicrobial effectors, and expression of key genes involved in 

antimicrobial and innate host defense mechanisms were examined in order to 

elucidate the mechanism of MNB-mediated Salmonella prevention in vivo. 

 

 Materials and Methods  

 Preparation of MNB  

Crude MNB was prepared from Philippine coconut flour. Coconut flour 

was defatted with 2 g/g hexane, and then suspended in 10 mL/g distilled water 

at 80°C for 2 hrs. The solid was collected by centrifugation at 10,000 × g for 20 

min, then suspended in 10 mL/g distilled water at room temperature for 10 min, 

and again collected by centrifugation. These steps were repeated, and the solid 

was hydrolyzed with β-mannanase (Shin-Nihon Chemical Co Ltd., Aichi, 

Japan).  Following centrifugation at 10,000 × g for 20 min, the supernatant 

was lyophilized and dissolved in deionized water at 20% (w/v). This crude 

sample was used for further purification. To obtain highly purified MNB, 5 ml 

of 20% (w/v) crude MNB solution was applied to a Bio-Gel P2 fine gel filtration 

column (25 Φ × 1 m; Bio-Rad Laboratories, Hercules CA, USA). The sample was 
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eluted with distilled water at 0.5 ml/min, and 4-ml fractions were collected. 

Saccharide concentrations were measured by the phenol-sulfuric acid method 

(Dubois et al., 1956) and mannobiose-containing fractions were combined and 

lyophilized. According to this method, 99% pure MNB was obtained and its 

purity and structure were confirmed by HPLC, MADLI-TOF-MS and NMR 

spectroscopy (data not shown). 

 

Cells and culture conditions 

MQ-NCSU cells, a macrophage-like cell line originally derived from 

spleen cells of leghorn pullets challenged with the JM/102W strain of Marek’s 

disease virus (Qureshi et al., 1990), were a gift from North Carolina State 

University. Cells were cultured as described previously by Kramer et al. 

(2003b). Briefly, cells were grown in RPMI 1640 medium (Invitrogen Corp., 

Carlsbad, CA) supplemented with 5% tryptose phosphate broth (Sigma-Aldrich, 

St. Louis, MO), 8% FBS (PAA Laboratories Inc., Etobicoke, ON), 10% chicken 

serum (Sigma-Aldrich), 50 IU/ml penicillin, 50 μg/ml penicillin-streptomycin 

(Invitrogen Corp.), and 5 x 10-5 M 2-mercaptoethanol (Sigma-Aldrich) at 41°C 

in a 5% humidified CO2 incubator.  

Salmonella enterica serotype Enteritidis PT4 was inoculated into Brain 

Heart Infusion (BHI) broth (DIFCO/Beckton Dickinson, Sparks, MD) and 

grown overnight at 37°C with shaking. Overnight cultures were then diluted in 

RPMI 1640 medium and incubated for 3 hrs, to yield approximately 1 x 108 

colony forming units (CFU)/ml. Total yield was confirmed by plating and colony 

counting on Brilliant Green Agar (BGA) (DIFCO/Beckton Dickinson). 

 

Phagocytosis assay 

Phagocytosis assays were carried out using a Vybrant™ Phagocytosis 

Assay Kit according to the manufacturer’s instructions (Molecular Probes Inc., 

Eugene, OR). Briefly, MQ-NCSU cells were seeded at a density of 1 x 105 

cells/well in 96-well black polystyrene plates (Corning Inc., Corning, NY), and 

allowed to adhere for 1 hr. MNB was added at the indicated concentrations, and 
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baseline levels of uptake were measured using untreated cells. Cells were also 

stimulated with SE LPS (0.5 μg/mL) (Sigma-Aldrich) as a positive control. 

Culture medium was removed and fluorescein-labeled E. coli BioParticles® 

(Molecular Probes) were added. Cells were incubated for 2 hrs, following which 

medium and BioParticles were removed and 200 μL/well of trypan blue solution 

(1.25 mg/mL) was added. After 10 min at 41°C the trypan blue solution was 

removed and the plate was read in a fluorescence plate reader using 480 nm 

excitation and 520 nm emission. Results are expressed as percent phagocytosis 

relative to untreated cells. 

 

Salmonella-killing activity of chicken macrophages 

The effect of MNB on Salmonella-killing activity was measured using a 

viable count assay of SE in macrophages stimulated with MNB, modified from 

protocols described by Kramer et al. (2003b) and Chadfield and Hinton (2004). 

MQ-NCSU cells were seeded at 5 x 105 cells/well in 24-well culture plates 

(Corning Inc.) and treated for 2 hrs with MNB at the indicated concentrations. 

Medium was removed and SE was added at a multiplicity of infection (MOI) of 

100, and incubated for 30 min at 37°C to allow bacterial adhesion and 

colonization. Gentamicin (100 μg/mL) (Life Technologies Corp., Carlsbad, CA, 

USA) was then added to kill extracellular SE. Cells were washed twice with 

PBS containing 5% FBS, and 1 mL/well of RPMI 1640 supplemented with 10% 

FBS, 10% chicken serum and 10 μg/mL gentamicin was added to prevent 

re-infection with SE and to prevent growth of SE in the medium derived from 

the release of SE from dead cells. The number of intracellular bacteria at 

indicated time points post infection was determined by lysing cells with 1 mL of 

PBS containing 0.2% (w/v) saponin (Sigma-Aldrich) or 200 μg of 0.1% Triton 

X-100 (Thermo Fisher Scientific, Inc., Waltham, MA, USA) and then plating 

10-fold dilutions on BGA in order to enumerate viable SE.  
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Quantification of nitrite production  

Nitrite production, an indicator of NO synthesis, was measured in the 

culture supernatant as previously described by Kleinerman et al. (1987) with 

modifications. Cells were seeded at 1 x 105 cells/well in 96-well tissue culture 

plates (Corning Inc.) and cultured in the presence of MNB for 48 hrs at the 

indicated concentrations. Culture medium alone was used as control. After 48 

hrs, 100 μL of Griess reagent (1% sulphanilamide and 0.1% 

naphthylenediamide in 5% phosphoric acid) (Sigma-Aldrich) was added to 100 

μL of culture supernatant and absorbance at 570 nm was measured using a 

microplate reader. Nitrite concentrations were determined from a standard 

curve of sodium nitrite (Sigma-Aldrich) in culture medium. 

 

Quantification of H2O2 production 

H2O2 production was measured using an Amplex® Red Hydrogen Peroxide 

Kit (Molecular probes, Eugene, OR, USA). Cells were seeded at 1 x 105 

cells/well in 96-well tissue culture plates and cultured in the presence of MNB 

for 24 hrs at the indicated concentrations. Culture medium alone was used as 

control. After 24 hrs, the culture medium was aspirated and cells were washed 

with cold PBS. 100 μL of Amplex Red working reagent (50 μM Amplex Red and 

0.1 U/ml HRP) in Krebs-Ringer phosphate buffer (KRPG, 145mM NaCl, 5.7 

mM sodium phosphate, 4.86 mM KCl, 0.54 mM CaCl, 1.22mM MgSO4, 5.5 mM 

glucose, pH 7.35) was added to the cells and absorbance at 570 nm was 

measured using a microplate reader. H2O2 concentrations were determined 

from a standard curve of H2O2 in KRPG. 

 

RNA extraction and real-time RT-PCR 

The effect of MNB on gene expression was examined by real time 

quantitative PCR. MQ-NCSU cells were seeded at 2.5 x 105 cells/well in 24-well 

plates and incubated with 40 μg/mL MNB in a total volume of 0.5 mL medium 

for 16 hrs at 41°C. Total RNA was extracted from the cells using the Aurum™ 

Total RNA Mini Kit (Bio-Rad Laboratories) according to the manufacturer’s 
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instructions. The quantity and quality of the RNA was verified by 

spectrophotometry and gel electrophoresis. First-strand cDNA synthesis was 

carried out using the iScript™ cDNA Synthesis Kit (Bio-Rad Laboratories, Inc.) 

according to the manufacturer’s instructions, and 100 ng cDNA was used for 

each real-time PCR reaction. Real-time PCR was carried out using iQ™ SYBR 

Green Supermix (Bio-Rad Laboratories, Inc.) on a MyiQ™ Single Color 

Real-Time PCR Detection System (Bio-Rad Laboratories, Inc.) using the 

following conditions: denaturation 15 s at 95°C, annealing 15 s at 56 °C, and 

extension 30 s at 72 °C. Chicken primers were designed using Primer3 v.0.4.0 

(Rozen and Skaletsky, 2000) and synthesized by the University of Guelph 

Laboratory Services Molecular Biology Section (Guelph, ON), and were used at 

a final concentration of 400 nM per reaction. The primers used were as follows: 

GAPDH, 5’- CAA CAT CAA ATG GGC AGA TG-3’ and 5’-AGC TGA GGG AGC 

TGA GAT GA-3’ (NM_204305); iNOS, 5’- GGC TGT GCT TCA TAG CTT CC-3’ 

and 5’- TAT GCT CCC CGA CAT AGG AG’3’ (NM_204961); NOX 1, 5’- CAT GGT 

CAC ATC CTC CAC TG-3’ and 5’- CACCTCCTTCATGCTCTCCT-3’ 

(NM_001101830); NRAMP, 5’- CTG CAC TCC TCA TTG GTG AA-3’ and 5’- GCC 

ATG ACG AAG AGG TTG AT-3’ (NM_204964); LITAF, 5’- TTC AGA TGA GTT 

GCC CTT CC-3’ and 5’- TCA GAG CAT CAA CGC AAA AG-3’ (NM_204267); 

IFN-γ, 5’-GGC GTG AAG AAG GTG AAA GA-3’ and 5’-TCC TTT TGA AAC TCG 

GAG GA-3’ (NM_205149). Relative gene expression was calculated by 2-ΔΔCt 

method using GAPDH as internal control, and results were expressed as fold 

change relative to untreated (control) cells. 

 

Statistical analysis 

Statistical analysis was carried out using GraphPad Prism version 5.00 

for Windows (GraphPad Software, San Diego, CA). Comparisons between 

treatment groups were performed with one-way analysis of variance (ANOVA) 

followed by the Tukey-Kramer multiple comparison test. Results are presented 

as mean values  SEM of three independent experiments. Results were 

considered significant if P < 0.05. 
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Results and discussion 

Examination of the phagocytic response of MQ-NCSU cells in the presence 

of MNB revealed that pre-treatment of the cells with MNB significantly 

increased phagocytosis (P < 0.05) when compared to cells alone, to levels 

similar to that elicited by LPS (Figure. 1). A >2-fold phagocytic increase was 

observed in cells treated with MNB when compared to untreated cells. The 

improvement in such non-specific phagocytosis not only has implications for 

Salmonella pathogenesis, but also suggests that in vivo, macrophages may be 

better able to trap foreign antigens and initiate the adaptive phase of the 

immune response by antigen processing and presentation (Lim et al., 2004).  

 

Figure 15   Effect of MNB on phagocytic activity of chicken macrophages. MQ-NCSU cells 

were treated with increasing concentrations of MNB for 2hrs, followed by 

incubation with fluorescein-labeled E. coli BioParticles. Data shown are mean ± 

SEM. Results are expressed as % phagocytosis relative to untreated cells. *P < 

0.05 compared to untreated cells. 

 

MNB time- and dose-dependently increased the Salmonella-killing 

activity of macrophages, with the most marked reduction in SE viability seen at 

40 μg/mL after 48 hrs (Table 10), where a >2-fold reduction in log CFU values 
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was observed when compared to untreated control cells infected with SE, which 

has previously shown to be highly invasive and capable of survival within 

MQ-NCSU cells (Withanage et al., 2005).    

 

Table 10  Effect of MNB treatment on Salmonella-killing activity of chicken macrophage cells. 

Values represent changes in mean CFU (log10) of S. enteritidis PT4 during 

phagocytosis with MQ-NCSU cells after pretreatment with MNB (±SEM, n=3). 

 Treatment 

Time 

(hr) 

  MNB (μg/mL) 

Controla Controlb 1 5 10 20 40 

1 7.80 7.79 7.88 7.95 7.71 7.89 7.66 

4 7.48 ± 0.04 7.65 ± 0.29 
7.48 ± 

0.14 

6.88 ± 

0.17 

6.10 ± 

0.32 

6.06 ± 

0.22 

6.10 ± 

0.30 

12 7.56 ± 0.06 6.95 ± 0.18 
7.48 ± 

0.07 

6.11 ± 

0.07 

6.06 ± 

0.17 

4.78 ± 

0.11 

4.85 ± 

0.29 

24 7.61 ± 0.12 6.12 ± 0.19 
6.44 ± 

0.11 

5.78 ± 

0.16 

5.14 ± 

0.09 

4.11 ± 

0.29 

3.69 ± 

0.16 

48 7.45 ± 0.07 6.05 ± 0.12 
6.10 ± 

0.15 

5.28 ± 

0.14 

4.35 ± 

0.05 

3.78 ± 

0.33 

3.33 ± 

0.19 

aSE alone 

bMQ-NCSU cells infected with SE, no MNB added 

 

Macrophages exert their potent antimicrobial effects by the release of a 

number of cytotoxic/cytostatic factors such as reactive oxygen species (ROS), 

such as H2O2 and superoxide, as well as reactive nitrogen species (RNS) and 

other enzymes and chemical mediators which can result in the destruction of 

intracellular pathogens (Lim et al., 2004). The importance of both oxidative and 

nitrosative responses in the clearance of Salmonella infection is well known, 

and has been demonstrated in vivo, where mice deficient in both NADPH 

phagocyte oxidase (NOX-1) and inducible nitric oxide (NO) synthase (iNOS) 

were unable to clear infection with Salmonella (Mastroeni et al., 2000). 
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Furthermore, the reaction of RNS with ROS generates peroxynitrite, a reactive 

molecule with potent antimicrobial activity against S. typhimurium in vitro 

(Nathan and Shiloh, 2000). As would be expected, MNB-induced 

Salmonella-killing activity correlated with increases in both nitrite and H2O2 

production by MQ-NCSU cells. MNB treatment dose-dependently increased 

both H2O2 (Figure. 16A) and nitrite (Figure. 16B) production. When compared 

to untreated cells, MNB-induced H2O2 production was significantly higher (P < 

0.05) at doses greater than 10 μg/mL, (resulting in 17-fold to 33-fold increases 

in H2O2 production). MNB-induced nitrite production was also significantly 

higher when compared to untreated cells, at all doses tested (P < 0.05 for 10 

and 20 μg/mL; P < 0.001 for 30 and 40 μg/mL), resulting in a >4-fold increase in 

NO production when compared to untreated cells.  

In order to further examine the innate immune-modulating effects of 

MNB on macrophages, MQ-NCSU cells were treated with MNB and the 

expression of several genes involved in innate immunity and antibacterial 

activity were measured. MNB-treatment significantly increased expression of 

iNOS (P < 0.01), NOX-1 (P < 0.05), LITAF (P < 0.05), NRAMP1 (P < 0.05), and 

IFN-γ (P < 0.05) when compared to untreated cells (Figure 17). MNB-induced 

gene expression was equivalent to, if not higher than, that induced by LPS, 

indicating that like LPS, MNB may be capable of stimulating early response of 

macrophages to bacterial infection.  
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Figure 16   Effect of MNB on H2O2 (A) and NO (B) production in chicken macrophages. 

MQ-NCSU cells were treated with increasing concentrations of MNB for 24 

(H2O2) or 48 (NO) hrs. Data shown are mean ± SEM of three independent 

experiments. *P < 0.05, ***P < 0.001 compared to untreated cells. 
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Figure 17   Effect of MNB on gene expression of iNOS, NOX-1, LITAF, NRAMP1, and INF-γ in 

chicken macrophages. MQ-NCSU cells were treated with 40 μg/mL MNB for 16 

hrs, and total RNA was isolated and gene expression analyzed by real-time 

RT-PCR. Results are expressed as fold change relative to untreated (control) cells. 

*P < 0.05. 

 

Both NOX-1 and iNOS have been found to be required for effective host 

resistance against Salmonella in vivo in mice (Rosenberger and Finlay, 2002) 
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and mRNA expression of both of these genes was significantly increased 

following MNB treatment when compared to cells alone. NOX-1 activity 

produces superoxide that can lead to the generation of other toxic reactive 

oxygen intermediates, such as H2O2, which can directly cause oxidative damage 

to bacteria (Rosenberger and Finlay, 2002). NADPH oxidase has been shown to 

mediate iNOS expression in mouse macrophages (Lanone et al., 2005), which 

leads to the enhanced production of reactive oxygen species (Zhao et al., 2010), 

and indeed we observed a concomitant increase in the expression of both NOX-1 

and iNOS in MNB-treated cells  

Interferon (IFN)-γ plays an important role in the early phase of resistance 

during bacterial infection, and Nauciel and Espinasse-Maes (1992) (Nauciel 

and Espinasse-Maes, 1992) found that ablation of IFN-γ by administration of 

anti-IFN-γ antibodies enhanced bacterial proliferation and death in mice 

infected with a sub lethal dose of S. typhimurium. IFN-γ stimulation 

up-regulates the expression of many antimicrobial effectors and impairs 

replication of S. typhimurium within macrophages (Gulig et al., 1997), and 

IFN-γ-activated macrophages display enhanced microbicidal activities upon 

bacterial expression, due to changes in the expression of genes such as iNOS 

(Held et al., 1999). It has been suggested that priming cells with IFN-γ may 

enable the host to respond quickly to relatively low doses of LPS, thereby 

activating antibacterial defenses (Held et al., 1999). Here, MNB treatment 

increased IFN-γ, and therefore may have provided the necessary first signal to 

enable enhanced killing of SE. 

Resistance to intracellular pathogens such as Salmonella, is also strongly 

influenced by the expression of NRAMP1 (Fritsche et al., 2008), which may act 

by modulating iron transport, limiting its availability to intracellular 

microorganisms (Biggs et al., 2001; Mulero et al., 2002; Schaible and Kaufmann, 

2004) and effecting macrophage immune function, since iron decreases the 

activity of IFN-γ-mediated antimicrobial pathways, including the formation of 

NO (Fritsche et al., 2008). NRAMP-1 functionality increases NO formation 

(Fritsche et al., 2003), the importance of which has been illustrated by the 
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observation that mice lacking iNOS are rendered susceptible to Leishmania 

infection (Wei et al., 1995), and Govoni et al. (1999) found that expression of 

recombinant NRAMP1 by mouse macrophage (RAW 264.7) cells abrogated 

intracellular replication of S. typhimurium. In addition, iNOS and NRAMP1 

expression have been shown to be associated with responses to SE in vivo, in 

both vaccinated and non-vaccinated chickens (Kramer et al., 2003a; Malek and 

Lamont, 2003). 

Lipopolysaccaride-induced TNF-α factor (LITAF) binds to a critical region 

of the TNF-α promoter and is reported to be involved in activation of TNF-α 

expression during LPS induction (Myokai et al., 1999), however, little is known 

about the function of LITAF in poultry (Malek and Lamont, 2003). LITAF 

expression was found to be up-regulated following in vitro stimulation of 

macrophages with S. typhimurium LPS, as well as after treatment with 

Eimeria, the causative agent of avian coccidiosis (Hong et al., 2006), suggesting 

that it may play a role in bacterial clearance and inflammatory responses, and 

may have been involved in the MNB-induced anti-SE activity observed here.  

These results indicate that MNB can increase the Salmonella-killing 

activity of macrophages, and may act as a potent immunomodulator, via its 

ability to up-regulate the expression genes involved in host-defense and 

stimulate the production of reactive oxygen and nitrogen species. Additional 

study is required to further elucidate the mechanism of action of MNB as well 

as explore additional roles of MNB as an antimicrobial and innate 

immune-enhancing agent. 

This is an Author’s Accepted Manuscript of an article at  : 

http://www.sciencedirect.com/science/article/pii/S0165242710003478. 
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Chapter Ⅴ 

Effect of dietary mannanase-hydrolyzed copra meal (MCM) on growth 

performance and intestinal histology in broiler chickens. 

 

Introduction 

A number of chemical or immune-based approaches, including the use of 

disinfectants, insecticides, vaccines, and antibiotics, have been widely used for 

preventing infections with animal pathogens and for improving meat 

production. However, the continued use of dietary antibiotics has given rise to 

the development of drug-resistant bacteria (Sørum et al., 2001). In addition, 

recent trends in food animal health research has suggested an increased 

awareness and need for ‘natural’ dietary additives versus chemicals or 

antibiotics for the purpose of improving animal health and performance 

(Al-Batshan et al., 2001).  

Food-derived compounds that can stimulate or enhance innate immune 

responses to pathogens are therefore an attractive alternative to antibiotics. 

Although the dominant prebiotics are fructooligosaccharide products, 

additional prebiotics, such as trans-galactooligosaccharides, 

glucooligosaccharides, lactose, and sucrose, have been investigated (Collins and 

Gibson, 1999). Moreover, Fritts and Waldroup(2003) and Ferket (2004) have 

reported that mannan oligosaccharides, which are derived from the yeast cell 

wall, might be useful as part of an overall feeding strategy to aid in overcoming 

the potential loss of growth-promoting antibiotics (Fritts and Waldroup, 2003; 

Ferket, 2004). In particular, MCM and its main component, MNB, have been 

reported to improve Salmonella enterica clearance, to reduce the degree of 

intestinal pathology in cecal tonsils, and to increase IgA production and the 

number of intraepithelial mononuclear cells in chicks (Agunos et al., 2007). 

Moreover, in a study of 200,000 commercial broilers, MCM was reported to 

promote growth with increasing IgA production (Fukui et al., 2009).  

Furthermore, in a study using microarray and real-time transcription 

polymerase chain reaction analysis, MCM including MNB was suggested to act 
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as a potent immune-modulator and to exert a combination of effects on the 

intestinal immune system (Ibuki et al., 2010).  

The in vitro immuno-modulating activities and antibacterial effects of 

MNB were also confirmed in chicken macrophages (Ibuki et al., 2011). Based on 

the above studies, We expected that MCM including MNB (or a component 

within it) would have an effect on the immunomodulatory system and thereby 

lead to changes in the intestinal histology. If so, MCM including MNB could 

improve growth performance in broiler chickens. However, the data on the 

relationship between growth performance and the effects of MCM 

administration on the small intestinal tissues in chickens are currently 

insufficient. Therefore, the purpose of this chapter was to observe the effects of 

MCM including MNB on growth performance and intestinal histology in broiler 

chickens. 

 

Materials and Methods 

Source of feed additives  

MCM including MNB was provided by Fuji Oil, Ltd. (Osaka, Japan) and 

contained 11.4% MNB (MCM-B1). The different MCM-B1 components are 

shown in Table 11. 

Table 11  MCM-B1 components 

General composition (%) Crude protein* 23.0 

 Crude fat 8.2 

 Ash 6.0 

 Moisture 5.0 

  Carbohydrate 57.8 

Free sugar contents (%) Glucose 1.6  

 Mannose 2.4  

 Fructose 1.9  

 Sucrose 4.5  

  Mannobiose 11.4  

* Kjeldahl method: N*6.25   
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Experimental diet 

The conventional mash diets (Nichiwa Sangyo Co. Ltd., Kagawa, Japan) 

were provided as the basal diet. The experimental diets were supplemented 

with 0.1% and 0.02% MCM-B1. The starter or grower crumble was without 

antibiotics or anticoccidial drugs (Table 12). The dose of MCM-B1 was based on 

the previously reported supplementation of chicks with 0.1% MCM-B1 in feed 

(Agunos et al., 2007; Fukui et al, 2009). 

 

Feeding experiments 

All experiments were performed according to the humane care guidelines 

for the use of animals for experimentation as provided by Kagawa University in 

Japan (Kagawa University, 2006). Forty-eight male Marshall Chunky broilers 

that were 1 day in age were fed for 7 days. Afterwards, the birds were divided 

into 3 groups with 4 replicates of 3 birds with an equal mean body weight.  

The birds were housed in wire pens under a dairy lighting regimen of 13-h 

light and an environmental room temperature. The broilers were fed with 

experimental starter and finisher diets from 7–21 days of age and from 22–49 

days of age, respectively. The birds were allowed feed and water ad libitum 

throughout the feeding periods. Feed consumption and body weight were 

recorded weekly. 

 

Tissue sampling 

At the end of the feeding experiment, 4 birds from each group were 

weighed and killed by decapitation under light anesthesia with diethyl ether. 

The entire small intestine was quickly excised and placed in a fixative of 3% 

glutaraldehyde and 4% paraformaldehyde in 0.1 M cacodylate buffer (pH 7.4). 

The intestinal segment from the gizzard to the pancreatic and bile ducts was 

regarded as the duodenum; from the ducts to Meckel’s diverticulum, as the 

jejunum; and from the diverticulum to the ileo-cecal-colonic junction, as the 

ileum. The same fixative solution was injected into each section of the 

intestinal lumen, and the middle portion of each section was used for 
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observation. 

 

Table 12  Feed formulation and nutrient composition of the commercial broiler starter diet and 

the finisher mash diet 

 Starter   Finisher 

 (days 1–21)  (days 22–49) 

Ingredients (%)    

Ground maize 51.00   58.00  

Milo 2.00   9.00  

Soybean meal 37.00   22.00  

Fish meal 4.00   4.00  

Animal fat 4.00   4.60  

Rapeseed meal -  0.60  

Calcium carbonate 1.00   0.85  

Calcium phosphate tribasic 0.70   0.65  

Sodium chloride 0.15   0.15  

Vitamin/mineral premix * 0.15   0.15  

    

Calculated component    

Crude protein 23.50   18.00  

Metabolisable energy (kcal kg-1) 3100.00   3200.00  

Crude fibre 4.00   4.00  

Crude fat 4.50   6.00  

Calcium 0.80   0.70  

Phosphorus 0.60    0.55  

*Concentrate mixture of the diet (per kg of diet): vitamin A, 10,800 IU; vitamin D3, 

2,000 IU; vitamin E, 25 mg; vitamin K3, 2 mg; vitamin B1, 5.4 mg; vitamin B2, 7.2 

mg; vitamin B6, 10.2 mg; vitamin B12, 8 mg; biotin, 0.3 mg; folic acid, 1.1 mg; 

pantothenic acid, 17 mg; nicotinic acid, 70.2 mg; choline, 1,500 g; zinc, 80 mg; 

copper, 16 mg 

 

Light microscopy 

The segments were cut transversely ~2 cm from the duodenum, jejunum, 

and ileum, fixed in Bouin’s fixative solution at room temperature, embedded in 

paraplast, and sectioned at a thickness of 4 μm. Every tenth section was 
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collected and stained with hematoxylin-eosin.  

Four different parameters (villous area, villous height, epithelial cell area, 

and mitotic cell number) were examined by light microscopy (Nikon Cosmozone 

1S, Nikon Co., Tokyo, Japan) and measured for each intestinal segment using 

an image analyzer (Nikon Cosmozone 1S, Nikon Co., Tokyo, Japan). 

For the measurement of the villi, the villi with lamina propria were 

chosen for analysis. The mean villus height in each bird was based on a total of 

4 villi. The villus areas were calculated from the basal width, apical width, and 

villus height, with 4 villus areas determined for each bird. 

For measuring the epithelial cell area, an area of the epithelial cell layer 

was randomly sampled at the middle of the villi, and the number of cell nuclei 

within this layer was counted. The area of the epithelial layer was divided by 

this number to estimate the area per cell. A total of 4 epithelial areas was 

counted for each bird. For measuring the number of mitotic cells in the villus 

crypt, 5 sections were randomly selected per bird; the cells within each section 

were scored as mitotic if the cells had homogenous, basophilic nuclei that 

intensely stained with hematoxylin-eosin. The number of mitotic cells was 

calculated from 5 different sections for each bird, and these 5 values were used 

to calculate a mean cell mitosis for a single bird. Finally, the mean cell mitoses 

from 4 birds were expressed as the mean cell mitosis for each individual group. 

 

Scanning electron microscopy (SEM) 

Sections (~2 cm in length) of the duodenum, jejunum, and ileum, which 

were close to those used for the light microscopic sample, were slit 

longitudinally. The intestinal contents were washed with 0.1 M phosphate 

buffered saline (pH 7.4). The tissue samples were pinned flat and fixed in this 

flattened position in a 3% glutaraldehyde and 4% paraformaldehyde solution in 

0.1 M cacodylate buffer (pH 7.4) for 1 h at room temperature, cut into 4 mm × 4 

mm squares, and then fixed further for 1 h. The pieces were rinsed with 0.1 M 

sodium cacodylate buffer and were post-fixed with 1% osmium tetroxide in 0.1 

M ice-cold sodium cacodylate buffer for 2 h.  
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The specimens were dried in a critical point drying apparatus. The dried 

specimens were coated with platinum and observed at 8 kV with SEM (Hitachi 

S4300SE/N, Hitachi Ltd., Tokyo, Japan). 

 

Statistical analyzes 

The results were reported as means ± SE. All data were statistically 

analyzed by one-way analysis of variance (ANOVA). Subsequently, data 

statistically significant different at P < 0.05 due to treatments were separated 

by Duncan’s multiple range test. Correlations between the dose of MCM-B and 

each parameter were also calculated using Spearman’s correlation test. All 

statistical analyzes were performed by the Statistical Analysis System (SAS 

Inst. Cary. NY, 2000) and Dr.SPSS-II (SPSS-Inc. Chicago, IL, 2001). 

 

Results 

Growth performance 

The body weight gain and the FE were significantly higher in the 0.1% 

MCM-B1 group relative to that in the control group, while feed intake tended to 

be higher in the 0.02% and 0.1% MCM-B1 groups. For the correlation analysis, 

a significant correlation was observed between the dosage of MCM-B1 and the 

body weight gain and FE (Table 13). 

 

Histological analysis of cellular parameters 

The height and area of the intestinal villi in the experimental groups were 

not significantly different from those in the control group. However, the 

epithelial cellular area of the ileum was significantly higher in the 0.02% and 

0.1% groups compared to that in the control group (P < 0.05). Furthermore, the 

cellular area of the duodenum and the jejunum tended to be higher in the 

0.02% and 0.1% MCM-B1 groups. 

For the correlation analysis, a significant correlation was found between 

the dosage of MCM-B1 and the cell area of the duodenum, jejunum, and ileum. 

Cell mitosis in the duodenum was significantly higher in the 0.1% MCM-B1 
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groups than that in the control group. In terms of the correlation analysis, a 

significant correlation was seen between the dosage of MCM-B1 and cell 

mitosis in the duodenum (Table 13). 

 

 

Table 13  Results of Growth Performance and Intestinal Cellular Histological Parameters  

     Control 0.02% MCM-B1 0.1% MCM-B1 p-value 
Correlation  

coefficients 

Growth performance in broilers fed dietary MCM-B from 7–49 days of age 

 Feed Intake (g) 6097 ± 200 6557 ± 299 6707 ± 310 0.308 0.414 

  Body Weight Gain (g) 2459 ± 110 a 2902 ± 122 ab 3165 ± 205 b 0.027 0.710** 

  Feed Efficiency 0.403 ± 0.013 a 0.444 ± 0.018 ab 0.471 ± 0.013 b 0.031 0.798** 

Intestinal cellular histological parameters measured using light microscopy 

 Villus Height (mm)      

  Duodenum 1.623 ± 0.109 1.859 ± 0.058 1.743 ± 0.095 0.233 0.237 

  Jejunum 1.269 ± 0.109 1.283 ± 0.112 1.366 ± 0.120 0.813 0.207 

   Ileum 0.840 ± 0.061 0.877 ± 0.048 0.889 ± 0.042 0.782 0.118 

 Villus Area (mm2)      

  Duodenum 0.661 ± 0.046 0.748 ± 0.044 0.752 ± 0.043 0.310 0.384 

  Jejunum 0.322 ± 0.038 0.362 ± 0.017 0.458 ± 0.083 0.233 0.384 

   Ileum 0.250 ± 0.026 0.253 ± 0.014 0.240 ± 0.016 0.885 -0.089 

 Epithelial Cell Area (μm2)      

  Duodenum 431 ± 14 480 ± 21 505 ± 21 0.058 0.650* 

  Jejunum 406 ± 12 471 ± 24 467 ± 17 0.057 0.591* 

   Ileum 314 ± 14 a 367 ± 11 b 381 ± 66 b 0.004 0.785** 

 Cell Mitosis (number)      

  Duodenum 1072 ± 41 a 1122 ± 42 ab 1282 ± 66 b 0.041 0.650* 

  Jejunum 908 ± 54 914 ± 8 1032 ± 92 0.323 0.266 

    Ileum 639 ± 42 602 ± 49 527 ± 191 0.792 -0.148 

a, b, values that do not share common letters within a row differ significantly by Duncan's multiple range rage test (P < 0.05).  

*, **, statistically significant correlations were found (P < 0.05 and P < 0.01) 

 

Morphology on the villus tip surface 

Compared to the relatively flat cells of the duodenal villus tip in the 

control (Figure 18-A), those of the 0.02% and 0.1% MCM-B1 treatments were 
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conspicuously protuberant in appearance (Figure 18-B,C arrow). In addition, as 

shown in Figure 18-C, some of the cells around the central sulcus were devoid 

of any microvilli (arrowhead). The same pattern of cellular features (i.e., flat vs. 

protuberant) in the different treatments was also observed in the jejunal villus 

tip (Figure 19). However, similar to the cells of the ileal villus tip in the control 

group, that of the 0.02%  MCM-B1 treatment group was comparatively flat 

(Figure 20-B). Meanwhile, a clear cell line and more protuberant cells were 

observed in the ileal villus tip in the 0.1% MCM-B1 treatment  

 

Discussion 

In this chapter, we examined the effect of MCM-B1 on growth 

performance and intestinal histology in broiler chickens. The growth 

performance was found to improve with MCM-B1 treatment, and histological 

analysis of the small intestine revealed that dietary supplementation with 

MCM-B1 resulted in an increase in the cell area. A strong relationship between 

mucosal histology and body weight has been previously reported (Awad, et al, 

2006). In particular, an increase in the area of the small intestine results in the 

increased absorption of nutrients (Johnson and Gee, 1986; Awad, et al, 2006; 

Adibmoradi, et al, 2006; Yamauchi, et al, 2006; Samanya and Yamauchi, 2002) 

and thereby contributes to an improved digestion coefficient (Onderci, 2006).  

On the other hand, when the size of the small intestine is reduced, the 

body weight decreases (Batal, et al, 2002), and a decrease in lactase, sucrase, 

and peptidase expression is observed (Hedemann, et al, 2006). Prebiotics, sugar 

cane (Khambualai, et al, 2010), chitosan (Khambualai, et al, 2009), and sesame 

meal (Yamauchi, et al, 2006) have been observed to promote growth through 

changes in villus histological parameters. In this chapter, we also observed that 

the MCM-B1 contribution to growth correlated with increased activation of the 

villus and confirmed that dietary supplementation with MCM-B can increase 

the cell area in the duodenum, jejunum, and ileum.  

In terms of the relationship between intestinal histology and 

immunomodulation, Liu et al. (2008) reported that rabbit sacculus rotundus 
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antimicrobial peptide (RSRP) can increase villus height and the area of 

IgA-secreting cells in each intestinal region, indicating that RSRP can affect 

both Intestinal histology and mucosal immunity. In addition, Bao et al. (2009) 

reported that broilers treated with pig antibacterial peptide had improved body 

weight and average daily gain, greater villus height and gut mucosal thickness, 

increased alkaline phosphatase activity, and a higher ratio of IgA-secreting 

cells when compared to the control group. Lee et al. (2010) reported that 

Bacillus spp., as direct-fed microbials, can affect villus morphology and 

systemic-inflammation immunity. These reports reveal potential relationships 

between immunomodulation and intestinal histology. Further, these findings 

indicate potential relationships between growth promotion, villus morphology, 

and the immunomodulatory system.  

In this chapter, the increased values in the light microscopy parameters 

and the hypertrophied epithelial cells indicate that MCM-B1 could stimulate 

intestinal function, thereby resulting in improved growth performance in 

chickens. These results suggest that MCM-B1 (or a component within it) may 

affect the immunomodulatory system and produce changes in the intestinal 

histology. Thus, MCM-B1 may promote growth performance in broiler chickens. 

However, because an improvement in the intestinal histology and 

immuno-modulation by MNB or MCM-B1 were not observed simultaneously, 

this relationship remains unclear. Research addressing the relationship 

between these effects, including growth promotion by MCM-B, may be the focus 

of a future study. 
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Figure 18 Scanning electron micrographs of epithelial cells on the duodenal(left), jejunal 

(center), and ileal(right) villus apical surface in chickens fed control (A), 0.02% (B), 

and 0.1% (C) MCM-B1 diets.   

Scale bar = 25 µm (×1000). (Arrows = protuberant cells; arrowhead = cell devoid of 

any microvilli; stars = cell clusters) 
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Chapter Ⅵ 

Effect of Dietary β1,4 mannobiose (MNB) on the Growth of Growing Broiler 

Chicks 

 

Introduction 

In-feed antibiotics have been utilized for over half a century to promote 

growth in domestic animals (Moore et al., 1946; Leitnterer et al., 2001; Sun et 

al., 2005). Meanwhile, the extensive use of antibiotics in livestock production 

has increased the risk of development of resistance in human and animal 

pathogens (Bates et al., 1994; Witte, 1998). Thus, the use of antibiotics to 

promote growth in domestic animals has been banned in the European Union 

(Dibner and Richards, 2005). However, the withdrawal of in-feed antibiotics 

suppresses growth in domestic animals, which in turn results in an increase in 

production costs (Casewell et al., 2003; Sun et al., 2005). Therefore, there is a 

pressing need to develop new feed additives that can be used to improve the 

growth of domestic animals. 

Yang et al. (2009), in their review of alternatives to in-feed antibiotics, 

showed the growth-promoting effects of several oligosaccharides in broiler 

chickens. Mannanoligosaccharides have been shown to provide various health 

benefits in broiler chickens. Three major modes of action by which broiler 

performance is improved by Mannanoligosaccharides have been proposed: 1) 

control of pathogenic or potentially pathogenic bacteria which possess type-1 

fimbriae (mannosesensitive lectin), 2) immune modulation, and 3) modulation 

of intestinal morphology and expression of mucin and brush border enzymes 

(Yang et al. 2009). We previously demonstrated that MCM including MNB 

could act as an immune-modulating agent in vivo, preventing SE infection in 

broilers by increasing IgA production and improving SE clearance (Agunos et 

al., 2007), as well as up-regulating the local expression of genes involved in host 

defense and innate immunity (Ibuki et al., 2010). Recently, we also found that 

MNB enhances Salmonella-killing activity, activates innate immune responses 

in chicken macrophages (Ibuki et al., 2011). MCM-B1, which contains 11.4% 
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MNB, was effective for improving intestinal morphology in broiler chickens 

(Ibuki et al, 2013). For example, on the duodenal villus surface of the 0.1% 

MCM-B1-fed chickens, some cells devoid of microvilli were observed, suggesting 

the increased protuberance of these cells represents increased absorption 

activity. In addition, dietary 0.1% MCM-B1 increased body weight gain in 

chickens. These findings raise the hypothesis that MNB can improve growth 

performance in broiler chickens. However, the effects of MNB on growth in 

broiler chickens have not been examined. 

The objective of the present study was to investigate the effects of dietary 

MNB on the growth of growing broiler chicks. 

 

Materials and Methods 

Preparation of MNB 

MNB was prepared from Philippine coconut flour as described previously 

(Ibuki et al., 2011). Coconut flour was defatted with 2 g/g hexane, and then 

suspended in 10 ml/g distilled water at 80°C for 2 h. The solid was collected by 

centrifugation at 10,000×g for 20 min, then suspended in 10 ml/g distilled 

water at room temperature for 10 min, and again collected by centrifugation. 

These steps were repeated, and the solid was hydrolyzed with -mannanase 

(Shin-Nihon Chemical Co. Ltd., Aichi, Japan). Following centrifugation at 

10,000×g for 20 min, the supernatant was lyophilized and dissolved in 

deionized water at 10% (w/v). This crude sample was used for further 

purification. To obtain highly purified MNB, 5ml of 10% (w/v) crude MNB 

solution was applied to a Bio-Gel P2 Fine gel filtration column (ɸ75mm×1m; 

Bio-Rad Laboratories, Hercules CA, USA). The sample was eluted with distilled 

water at 4.5 ml/min, and 25-ml fractions were collected. Saccharide 

concentrations were measured by the phenol-sulfuric acid method (DuBois et 

al., 1956) and MNB-containing fractions were combined and lyophilized. 

According to this method, 99% pure MNB was obtained and its purity and 

structure were confirmed by HPLC. 
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Animals and feed 

Day-old male broiler chicks (chunky) were purchased from a local 

hatchery (Ishii Co. Ltd., Tokushima, Japan). They were given free access to 

water and a commercial chicken starter diet (Nosan Co., Kanagawa, Japan, 

20% of crude protein, 310 kcal of ME/100g diet) and acclimated to the facility 

for 6 days before feeding of experimental diets (Table 14). The dose of MNB 

0.01% was based on our previous report (Agunos et al., 2007; Ibuki et al., 2010). 

Methionine, threonine and arginine were added to diets to meet the 

recommendations of National Research Council for broiler chicks (National 

Research Council, 1994). Chicks were given free access to water and the 

experimental diets throughout the experimental period. All experimental diets 

were provided in powder form. 

A total of 24 eight day-old male broiler chicks were weighed, allocated 

based on the body weight to two cages (1,725 mm x 425 mm x 320 mm, 12 birds 

in each group) and fed a control diet or a MNB diet (Table 1) for 14 days. At the 

end of the experimental period, body weight was measured, and chicks were 

sacrificed by decapitation. This chapter was approved by the Institutional 
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Animal Care and Use Committee (Permission number: 22-05-10) and carried 

out according to the Kobe University Animal Experimentation Regulation. 

 

Sampling and preparation 

Blood was collected from carotid artery. Plasma was separated 

immediately by centrifugation at 3,000 × g for 10 min at 4°C, frozen by liquid 

nitrogen and stored at -80°C for 3-methylhistidine analysis. The liver, 

abdominal adipose tissue, breast muscles and thighs were excised and weighed. 

A portion of the pectoralis major muscle, a major part of breast muscles, was 

frozen immediately for total RNA, protein, and real-time PCR analyzes. 

 

Real-time PCR analysis. 

Total RNA was extracted from the hypothalamus using Sepazol-RNA I 

(Nacalai Tesque, Inc., Kyoto, Japan). First-strand cDNA was synthesized from 

5 μg of DNase I (Ambion Inc., Austin, Texas, USA)-treated total RNA using a 

ReverTra Ace® qPCR RT Kit (TOYOBO CO. LTD., Osaka, Japan) with random 

primers. Complementary DNAs of myostatin, atrogin-1, 20S proteasome 

subunit C1, 20S proteasome C2 subunit, m-calpain large subunit, caspase 3, 

and cathepsin B were amplified with the primers described in Table 15. As an 

internal standard, complementary DNA of ribosomal protein S17 (RPS17) was 

also amplified with the primers described in Table 15. All primers were 

purchased from Hokkaido System Science Co., Ltd. (Sapporo, Hokkaido, Japan). 

THUNDERBIRDTM SYBR® qPCR Mix was purchased from TOYOBO CO. LTD. 

(Osaka, Japan), and mRNA expression was quantified in duplicate using the 

Applied Biosystems 7300 Real-Time PCR system according to the supplier’s 

recommendations. 

 

Plasma 3-methylhistidine analysis. 

Plasma 3-methylhistidine level was measured by the method of Yamaoka 

et al. (2008). 
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Statistical analysis 

Data were analyzed using Student’s t-test. All statistical analyzes were 

performed using the commercial package (StatView version 5, SAS Institute, 

Cary, NC, USA, 1998). 

 

Results 

Table 16  shows the effects of dietary MNB on body weight and several 

tissues in growing broiler chicks. Dietary MNB significantly increased the 

relative weight of breast muscles (P < 0.01). The weight of breast muscles 

tended to increase in the MNB group (P = 0.119). Dietary MNB did not affect 

the weights of the body, thighs, liver, or abdominal adipose tissue. In the 

present study, we did not measure individual feed intake. Therefore, the feed 

intake and feed conversion ratio could not be statistically analyzed. 
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Figure 19 shows the effects of dietary MNB on the plasma 

3-methylhistidine level and breast muscle atrogin-1 mRNA level. Dietary MNB 

did not affect the plasma 3-methylhistidine level or breast muscle atrogin-1 

mRNA level. 

Figure 20 shows the effects of dietary MNB on skeletal muscle protease 

mRNA levels. Dietary MNB did not affect the mRNA levels of any protease. 

Figure 21 shows the effects of dietary MNB on the myostatin mRNA level 

in the breast muscles. The myostatin mRNA level was significantly (P < 0.05) 

decreased by dietary MNB. 

 

 

 

 

 

 

 

Figure 19   Effects of dietary MNB on the plasma 3-methylhistidine concentration and muscle 

atrogin-1 mRNA level in broiler chicks. Data represent the mean ± SEM of 12 birds 

in each group. 
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Figure 20   Effects of dietary MNB on the mRNA levels of proteases in the breast muscles of 

broiler chicks. Data represent the mean ± SEM of 12 birds in each group. 

Figure 21   Effects of dietary MNB on myostatin mRNA level in the breast muscles of broiler 

chicks. Data represent the mean ± SEM of 12 birds in each group. *, Significant 

with respect to the control group (P < 0.05). 

 

Discussion 

In the MNB group, the relative weight of breast muscles was 

significantly increased, but the weight of the thighs was not affected (Table 16). 

The reason for the difference is not clear. One possible explanation is that the 

effect of dietary MNB on the skeletal muscle weight was different between 

muscle fiber types in the chicks. There is evidence that more than 99% of 

muscle fiber in the breast muscle is type II B fiber (Barnard et al., 1982). On 

the other hand, thigh muscles consist of several types of muscle fiber including 

type I, II A, II B, III A, and III B. It is therefore possible that dietary MNB 
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specifically increases type II B fibers in the skeletal muscle in chicks. Further 

studies are required to address this possibility. 

Dietary MNB significantly increased the relative weight of breast muscles, 

whereas the relative weight of abdominal adipose tissue was not affected (Table 

16). In chickens, the percentage of carcass fat is quite consistent with that from 

the abdominal fat adipose tissue (Havenstein, 2003). It is therefore possible 

that MNB specifically increases the breast muscle ratio without affecting body 

fat accumulation in broiler chicks. Further studies are required to address this 

possibility. 

The rate of skeletal muscle growth is altered by the rate of protein 

degradation in skeletal muscle (Goll et al., 2008). Plasma 3-methylhistidine is 

known to be a nonmetabolizable amino acid marker of myofibrillar protein 

catabolism (Hayashi et al., 1985; 1994; Fetterer and Allen, 2000; 2001). 

Therefore, we measured the effects of dietary MNB on plasma 

3-methylhistidine level in growing broiler chicks. However, plasma 

3-methylhistidine was not affected by MNB (Fig. 1). In mammals, mRNA of 

atrogin-1 is markedly induced during muscle atrophy (Dehoux et al., 2004; 

Costelli et al., 2006; Gomes et al., 2001; Bodine et al., 2001). Recently, atrogin-1 

expression under normal conditions has been thought to be related to the rate 

of skeletal muscle proteolysis and muscular size of chickens (Nakashima et al., 

2009, Kamizono et al., 2010). Ohtsuka et al. (2011) showed that atrogin-1 

expression appears to be closely related to the development of skeletal muscle 

proteolysis and skeletal muscle wasting suggesting its usefulness of as a 

reliable index of myofibrillar proteolysis in broiler chicks. However, the 

atrogin-1 mRNA level in the breast muscles was not affected by dietary MNB in 

the presence study (Figure 19). In addition, there was no significant effect on 

the skeletal muscle protease mRNA levels in the breast muscles of broiler 

chicks (Figure 20). All our findings suggest that the increase in the breast 

muscle ratio in the MNB group was not due to the inhibition of skeletal muscle 

proteolysis. 

Myostatin is a negative regulator of myoblast proliferation and 
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differentiation (Otto and Patel, 2010; Elkina et al., 2011). Therefore, we 

analyzed myostatin mRNA level in the breast muscles and found that the 

myostatin mRNA level was significantly (P < 0.05) decreased by MNB (Figure 

21). It is therefore possible that the downregulation of myostatin gene 

expression affected myoblast proliferation or differentiation, which in turn 

resulted in a high breast muscle ratio. Further studies are required to clarify 

this point. 

Recently, a model whereby myostatin induces skeletal muscle wasting 

through targeting sarcomeric proteins via Smad3-mediated up-regulation of 

Atrogin-1 and forkhead box O1 was proposed (Lokireddy et al., 2011). In the 

present study, we found that the myostatin mRNA level was significantly (P < 

0.05) decreased by MNB (Fig. 3, P < 0.05). Dietary MNB did not affect the 

mRNA level of breast muscle atrogin-1. However, the means of atrogin-1 mRNA 

level in the MNB group was about 66.2 % of that in the control levels. It is 

therefore possible that dietary MNB-decreased myostatin mRNA level is 

related to the decrease of atrogin-1 mRNA level in the breast muscle. 

As mentioned in the introduction section, three major modes of action by 

which broiler performance is improved by mannanoligosaccharides have been 

proposed, such as the effects on the undesirable microbiota, immunity, and 

intestinal mucosa (Yang et al. 2009). We recently found that MNB enhances 

Salmonella-killing activity, activates innate immune responses in chicken 

macrophages (Ibuki et al., 2011), and possibly improves intestinal morphology 

in broiler chicks (Ibuki et al., 2013). In the present study, we suggest that 

dietary MNB may induce protein synthesis in breast muscles. Thus, further 

study will be needed to investigate the involvement between the stimulation of 

protein synthesis by MNB and the suppression of pathogenic bacteria or the 

modulation of intestinal morphology or immune responses. 

As observed in other studies showing the effect of feed ingredients on 

growth performance in broiler chicks (Yamamoto et al., 2007; Baurhoo et al., 

2009; Khambualai et al., 2009; Saleh et al., 2011), study with a small number of 

chickens (n = 7 - 12) have been published in several international scientific 
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journals. Therefore, in the present study, 12 birds were assigned in each group. 

However, the number of chickens should be increased in future study. 

In conclusion, we investigated the effects of dietary MNB on the growth of 

broiler chicks. Our results showed that MNB increases the relative weight of 

breast muscles to body weight in growing broiler chicks. These results suggest 

that MNB could be a promising candidate feed additive to improve meat yield 

of broiler chickens. 
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Concluding Remarks 

 

The aim of this study is that the evaluation of  the natural feed 

ingredients MNB and MCM as alternatives of antibiotics or growth promoters 

in poultry industry.  

In Chapter I, The author introduced the background and aim of this 

study. 

In Chapter II, The author showed the effects of MCM-B1-supplemented 

feeds on the kinetics of SE in broilers and the ensuing histopathological 

changes. MCM-B1-supplementation reduced SE organ colonisation, cecal 

carriage and faecal shedding in a time-dependent manner. The high 

concentrations and persistency of the SE-specific IgA response in those birds 

given rations supplemented with MCM-B1 or MAN were associated with a 

decline in SE shedding and cecal carriage in the later stages of infection. 

MCM-B1 was more effective against SE infection than MAN. Histological 

examination of the cecal wall and cecal tonsils at 23d post-infection indicated a 

lesser degree of intestinal pathology. An increased number of intra-epithelial 

mononuclear cells (mature lymphocytes and macrophages) in the lining 

epithelium of birds fed on the diet supplemented with MCM-B1 was 

accompanied by an increased number of lamina propria cells. These results 

indicate that feeding a diet supplemented with MCM-B1 during the first two 

weeks after hatching reduced susceptibility to SE infection. Supplementing the 

diet with MCM-B1 or MAN increased IgA production and improved SE 

clearance by acting as immunomodulatory agents that prevented intestinal 

pathology. Feeding a MCM-B1-supplemented diet to broilers could be used as 

an alternative to antibiotics, because it has no adverse effects on mortality or 

weight gain. 

In Chapter III, The author showed the gut immune-modulating activity of 

MCM-B2 using microarray and real-time RT-PCR. No significant difference in 

BW or organ weights was observed between MCM-B2-treated and untreated 

control birds, and no histological abnormalities were observed in any of the 

tissues examined. The MCM-B2-treated chickens had significantly higher 

levels of fecal IgA over all 4 weeks when compared with control birds. 

Microarray and real-time RT-PCR analysis revealed the upregulation of several 

genes involved in immune responses, including those involved in antigen 

recognition, processing and presentation (MHC class I and II), 
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interferon-related genes, and genes involved in host defense. These results 

provide insight into the mechanism of action of dietary MNB in the intestine 

and confirm that MNB acts as a potent immune-modulating agent, exerting 

combined effects on the intestinal immune system. 

In Chapter IV, The author showed the in vitro immune-modulating effects 

of MNB using chicken macrophage (MQ-MCSU) cells. Treatment of MQ-NCSU 

cells with MNB dose-dependently increased both phagocytic activity and 

Salmonella-killing activity of macrophages, with the highest reduction in SE 

viability observed at a concentration of 40 μg/ml at 48 h post-infection. 

Likewise, both hydrogen peroxide (H2O2) and nitric oxide (NO) production were 

increased in a dose-dependent manner by MNB. Gene expression analysis of 

MNB-treated macrophages revealed significant increases in the expression of 

iNOS, NOX-1, IFN-γ, NRAMP1, and LITAF, genes critical for host defense and 

antimicrobial activity, when compared to untreated cells. This data confirms 

that MNB possesses potent innate immune-modulating activities and can 

up-regulate antibacterial defenses in chicken macrophages. 

In Chapter V, The author showed MCM-B1 for its capacity to improve 

growth performance and activate intestinal villus function. Although feed 

intake was not significantly different among the experimental groups, the body 

weight gain and FE were significantly higher in the 0.1% MCM-B1 group than 

in the control group (P < 0.05), while feed intake tended to be higher in the 

0.02% and 0.1% MCM-B1 groups. The cellular area of the ileum was 

significantly higher in the 0.02% and 0.1% groups in relation to that in the 

control group (P < 0.05). Furthermore, the cellular area of the duodenum and 

the jejunum tended to be higher in the 0.02% and 0.1% MCM-B1 groups. For 

the correlation analysis, a significant correlation was observed between the 

dosage of MCM-B1 and the cell area of the duodenum, jejunum and ileum. 

Moreover, the number of mitotic cells was higher in the 0.1% MCM-B1 group. 

As shown by SEM, the cells at the villi tips were protuberant in appearance in 

the 0.02% and 0.1% MCM-B1 treatments when compared with the relatively 

flat cells of the control. On the duodenal villus surface of the 0.1% MCM-B1 

group, some cells devoid of microvilli were observed, suggesting that the 

increased protuberance of these cells represents increased absorption activity. 

Although intestinal villus height and area did not significantly differ among 

groups, the levels of these parameters tended to increase in the experimental 

groups relative to the control. The present morphological findings reveal that 
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MNB might be effective for activating intestinal absorptive function, and that 

the functional activation promotes the growth of the chickens. 

In Chapter VI, The author showed the effects of dietary MNB (99%MNB) 

on the weights of body, breast muscles, thighs, liver, and abdominal adipose 

tissue in growing broiler chicks to evaluate whether MNB can be used as a feed 

additive for broiler chicks. Dietary MNB significantly increased the relative 

weight of breast muscles, whereas the weights of the body, thighs, liver and 

abdominal adipose tissue were not affected. The myostatin mRNA level in the 

breast muscle was significantly reduced by MNB. Since myostatin is a negative 

regulator of myoblast proliferation and differentiation, it is possible that the 

downregulation of myostatin gene expression is involved in the increased 

breast muscle growth with MNB. The plasma 3-methyl histidine level, which is 

known to be a nonmetabolizable amino acid marker of myofibrillar protein 

catabolism, and the breast muscle atrogin-1 mRNA level, which is involved in 

protein catabolism, were not affected by dietary MNB. In addition, MNB did 

not affect protease mRNA levels in the breast muscles. These results suggest 

that MNB does not affect proteolysis in the breast muscles. 

The author infer that the natural ingredient MCM including MNB, which 

is exported from Japan to worldwide as a feed ingredient , is a promising 

candidate for use as a feed additive to promote growth and prevent in 

Salmonella incident in chickens. The author hopes that MCM including MNB 

will be used as an alternative of antibiotics not only for chickens but also for 

other domestic animals. 
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