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ABSTRACT 

Striga, commonly known as witchweed, is a noxious, hemi-parasitic weed infecting 

several crops in semi-arid, sub-Saharan Africa and, is responsible for food shortage and 

poverty of millions of Africans. The parasite infest in land planted with sorghum, pearl 

millet, finger millet, maize, upland rice and cowpea. The most severe problems with 

Striga occur where soils are degraded, fields are continuously cropped with host crops, 

and organic and inorganic nutrient inputs are low. Severe Striga infection can cause 70-

80% crop loss and the losses can be much higher under heavy infestations, even 

resulting in total crop failure. The objectives of this study was to elucidate the factors 

that are limiting farmers to adopt Striga control mechanisms, assess tolerance level of 

New Rice for Africa (NERICA) cultivars to Striga infections and map out quantitative 

trait loci (QTLs) for Striga resistance in rice.  The study focused on two devastating 

Striga strains to cereals, Striga hermonthica (Del.) Benth. and Striga asiatica (L.) 

Kuntze in Kenya and Malawi, respectively.  

Recent trends away from traditional prolonged fallow, continuous cereal mono-cropping 

to meet the needs of increasing population has intensified the Striga problem. In 

addition to many factors already known, grazing animals, crop seeds and wind 

contribute to distribution of Striga to new areas. About 71.4% and 67% of the farmers 

had Striga in their fields in Kenya and Malawi, respectively. Several Striga control 

options have been developed over the years, but farmers have not adopted them. 

According to the farmers in a survey conducted in Kenya, the most popular control 

measures for Striga were hand-pulling, crop rotation and intercropping, even though 

rotational systems might need a longer timeframe to reduce the soil seed bank of Striga. 

However, in Malawi, the farmers perceived manure application to be the best method to 

control Striga, followed by crop rotation, fertilizer application and hand pulling.  The 
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reason for the low adoption level of the control methods by the farmers is because they 

are “too risky” as there is no guarantee of a direct pay-off in increased crop yield.  

Following the adaptability studies conducted in Kenya for the 18 upland NERICA 

cultivars from Africa Rice Center (ARC), four NERICAs (NERICA 1, NERICA 4, 

NERICA 10 and NERICA 11) were released to farmers’ even to areas known to be prone 

to S. hermonthica. Our study on the response of NERICA cultivars to Striga infections 

showed different levels of tolerance despite the fact that their progenies are from the 

same parents WAB 56-104 and CG14. The earlier maturing NERICA 1 and NERICA 10 

cultivars were resistant to S. hermonthica from Alupe, Kenya. Among the NERICAs 

tested, our result showed that NERICA 4 was more susceptible. Generally, comparing 

the NERICAs with the local cultivar Dourado precoce, they were more tolerant to S. 

hermonthica infections. 

In order to understand the genetic basis of resistance in rice cultivars, a QTL analysis 

was undertaken utilizing a mapping population of Nipponbare and O. rufipogon. We 

infected 141 (BC2F10 generation) backcross recombinant inbreed lines (BRILs) derived 

from a cross between Oryza sativa cv. Nipponbare and a wild accession O. rufipogon 

W630 with S. hermonthica from Alupe, Kenya. Putative QTL for S. hermonthica 

resistance was estimated using single-point analysis (qGene program) at p<0.01 

significance level. The QTL for S. hermonthica resistance was detected near RM242 

marker on chromosome 9 contributed by Nipponbare allele as explained by 6.6% of the 

phenotypic variation in the mapping population. It is important that S. hermonthica 

resistance QTLs are validated under different environments since there is likelihood of 

genetic variations within its ecotypes as this species is an obligate out breeder.  
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CHAPTER 1 

General Introduction 

 

Agricultural production and the associated losses in sub-Saharan Africa 

Food security is a key global challenge in this century. The Food and Agriculture 

Organization (2006) forecast that global food production will need to increase by 40% by 

2030 and 70% by 2050 because of increasing demand due to population growth and 

changing eating habits. Human population levels are projected to reach 9 billion in 2050 

(Cohen, 2003) and therefore, modern farming systems need to be sustainable to produce 

enough food for the surging population. To feed the world in 2050, investments in 

agricultural research and extension must be increased in developing countries, 

particularly in sub-Saharan Africa (SSA) countries, where agricultural productivity 

generally lags behind the rest of the world. 

SSA is an enormous region comprising of 39 countries with a combined area of about 24 

million km2. Agriculture in SSA (excluding South Africa) employed 62% of the 

population and generated 27% of the GDP in 2005 (FAO, 2006). The agricultural 

production systems are largely based on smallholder farms. Smallholder farm is defined 

as a holding of 2 ha or less of land which represent 80% of all farms in SSA,  and 

contribute up to 90% of the food production in most if not all SSA countries (Livingstone 

et al., 2011). Agriculture in particular is vulnerable to weather in SSA where 97% of 

agricultural land is rain-fed. In the region, crop production is the most important as it 

forms the main source of food and livelihood.  

Due to conflicts, natural disasters, crop failures, and other factors, thirty countries 

globally, and twenty in Africa, needed external assistance with food supply in 2010 
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(FAO, 2009). The major challenge to food security in many African countries is 

underdeveloped agricultural sector coupled with low soil fertility, minimal use of 

external farm inputs, environmental degradation, pre- and post-harvest crop losses, 

weed infestation and inadequate food storage preservation methods. 

Crop losses in the world to weeds, pests and diseases have been estimated for the staple 

cereals (wheat, rice and maize) as 36% in 1965 and 42% in 1991–1993 (Bruce, 2010). 

These crops are hampered by competition from weeds which are the most important 

pest group. It estimated that the loss potential of weeds is 37%, which is higher than the 

sum of the loss potentials of animal pests 15%, fungal and bacterial pathogens (11%) 

and viruses (3%) (Oerke & Dehne, 2004). Studies show that yield losses due to 

uncontrolled weed growth in both lowland and upland systems in Africa can be within 

the range of 28-100% (Sibuga, 2009). In Kenya, average yield loss due to uncontrolled 

weeds has been approximated to be 50-60% (Mwanda, 2000). However, Kiran (2004) 

reported that yield loss due to weeds, insect pests and poor storage facilities is as high 

as 60% in Kenya. It is accepted that 10% loss of agricultural crops can be attributed to 

the competitive effect of weeds. However, in rice ecosystem, weeds account for yield 

losses of about 2.2 million tons per year with a value of $1.45 billion in SSA (Rodenburg 

and Johnson, 2009). Infected farmers’ fields with parasitic Striga weed may cause crop 

losses of 30–100% (Bruce, 2010). 

 

Rice- the model plant and host for Striga  

Rice is the world's most commonly used cereal food, feeding half of humanity. It belongs 

to the genus of Oryza and has two cultivated and 22 wild species (Veasey et al., 2004). 

The cultivated species are Oryza sativa L., which originated from South and South-East 
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Asia from O. rufipogon and is grown worldwide; and Oryza glaberrima Staud. which 

was domesticated is west Africa from O. barthii (Linares, 2002). The cultivated rice 

species share the same AA genome with the following wild species distributed 

throughout the tropics of Asia (O. rufipogon and O. nivara), sub-Saharan Africa (O. 

longistaminata and O. barthii), South America (O. glumaepatula), and Oceania (O. 

meridionalis) (Morishima, 1998). 

Rice can be a good model cereal crop for studies of molecular genetics since it has a 

small genome size (389Mb) (International rice genome sequencing project, 2005) in 

comparison to that of other cereal crops such as sorghum (730Mb) (Paterson et al., 2009), 

maize (2500Mb) (Chandler & Brendel, 2002), wheat (17000Mb) (Brenchley et al., 2012) 

and barley (51000Mb) (International barley genome sequencing consortium, 2012). 

According to Devos (2005) rice has one of the best synteny which can be used in other 

cereals for breeding. The International Rice Genome Sequencing Project formally 

established in 1998, pooled the resources to start the sequencing of rice. The researchers 

obtained a complete quality sequence of rice genome (Oryza sativa L. spp. Japonica cv. 

Nipponbare). Rice is also said to be a better model plant for research because of the 

availability of high density molecular linkage maps and mapping populations which will 

go a long way to facilitate characterization of quantitative trait loci (QTL) for breeding 

purposes. 

Globally, the total area under rice cultivation is estimated to be 150 million hectares 

with annual production of 500 million metric tons. This represents 29% of the total 

output of grain crops worldwide while Africa accounts for about 10 to 13 per cent 

(Tsuboi, 2005; Onyango, 2006). Currently, rice is grown in over 75% of the African 

countries, with a total population close to 800 million people (ARC, 2009). Rodenburg 
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and Demont (2009) reported that presently, rice is the fifth cereal in area harvested and 

fourth in production in the SSA. Rice production in the continent is increasing faster 

than any other cereal. Over the past 30 years, harvested area has risen by 105% and 

production by 170%. Despite the enormous growth, the region is yet not self sufficient in 

rice and importation of the cereal is of great concern. Rice is the main staple food for the 

populations in West and North Africa. Across the continent, average per capita 

consumption stand at 27kg (Rodenburg et al., 2010).  
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Fig. 1.1 Grain yield of NERICA cultivars in 2005, 2006 and 2007 cropping seasons in Kenya.

Error bars indicate standard error of treatments over the years.  

The West Africa Rice Development Agency (WARDA) now African Rice Center (ARC) 

with assistance from the International Rice Research Institute (IRRI) developed reliable 

rice variety for Africa christened New Rice for Africa (NERICA). NERICA is the inter-

specific hybridization between Oryza sativa (Asian rice) and O. glaberrima (African rice). 
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These varieties are high yielding with low inputs requirements, early maturing, 

resistant to local stress and higher protein content. Development of NERICA targeted 

upland rice ecology where there is still plenty of land for exploitation. To date over 3,000 

family lines of NERICA for upland and lowland have been developed. There are 18 

upland NERICA varieties which have been tested in ARC and released to several 

African countries for adaptability studies. Currently, NERICA 1, 2, 3 and 4 are the top 

varieties planted by farmers in West Africa. In the East Africa countries, NERICA 1, 4, 

10 and 11 have been released to farmers. These varieties are grown in the moist 

savanna areas where parasitic weeds are a problem (Fig. 1.2). In Kenya NERICA 1 is 

regarded as the highest yielding more than 4.0 tons (Fig. 1.1) while NERICA 4 is the 

most popular with farmers in Uganda (Miyamoto et al., 2012). The adoption of the 

NERICAs by smallholders may largely depend if they can withstand the scourge of 

parasitic weeds as well as maintain their yield potential.  

Recently new generations of high performing rice cultivars named ARICA (Advanced 

Rice Varieties for Africa) were launched by ARC. Five ARICA varieties (three lowland 

and two upland) out yielded the checks which were the NERICAs (IRRI, 2013). The two 

upland (ARICA 4 and ARICA 5) varieties yielded 15% more than NERICA 4, a favorite 

cultivar in East Africa while the three lowland cultivars (ARICA 1, ARICA 2 and ARICA 

3) have yield advantage of 30-50% over NERICA-L19. The varieties ARICA 4 and 

ARICA 5 have been released in Uganda while ARICA 2 and ARICA 3 have been 

released in Mali and Nigeria, and ARICA 1 in Mali (Africa Rice Center, 2013). The issue 

that ponders in the minds of many researchers is whether the new ARICA cultivars will 

be the turning point for Africa towards the green revolution. 
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Striga
infestation

Fig.1.2 NERICA rice distribution and Striga infestation in sub-Saharan Africa. Adapted from

Africa Rice Center (2008).
 

 

Parasitic plants 

Parasitism is a coexistence of two different organisms of which one (the parasite) lives 

at the expense of the other (host).  Parasitic higher plants are the most destructive 

agricultural pests known (Parker & Riches, 1993; Sauerborn, 1991). Today, about 4,100 

species of parasitic plants from 19 families have been recognized as serious pests 

causing considerable economic damage (Nickrent & Musselman, 2004). According to 
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Yoder (1997) parasitic weeds adopt different forms to invade host plants. Some (dodders 

and mistletoes) invade aerial parts, whereas others invade the underground roots 

(Orobanche and Striga). Root parasites are more common and are found in diverse 

taxonomic groups. Some of the most economically important root pathogens are in the 

broomrape family, Orobanchaceae. Parasitic plants are classified as holoparasites, 

hemiparasites, obligate parasites, or facultative parasites. In Africa, the most 

problematic is the root hemi-parasitic plant, Striga. 

 

Striga:  the life cycle and impact on the host  

Witchweeds (Striga spp.) are pernicious, root-attaching parasitic plants, a genus of 42 

currently described species in the world of which 28 species occur naturally in Africa 

(Barker, 1990; Cochrane & Press, 1997). The genus is classified in the family of 

Orobanchaceae. The parasite does not have its own roots and therefore it compensates 

by penetrating the roots of host plant to siphon the essential nutrients for growth 

(Watson et al., 1998). The host plants are stagnated and sometimes die from phytotoxic 

effects within days of attachment (Frost et al., 1997; Khan et al., 2007). A small parasite 

biomass attachment to the host plant can result in a large reduction in height, biomass 

and grain yield (Gurney et al., 1999; Rodenburg et al., 2006). The parasite attack the 

host plant underground and by the time the flowering stem of the parasite appears 

above the ground damage has been caused (Westerman et al., 2007).  

Most witchweeds are characterized by bright-green stems and leaves and small, 

brightly colored flowers. A mature Striga plant has high reproductive capacity, and is 

capable of producing 10,000 to 200,000 tiny seeds per plant that can survive in the soil 

for more than 10 years (van Ast & Bastiaans, 2006; Hearne, 2009). The life cycle of 
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Striga is complex and it is tied to development stages of the host plant from seed to seed 

(Fig. 1.3). After dispersal, Striga seeds are in a state of dormancy for about six months 

(Gbehounou et al., 2004).  

 

Seed dormancy

Seed conditioning

Germination

Attachment and 

penetration

Underground 

development

Emergence 

and growth

Flowering

Seed production

Fig. 1.3 Life cycle of Striga spp. 
 

 

The most important step in the life cycle is germination of Striga seed which involves: - 

pre-conditioning of the seeds which requires humid and warm conditions, radicle growth 

to the host root, haustorium formation and attachment to the host root (Spallek et al., 

2013). However, pre-conditioning of Striga seeds also requires secondary metabolites 

derived from host plants and non-host plants to induce germination (Yoder, 2001; 

Gurney et al., 2006; Hooper et al., 2009). These germination stimulants are exuded at 
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the tip of roots of host plants (Parker & Riches, 1993; Yoder, 1999). After germination, 

the parasite must find the host plant for attachment within 4 days if not it will die 

(Gurney et al., 2006).  On successful contact with the host plant, the haustorium begins 

to grow and invades tissues of the host plant where it establishes vascular connection 

for siphoning the hosts’ resources (Tebene & Kamara, 2002).   

The parasitic seedling grows underground totally depending on the host for growth and 

development for about 3 to 6 weeks (Gurney et al., 2006). After emergence Striga 

seedling forms the stem and leaves with chlorophyll but becomes hemi-parasite that 

produces assimilates, partially depending on the host for nutrients, water and minerals. 

Within one month after emergence, Striga plant initiates flowers and seeds. The plant 

produces many seeds which enable the parasite to build its soil seed bank (Gbehounou 

et al., 2003). 

Even though most Striga spp. do not affect agricultural production, some have 

devastating effects on crops particularly those planted by subsistence farmers 

(Mohamed et al., 2001; Westerman et al., 2007). S. hermonthica and S. asiatica are well 

known to be infecting C3 and C4 grasses. They are the most widespread and dangerous 

species parasiting on cereal crops such as sorghum [Sorghum bicolor (L.) Moench], pearl 

millet [Pennisetum glaucum (L.) R. Br.], maize [Zea mays L.] and upland rice [both 

Oryza glaberrima (Steud.) and O. sativa L.], whereas S. gesnerioides (Willd.) Vatke 

attacks crops such as cowpea [Vigna unguiculata (L.) Walp.] and peanut [Arachis 

hypogaea L.] (Parker, 1991; Oswald, 2005). In the recent years, crops such as wheat 

[Triticum aestivum L.] that were previously unaffected by the parasite are now showing 

serious infestation (Vasey et al., 2005) and areas of productive agriculture have been 

abandoned because of this scourge. Striga is therefore, a pandemic of serious proportion 
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because of its vast geographical infection, its economic impact and posses a potential 

threat to smallholder livelihoods. 

 

Research objectives  

The overall aim of this study is to evaluate the factors that potentially curb farmers 

from adopting the existing Striga control options and understand Striga infection on 

rice. The first objective is to assess the level of S. hermonthica infestation in Kenya and 

the control mechanisms available to farmers since research has been going on for many 

years. The second objective is to determine the farmer’s knowledge and perception on 

Striga and its control in Kenya and Malawi to guide on the development, evaluation, 

and adaptation of the control options. The third objective is to evaluate and determine 

the tolerance level of NERICA cultivars to S. hermonthica in Kenya. The fourth and 

final is to carry out quantitative trait loci (QTLs) analysis for S. hermonthica resistance 

using backcross recombinant inbreed lines (BRILs) derived from across of O. sativa (cv. 

Nipponbare) and O. rufipogon W630. 

 

Outline of the thesis 

Following the above introduction, chapter 2 provides a detailed description of ecologies 

of Striga spp. and its infestation in crop fields in SSA. The chapter reviews the factors 

responsible for spreading of Striga in SSA, significance of cereals as part of diet to 

African households and tolerance of cereals to Striga infections. In chapter 3, Striga 

incidence, distribution and control options in Kenya is investigated. Both chapters 4 and 

5 focus on farmers’ views on S. hermonthica and S. asiatica as a problem and their 

perception on the control mechanisms in Kenya and Malawi, respectively. Assessment 



11 

 

on the response of NERICA cultivars to S. hermonthica infections is highlighted in 

chapter 6. In chapter 7, quantitative trait loci (QTL) analysis for S. hermonthica 

resistance using backcross population derived from the cross between O. sativa cv. 

Nipponbare and O. rufipogon W630 is presented. Finally, the overview findings on the 

study and future Striga research outlook are discussed in chapter 8. 
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CHAPTER 2 

The Ecologies and Severity of Striga infections in Cereal 

 Crops in the sub-Saharan Africa 

 

Abstract 

Striga spp. is renowned for causing great losses in cereal production in sub-Saharan Africa. 

Crop competitiveness with parasitic weeds such as Striga is an important criterion for 

selection in an initiative to produce and release varieties of crops to farmers that are able to 

give high and stable yields under low-input conditions. The symptoms of Striga infected 

plants are chlorosis, wilting and stunted growth. Cereal yield is reported to be reduced by 

more than 50% in areas that are infested by the weed. In addition, areas that are heavily 

infested have been abandoned and rendered unfit for crop production. Notable advances in 

Striga weed control technology have been made, yet the weed continues to be a major cause 

of low agricultural production. This is an indication of poor linkage between research 

institutions and agricultural extension which is a bottleneck to research findings to benefit 

farmers. 

Key words: Striga spp., host plants, cereals, Striga occurrence, tolerance 

 

Introduction 

Parasitic weeds are problematic in Agricultural Production Systems (APS) in the world 

today. The weeds compete with crops for nutrients, water and harbor disease causing 

organisms. Root parasitic weeds such as orobanche (broomrape) and Striga (witchweed) 

compensates for lack of their own root system by penetrating the roots of host plants and 

thus depriving the essential nutrients for plant growth. This brings about stagnation of the 
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host plants with the end result of low yield (Watson et al., 1998). Striga species 

predominantly found in Africa infest land planted with sorghum [Sorghum bicolor (L.)], 

pearl millet [Pennisetum glaucum (L.)], finger millet [Eleusine coracana (L.) Gaertn.], maize 

[Zea mays L.], upland rice [both Oryza glaberrima (Steud.) and O. sativa L.] and cowpea 

[Vigna unguiculata (L.) Walp] (Musselman, 1980; Rodenburg et al., 2006; Scholes & Press, 

2008).  

Striga, the parasitic angiosperm weed is said to be the major problem in cereal production 

causing huge losses in grain yield. The diversity of Striga spp. populations in African 

countries need to be understood to identify the races found in the different agro-ecological 

zones. This will enable improvement on the existing crop material through breeding of 

varieties that can withstand the stress of the weed. Striga hermonthica (Del.) Benth. has 

particularly assumed economic importance in upland cereal growing areas in West and East 

African countries. 

The epicenter of Striga is believed to be in the tropical savannah between Semien Mountains 

of Ethiopia and Nubian hills of Sudan in SSA before spreading to other parts of the 

continent (Ejeta, 2007). This area is also recognized as the origin of sorghum and pearl 

millet which are readily infected by Striga. Over 70 years, several world institutions both 

private and public have dedicated substantial amount of money towards developing 

appropriate mechanisms to control the parasite (Ahmed et al., 2001). Despite the efforts 

made to control the Striga problem, farmers have not adopted the control options developed 

(Oswald, 2005). This is one of the greatest tests to be synthesized by the researchers and 

unearth the reasons behind the farmers not embracing the preventive measures (Emechebe 

et al., 2004). 

Striga seed production paradox need to be underscored as the parasite produces many tiny 

seeds which are capable of existing in the soil for more than 10 years (Hearne, 2009). This 
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has enhanced the parasites’ persistence and increase in magnitude. Therefore, this review 

focuses on the distribution and effect of Striga spp. on cereal crops. The paper first reviews 

the importance of cereals and the extent of infestation of Striga spp. in SSA. Assessment on 

the occurrence of the parasite in their current habitat is highlighted. Finally, infestation of 

Striga in cereal crops and those that are tolerant to the parasite are discussed. 

 

Significance of cereal crops  

Farming systems in SSA comprise of many fields’ crops that form part of the diet in most 

African households. The main field crops are cereals (maize, sorghum, wheat, rice and 

millets), legumes (common beans, green grams and soybean) and root tubers (cassava, yams 

and potatoes). However, among these field crops, cereals are extremely important crops 

grown for daily consumption and contribute to household income (Fig. 2.1). They are grown 

mostly by resource poor smallholders.   

Cereals are the major dietary energy suppliers (about 80%) and provide significant amount 

of protein, minerals (potassium and calcium) and vitamins (vitamin A and C) (Ismaila et al., 

2010). They are consumed in different forms including pastes, noodles, cakes, breads, drinks 

etc. depending on the ethnic or religious affiliation. After the cereals are processed, several 

residues are obtained which include flour for making ugali and porridge for human 

consumption and, bran, husk etc for animal feed and micro-organism culture. Wax syrup 

and gum can also be extracted from cereals for industrial purposes. 

The relatively low cereal production in SSA is due to a number of abiotic and biotic 

constraints. The major abiotic constraints include drought and declining soil fertility 

(Vanlauwe et al., 2008) whilst the biotic constraints comprise of diseases, stem borers and 
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Striga infestation. Striga is considered to be one of the most serious constraints to cereals 

productivity (Fig. 2.2) in African agriculture. 
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Fig. 2.1 Contribution towards household income in East African countries.

Adapted from Bhargava (2011).
 

Distribution and infestation of Striga in SSA 

Striga weed infestation and occurrence 

There are 28 Striga species occurring naturally, infecting grasses and legumes in SSA. Most 

of the crop host species for Striga are cereals which Africans depend on as food (Table 2.1). 

The parasite infests some 40% of the cereal-producing areas of SSA resulting to crop losses 

estimated at US$7 billion annually, affecting livelihoods of approximately 300 million people 

(Ejeta, 2007). The most affected are subsistence farmers losing about 20–80% of their yield 

(Gethi et al., 2005). 
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A B

C D

Fig. 2.2 Striga hermonthica infestation in cereal crops in Kenya: A. finger millet; B. rice; C. sorghum; D. maize .

Plate B adapted from Cissoko (2012 ).  

It has been reported that five of the Striga spp. cause devastating effects on crops: S. 

hermontica, S. asiatica, S. forbsii, S. aspera and S. gesnerioides (Berner et al., 1997). The 

distribution and intensity of infestation of Striga in Africa is as shown in Fig. 2.3 and S. 

asiatica is said to have a wide world geographic distribution as compared to others 

(Cochrane & Press, 1997). Dugje et al. (2006) stated that in Nigeria three major Striga 

species have been found to be infecting crops: S. hermonthica (sorghum, rice and maize), S. 

aspera (rice) and S. gesnerioides (cowpea). In the savannas of guinea, S. aspera occurs in 

the hydromorphic areas where rice is grown, while S. hermonthica and S. asiatica are found 

in the free draining upland areas and are regarded as the most infectious (Johnson et al., 
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1997). Notably, S. aspera is predominantly found in West Africa and sporadically exists in 

Ethiopia and Tanzania overlapping with S. hermonthica.  

Fig. 2.3 Distribution and intensity of infestation of Striga species in Africa.

Adapted from Ejeta (2007).
 

Generally, Striga spp. grows in areas with annual rainfall ranging from 25-150cm per year 

with decrease in severity of infestation in areas of high rainfall (Mohamed et al., 1998). 

However, S. forbisii mainly occurs in wet areas and even in water logged conditions 
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infecting wild grasses in swamps and irrigated crops (Mohamed et al., 2001) in Cote d’Ivore 

and Tanzania. There are records indicating S. hermonthica and S. aspera infecting rice in 

Northern Cameroon, Northern Nigeria, Benin, Togo and westwards. It has also been 

reported that S. hermonthica infects upland rice in Western Kenya (Harahap et al., 1993) 

and S. asiatica causes serious losses in upland rice along the Indian Ocean Islands.  

Table 2.1 Degree of Striga infestation on crops in SSA

Striga species

Crops 

Maize Sorghum Rice Pearl millet
Finger 

millet
Cowpea Sugarcane

S. hermonthica xxx xxx xx xx xxx – xx

S. angustifolia – xx – – – – xx

S. asiatica xxx xxx xx xx xx – x

S. forbesii x x x – – – x

S. aspera xx x xx – x – x

S. gesnerioides – – – – – xxx _

S. latericea – – – – – – x

S. pubiflora – – – – – – x

xxx-Serious infection, xx-Moderate infection, x-Less infection, - No infection

Adapted from Parker and Riches (1993)
 

Conditions favoring Striga growth 

Striga infestation is steadily increasing as a result of continuous cultivation of cereal crops. 

Overused, depleted and infertile soils have resulted to high infestation of Striga. Pressure 

on land for continuous cropping of cereal crops without rotation or moving to other new 

areas has resulted to exhausted soils. These are the soils that favor Striga infestation in 

addition to soil moisture stress conditions (Khan et al., 2007). Less shading due to poor 

growth of the host crop on poor soils contributes to heavy infestation. This has compounded 

the problem for small-scale farmers who can least afford inputs on unproductive land, and 
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thus continues mono-cropping (planting of the same crop on the same area) for several 

years. Infestation in some areas has reduced yield to the extent that abandonment and 

migration is necessary. Improper management of Striga weed has contributed persistence 

and to its existence in SSA for a long time. 

Poverty level of small scale farmers has enhanced the spread of Striga through sharing of 

seeds collected from the previous crop harvest. In addition, Striga pandemic in SSA has 

increased due to non advocacy of nutrient replenishment of the soils as a result of mono-

cropping, a factor for increased infestation of the weed in size and severity (Woomer, 2004). 

Striga produces several seeds, and during tillage the seeds are incorporated into the soil 

where they can be dormant for many years. Over time they are spread to new areas by 

human beings through the tools used for land preparation and weeding (Oswald, 2005). The 

seeds are also spread by animals moving from one field to another for grazing purposes 

(Hearne, 2009). This has culminated to a complex system of spreading the weed to new 

areas thus reducing crop yield of farmers who are not aware of the devastating effect. 

 

Soil fertility and Striga weed 

Parasitic weeds such as Striga establish preferentially in poor nutrient fields which have 

been exhausted by continuous cropping (Kim, 1996). Most Striga infested areas are 

characterized by APS exhibiting low productivity. These areas tend to be managed 

traditionally with low inputs and continuous cereal cropping without crop rotation. The use 

of inorganic nitrogen and organic fertilizers such as manure and compost has been reported 

to reduce Striga infestations (Kuiper et al., 1998). Manure applications have been shown to 

be as effective as fallowing in maintaining soil productivity. The positive benefits of 

applying manure include an increase in pH, water holding capacity, hydraulic conductivity, 

infiltration rate and decrease in bulk density. Manure is also an important source of N, P 
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and K (Kim, 1996). To enhance the quality and effectiveness of traditional soil fertility 

maintenance strategies such as manure application, a fertilizer augmented soil 

enhancement strategy need to be adopted to reduce the infections of Striga.  

The on-station and on-farm field trials in Western Kenya showed reduction in Striga 

infestation in maize with the application of mineral nutrients but the results were less 

consistent than in the greenhouse. Increasing levels of N showed a fair reduction of Striga 

in the field of maize especially during the first year, whereas P application did not have 

much effect in contrast to the greenhouse study where both N and P clearly reduced Striga 

infection (Jamil et al., 2012). Kim et al. (1997) showed that continuous cropping of maize 

and high N application (120 kg ha-1) reduced Striga infestation significantly within five 

years. Only artificial less inoculation with a large quantity of Striga seed (3000 germinable 

of seeds per maize plant), low N application (30 kg ha-1) and ridge slowing sustained high 

Striga infestation. 

Farming system Yield (t ha-1)

Permaculture† 1.20±0.03

Monoculture‡ 0.86±0.05

†Permaculture–the field mulched and maize intercropped with soybean, pigeon pea, bambara

bean, cotton and marigold, ‡Monoculture - sole maize was planted.

Table 2.2 Yield of maize in permaculture and monoculture farming system in 2009/2010 and 2010/2011

 

Legumes are known to enrich soil with N through rhizobium. They infect the root hairs and 

cortical cells and ultimately form root nodules which are the sites for N fixation. A study 

conducted in Malawi on two farming systems namely permaculture and intercropping 

(legumes intercropped with maize) to control Striga asiatica showed all maize-legume 

intercrop plots had lower Striga counts than sole planted maize (Fig. 2.4). Maize-cowpea 
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intercrop indicated a significantly reduced Striga infestation up to 50% in maize in the two 

years. In permaculture cropping system, the result showed higher yield (28.3%) of maize 

compared to mono-culture (Table 2.2). In all intercrops except for cowpea and groundnut 

which significantly controlled Striga, it was only in pigeon pea and soybean intercrops 

where yield increases were higher. The study confirmed the potential in cowpea as a food 

trap intercrop and permaculture as a cropping system in the management of Striga, which 

should be incorporated in cropping systems in subsistence farmers’ fields.  
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Fig. 2.4 Mean Striga count m-2 of sole maize and maize-legume intercrops in 2009/2010 and

2010/2011. Within each bar marked with different letters are significantly different and the

differences are significant at 0.001 probability level.
 

Field trials conducted in the dry and wet seasons in the northern Guinea Savanna 

ecological zone to study the effect of nitrogen rates on upland rice (Oryza sativa L.) varieties 

to S. hermonthica indicated that FARO 48, a variety normally susceptible to S. 
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hermonthica exhibited resistance, FARO 11 exhibited tolerance, while FARO 38, FARO 46 

and FARO 45 exhibited susceptibility. The application of 90 and 120 kg N ha-1 delayed and 

reduced Striga emergence on the crop and induced a low crop reaction score producing 

grain yields that were significantly high. Significant differences in Striga infestation were 

observed between nitrogen rates of 30-120 kg N ha-1 (Adagba et al., 2002). The significant 

interaction between upland rice varieties and nitrogen rates indicate that the susceptible 

varieties require higher rates of nitrogen to ameliorate the effect of Striga compared with 

the resistant varieties. In addition, Johnson et al. (1997) showed that the proportion of 0. 

glaberrima and 0. sativa plants that appear stunted, is  related to the number of Striga  

plants present. The increasing incidences and severity of Striga damage is linked to poor 

soil fertility which is due to lack of farm yard manure and inorganic fertilizers (Emechebe 

et al., 2004). 

 

Incidence and severity of Striga in cereal crops  

Striga is a common parasitic weed which alone reduces yields of cereal crops more than 

50% (Johnson et al., 1997). As shown in Table 2.1 there are four known Striga spp. that 

infect cereals:- S. hermonthica, S. asiatica, S. aspera and S. forbesii. The minor S. 

angustifolia infects sorghum and sugar cane in its limited ecology. In the rural communities 

of Northern Nigeria, it has been reported that crop yield losses due to S. hermonthica 

infections were about 70-100% (Emechebe et al., 2004). 

According to Kurel et al. (2006) severe Striga infection can cause 70-80% crop loss in maize 

and sorghum and losses can be much higher under heavy infestations, even resulting in 

total crop failure. Farmers often have to abandon infested agricultural lands as a result of 

high soil infestation by Striga. Recent trends away from traditional prolonged fallow and 
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intercropping towards continuous cereal mono-cropping to meet the needs of increasing 

population have intensified the Striga problem. It has also been reported that crops can 

show resistance characteristic in one area and succumb in another because resistance can 

be broken by the existing biotypes (Gethi et al., 2005). This was observed in Tanzania 

where sorghum was planted in different locations (Doggett 1952) and similar observations 

have been made in West Africa (Ramahiah, 1987).  

 

Susceptible and resistant cereals to Striga 

Despite susceptibility of maize to Striga infections (Fig 2.2), there are reports 

of Striga resistance in maize or its wild relatives. In a collection of accessions of wild maize 

(Zea diploperennis) screened in a pot experiment, the result showed that about 10% of the 

entries were resistance (Rich & Ejeta, 2008). Resistant individuals had fewer attached S. 

hermonthica able to establish vascular connection. Among parasitic seedlings able to reach 

the vascular bundle of the resistant plants, many died within a few days of penetration and 

those few parasites that eventually emerged in the resistant Z. diploperennis pots were 

smaller than those on the non-resistant types. Another wild relative of maize, Tripsacum 

dactyloides, expressed resistance such that S. hermonthica attached at a frequency 25% 

that on Z. mays, and those attached Striga were much less likely to progress to the 

developmental stages reached by those on maize during the six weeks of observation (Rich 

& Ejeta, 2008). 

Breeding for high yielding Sorghum bicolor varieties with effective resistance and tolerance 

against the hemi-parasitic weed S. hermonthica requires suitable selection measures. 

Noubissie et al. (2012) recommended S35, CS54 and Defe Gala as the most promising 

resistant cultivars of sorghum to obligate root parasite S. hermonthica in Cameroon. The 

cultivars were recommended to be considered for future use in breeding programs. However, 
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Huang et al. (2013) has reported that plant breeders have to be careful and need to 

understand the genetics of root parasitic plants as they can easily break the resistance. 

According to Showemimo and Kimbeng (2005), KSV-4 and SK-5912 sorghum cultivars are 

least affected by Striga activities in Nigeria, with their resistance dominant over 

susceptibility and therefore they are promising resistant cultivars. Genetic analysis 

revealed genetic component of variance which was high for shoot weight, Striga count and 

grain yield than those of genotype x year and error component of variance. 

Table 2.3 Reaction of rice cultivars to S. hermonthica, S.asiatica and S.aspera

Reaction Genotype Striga spp. Refs

Resistant ACC102196 S. aspera 5

B3913F-16-5-ST-42 S. hermonthica 3

Ble Chai S. hermonthica 3

CG14 ‡S. hermonthica,  S. aspera 2, 6, 7

FARO 40 S. hermonthica 1

FARO 48 ‡S. hermonthica 1

IG10 S. aspera 5

IR38547-B-B-7-2-2 ‡S. hermonthica 3, 5

IR47255-B-B-5-4 S. hermonthica, S. aspera 3, 5

IR47697-3-4-1 S. hermonthica 3, 6

IR49255-B-B-5-2 S. hermonthica, S. aspera 3, 5

Jean louis S. asiatica 4

Nipponbare S. hermonthica 2, 7

WAB928-22 S. hermonthica, S. aspera 6

WAB935-5 S. hermonthica, S. aspera 6

WAB937-1 S. hermonthica, S. aspera 6

Tolerant Azucena S. hermonthica 7

FARO 11 S. hermonthica 1

Kasalath ‡S. hermonthica 2, 7

M27 ‡S. hermonthica, †S. aspera 2, 5

Makassa S. hermonthica, †S. aspera 5

T2 S. hermonthica, S. aspera 2, 5

Susceptible Bala S. hermonthica 7

Dourado precoce S. hermonthica 3, 4

Namroo S. hermonthica 2 ,3

IR64 S. hermonthica 7

Refs: 1-Adagba et al., 2002, 2-Gurney et al., 2006, 3-Harahap et al., 1993, 4-Itoh et al., 2008,

5-Johnson et al., 1997, 6-Johnson et al., 2000, 7-Kaewchumnong & Price, 2008.

Contradictory reaction reported with the same species: †Resistant, ‡Susceptible,  Tolerant.
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It has also been reported that two sorghum lines P9405 (Hakaki) and P9406 (Wahi) 

exhibited good levels of grain yield when infected in the field with S. hermonthica and S. 

asiatica compared to their uninfected controls, an indication that the lines are quite 

tolerant to infection (Mbwaga et al., 2001). 

Johnson et al. (1997) describes two O. sativa cultivars, IR47255-B-B-5-4 and IR49255-B-B-

5-2, having resistance to S. hermonthica and limited susceptibility to S. aspera enabling to 

support 2-3 emerged parasite stems per rice plant compared to over 20 on the susceptible 

cultivars which are widely grown in the infested areas of Cote d’Ivore (Table 2.3). However, 

in general cultivars of African rice species, O. glaberrima more often show Striga resistance 

as compared to O. sativa (Johnson et al., 1997). Johnson et al. (2000) reported that O. 

glaberrima cultivar CG14 is resistance to S. hermonthica and S. aspera which is one of the 

parents of NERICA rice, currently being promoted for food security in SSA for their short 

maturity period, drought resistance and high yield. However, it has also been shown by 

some post-attachment studies to be susceptible to S. hermonthica (Gurney et al., 2006). The 

screening of NERICAs against Striga spp. is necessitated as the most productive areas for 

upland rice are heavily infested. Furthermore, the contradictory information on CG14 on 

resistance and susceptibility to Striga infections need to be confirmed. Gurney et al. (2006) 

reported a robust resistance in Nipponbare rice cultivar to S. hermonthica in post-

attachment experiment. In this cultivar, the parasite failed to form xylem to xylem 

connection to the host plant root. Other studies have also shown Nipponbare having low 

numbers of Striga and emerging late thus concluding that the variety is resistant 

(Swarbrick et al., 2009). 
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Conclusion 

Africa has complex systems of agricultural development ranging from bush clearing and 

cultivation to convectional agricultural production. Cereals (maize, rice and sorghum) are 

the most important food crops in SSA. With the increasing population which surges 

pressure on cultivated land, investments in agricultural research and extension must be 

increased. The area under production of cereals is under threat from Striga weed 

infestation. This therefore calls for suitable Striga management strategies aimed at 

improving and filling the gaps of the available mechanisms which have not been widely 

adopted by farmers. Priority should be directed towards understanding the parasite and the 

farmers farming systems so that any mechanism developed will be able to fit into the 

farmers’ requirements. In addition, breeding of cultivars that are resistant to Striga will be 

cost-effective to control the parasite as cultivation of resistant varieties does not require 

any extra inputs from farmers.   
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CHAPTER 3 

 

Observations on the Current Status, Distribution and Management 

of Striga Problem in Kenya 

 

Abstract  

Striga spp. is considered to be the greatest biological constraint to food production in sub-

Saharan Africa, a more serious problem than insects, birds and plant diseases. They are 

among the most specialized root-parasitic plants inflicting serious injury to their host 

depriving them water, minerals and photosynthate. The greatest diversity of Striga spp. 

occurs in grassland. However, Striga hermonthica mainly occurs in farmland infecting 

grasses. The parasite devastating effect is accomplished prior to its emergence from the soil. 

It may cause yield losses in cereals ranging from 15% under favourable conditions to 100% 

where several stress factors are involved, thereby affecting the livelihood of millions of 

resource-poor farmers. Piecemeal approach to address one aspect of Striga problem at a 

time has been a setback in technology transfer to producers. Future Striga control 

programs should not be conducted separately, but should rather be conducted by an 

integrated approach that combines the research talents of various institutions. This will 

facilitate collaborative research and achieve qualitative interaction between stakeholders, 

which can easily produce reliable technologies that are practical and available to farmers. 

Striga being a pervasive pest, time is of essence in controlling it. There is an urgent need 

for the establishment of policies to promote, implement, and ensure a long-term sustainable 

Striga control program. 



 

28 

 

Key Words: Control options, genetic diversity, occurrence, S. hermonthica, Kenya 

Introduction 

Striga, commonly known as witchweed, is the most economically important parasitic weed 

seed plant in the world. It is a genus of 28 species of parasitic plants that occur naturally in 

parts of Africa, Asia and Australia. The genus is now classified in the family of 

Orobanchaceae although earlier authors placed it in Scrophulariaceae (Gethi et al., 2005). 

Even though most Striga spp. do not affect agricultural production, some have devastating 

effects on crops particularly those planted by subsistence farmers (Mohamed et al., 2001; 

Westerman et al., 2007). The major agricultural Striga species are Striga hermonthica 

(Del.) Benth. and S. asiatica (L.) Kuntze infecting cereals (maize, sorghum, millet and 

upland rice) and S. gesneriodes (willd.) Vatke legumes (cowpea). Other species such as S. 

forbesii (Benth.) and S. aspera (Willd.) Benth have been reported to have sporadic effects on 

cereal crops in their limited locations (Parker, 2009). Crops such as wheat (Ejeta, 2007) and 

napier grass (Atera & Itoh, unpublished data, 2012) previously unaffected by Striga are 

now showing serious infestation in Sahel. 

S. hermonthica problem has been in existence as early as 1936 in the fields of farmers 

within Lake Victoria Basin, western Kenya (Watt, 1936; Khan et al., 2006). During the last 

20-30 years, it has attained devastating proportions due to cereal mono-cropping (Oswald, 

2005). The parasite is reported to be infecting about 217,000 ha in Kenya, causing annual 

crop loss of US $53 million (Woomer & Savala, 2009). These losses largely depend on Striga 

density, host species and genotype, land use system, soil nutritional status and rainfall 

patterns (Atera et al., 2012a). The most affected are the poor subsistence farmers, who are 

not aware of the threat that Striga poses to their land quality and food security as the weed 

continues to increase its soil seed bank and spreading to new areas. 
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A survey conducted in the Sudan savannah zone of Ghana showed that an average number 

of 9,384 seeds m-2 was found in the Land that had been returned to cultivation after fallow. 

However, some fields had seeds in excess of 14,900 seeds m-2 (Abunyewa & Padi, 2003). Van 

Delft et al. (1997) disclosed that a single Striga plant could produce up 4,827 seeds, 

excluding an approximately similar amount of seeds present in maturing capsules in 

western Kenya. They estimated the average number of seeds produced per mature Striga 

seed capsule to be 1,188. According to Woomer and Savala (2009), Striga has infected 

farmer’s fields in western Kenya with an average of 161 million seeds per ha resulting in 

three parasitic stems per maize plant. Other studies in the region showed that Striga 

density was at least 14 plants per m2 (MacOpiyo et al., 2010). These results imply that only 

a few Striga plants are required to make cereal production unsustainable in this region.  

The purpose of this chapter, therefore, was to examine the incidence Striga hermonthica in 

Kenya and research achievements in its control. Some of the concepts in this chapter are 

drawn from the seven years of my research in Striga occurrence and cereal production in 

western Kenya. Assessment of agricultural production and its constraints and, genetic 

diversity of S. hermonthica is highlighted. Finally, the achievement of research in Striga 

control options available for farmers is discussed. 

 

Agriculture and distribution of Striga in Kenya 

The agricultural sector in sub-Saharan Africa is the key source of food, incomes, 

employment, and more often, foreign exchange. In Kenya, agriculture is an important 

economic activity and accounts for approximately 26% of GDP (Gok, 2010). It is a major 

contributor to foreign exchange earnings; even though less than 8% of the land is used for 

crop production. The land suitable for cultivation is about 20%, of which only 12% receive 
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adequate rainfall for agricultural production and about 8% is regarded as medium potential 

land. The rest of the land is arid and semiarid. Farming in Kenya is carried out by small 

scale holders with limited technology who own not more than two hectares. These small 

farm production, operated by about three million farming families, account for 75% of total 

production in Kenya (Gitau et al., 2009). It is estimated that about 80% of the workforce in 

the country is engaged in agriculture/food processing. 

 

Crop production 

The major food crops grown in Kenya are maize, sorghum, sweet potatoes, wheat, rice, 

beans, finger millet and cassava (Taylor, 2009; Atera, 2012b). According to FAO (2006), 

cereal yield in SSA increased by only 29% between 1961 and 2005 compared to 177% in 

Asia and 144% in Latin America. On the other hand however, in the same period the 

population grew by 216% in the SSA (United Nations Population Division, 2007). The 

implication of this statistics is that production of cereals in SSA has to be increased to feed 

the growing population. In Kenya, the cereal consumption was approximately 3.9 million 

tonnes (Ministry of Agriculture, 2010) while the production was 2.9 million tonnes in 2009 

(Table 3.1). A preliminary forecast by FAO showed that Kenya needs to import 2.3 million 

tonnes of cereals to bridge a production deficit over 2011/12 cropping season. Cereals play a 

central role for food supply but their production has lagged behind. The production capacity 

of the country’s food systems has not kept pace with the surging demand for food. The low 

yield recorded in the country is due to constraints of nutrient depletion, loss of organic 

matter and drought. Production of cereals is also negatively influenced by incidence of pests 

and diseases such as bird damage, leaf blight and the parasitic weed Striga. 
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Table 3.1 Cereal production and consumption in Kenya in 2009

Crop
Area under crop cover 

(ha)
Production

(tons)
Consumption 

(tons)

Maize 1,885,071 2,442,823 3,240,000

Wheat 131,594 219,301 96,480

Rice 21,829 42,202 410,000

Sorghum 173,172 94,555 81,000

Finger millet 104,576 56,417 40,000

Source: Ministry of Agriculture, Kenya, 2010

 

Food security 

Food security situation in Kenya has deteriorated significantly under the umbrella of 

business-as-usual scenario which calls for anything short of a revolution. The food shortage 

trends have to be reversed by all means through appropriate agricultural technologies 

including replenishing soil fertility, use of certified seeds, utilizing Good Agricultural 

Practices (GAPs), reducing weed soil seed banks, disease and pest pressures (Bruce, 2010). 

Emphasis should not only be laid on technology transfer, but also on policies that will 

achieve sustainable productive growth and reduce food insecurity. It is absolutely essential 

that any interventions to increase crop production must be focused on the farmers. In 

addition, farmers should be empowered to participate as equal partners in development of 

new technologies that will fit into their farming systems. Striga weed undermines the 

struggle to attain food security, and so its control must be addressed by all means. 
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In Kenya, food security means maize [Zea mays L.] production. It is regarded as a source of 

food in the entire nation and produced by almost every farmer. In addition, some farmers 

consider it as a source of income. Maize is life to some communities in Kenya because of its 

famous use to prepare the stable dish “ugali”. Unfortunately, the area which is considered 

to be the grain basket of the country is heavily infested by Striga (Fig. 3.1), reducing yields 

of farmers’ dependence by 30-100% (Bruce, 2010). 

 

Origin and occurrence of Striga 

It is believed that Striga hermonthica and S. asiatica originated in the Nubian hills of 

Sudan and Semien Mountains of Ethiopia. These areas are also known to be the origin of 

sorghum and pearl millet which are readily infected by the witchweed (Ejeta, 2007). S. 

gesnerioides may have originated in West Africa. Over the years, Striga has spread to other 

parts of sub-Saharan Africa through the activities of man.  

There are nine (9) Striga species found in Kenya (Table 3.2). Among them, S. hermonthica 

is considered to be the most dangerous and common particularly in the densely populated 

regions of Nyanza and Western Province of Kenya (Fig. 3.2) (Dogget, 1965; MacOpiyo et al., 

2010). S. asiatica is predominantly found in the coastal region infecting upland rice (Gethi 

et al., 2005) and exists sporadically in Isiolo, Busia and Naivasha (Mohamed et al., 2001). 

The species that is adapted as a pest of legume crops, S. gesneriodes, has a wide 

geographical distribution in Kenya compared to the other species. It occurs as far as Kilifi 

(Coastal province of Kenya) spreading to Homa hills (Nyanza province, western Kenya) 

infecting cow pea. 



 

33 

 

Fig. 3.1 Striga  hermonthica infection in Busia, western Kenya:  (A)  Maize–groundnut intercrop with heavy infestation; (B) 

Reduction of yield in maize under Striga infestation. 

A B

 

 

Economic importance of Striga 

Striga infestation causes a loss of 30-50% to Africa’s agricultural economy on 40% of its 

arable land (Amudavi et al., 2007; Hearne, 2009). A survey conducted in 30 communities in 

Borno state, northern Nigeria, indicated that farmers’ rated Striga infestation as leading 

priority constraint together with low soil fertility (Dugje et al., 2006). Similar surveys 

(Weber et al., 1995; Kim et al., 1997) showed that S. hermonthica had become a serious 

problem in Guinea savanna of Nigeria and yield losses ranged from 10 to 100%. In western 

Kenya, a survey of 83 households revealed that 73% of the farms are infected with S. 

hermonthica (Woomer & Savala, 2009). The average losses due to Striga are 1.15, 1.10 and 

0.99 tons per hectare for maize, sorghum and millet, respectively (MacOpiyo et al., 2010). 

However, the damage can reach as high as 2.8 tons ha-1 in maize and sorghum in some 

locations with high Striga densities (Andersson & Halvarsson, 2011). The loss represents 

12.3% of the 2.4 million metric tonnes of maize that Kenya produces annually. This 
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translates to about 39.6 kg of maize loss per capita, amounting to about 20% of a typical 

person’s annual food requirement. Clearly, these shows the consequences of Striga 

infections are severe rendering the small scale farmers helpless and often bewildered. It 

requires innovative and focused actions to assist them to reclaim health of their soil to 

overcome this agricultural pest. 

Table 3.2  Striga  spp. distribution and occurance in Kenya

Striga species Host plants Occurance

S. asiatica

Maize, rice, sorghum, pearl millet, 

finger millet, sugar cane, wild 

grasses

Kilifi, Isiolo, Mathews range, Alupe, Daka Chom, 

Kiunga

S. bilabiata Wild grasses
Naivasha, Chyulu hills, Rumbia, Kahawa, 

Mathews range

S. elegans Wild grasses Nairobi, Loitokitok, Laikiapia, Rumuruti 

S. forbsii Sorghum, rice, maize, sugar cane
Narok, Mara plains, Kipini, Chyulu hills, Uasin 

Gishu plateau, Trans Nzoia

S.gesneriodes Cow pea Kilifi, Buna, Homa hills, Rongo, Nairobi, Naivasha

S. hermonthica

Maize, rice, sorghum, pearl millet, 

finger millet, sugar cane, wild 

grasses

Alupe, Churaimbo, Miwani, Bungoma, Kendu , 

Migori, Kuria, Nyamira, Siaya, Homabay

S. latericea Sugar cane, wild grasses
Samburu, Mariakani, Kwale, Voi, Machakos, 

Sultan Hamud, Kilifi, Mwea 

S. lutea Wild grasses Kwale, Shimba hill, Embu, Chyulu hills

S. pubiflora Sugar cane, wild grasses Kwale, Shimba hills

Source: Mohamed et al.,  2001; Gethi et al ., 2005; Khan et al ., 2007; De Groote et al., 2008; Authors’ own

observations.  

Genetic diversity of Striga strains 

The relatedness of species is commonly assessed by morphological characters. However, 

reliable closeness of parental species has been evaluated according to the level of successful 

hybridization and fertility of the resultant progeny (Murray et al., 1993). Based on their 

morphological similarities, it has been suggested that Striga species have formed complex 

groups (Aigbokhan et al., 2000). Some of these species such S. hermonthica and S. aspera 



 

35 

 

are found in the same locality; parasitizing the same cereal crops and wild grasses; sharing 

insect pollinators and can be intercrossed to produce seeds. Mohamed et al. (2007) proposed 

that there are several factors that have contributed to genetic diversity in Striga: - (a) 

persistent seed bank of several generations of populations; (b) hybridization; (c) broad 

geographic distribution; (d) long distance dispersal and (e) locally adapted host races. 

Among these factors geographical distribution appears to play the greatest role in 

determining genetic differences in the species (Aigbokhan et al., 2000). 
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Fig. 3.2 Part of western Kenya map showing Striga hermonthica infestation. De Groote et al., 2008; Authors’ 

own observations
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Considering the wide range of distribution of Striga spp., limited studies on genetic 

diversity have been conducted in Kenya (Gethi et al., 2005). However, recent molecular 

advancements have provided the necessary tools that can be used in Striga diversity 

studies. These include simple sequence repeats (SSRs), amplified fragment length 

polymorphisms (AFLPs) and randomly amplified polymorphic (RAPD) which employs the 

use polymerase chain reaction (PCR) and offers better characterization due to their high 

level of polymorphism compared to other markers such as morphological markers. However, 

in the recent past the most powerful approach to characterizing genetic diversity in S. 

hermonthica would employ a robust set involving Simple Sequence Repeat (SSR) markers. 

A Study conducted at Kobe University on genetic diversity of S. hermonthica strains 

collected from different parts (between 0°34'N 34°34'E and 1°03'S 34°28'E) of western 

Kenya in 2013 using microsatellite markers or simple sequence repeats (SSRs), showed 

high variations within the population and were genetically different (Fig. 3.3). This study is 

consistent with the result of Koyama (2000) who reported that genetic diversity on S. 

hermonthica collected from Mali, Kenya and Nigeria showed high levels of variation 

existing between and within populations.  In addition, Welsh and Mohamed (2011) using 

FST standards value range (Wright, 1978) of 0.15 to 0.25 for highly differentiated population 

and 0.05 to 0.15 for moderately differentiated, showed that S. hermonthica samples 

collected from Ethiopia were genetically different and all populations were significantly 

different from each other.  

However, Gethi et al. (2005) reported that there is 90% similarity in S. hermonthica 

population collected from Kenya. He argued that there seems to be substantial gene flow 

between Striga populations leading to low differentiation and seed dispersal has been 

basically through contaminated seeds. Nevertheless, Welsh and Mohamed (2011) attributed 

Kenyan population similarity to a small area sampled covering only 0.5° latitude and less 
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than 0.1° longitude. Other studies of S. hermonthica populations infesting in cereal crops 

from several countries in western, eastern and central Africa using isozyme markers 

showed little genetic diversity to genetic diversity levels of up to 6.8% (Bharathalakshmi et 

al., 1990; Olivier et al., 1998). 

Fig. 3.3 A sample of SSR gel image using marker ShContig827. The 48 individual Striga hermonthica

plants collected from Kenya in 2013 are represented. The image is created from temperature gradient

gel electrophoresis .
 

More detailed analysis of genetic diversity in S. hermonthica population is required so as to 

understand the parasite well enough for effective management. The parasite is said to have 

the ability to withstand a wide range of climatic conditions as well as to be quickly adapting 

to different hosts and environments (Welsh & Mohamed, 2011). This makes it even more 

difficult to develop universally resistant host crops, and the efforts toward obtaining 

resistant cultivars may need to take the view that Striga species are diverse. 
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Research achievements 

Research on Striga control in Africa started from the 1940s onwards (Timson, 1945; 

Andrews, 1947) and, in the last 20 years these efforts have been increased and considerable 

resources have been invested in developing control options (Oswald, 2005; Woomer, 2004).  

Several organizations have been involved in conducting research in Kenya and developing 

Striga control mechanisms:- International Maize and Wheat Improvement Centre 

(CIMMYT) (Odhiambo & Ransom, 1993); Badische Anilin- und Soda-Fabrik (BASF)- a 

private chemical company; International Centre of Insect Physiology and Ecology (ICIPE) 

(Khan et al., 2008); International Crops Research Institute for the Semi-Arid-Tropics 

(ICRISAT) (Haussmann et al., 2001); Tropical Soil Biology and Fertility Program of the 

International Centre for Tropical Agriculture (TSBF-CIAT) (Vanlauwe et al., 2008); African 

Agricultural Technology Foundation (AATF) and International Institute of Tropical 

Agriculture (IITA) (Manyong et al., 2008). Other institutions from advanced countries 

mostly from Europe (The UK and The Netherlands), USA and Canada have also been 

involved in conducting research on Striga (Kim, 1996; Andersson & Halvarsson, 2011). 

These organizations and institutions have recommended control options to farmers in 

Kenya geared towards reducing infestation and damage. The options include:- the use of 

resistant crop varieties, intercropping of cereals with legumes, crop rotation, use of trap 

crops that stimulate suicidal germination, and application of manure and nitrogen fertilizer.  

Generally, it has been accepted that Striga control can be possible and sustainable if a wide 

range of individual technologies are combined into a program of integrated Striga control 

(ISC) to serve a range of bio-physical and socio-economic environments (Ellis-Jones et al., 

2004; Douthwaite et al., 2007 ). In fact, Franke et al. (2006) reported that ISC approach 

reduced the Striga seed bank by 46% and improved crop productivity by 88%. The major 
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objective of ISC is to reduce Striga densities in the soil to avoid new plants emerging in the 

subsequent seasons. However, there is stand-off on the complexity of control options to be 

involved and farm management as well as the resources required for its implementation. 

 

Conclusion 

Striga infestation in Kenya has increased in size and severity despite the 70 years of 

support in research. Increased pressure on land, as a result of cereal production 

(particularly mono cropping) and reduction in the use of fallow, is responsible for the 

worsening situation. The control methods developed have not been adopted by farmers. The 

reasons for non-adoption are that the farmers doubt them (Khan et al., 2009; Atera, 2010) 

and they hear rumours that the methods do not work and thus they are unwilling to test 

them. We strongly recommend that the researchers and farmers should have an active 

linkage to technology transfer, as currently transfer of technology seems to be the limiting 

constraint. In our view, the technique of female sterility should be explored in Striga 

control in conjunction with intercropping with crop traps that stimulate suicidal 

germination. The technique will be based on gene introduction into S. hermonthica genome 

to cause female sterility while maintaining male fertility. On the other hand, intercropping 

as farming system will be readily acceptable to farmers and able to fit into their farming 

requirements. The combination of these control options would increase yields and eliminate 

the need for alternative methods of eradicating the witchweed. 
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CHAPTER 4 

Farmers’ Perspectives on the Biotic Constraint of Striga hermonthica 

and its Control in western Kenya 

 

Abstract 

Witchweed, Striga hermonthica (hereafter, referred to as “Striga”), is a major biotic 

constraint to cereal production in sub-Saharan Africa. The parasitic plant is a socio-

economic problem that has forced some resource-poor farmers to abandon their farms due 

to high infestation. This study was designed in order to elucidate farmers’ perceptions of 

Striga control measures and to determine their potential adoption in two villages in 

western Kenya. Participatory rural appraisals and individual interviews were conducted in 

2009 and 2010 in a sample of 128 and 120 households in Kaura and Kogweno-Oriang 

villages in Homabay and Rachuonyo districts, respectively. The results revealed that crop 

production was the main occupation in most households. The farmers identified Striga as 

one of the major constraints to maize, sorghum, and finger millet production. According to 

the farmers, the most popular control measures were hand-pulling, crop rotation, and 

intercropping, even though rotational systems might need a longer timeframe to reduce the 

soil seed bank of Striga. Although the level of Striga infestation and damage were 

increasing in the farmers’ fields, the adoption of the control options was limited. The reason 

for the low adoption level of the control methods by the farmers is because they are “too 

risky” as there is no guarantee of a direct pay-off in increased crop yield. Farmer-led 

evaluation and adaptation of the various Striga control technologies in real-life situations 

will facilitate the choice of appropriate options and facilitate their uptake. 

Keywords: control methods, farmers’ perceptions, Kenya, participatory research, Striga. 
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Introduction 

Striga hermonthica (Del.) Benth. (hereafter, referred to as “Striga”), an obligate root 

hemiparasite, poses a serious threat to cereal production in sub-Saharan Africa. From the 

east to the west of Africa, farmers have been fighting a losing battle against the Striga 

pandemic (Kanampiu et al., 2003). The parasite infects cereal crops, such as sorghum 

[Sorghum bicolor (L.) Moench], pearl millet [Pennisetum glaucum (L.)], finger millet 

[Eleusine coracana (L.) Gaertn], maize [Zea mays L.], and upland rice (both Oryza 

glaberrima (Steud.) and O. sativa L.], on which Africans depend for food in more than 25 

countries (Parker, 2009), affecting about 300 million persons (Aliyu et al., 2004; Ejeta, 

2007). The yield losses have been estimated at 10 million tons of grain, worth $US7 billion 

(Khan et al., 2007; Venne et al., 2009). In Kenya, Striga infects about 212 000 ha 

(Vanlauwe et al., 2008), causing an annual crop loss of $US40.8 million (Gethi et al., 2005). 

These losses largely depend on the level of infection, crop variety, soil fertility, and rainfall 

patterns (Melker et al., 2007). The greatest impact of the parasite is on infertile soils and 

the most affected are the poor subsistence farmers (Kabambe et al., 2008).  

One of the most important reasons that Striga has a devastating impact on cereal crops 

relates to its effective competitive ability in depriving the host plant of carbon, nitrogen, 

and inorganic salts (Gurney et al., 2006), while at the same time inhibiting the growth and 

impairing the photosynthesis of its host (Khan et al., 2006; Melker et al., 2007). The other 

reason is associated with the phytotoxic effects of Striga within days of attachment. The 

parasite produces phytotoxic substances that affect the crop’s growth, with even low levels 

of infection resulting in dehydration and a loss of vigor, stunting, and biomass and grain 

yield reduction (Berner et al., 1995; Musselman & Press, 1995; Frost et al., 1997; Gurney et 

al., 1999; Swabrick et al., 2009).  It attacks the host plant under the ground and, by the 



 

42 

 

time the flowering stem of the parasite appears above the ground, the damage already has 

been caused (Gurney et al., 2006). This behavior earned this parasitic plant the name of 

“witch”. Its common name, “witchweed” in English, together with the various local African 

names, refers to the symptoms of the host before the parasite emerges above the ground. 

A mature Striga plant has a high reproductive capacity and is capable of producing 10 000–

200 000 tiny seeds per plant that can survive in the soil for more than 10 years (van Ast & 

Bastiaans, 2006; Hearne, 2009).  Its high fecundity and longevity of the seed in the soil 

have led to huge amounts of seeds accumulating in the soil seed bank. The parasite’s high 

seed production and the activities of humans have increased the magnitude and severity of 

its infections. Changes in cropping systems, coupled with an increased human population, 

have resulted in intensive land use, soil erosion, and nutrient depletion. In addition, 

demographic pressure has led to mono-cropping, thus increasing the frequency of Striga 

host crops in the cropping system, an ideal condition for Striga to thrive. 

Research in Africa on the control of Striga has been going on for about 70 years (Ahmed et 

al., 2001). Several promising Striga control strategies have been developed, from those that 

relate to soil fertility improvement to those that directly affect the parasite (Rector, 2009).  

This has accorded farmers with a variety of options to control the parasite, including the 

use of chemical herbicides, trap crops, hand-pulling, appropriate fertilizer applications, crop 

rotation, intercropping, resistant crops, and biological control (Parker & Riches, 1993; 

Menkir et al., 2007; Hearne, 2009).  Despite the efforts that have been made in research to 

control the parasite, limited success has been achieved. This is partly due to the complex 

life cycle of Striga, which is intimately linked to its host and depends on the response to 

chemical and tactile cues posing a challenge to control, both before and after attachment to 

the host (Oswald, 2005; Scholes & Press, 2008). However, investigations have revealed that 
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the fodder crop legume, [Desmodium uncinatum (Jacq.) DC.] reduces the impact of Striga 

as it prevents the parasite’s attachment (Khan et al., 2007).  

There is no doubt that, if the Striga problem remains unchecked, it will destroy the 

ecosystems and the farming communities’ livelihoods. Yet to be ascertained is whether or 

not the developed technologies are appropriate for farmers and can be adopted and adapted 

beyond the experimental stations. Although the potential of several Striga control options 

has been demonstrated in various research centers across the infected regions in Africa, 

their adoption has been limited. The objective of this research was to determine farmers’ 

knowledge and perceptions of Striga and its control options in western Kenya in order to 

guide the development, evaluation, and adaptation of control options for use by these 

farmers. 

 

Methodology 

Participatory rural appraisals (PRAs) and individual interviews were conducted in Kenya 

from October to November 2009 and between January and March 2010 in Kaura and 

Kogweno-Oriang villages in Homabay and Rachuonyo Districts, respectively (Fig. 4.1). The 

selected participants in the PRAs and individual interviews included opinion leaders, 

government officials, men and women, both young and old. A sample of 128 and 120 

households in Kaura and Kogweno-Oriang villages, respectively, was selected for the data 

collection. Detailed information from the household head was collected through structured 

questions in the individual interview. The survey was designed to capture the farmers’ 

characteristics, such as their sex, age, educational level, farming experience, and access to 

information on farming. In addition, the farmers provided information on farming 

technologies, constraints to agriculture, and Striga and its control strategies. An analysis 
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from the farmers’ perspective in all aspects was undertaken. Part of the research used a 

participatory approach in order to collect data from the farmers, which enabled the building 

of common knowledge (Emechebe et al., 2004).  

Lake Victoria

Fig. 4.1  Map of Western Kenya, showing the locations of Kaura (Homabay District) and Kogweno-

Oriang (Rachuonyo District) where households were sampled in 2009 and 2010. 
 

The farmers’ crop preferences in both villages were ranked. Scores were used to indicate the 

farmers’ perceptions of agricultural technology constraints and approaches to Striga 

management. Relatively simple scores, providing an indication of how well certain farming 

and Striga control strategies met the farmers’ preferences, were developed. Ordinary 



 

45 

 

numbers were used by the farmers as benchmarks to rank and score the importance of each 

technology. The farmers were asked to judge observations along a scale based on their 

perception. The scores for each factor of the farmers’ perceptions were determined by using 

the following equation: 

N x

W= ∑ ∑ aίn
n=1 ί=1

x
 

where W is the weight of the factor, ί = 1…x, n = 1…N, x is the number of factors, N is the 

number of samples, and a is the value of factor ί for the sample number n. 

In testing the control strategies for Striga, the authors sought to know the contribution of 

agriculture to the communities’ livelihoods, the crops that were necessary for food security, 

and which of these crops were affected by Striga. The farmers identified and ranked each 

crop that was grown in the area as a food and/or cash crop. The respondents prioritized the 

main economic stay in their livelihood, agricultural problems, and the importance of Striga 

in their farming system. The interview sessions with the farmers provided primary 

information about their opinions on the development, challenges, and expectations 

regarding both agriculture and Striga. Reviews were conducted before the interviews to 

ascertain the available farming technologies, constraints experienced by the farmers, and 

ability of the proposed technologies to fit within the farming systems. In identifying the 

rationale for the non-adoption of the control mechanisms for Striga, some of the reasons 

that were documented by Manyong et al. (2008), including a lack of capital, that the 

traditional methods are better, a lack of improved seeds, and gathering more information, 

were used. 
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Results 

Characteristics of the sampled households 

Most (78.1%) of the sampled households in the study area were headed by men, which is a 

typical household in most patriarchal African societies. In contrast, a woman assumes 

headship only after becoming a widow. There were more female-headed households in 

Kaura than in Kogweno-Oriang. The highest education level of the respondents was found 

in Kogweno-Oriang, with 5.4% of them having completed a tertiary education, compared to 

2.9% in Kaura. However, there were more persons (4.5%) who had attained a primary and 

secondary school education in Kaura than in Kogweno-Oriang. Of the sampled population, 

most households owned about 0.8 ha of land. 

 

Role of crop production in the livelihoods of the local communities 

Agriculture was the most important (100%) livelihood source for the two villages in the 

Lake Victoria region in Kenya. Most households in the study area were engaged in the 

production of maize and sorghum (Table 4.1). These two crops are staple food crops and 

therefore add very little to the household cash flow as they are hardly ever sold. The study 

showed that, previously, finger millet was a significant crop and its products continue to be 

major foods, especially in Kaura (Table 4.1). Beans [Phaseolus vulgaris (L.)] and sweet 

potato [Ipomea batatas (L.) Lam.] were popular among the pulses and root crops, 

respectively, and their production was fairly well spread between the study sites. Green 

grams [Vigna radiate (L.) Wilczek] and groundnuts [Arachis hypogeae] were produced in 

very low quantities. 

With most households being engaged in agriculture, the largest number of crop species that 

were produced by the farmers was in Kaura (18), compared to 15 in Kogweno-Oriang. On 
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the causes of food insufficiency, the result of this study showed that it was attributed to 

drought in Kaura (14.3%) and a shortage of land in Kogweno-Oriang (13.5%) (Table 4.2). 

This was followed by a lack of cash to purchase farm inputs, which was more prevalent in 

Kogweno-Oriang than in Kaura. In descending order, the lack of appropriate technology 

was ranked fourth as a constraint to agricultural production. Over all, insufficient funds 

and a shortage of land were the main constraints to food production in the two villages. 

Crop

Kaura† Kogweno-Oriang 

Male Female Male Female

Beans 5 4 5 4

Cassava 7 – 3 5

Cotton 6 5 – –

Finger millet 3 3 – 7

Ground nuts – – 6 –

Maize 2 1 2 2

Sorghum 1 2 1 1

Sweet potatoes 4 6 4 3

Table 4.1 Farmers crop priority ranking in Kaura (Homabay District) and Kogweno-

Oriang (Rachuonyo District) in western Kenya‡

‡1= highest, †18 crops listed with rice ranked 7th by female,  15 crops listed, –

crops not ranked. The ranking of the crops was by a selected group of farmers.

 

Farmers’ perceptions of the importance of Striga 

In this study, the farmers were asked to rank crops in their order of importance as a source 

of food. In Kaura, the four most important crops were maize, sorghum, finger millet, and 

beans, while in Kogweno-Oriang, sorghum, maize, sweet potato, and cassava topped the list 
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(Table 4.1). However, there were some differences within the sampled population in each 

village, as well as between male- and female-headed households. For instance, the men 

from Kaura considered finger millet as the third-most important crop, whereas it was only 

mentioned by the women from Kogweno-Oriang (who rated it seventh), while only the men 

from Kogweno-Oriang mentioned groundnuts (as the sixth crop in descending order of 

importance). 

Table 4.2 Constraints to agricultural production in Kaura and Kogweno-Oriang villages 

in western Kenya

Agricultural production constraints Kaura Kogweno-Oriang Mean

Disease and pest 9.2 10.0 9.6

Drought 14.3 8.6 11.7

Floods 12.7 9.9 11.4

Insufficient funds 11.5 12.7 12.1

Lack of agricultural technology 12.5 10.5 11.6

Lack of equipment 9.5 9.3 9.4

Lack of market 8.7 13.4 10.8

Shortage of land 10.9 13.5 12.1

Weed infestation 10.8 12.2 11.4

Values within each column are frequencies from individual farmers responses reflecting 

their perceptions.
 

In Kaura (sorghum, maize, and finger millet) and Kogweno-Oriang (maize and sorghum), 

the most important food crops were attacked by S. hermonthica. Another parasitic plant 

growing on leguminous crops (Alectra vogelii) was mentioned and was referred to as 

“Kayongo”, the local name for Striga. Among the constraints to agriculture, weed 
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infestation by Striga was highly ranked (Table 4.2). The level of Striga infestation in the 

farmers’ fields ranged from mild to severe. The survey revealed that 71.4% of the farmers 

had Striga in their fields. They reported that Striga reduced the crops’ (maize and sorghum) 

yield by about 70%. Some of the farmers predicted that, if the Striga menace remains 

unchecked, hunger will remain as a persistent problem because some of them have 

abandoned growing staple crops on heavily infected fields and have changed to growing 

legumes, such as groundnuts and beans. 

 

Farmers’ perceptions of the factors that aggravate the incidence of Striga 

The farmers from the two villages had different views on the factors that were responsible 

for the increase in the magnitude and severity of Striga. In Kogweno-Oriang, the farmers 

attested that, in the colonial era, they uprooted Striga before flowering from their fields and 

deposited it on the roadside. Uprooted Striga plants were collected later for burning. This 

practice of uprooting Striga has been going on to date without upholding the set standards 

of colonial times. The disposal of Striga on the roadside has enhanced its dispersal to new 

areas by water. 

The escalating price of certified seeds is another factor that has increased the incidence of 

Striga as farmers cannot afford them due to high poverty levels. Therefore, the farmers 

share seeds from the previous harvest for planting, which are contaminated with Striga 

seeds. Another farmer’s school of thought contended that Striga began to spring out when 

researchers started on-farm testing to ascertain which crops were resistant and which were 

susceptible to the weed. This introduced more seeds into their fields without providing a 

remedy. 

Other farmers in Kaura considered a lack of capital, soil fertility, and poor farming 

methods, such as mono-cropping, caused the increase in the incidence of Striga. However, 
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the farmers in both villages acknowledged that the movement of animals, especially cattle, 

in search of grass after harvesting aggravates the Striga problem by disseminating the 

seeds on their hooves and dung to new areas. In addition, the farmers were willing to try 

new technologies that do not require additional capital. 

 

Sources of information on modern farming and the control technologies for Striga 

The study revealed that the farmers got most of their information on modern farming 

methods and Striga from their neighbors (contact farmers), radio and television programs, 

and chief or district officers’ barazas (gatherings that are held to raise awareness and share 

collective information) (Fig. 4.2). Most (78.8%) of the farmers indicated that they did not 

seek or get technical advice from extension services. However, this lack of information was 

made worse by the international organizations and non-government organizations through 

their technical officers. Even though government extension services were available, the 

attitude of farmers had not changed to conform to the current practice, where farmers are 

supposed to demand services, rather than wait for the services to be provided on a top-down 

basis. As much as the extension staff is willing to maintain more frequent contact with the 

farmers, this might not be possible due to infrastructure limitations and budgetary 

constraints. The research institutions that are mandated to play a vital role in technology 

dissemination have not lived up to the task, as they were poorly rated by the farmers. 

 

Farmers’ perceptions of the effectiveness of the control strategies for Striga 

The farmers had varied perceptions on the mechanisms to control Striga. However, the 

majority (86%) admitted that they usually applied the technologies that are used to manage 

common weeds, such as Commelina benghalensis, Mitracarpus villosus, Digitaria 

horizontalis, Brachiaria lata, and Cyperus esculentus, in order to control Striga. These 
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weed management practices are less effective in controlling parasitic weeds. In assessing 

the popularity of the control options, the farmers ranked hand-pulling as the best 

technology (Fig. 4.3). 
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Fig. 4.2 Farmers sources of information on farming techniques and Striga weed. † Chief/District

Officer Barazas - gathering held to raise awareness and share collective information.

 

Crop rotation was ranked second, while intercropping was ranked third by the farmers for 

controlling Striga (Fig. 4.3). The farmers reported that, other than having an extra food 

crop in the field, the crops tended to differ in their response to physical and environmental 

stresses. The resources that became available through the failure of one crop species could 

be used by the surviving crop (Table 4.3). In all cases, the use of herbicide-coated seeds, 

such as imazapyr-resistant (IR) maize, was perceived as a potentially good mechanism to 

control Striga. However, it is unlikely to be adopted widely as the farmers cannot afford the 
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seed (Table 4.3). Fertilizer application as a method to control Striga was poorly ranked 

(Fig. 4.3). When the farmers were asked why they did not use fertilizer as a control 

mechanism, they overwhelmingly replied that they would use fertilizer but have no money 

to purchase it. 

0 2 4 6 8 10 12 14 16 18

Hand pulling

Crop rotation

Intercropping

Use of crop traps

Manure application

†Push & pull technology

Fallowing

§Improved seed

‡Herbicide

Fertilizer application

Others

Striga control popularity (%)

Fig. 4.3 Farmers perception on Striga control mechanisms popularity (n =78) in Kenya. † Integrated

management of stem borers, Striga weed and soil fertility,  Striga tolerant varieties, ‡Imazapyr resistant

herbicide-coated maize seed that forms protective zone around the roots of maize under the name of

StrigAway™.

 

Rationale for the non-adoption of the control mechanisms for Striga 

The reasons for the non-adoption of the control technologies for Striga by the farmers were 

related to a fear of investing (money and time) in control methods in Striga-prone fields. 

The results revealed that, in both Kaura (25.5%) and Kogweno-Oriang (31.6%), the 

technologies were considered to be too risky to adopt as there is no guarantee of a direct 

pay-off in returns, while 22.6% and 29.9% of the farmers in Kaura and Kogweno-Oriang, 

respectively, pointed out that they lacked the cash to purchase inputs (Table 4.4). More 
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than 14% of the respondents in Kogweno-Oriang indicated that traditional methods are 

better in controlling Striga, while 7.8% were still gathering more information on the 

technologies. The results also revealed that 18.6% of the respondents from Kaura village 

were still gathering information on Striga control methods. 

Table 4.3 Farmers perception on the advantages and disadvantages of Striga control mechanisms

Control method Advantages Disadvantages Adorption potential†

Hand pulling 
and burning

Reduction of seed bank
and increase yield if

done before flowering

Increase of seed back due to 
inappropriate disposal

High 

Weeding
Reduction of Seed bank
and high crop yield

Costly due to the 
requirement of  labor 

and money 
Moderate to high

Crop rotation 

Increase in soil fertility
and  reduction of damage

by Striga

Difficult to adhere to the 
per family food requirement

Low to moderate

Intercropping 

Increase soil fertility 
especially with legumes,  

reduction of damage by 

Striga, additional income
and easy weed control

Labor  intensive and
attraction

of rodents 
Moderate to high

Fertilizer 
application

Reduction of incidence 
Striga 

Expensive and unavailable
increase in soil pests if 

inappropriate application
Low

Compost
application

Reduction of damage by 
Striga, increase in soil 

fertility and high crop 

yield

Increase soil pests if not 
appropriately applied

High 

Herbicide seed 
dressing

Suppression of incidence
of Striga 

Expensive to purchase 
dressed seeds

Low

†  indicates the farmers willingness level of adoption

 

Discussion 

Almost all the farmers viewed Striga as a challenge to crop production. Diversified 

techniques have been developed by agriculturists to limit Striga damage, but farmers have 

not been convinced of their efficacy (Aliyu et al., 2004). The problem is whether or not the 

developed technologies are economically viable and whether or not they fit into the farming 
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systems and the reality of farmers. Perhaps, most of the available control measures fall 

short of being practical in the labor-intensive subsistence agriculture of poor farmers with 

little investment capacity. A potential viable technology should be of low-cost and within 

reach of small-scale, poor farmers and address their interrelated problems of low soil 

fertility and Striga. Owing to the diversity of African farming systems, it is unlikely that a 

single control method will be universally acceptable. It is widely recognized that the most 

likely method to control Striga is the development of an integrated strategy that combines a 

range of technologies (Berner et al., 1996; Emechebe et al., 2004). The control program 

should be aimed at reducing the Striga soil seed bank and maximizing productivity and 

profitability while being flexible and sustainable. 

Rationale for non adoption of the 
control measures

Kaura Kogweno-Oriang Mean

Too risky to adopt 25.8 31.6 28.7

Lack improved seeds 17.2 10.3 13.8

Lack of cash to purchase inputs 22.6 29.9 26.2

Traditional methods are better 6.5 14.3 10.7

Gathering more information 18.6 7.8 13.2

Cultural factors 5.4 0.6 3.2

Others 4.0 5.6 4.8

Table 4.4 Farmers reasons for non-adoption of Striga control mechanisms in Kaura and

Kogweno-Oriang in western Kenya  

Values within each column are frequencies from individual farmers responses reflecting 

their perceptions.
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It is interesting that the farmers attributed the increased incidence of Striga to grazing 

animals (through seed dissemination by the hooves and dung) and the planting of crop 

seeds that are contaminated by Striga seeds. These results corroborate the findings of 

Emechebe et al. (2004) that Striga seeds often are disseminated by cattle and contaminated 

crop seeds. An integrated Striga management program recommends that animals should be 

restricted to fields that are uninfected with Striga in order to prevent any further seed 

dispersal and that farmers should plant uncontaminated seeds (Berner et al., 1996). The 

amount of crop yield losses in the farmers’ fields due to parasitic infections was about 70%, 

especially in maize and sorghum. Similar losses have been reported in maize and sorghum 

under field experiments (Clark et al., 1994; Adetimiri et al., 2000; Kim et al., 2002; Merkir 

& Kling, 2007).  

Among the ten control technologies that were assessed, the highly ranked and preferred 

were hand-pulling, crop rotation, and intercropping. The farmers viewed hand-pulling 

(16.9%) as the most effective way to control Striga (Fig. 4.3). This result agrees with the 

findings of Smaling et al. (1991) in western Kenya that hand-pulling reduced the incidence 

of Striga and increased the grain yield in the following season. In addition, Emechebe et al. 

(2004) stated that hand-pulling was one of the most popular techniques to control Striga 

with some communities in West Africa. However, as much as it seems to be an easy-to-

practice and straightforward approach to interrupt the life cycle of the parasite, it has some 

serious drawbacks. The Striga weed emerges 5–6 weeks after planting and it takes another 

3 weeks for the Striga plants to be big enough to be uprooted (Oswald, 2005). By this time, 

the farmers already have carried out their normal weeding of their crops, meaning that the 

farmers have to go back to uproot Striga, not only once but several times, as Striga 

continues to emerge until a few days before harvesting. This requires considerable 

investment in terms of time and labor. Also, even if Striga is uprooted, the damage already 
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has been caused because it exerts phytotoxic effects on the host plants (Gurney et al., 2006). 

However, this control mechanism still has a major impact because few mature plants can 

replenish the seed bank in the soil. 

Technologies that fit farming communities, as mentioned earlier, easily can be adopted by 

farmers, unlike those that demand a significant modification of their farming practices 

(Hearne, 2009). Crop rotation and intercropping were perceived to be among the best 

approaches to control Striga in the two villages of Kaura and Kagweno-Oriang (Fig. 4.3). 

These views are probably related to reports by Oswald and Ransom (2001) and Oswald et 

al. (2002), who showed that crop rotation and intercropping were more robust ways to 

reduce Striga infestations, considering the limited resource base of small-scale subsistence 

farmers in SSA. The use of legume crops, such as soy beans, as rotational crops with cereals 

to reduce the Striga seed bank through suicidal germination can be one of the components 

of the integrated management of Striga (Khan et al., 2007). In addition, soy beans that are 

grown as an intercrop with cereals will have the advantages of added product to the farmer 

and improved performance of the cereal crops. However, the demand and market for soy 

beans that are produced at the household level must be available if they are to be suitable 

as a mechanism for Striga control. Subsequently, some technologies (such as the use of the 

fodder crop, Desmodium spp., as an intercrop in Kenya) reduce Striga infections to 

appreciable levels through suicidal germination (Khan et al., 2008; Hooper et al., 2009), but 

farmers without dairy animals will not easily adopt the technology unless there is a market 

for the fodder. Crop rotation and intercropping technologies also require several years of 

repeated and continued application before realizing a significant rise in annual grain yield. 

These technologies need to be re-evaluated and repackaged to ensure that they fit the local 

knowledge and economic circumstances of farmers in order to enhance their adoption. 
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In this survey, 24.1% of the farmers stated that they had not adopted control mechanisms 

due to a lack of cash to purchase the inputs (seeds and fertilizers). This finding is partially 

consistent with the two reasons for the low adoption of fertilizer use in Kenya: a lack of 

information and savings difficulties (Duflo et al., 2008). Fertilizers are expensive and 

unavailable to many farmers who live in rural areas (Morris et al., 2007). Unless 

governments subsidize fertilizers, as in the case of Malawi (MoAIFS, 2005), it will be 

difficult for farmers to access and adopt fertilizer use as a control mechanism. In fact, a 

recent survey showed that only 37% of the farmers in western Kenya reported ever using 

fertilizers (Duflo et al., 2008).  

Although the use of Striga-resistant crops is an ideal mechanism to control the parasite, 

with no additional cost to the farmer, it was poorly rated by the two communities. Crops, 

such as sorghum (Framida, SRN 6496, SRN 39, and N13), possess the characteristic of 

lowered germination stimulant production and offer attachment resistance to Striga 

(Haussmann et al., 2001). Similarly, herbicide-coated IR maize, which has been introduced 

in Kenya under the name of StrigaAway™, is effective in controlling Striga as it inhibits 

the activity of acetolactate synthase and forms a protective zone around the roots of maize 

(AATF, 2007). However, the major problem regarding the non-adoption of all seed-based 

technologies is that they are cost-prohibitive and are not easily accessible to farmers. If 

farmers have access to resistant varieties and have cash to purchase the initial seed, then 

the adoption of these varieties is possible, as this fits well within their existing farming 

systems. 

Conclusion 

Based on these results, the potential obstacles that limit the adoption of the control 

mechanisms for Striga need to be identified and strategies need to be formulated in order to 



 

58 

 

mediate them before the control mechanisms are released to farmers. This calls for the 

ability of researchers to assess farmers’ priorities, which will enhance the generation of 

suitable improved Striga control programs. In most cases, researchers do not understand or 

lack ideas on farming systems in Striga-prone areas and the technologies that have been 

developed are in themselves barriers to farmers’ adoption. In order to enhance adoption, the 

use of the participatory approach for farmers is recommended as it ensures that the 

farmers receive programs that match their requirements. In addition, the approach 

facilitates collaborative research that can identify the strengths and weaknesses of 

technologies and create a platform for dialogue. The key issue is the achievement of 

qualitative interaction between the stakeholders in the agricultural sector, such as 

extension workers, the private sector, research workers, and farmers. This kind of 

approach, if adopted, can produce reliable technologies that are practical and available to 

farmers. These technologies will have a greater chance to create an impact in the fight 

against Striga in sub-Saharan Africa. 
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CHAPTER 5 

Farmers’ Perception and Constraints to the Adoption of Weed  

Control Options: the Case of Striga asiatica in Malawi 

 

Abstract 

Studies were conducted to determine farmers’ perception on Striga control options and their 

potential for adoption in two Extension Planning Areas (EPAs) in Central Malawi. 

Individual interviews were conducted in Mpingu (Lilongwe District) and Mponela (Dowa 

District) EPAs in 2010 in a sample of 247 respondents. The study revealed that crop 

production was the main source of livelihood for most households. Farmers identified Striga 

as a constraint to maize production and attributed its increasing incidence to insufficient 

funds to purchase inputs, soil fertility and grazing animals. On Striga control mechanisms, 

manure application was perceived to be the best by farmers, followed by crop rotation, 

fertilizer application and hand pulling. Even though Striga infestation is increasing in 

farmers fields, they have not adopted the control options. The low adoption of the options 

has been justified as “too risky” as farmers do not trust them. Emphasis should be laid on 

undertaking on-farm trials and development of technologies should involve farmers if they 

are to gain wide acceptability. 

Key words: Striga asiatica, farmers, perception, control mechanisms, Malawi 

 

Introduction 

The parasitic angiosperm, Striga spp., is obligate root parasite endemic in sub-Saharan 

Africa causing severe constraint to cereals. It is a growing pandemic, undermining the 
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struggle to attain food security of the continent. Approximately 40% of the cereal producing 

area is infected and 300 million people affected (Ejeta, 2007). The most affected are 

subsistence farmers losing about 20–80% of their crop yield (Atera et al., 2011). In Malawi, 

the recorded species are S. asiatica, S. aspera, S. gesneriodes and S. forbesii. Among these, 

S. asiatica is said to be widespread and the most noxious to cereal crops such as maize, 

sorghum, millet and rice (Kabambe et al., 2008). 

The parasite is estimated to be infecting 268,000 ha of farm land in Malawi (AAFT, 2006). 

A survey carried out in the country showed that 63% of the maize is infested (Kroschel et 

al., 1999). The figure has since risen to 80%, an indication that Striga problem is not 

declining (Parker, 2009). Total crop yield loss occurs under heavy infestation.  Other losses 

as result of Striga depend on land use system, soil fertility, crop species and genotype, and 

rainfall patterns (Atera et al., 2011). The parasite is difficult to control because it has the 

capacity to produce large number of tiny dust like seeds which can survive in the soil for 

more than 10 years (Hearne, 2009). These seeds do not germinate unless they are 

stimulated by root exudates of their hosts. 

The life cycle of the parasite is closely interlinked to that of its host and largely depends on 

chemical signals. This is a challenge to researchers particularly in understanding host-

parasite biology. Several germination stimulants have been recorded that trigger Striga 

germination; however, strigolactones are the most common root exudates from many 

cereals (Scholes & Press, 2008). Knowledge of the biosysthetic pathways is required so that 

production of germination stimulants can be manipulated to identify genes involved in the 

synthesis and regulation of strigolactones. This might probably lead into designing a novel 

control strategy. Contrary to normal weeds, most of the damage to the host is done before 

the parasite emerges above the soil (Kiwia et al., 2009; Atera et al., 2012a). Therefore, 
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control methods should focus on reducing soil seed bank and interfere with the parasite’s 

early developmental stages. 

Various Striga control options such as use of resistant crop varieties, cereal-legume 

intercropping, trap crops that stimulate suicidal germination and nitrogen fertilizer 

application have been suggested (Frankie et al., 2006; Hooper et al., 2009). A combination 

of a wide range of technologies into an integrated Striga control (ISC) program has been 

identified as a feasible approach to contain the parasite. The adoption and successful 

implementation of this technology largely depend on farmers’ perception and reaction 

towards it. The objective of this research was to determine farmers’ knowledge and, 

perceptions of Striga and its control options in Malawi to serve as basis for development, 

assessment and adaptation of the options by farmers. 

 

Methodology 

The study was conducted in January to March 2010 in two districts (Dowa and Lilongwe) in 

the central region of Malawi, where Striga has been a problem. With the help of Ministry of 

Agriculture (MoA) extension staff, one Extension Planning Area (EPA) (Mponela, Dowa 

District and Mpingu, Lilongwe District) was selected in each district (Fig. 5.1). Six villages 

within the locations of these EPAs were selected. Farmers’ from each village were selected 

randomly from the list in the office of agricultural extension staff. Within the six villages 

from each EPA, a sample of 118 and 129 households in Mpingu and Mponela EPA were 

selected for data collection and the response was 96%. Forty three (43) open structured 

household level questionnaires were administered. 

The survey captured the farmer’s characteristics such as sex, age, educational level, 

farming experience and access to information on farming. It also covered farming 
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technologies, constraints to agriculture and Striga and its control strategies. This 

information was meant to collate the perceptions of farmers to production constraints. Data 

were collected through a field survey by face-to-face interviews with the farmers by trained 

enumerators and agricultural extension staff. Farmers were invited to be part of the survey 

through agricultural extension agents and opinion leaders. 

Crops of preference were ranked and simple scores used to reflect the farmers’ perception 

on constraints to agricultural technologies and Striga management approach. The simple 

scores were developed to show how well certain farming and Striga control strategies met 

farmers’ preferences. In each technology, ordinary numbers were used as bench marks to 

rank and score its importance. Farmers’ perception was judged on a scale and determined 

by following equation: 

N x

W= ∑ ∑ aίn
n=1 ί=1

x
 

Where W = weight of factor, ί = 1…x, n = 1……N, x = Number of factors, N = Number of 

sample, a = Value of factor ί for the sample number n. 

Through the interviews, farmers provided primary information on their opinion and 

challenges on both agriculture and Striga. Reviews were conducted before interviews to 

ascertain the available farming technologies, farmers’ constraints and if the proposed 

technologies fit within their farming systems. We adapted sections of Manyong et al. (2008) 

survey in identifying the rationale for non-adoption of Striga control mechanisms. Data 

from the questionnaire were analyzed using the statistical package for social scientists 

(SPSS) software. The results presented in this chapter are perceptions of farmers about 

Striga asiatica and its control options. 
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Fig. 5.1 Map of Central Malawi, showing the locations of Mponela (Dowa District) and Mpingu

(Lilongwe District ) EPA where households were sampled in 2010. 
 

Results and Discussion 

Household characteristics 

In this study, most of the sampled households (76.3%) were headed by males. This 

represented typical household headship in African societies, where women can assume 

headship after becoming widows. The study revealed that 85.6% and 76% of the household 

heads received formal education in Mpingu EPA and Mponela EPA, respectively. Mpingu 

EPA also had more (4.3%) respondents trained in vocational and short-term training on 
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farming skills. This may be as result of proximity to Lilongwe City and Chitedze Research 

Station which offers opportunities for urban based training on agriculture. There were 

several Non Governmental Organizations (NGOs) involved in offering training to rural poor 

farmers in Lilongwe District compared to Dowa District. The study showed that educational 

level is one of the most important attributes that indicates a household capacity to adopt 

technology. In both EPAs, the average household heads were in their economically active 

age of about 45 years. There were more household heads working off the farm in Mpingu 

EPA (17.3%) than Mponela EPA (8%). Of the sampled population, most households owned 

about 0.9 ha of land. 

 

Importance of crop production to the local communities’ livelihood  

The study revealed that agriculture is the livelihood source for the communities in the two 

EPAs, Mpingu and Mponela. Maize [Zea mays L.] is regarded as source of food (Table 5.1) 

and it is produced by almost every farmer. It is also considered by some farmers as source 

of income. Maize is life “chimanga ndi moyo” to many farmers in Malawi for its famous use 

to prepare the stable dish nsima. Our result is related to Kabambe et al. (2008) who 

reported that maize constituted a major component in the diet of Malawian people. Theu 

(2008) revealed that 55-60% of the maize grown in Malawi comes from the central districts, 

and the area is most affected by S. asiatica. This indicates the importance of maize in the 

study area and the need to address constraints that reduce its productivity. 

Maize-legume intercropping was generally practiced among farming households to reduce 

Striga. This agrees with the findings of Mbwaga et al. (2001) that intercropping cereals 

with legumes reduced Striga infections and increased yield in Cameroon and Ethiopia. The 

cropping system not only increases yield but soil fertility is improved by nitrogen fixation 

and soil erosion reduced. Odhiambo and Ariga (2001) reported that maize-bean 
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intercropped in the same hole increased maize yield by 78.6% above the pure stand in 

heavy Striga infected area. Intercropping maize with desmodium has also been shown to 

reduce Striga incidence in Kenya through allelopathic effect (Khan et al., 2007) and the 

same to sesame intercropped with sorghum and pearl millet in Eritrea (ICRISAT, 2002). 

These findings clearly testify that inclusion of legumes in cereal-based systems has 

beneficial effects in reducing Striga incidence resulting to enhanced cereal yield. 

‡1= highest,  11 crops listed, ‡14 crops listed with ground beans ranked 8th by male, – crops

not ranked

Crop
Mpingu

 
Mponela‡

Male Female Male Female

Beans – 6 7 5

Cassava 5 4 5 6

Groundnuts 3 2 3 2

Irish potato – – 6 –

Maize 1 1 1 1

Soya beans 6 5 4 4

Sweet potato 2 3 2 3

Vegetables 4 – – –

Table 5.1 Farmers crop priority ranking in Mpingu (Dowa District) and Mponela (Lilongwe 

District) EPA in Central Malawi‡

 

Traditional non tradable crops such soybeans [Glycine max (L.) Merr.], groundnuts [Arachis 

hypogaea L.], sweet potatoes [Ipomea batatas (L.) Lam.] and cassava [Manihot esculenta 

Crantz] were widely grown in the study sites. The study revealed that groundnuts and 

sweet potatoes were the second most important crops and production was fairly well spread 

between the study sites (Table 5.1). With most households engaged in crop production, the 

largest number of crop species was produced by farmers from Mpingu compared to Mponela. 

According to Moyo (2010) legumes are important components of Malawi’s maize based 
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farming system. Despite the benefits which can be accrued from legumes, the sub-sector is 

characterized by low productivity due to the fact that farmers experience serious problems 

of accessing seeds at planting time. The focus of the agricultural sector is to use innovative 

systems of approach to increase farmers’ access to seed and use research to address 

production and marketing bottlenecks in the legume value chain. 

 

Farmers’ perception on Striga as a cause to food insufficiency 

In this study, farmers were asked to rank the crops in order of priority as a source of food 

and cash. The four most important crops in the study area were maize, sweet potatoes, 

groundnuts and cassava (Table 5.1). However, there were some differences within the 

sampled population in each EPA as well as within males and females. For instance, farmers 

in Mponela considered Bambara beans as the eighth important crop while only males rated 

irish potato as the sixth in descending order of importance. In both EPAs, the most 

important crop (maize) was infected with Striga asiatica. A leguminous parasitic plant 

Alectra vogelii which most farmers referred as “Kaufiti” a local name for Striga infected 

groundnuts, bambara beans, common beans and soybeans, which are farmers preferred 

legumes crops. 

Striga infestation in the farmer fields ranged from mild to severe infestation. The survey 

revealed that 67% of farmers in the study area have Striga in their fields. Almost all 

farmers (91.3%) viewed Striga as a challenge to crop production. Lack of funds to purchase 

inputs (20.4%) and farm tools (13.7%) in the study sites were recorded as the major causes 

of insufficient food (Table 5.2). About 10.5% of the respondents stated weed infestation was 

responsible for low productivity in the agricultural sector. AAFT (2009) identified lack of 

inputs and Striga infestation as the major constraint to crop productivity which is 

consistent with our findings. In order to improve on food sufficiency, the Government of 
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Malawi introduced farm input subsidy program (FISP) known as “starter pack” (SP) which 

provided farmers with packs of fertilizer, maize and beans or ground nuts to rural 

households. The inclusion of legumes in FISP was undertaken to improve on the soils and 

yield as well as to reduce Striga infections (MoAIFS, 2005). As much as the government 

subsidized the price of fertilizer, the targeted farmers still cannot afford it in sufficient 

quantities because they are capital constrained when the planting season sets in. 

Agricultural production 
constraints

Mpingu Mponela 
Mean

Male Female Male Female

Disease and pest 0.484 0.5 0.462 0.683 0.532

Drought 0.529 0.602 0.436 0.54 0.527

Floods 0.078 0.102 0.12 0.143 0.111

Insufficient funds 0.837 0.833 0.812 0.714 0.799

Lack of agricultural technology 0.333 0.269 0.427 0.476 0.376

Lack of equipment 0.497 0.63 0.556 0.46 0.536

Lack of Market 0.458 0.259 0.376 0.46 0.388

Shortage of land 0.373 0.333 0.684 0.574 0.491

Weed infestation 0.412 0.472 0.282 0.603 0.442

Values within each column are weight transformed calculated according to the equation in 

the methodology reflecting farmers' perceptions. 

Table 5.2 Constraints to agricultural production in Mpingu and Mponela EPA in Malawi

 

Perception of farmers on Striga increase in their fields 

The majority of farmers from the two EPAs attributed lack of capital to purchase inputs as 

the major problem that has aggravated increase of Striga. In addition, farmers in Mponela 

EPA considered low soil fertility and poor land preparation due to mono-cropping increased 

Striga incidence in their fields. However, Mpingu farmers claimed that sharing of seeds for 
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planting from previous harvest for planting aggravated Striga incidence. Respondents from 

both EPAs acknowledged that movement of animals especially cattle after harvesting 

aggravated the Striga problem by disseminating the seeds on their hooves and dung. They 

viewed the grazing animals and wind as the major agents of Striga dissemination to new 

areas. These findings are similar to those of Emechebe et al. (2004) that Striga seeds are 

often disseminated by cattle and contaminated seeds in northern Nigeria. Farmers were 

willing to try new technologies which do not require additional capital. They felt that there 

was need to reduce the Striga seed banks and prevent further seed dissemination to new 

areas. 

 

Farmers’ knowledge on farming methods and Striga control technologies 

The study showed that farmers major source of information on modern farming methods 

and Striga control technologies are from government extension staff (Fig. 5.2). 

Approximately 26% of the respondents viewed International Organizations/NGOs as 

playing a significant role in providing farmers with knowledge on farming techniques. Most 

farmers gained access to knowledge on Striga from the extension services (33%) and 

neighbors (23%). The view is probably related to Oswald (2005) who showed that even 

extension staff in Kenya did not have enough knowledge on Striga and only 34% of farmers 

received training on Striga from them, while the rest depended on their neighbors.  

Interestingly, the media service (TV and radio) was ranked third as the source of 

information for farmers on Striga. Radio as media of information in particular, is very 

popular as it reaches a wide audience and is readily accessible and affordable. The 

government has ensured that there are live programs and forums making it possible for 

presenters to interact with farmers. Nevertheless, the study revealed that research 
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institutions are not instrumental in technology dissemination even though they are 

prominent in the generation. 
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Fig. 5.2 Farmers sources of information on farming techniques and Striga weed. †Chief/District

Officer Barazas-means gathering held to raise awareness and share collective information.

 

Farmers perception on effectiveness of Striga control mechanisms 

Majority of the respondents (74.2%) admitted that they usually applied the technologies 

used to manage normal weeds (Conyza stricta, Solanum incanum, Oxalis latifolia etc.) to 

control Striga. The management practices of these weeds are ineffective in controlling 

parasitic weeds. Farmers in both EPAs ranked manure application as the most popular and 

best option in Striga control (Fig. 5.3). This implies that consistent manure application is 

perceived to reduce Striga populations. However, Smaling et al. (1991) reported that effects 

of N, P, S and farmyard manure were disappointing as none of them suppressed Striga 
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significantly. In addition, Manyong et al. (2008) stated that manure increases nutrients in 

the soil for crops to grow well, but it does not reduce Striga seed bank. 

0 5 10 15 20 25 30 35

Manure application

Crop rotation

Fertilizer application

Hand pulling

Intercropping

Fallowing

Use of crop traps

§Improved seed

‡Herbicide

†Push & pull technology

Others

Striga control practice (%)

Fig. 5.3 Farmers perception on the control mechanisms popularity (n=58). †Integrated management

of stem borers, Striga weed and soil fertility,  Striga tolerant varieties, ‡Imazapy resistant

herbicide-coated maize seed (IR maize) that forms protective zone around the roots of maize under

the name of StrigAway™.

 

Crop rotation and fertilizer application were ranked highly while intercropping was among 

the best mechanism with the farmers. According to the farmers, crop rotation and 

intercropping provided additional benefits. They reported that other than having extra food 

crop in the field, the methods appear to be creating crop sequences with varying patterns of 

resource competition, allelopathic interference and soil disturbance, thus providing 

unstable environment that prevents proliferation of particular weed species. In addition, 

the resources that become available through failure of one crop species can be used by the 

surviving crop. This view is probably related to Ransom (2000) and Oswald and Ransom 
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(2001), who showed crop rotation as a farming system that can reduce Striga infestation 

and fits the small scale subsistence farmers with their limited resources. However, the 

average Malawian farmer has a land holding of about 0.9 ha. Practicing crop rotation as a 

farming system is not viable considering the small land ratio. Several farmers may be 

forced into nomadic life of searching for hired labor to feed their families because the land 

may not produce their food requirement. 

The use of herbicide coated seeds such as imazapyr-resistant maize (IR maize) which has 

been perceived by researchers (De Groote et al., 2008) as the best option to contain the 

Striga menace was ranked poorly (Fig. 5.3). The farmers felt that purchasing of seeds every 

planting season is not affordable due to poverty. That notwithstanding, Oswald (2005) 

reported that the IR maize has serious drawback as resistance of herbicide is based on a 

single recessive gene. Therefore, any crossing of this maize will result to plants that are no 

longer resistance. 

 

Non-adoption of Striga control mechanisms 

Farmers in the study sites had varied reasons on non-adoption of control mechanisms. They 

expressed fears of investing in the Striga prone areas as the losses incurred were huge. The 

result revealed that 30.8% of the respondents perceived the technologies as too risky to 

adopt and have no guarantee of direct payoff in crop yield increase, while 20.8% of the 

respondents pointed out that they lacked cash to purchase inputs (Fig. 5.4). More than 

15.1% of respondents in Mpingu EPA indicated that improved crop varieties were better in 

Striga control while 20.6% in Mponela EPA were still gathering more information on the 

technologies. The respondents openly disclosed that they feared some of the technologies as 

they did not have enough information on them. 
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Fig. 5.4 Farmers’ reasons for non adoption of the control mechanisms in Mpingu and Mponela EPA .  

From these results, it was evident that most farmers (48%) do not know on how to handle 

witchweeds despite the availability of the recommended options. Some of the options are 

beyond the farmers reach in terms of their resources. This result corroborate the views of 

Oswald (2005) in a survey of 198 randomly selected farming households in western Kenya, 

where 11% of the farmers knew that Striga propagate by seed while 51% did not how it 

propagates. A similar study conducted in Ghana showed that 36% of farmers knew Striga 

produce seed and 56% thought it produced stolons (Ransom, 2000). These results are 

indications that farmers need knowledge and training. Furthermore, Hearne (2009) 

reported that non adoption of Striga control options may be as result of reliability of 

technologies, poor access and cost of technologies, limited practicality of the methods, and 

poor information. 
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Conclusion 

Significant investment in research has been directed towards the study of Striga in the last 

30 years, resulting to increased understanding of the witchweed life cycle and biology as 

well as development of control options. Lack of sufficient knowledge on Striga has been a 

setback to farmers in adoption of control mechanisms in most developing countries. It is 

necessary to establish whether research findings on Striga control options are imbedded in 

books and journals which make it difficult for farmers to access them. Participatory 

approach in Striga research involving farmers, scientists and extension personnel at all 

stages will promote knowledge sharing and acquisition. This approach may accelerate the 

process in which farmers participate in testing the options and subsequently adaptation. 
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CHAPTER 6 

Response of NERICA Cultivars to Purple Witchweed (Striga 

hermonthica) Parasitism  

Abstract 

Striga hermonthica (Del.) Benth. (hereafter referred to as Striga), an obligate root 

hemiparasite, poses a serious threat to cereal production in sub-Saharan Africa. Field 

experiments were conducted in two years at Alupe farm, western Kenya, to investigate the 

effect of Striga on growth and yield parameters of New Rice for Africa (NERICA) cultivars. 

A randomized complete block design replicated three times and rice cultivars NERICA 1, 

NERICA 4, NERICA 10, NERICA 11 and Dourado precoce, a local landrace were used. 

Striga significantly reduced grain yield and the yield components. Reduction in grain yield 

and its components were more severe under moisture stress period in 2008. Grain yield loss 

ranged between 33-90%. NERICA 1 gave the highest yield in the two seasons both in Striga 

infected and control plants. This was followed by NERICA 10, which was also the most 

economically viable when infected with Striga. Result showed that both NERICA 1 and 

NERICA 10 are resistant to S. hermonthica while NERICA 4 is highly susceptible. 

Key words: Striga hermonthica, resistance, NERICA, yield, Kenya 

Introduction 

Striga weed, a root parasitic flowering plant, is common in sub-Saharan Africa (SSA) 

causing severe constraints to crop production. It survives by diverting essential nutrients 

which are otherwise taken up by cereal crops such as sorghum [Sorghum bicolor (L.) 

Moench], pearl millet [Pennisetum glaucum (L.) R. Br.], finger millet [Eleusine coracana 
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(L.) Gaertn], maize [Zea mays L.] and upland rice [both Oryza glaberrima (Steud.) and O. 

sativa L.] (Rodenburg et al., 2006; Atera et al., 2011). These cereals are of utmost 

significance to African farmers for their home consumption. Underground the weed siphons 

water and nutrients for its growth while above the ground, the crop withers and grain yield 

is reduced (Khan et al., 2007). However, most farmers are not aware of the threat Striga 

poses to their land quality and food security as the weed continues to increase its soil seed 

bank and spreading to new areas. 

It has been estimated that the parasite infects some 21.9 million ha (40% of the cereal-

producing areas) (Gressel et al., 2004) of SSA where farmers lose about 20–80% of their 

yield estimated at US$7 billion annually, and affecting livelihood of approximately 300 

million people (Scholes & Press, 2008). In Kenya, Striga infects approximately 210,000 ha 

[of which Western Kenya accounts for 80%] (AATF, 2006) causing annual crop losses of 

US$ 40.8 million (Gethi et al., 2005). The most affected are resource poor subsistence 

farmers with infertile fields (Gurney et al., 2006). 

According to Oswald (2005), Striga has been on existence in farmers’ fields in Western 

Kenya since 1936. Poverty level of small scale farmers has enhanced the spread of the 

parasite through sharing of seeds collected from the previous crop harvest. In addition, 

Striga pandemic has increased in size and severity as a result of mono cropping and seed 

dormancy (of more than 10 years in the soil). The parasite produces several seeds which are 

incorporated into the soil during tillage. Through the tools used by man for land 

preparation and weeding, seeds are spread to new areas over time. They are also spread by 

animals moving from one field to another in search of pasture. This has made it easier for 

the noxious weed to spread to new areas affecting crop yield. 
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Research on Striga control has been carried for a long time and a wide range of technologies 

have been developed (Atera et al., 2011). Despite efforts made to control the Striga problem, 

it has persisted and increased in magnitude. Although research on the parasitic weed has a 

long history, adoption of the control options is limited (Emechebe et al., 2004). This is one of 

the greatest tests to be addressed by researchers as to why farmers are not embracing the 

control mechanisms. 

The development and integration of more tolerant and resistant crops to Striga into upland 

production systems (UPS) may be a viable option for attaining optimum yields. Whereas 

some studies report resistance, attachment and effect of Striga weed on upland rice growth 

and yield (Swarbrick et al., 2009; Gurney et al., 2006; Harahap et al., 1993; Johnson et al., 

1997), only a limited number of cultivars have been evaluated. For instance, the 

interspecific hybrids known as NERICA have not been evaluated for Striga 

resistance/tolerance since introduction in the farmers’ fields. NERICA rice is slowly 

becoming an alternative cereal crop in the moist savanna areas of sub-Saharan Africa 

where Striga problem has been most severe. In Kenya, four NERICA cultivars (NERICA 1, 

NERICA 4, NERICA 10 and NERICA 11) were released to farmers. Adoption of NERICA by 

smallholder farmers may depend in part if they can withstand the Striga scourge as well as 

maintain high yield potential. Therefore, the NERICAs should be evaluated in different 

Striga infected agro-ecosystems to determine any level of exhibition of resistance. Some 

studies have shown high level of variation existing within and between the Striga 

populations from Kenya, Mali and Nigeria (Gethi et al., 2005). This study assessed the 

performance of NERICA rice cultivars infected with S. hermonthica from Alupe, Kenya and 

the cultivars displayed different levels of tolerance. 
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Materials and methods 

Site description 

 Field studies were conducted in the long rains of March to August and short rains of 

September to January in 2008 and 2009 at Alupe farm of Lake Basin Development 

Authority, near Busia town (0o29´N, 34o07´E) in western Kenya, where Striga hermonthica 

is a serious limitation to cereal crop production. The experimental site receives 

approximately 1148mm of rainfall per annum, has mean annual temperature of 29°C and is 

located at an altitude of 1189 meters above sea level. The soil characteristics at the 

beginning of the experiment were 4.22 mg g-1 of soil organic content, 4.29 mg kg-1 Olsen P, 

0.099% of N, 0.007% of P and pH of 5.9. The proportions of sand, silt and clay in the soil 

were 68%, 19% and 13% respectively. Prior to the trials, the site was under cultivation of 

local rice varieties. 

 

Experimental design 

 A completely randomized block design was used with three replications in two sites of the 

farm. Striga infected cultivars were planted on one block which had been under continuous 

cultivation of cereals while controls plants were planted in another block, a recently opened 

field for cultivation. Five cultivars namely NERICA 1, NERICA 4, NERICA 10, NERICA 11 

and Dourado precoce, a local landrace were sub-plots. The characteristics of the cultivars 

are as shown in Table 6.1. Plots were 2.5 m x 5 m in size. Natural conditions were relied 

upon at each site. Five seeds were sown by hill at spacing of 30 x 12.5cm and later thinned 

to three. To allow Striga to thrive, minimum fertilizer was applied at rate of 60 kg N ha-1 

(30 kg ha-1 at basal and the rest after the first weeding). The infected fields were weeded 

once with a hoe, after which the weeds were pulled by hand other than Striga to avoid 
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damaging young Striga seedlings. Control fields were weeded three times. The rice seeds 

were treated with murtano fungicide/insecticide before planting according to label 

instructions. 

Table 6.1 Characteristics of upland rice cultivars used for the trials in 2008 and 2009

Cultivars Stature Maturity days

DOURADO PRECOCE Tall 95-110

NERICA 1 Semi dwarf 95-100

NERICA 4 Tall 95-100

NERICA 10 Tall 90-100

NERICA 11 Semi dwarf 75-85

 

Striga infections 

For purposes of Striga infestation uniformity, the plots were artificially inoculated with 

Striga seeds. The seeds were obtained from Kenya Agricultural Research Institute, Alupe, 

harvested from rice field in 2004. Tetrazolium red was used to test seed viability as 

described by Berner et al. (1997). The seeds were mixed with sand sieved through a screen 

of pore diameter of 250µm at a ratio of 1:39 by weight to obtain germination of about 3000 

seeds per station. The Striga seeds in the mixture were uniformly sprinkled in rows 

trenches which were half buried with soil. Rice seeds were planted in hills along the rows 

as recommended in Kenya. 

 

Economic yield loss 

Crop yield loss can be defined as the difference between potential yield and actual yield. In 

this study the actual yield was obtained from the Striga infected area while the potential 
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yield was from uninfected Striga area (control plants). To estimate the economic value of 

Striga infection losses, the actual loss was measured. Striga economic evaluation (SEE) was 

determined when crop loss due to the weed was multiplied by the area and the price. 

Crop yield loss in the study was presented as the potential yield denoted as Yp and actual 

yield as Ys. The crop loss difference was expressed as potential yield proportion represented 

by Yr, which can easily be used to estimate loss in yield in Striga infected areas if actual 

yield is known. 

Yp  -  Ys

Yp  

Yr ₌

 

The ratio “s” was determined from the representative sample in the field. If the ratio “s” is 

known, then losses due Striga can be derived using the following formula. 

Yp - Ys = Ys
s

1 - s
 

Similarly, crop loss for a region or country can be determined by using the same formula 

when potential yield is known. However, Striga in the field is not uniformly distributed and 

therefore, there are prone to be error margins in the estimates.  It is possible to obtain a 

function that can estimate crop loss within the error margins. In our study, we estimated 

the economic losses due to Striga using the formula above. 

 

Data collection and statistical analysis 

Striga emergence counts were done at 8 weeks after seeding. Due to high variability of 

emerged Striga plants both within and among the treatments, data was transformed using 

natural logarithms, log (x + 1) to stabilize the variance for the analysis (Johnson et al., 
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1997). Rice plant height and tiller number were estimated from 10 plants per plot at every 

14 DASE. The grains were harvested when 80% turned golden brown. Yield was estimated 

from 20 hills in each plot and corrected to 14% moisture content. All data were subjected to 

analysis of variance (ANOVA). Whenever significance differences were detected (α = 0.05), 

the means were compared using the Tukey’s HSD test at 5% levels of significance. 

 

Results  

Striga growth and dry matter accumulation 

There were significant effects of Striga infections on growth and yield parameters of 

cultivars. The first Striga plant emerged 42 days after rice seed emergence. The minimum 

time taken by Striga to complete the life cycle from emergence was 56 days. Striga plants 

emerged even after harvesting of the plants. More Striga plants were sighted on plots that 

were planted with Dourado Precoce and NERICA 4 compared to NERICA 1 and NERICA 

10.  

Dry matter (DM) accumulation at 30, 60 and 90 days after sowing (DAS) of infected rice 

cultivars is as shown in Fig. 6.1. NERICA 10 had higher DM accumulation at 30 and 60 

DAS and NERICA 1 at 90 DAS. Our results showed effects on reduction in plant height 

(Table 6.3) and biomass of the cultivars. Striga influenced dry matter between different 

parts (allometry) thereby modifying the architecture of infected plants. The parasite 

significantly reduced the growth of Dourado precoce and NERICA 11 after 60 DAS. Infected 

plants produced 42% of the total biomass of uninfected plants. 
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Fig. 6.1 Trends of shoot dry matter weight of infected  plants in 2009. Each data point is 

the mean of  three replications of each cultivar.  
 

Yield components of Striga infected cultivars 

The main effects of the year, interaction of Striga and cultivar significantly influenced 

panicle production. Average panicles were 213 m–2 in 2008 and the corresponding value in 

2009 was 202 m–2 of Striga infected cultivars (Table 6.4) compared to 280 m-2 of the control 

plants (Table 6.2). Over the years, NERICA 1 produced more number of panicles (262 m–2) 

and the least were recorded for Dourado precoce among the infected plants. Results showed 

that the simple effects of the treatment factors were significant (P ≤ 0.02) in 2009. NERICA 

10 was ranked lowest in grain size as determined by 1000-grain weight (24.8g 1000–1) 

(Table 6.4). Grain size is ranked highest (29.5–31.1 g) in Dourado both in infected and 

control plants. There were no significant differences in the grain filling ratio among the 

cultivars. However, the ratio was lower in NERICA 4 compared to other cultivars. 
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Cultivar
Panicles 

m-2
Spikelets 
panicle-1

Grain filling
(%)

1000 grain 
weight (g)

Panicle 
length

(cm)

DOURADO PRECOCE 274.3  18.3 41.7  6.7 83.8  0.9 31.1  1.5 21.4  1.4

NERICA 1 287.9  33.6 60.3  4.5 84.7  2.6 29.8  0.5 20.3  1.1

NERICA 4 282.4  32.5 58.7  6.1 84.5  1.9 28.7  0.4 20.9  0.7

NERICA 10 273.4  27.4 51.4  2.5 88.3  1.2 25.9  0.8 20.2  0.9

NERICA 11 281.6  26.9 50.7  5.9 82.5  0.3 30.3  0.8 19.3  0.3

Table 6.2 Yield parameters of control rice plants in 2008 and 2009

All values are mean  SE for two years. 

 

Cultivars LY† LPH 

DOURADO PRECOCE 86.2 52.5

NERICA 1 46.3 12.3

NERICA 4 90.2 48.8

NERICA 10 33.4 16.4

NERICA 11 72.8 21.7

†- Loss in yield,  - Loss in plant height. Values used represent average of two years. 

Table 6.3 Relative plant height and yield loss (%) of rice cultivars due to Striga infection
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Grain yield and economic analysis 

In Striga infected cultivars, there was a significant difference in grain yield. Seasonal 

difference in paddy yield was noted in response to infections among the cultivars. The mean 

paddy yield was highest in the infected plots in 2009 compared to 2008 by 24.3%. This was 

attributed possibly due to the amount of rainfall received in the two seasons. The average 

yield of NERICA 1 for the two seasons was 2243.9 kg ha-1 while NERICA 4 was 373.4 kg ha-

1 in the infected fields (Fig. 6.2). Relative grain yield loss as result of infections ranged 

between 33-90% (Table 6.3). The losses were highest in NERICA 4 and Dourado precoce. 

Grain yield was highly correlated (R=0.763) with dry matter accumulation in infected 

plants (Fig. 6.3). 
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Fig. 6.2  Grain yield of Striga infected and control rice plants at LBDA-Alupe in 2008 and 2009. 
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Economic yield loss due to infections was highest in NERICA 4 in the two years (Fig. 6.4). 

NERICA 10 (US$ 351.7 ha-1) was the most economically profitable with the least yield loss 

followed by NERICA 1 (US$ 652.8 ha-1). Dourado precoce, the local landrace known to be 

susceptible to Striga, performed better than NERICA 4 and NERICA 11. It is important to 

note that the market prices for the different cultivars used for estimation in Fig. 6.4 were 

the same, thus, differences in losses were largely due to variations in yield levels of the 

cultivars. 
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Table 6.4 Yield  parameters in 2008 and 2009 of Striga infected rice cultivars

Cultivar
Panicle

m-2
Spikelets 
panicle-1

Grain 
filling 

(%)

1000 grain 
weight

(g)

Panicle 
length

(cm)

2008

DOURADO PRECOCE 160.5 13.9 59.2 30.3 17.7

NERICA 1 259.6 34.0 61.1 27.6 19.0

NERICA 4 197.8 16.8 58.7 26.6 19.3

NERICA 10 234.9 35.8 62.7 23.8 17.1

NERICA 11 210.0 26.5 62.6 26.9 17.4

Mean† 212.6a 25.4a 60.9a 27.0a 18.1a

LSD (0.05)‡ 36.9 4.5 9.6 1.2 1.1

P - Value 0.041 0.004 0.290 0.003 0.029

2009

DOURADO PRECOCE 148.2 21.5 57.1 29.5 17.1

NERICA 1 264.7 46.2 69.9 28.3 18.7

NERICA 4 161.4 17.7 50.0 25.3 18.5

NERICA 10 230.3 41.2 61.6 25.9 19.2

NERICA 11 205.8 27.3 53.7 27.5 19.4

Mean† 202.1a 30.8b 58.4a 27.3a 18.6a

LSD (0.05)‡ 27.3 7.1 11.0 2.2 1.2

P - Value 0.002 0.021 0.214 0.033 0.008

† Means of cropping year with the same letters are not significantly different according to 

LSD at P=0.005. ‡ LSD values are for comparison of cultivars for each parameter in each 

year.
 

Discussion 

Mono-cropping has led to continuous mining of nitrogen from the soil resulting into poor 

soil which favors Striga infestation. This has played role in the increase of Striga seed 

densities calling for an innovative and more proactive measures aimed at reducing seed 

banks. African smallholder farmers depend on cereals as their main source of food which is 

readily infected by Striga. Dugje et al. (2006) studied the effect of Striga infections on maize, 
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sorghum, rice and pearl millet in the savannas of Northern Nigeria and reported that losses 

resulting from Striga ranged from slight to total crop failure in heavily infested areas. 

These results corroborate with our findings which showed 33-90% of yield loss as a result of 

infections on the NERICAs. Research conducted in western Kenya to evaluate the tolerance 

and resistance of rice cultivars also revealed that severe Striga infestation led to complete crop 

failure (Kouko et al., 1992). 
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Striga infections affect dry matter weight. The Striga reaction on the biomass of the 

NERICAs expressed as percentage of susceptible Dourado precoce ranged between 40-66%. 

Dry matter of infected plots was lower compared to uninfected. Similar results have been 

reported in infected sorghum’s biomass (CSH-1 and Ochuti) being lower that of uninfected 
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plants (Frost et al., 1997). In addition, Aflakpui et al. (2002) showed that shoot biomass of 

infected maize before any Striga had emerged above ground (at four-leaf stage) was about 

93% that of uninfected maize but by the 18-leaf stage it was only 37% that of uninfected 

maize. NERICAs infected with Striga exhibited changes in growth and allometry when 

compared with uninfected plants. These included severe stunting of the host lower leaves 

and stem biomass. The changes in plant hormonal imbalances may be responsible for the 

differences in allometry observed (Taylor et al., 1996). The cultivars supported different 

levels of Striga densities and tolerance. This variability not only depended on their genetic 

makeup but also to some extent to the prevailing climatic conditions. 

NERICA 1 and NERICA 10 exhibited resistance to Striga hermonthica infections. The 

cultivars supported few number of Striga plants in the field. A pot experiment conducted by 

Kaewchumnong and Price (2008) showed that CG14 had no Striga emergence and is 

considered highly resistant to Striga hermonthica. Furthermore, Johnson et al. (1997) 

reported that O. glaberrima was less affected by Striga as compared to susceptible O. sativa 

cultivars. NERICA 1 and NERICA 10 being the progenies of CG14 might have inherited 

resistant genes. However, it has been shown that heritability of traits for Striga infected 

plants (61-70%) is higher compared to control (37-45%) (Kaewchumnong & Price, 2008). 

Gurney et al. (2006) reported robust resistance in Nipponbare rice cultivar to S. 

hermonthica in post-attachment experiment. In this cultivar, the parasite failed to form 

xylem to xylem connection to the host plant root. Studies have shown Nipponbare having 

low numbers of Striga and emerging late (if at all) thus concluding that the variety is 

resistant (Swarbrick et al., 2009). However, it was significantly affected by Striga as 

revealed in several traits at harvest (stem dry weight, flower + grain dry weight, and plant 

dry weight) (Kaewchumnong & Price, 2008). These are in agreement with our results as 

Striga reduced harvest traits of infected NERICAs (Table 6.4). The results clearly indicated 
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that Striga can impose effects on the hosts even in its early and underground stage of 

development, which might be attributed to the production of toxins by the parasite affecting 

growth and physiology of the hosts (Press et al., 1999). 

NERICA rice cultivars evaluated in the present study apparently shared the same parents 

but they supported different levels of tolerance. Further studies will be carried to 

investigate the rationale of their variability through genetic mapping and identify genomic 

regions for Striga tolerance especially in NERICA 1 and NERICA 10. Similar studies are 

desirable in different environments to assess Striga reaction with the NERICAs in an array 

of soil types under different Striga densities and moistures levels. 
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CHAPTER 7 

Identification of QTL for Striga hermonthica resistance using backcross 

population derived from a cross between Oryza sativa (cv. Nipponbare) 

and O. rufipogon 

 

Abstract 

The obligate root hemiparasite, Striga hermonthica (Del.) Benth., native to sub-Saharan 

Africa causes serious economic constraint to cereal production. Studies on Striga spp. 

interactions with rice are desirable as it is a model monocot with high density molecular 

linkage maps. In this study, quantitative trait locus (QTL) analysis for S. hermonthica 

resistance was carried out using 141 backcross recombinant inbreed lines (BRILs) derived 

from a cross between Oryza sativa (cv. Nipponbare) and O. rufipogon W630. The population 

was grown in the field at Lake Basin Development Authority, Alupe farm in 2013 and 

infected with S. hermonthica from Alupe, Kenya. Putative QTL for S. hermonthica 

resistance was assumed using single-point analysis (qGene program) at p<0.01 significance 

level. As a result, a single QTL explaining 6.6% of total phenotypic variance was detected 

near RM242 marker locus on chromosome 9, and the Nipponbare allele was found to have S. 

hermonthica resistance. The QTL chromosomal region can also be further studied to 

promote better understanding on the nature of resistance.  

 

Key words: quantitative trait loci (QTLs), rice, Striga hermonthica, resistance 
 

Introduction 

Rice is the most economically important food crop in sub-Saharan Africa (SSA). It is 

consumed widely in all countries and sub-regions of the continent and is mostly cultivated 
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by resource-poor farmers under diverse ecosystems (Balasubramanian et al., 2007). Both 

cultivated rice species, Oryza sativa (L.) and O. glaberrima (Steud.), are grown in Africa. 

For the last 30 years, the harvested area has risen by 105% while production is by 170% 

(Rodenburg and Demont, 2009). However, the average rice production per unit is still low 

which is as a result of several production constraints, of which weed competition is 

regarded as the most severe. Weeds such as Striga spp. are the most problematic in upland 

conditions of SSA (Jamil et al., 2011). There are four Striga spp. considered to be serious 

pests to rice: Striga hermonthica (Del.) Benth., S. asiatica (L.) Kuntze, S. aspera (Willd.) 

Benth. and S. forbesii Benth. (Rodenburg et al., 2010; Atera et al., 2011). Among these 

species S. hermonthica is the most destructive, leading to severe yield losses of over 50% 

thereby affecting livelihoods of millions of farmers (Franke et al., 2006). 

Cereal cultivars that offer resistance can post a major impact on limiting Striga infections 

and would dramatically improve yield (Rodenburg and Bastiaans, 2011). This would boost 

the morale of farmers in SSA as they view resistance as a desirable characteristic in 

cultivars. Several reports of resistance to S. hermonthica have been documented in rice 

(Harahap et al., 1993; Gurney et al., 2006; Jamil et al., 2011), sorghum [Sorghum bicolor 

(L.) Moench] (Vogler et al., 1996; Ezeaku & Gupta, 2004, Noubissie et al., 2012), pearl 

millet [Pennisetum glaucum (L.) R. Br.] (Kountche et al., 2013) and maize [Zea mays L.]  

(Amusan et al., 2008, Karaya et al., 2012). However, this information has not found its way 

to the hands of farmers as it is imbedded in books and journals which make it difficult for 

farmers to access.  

In many studies, African rice species appears to offer better sources of resistance to Striga 

parasitism than Asian rice species (Johnson et al., 2000; Kaewchumnong & Price, 2008). 

Harahap et al. (1993) and Johnson et al. (2000) reported resistance to S. hermonthica 

observed in African rice cultivars in CG14, IG10, Makassa and ACC102196, and in Asian 
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rice cultivars IR49255-B-B-5-2 and IR47255-B-B-5-4. The inter-specific New Rice for Africa 

(NERICA) cultivars offers a potentially interesting gene pool of resistant rice cultivars.   

NERICA 1 and NERICA 10 are said to be resistant to S. hermonthica infections (Cissoko et 

al., 2011; Atera et al., 2012a). 

A resistant phenotype is characterized by lack of ability of the parasite to penetrate 

through the endodermis and therefore the parasite cannot make xylem-xylem connections 

to establish a vascular for continuity after attachment to the host. This has been 

demonstrated by Gurney et al. (2006) with Nipponbare, O. sativa Japonica lowland rice 

cultivar containing sources of resistance of post-attachment to S. hermonthica. Advanced 

backcross inbred lines (BILs) from a cross of Nipponbare and Kasalath (O. sativa, indica 

cultivar) were screened for resistance to S. hermonthica from Kibos, Kenya. Seven QTLs 

were detected on chromosomes 1, 4, 5, 6, 7, 8 and 12. Interestingly, Nipponbare conferred 

greater resistance allele in six out of the seven QTLs. The two largest QTLs (an indication 

where phenotypic variance in a population is greatest) were on chromosome 4 associated 

with Kasalath allele and chromosome 12 of Nipponbare.  

In the study of Swarbrick et al (2008) of Koshihikari-Kasalath BILs, three Striga resistance 

QTLs were detected, two of which were from Kasalath alleles with the largest located on 

chromosome 4. In addition, Kaewchumnong and Price (2008) identified two other QTLs on 

chromosomes 1 and 8 from the population derived from a cross between cultivars Bala and 

Azucena which coincided with the QTLs found by Gurney et al. (2006) for post-attachment 

resistance to S. hermonthica in Nipponbare and Kasalath population. The impact of Striga 

spp. infestation in farmer’s cereal crop fields must be reduced at all cost. This can be done 

through rice as it has played a central role in human nutrition and culture for the past 

10,000 years. In addition, rice has a small genome (c. 389Mb) which can easily be used for 

QTL mapping (International Rice Genome Sequencing Project, 2005). In this study, we 
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detected S. hermonthica resistance QTL in rice using BRILs derived from a cross between 

O. sativa cv. Nipponbare and O. rufipogon W630. 

 

Materials and Methods 

Site description 

The field study was conducted in the long rains of March to August 2013 at Alupe farm of 

Lake Basin Development Authority (LBDA), near Busia town (0°29´N, 34°07´E) in western 

Kenya, where S. hermonthica is a serious limitation to cereal crop production. The site is 

located at 1189m above sea level and normally receiving a mean annual rain and 

temperature of 1148mm and 29°C (even though 2013 was drier than the normal year), 

respectively. Prior to the trial, the site was under cultivation of maize.  

 

Plant materials 

In this study, O. sativa Japonica cultivar Nipponbare and a wild annual accession O. 

rufipogon W630 from Myanmar were used. O. rufipogon W630 is quite susceptible to S. 

hermonthica (although not as susceptible as other cultivars such as Dourado precoce) 

collected from Alupe, Kenya in a pre-test pot experiment conducted at Maseno University 

(Fig. 7.1). Nipponbare had previously been classified previously as a resistant cultivar to S. 

hermonthica from Kibos, Kenya (Gurney et al., 2006). The segregating population for QTL 

analysis consisted of 141 backcross recombinant inbred lines (BRILs) between Nipponbare 

(a recurrent parent) and O. rufipogon W630 (a donor parent) at BC2F10 generation. BRILs 

were obtained from Kobe University, Japan. The S. hermonthica seeds used in this study 

were collected from maize host in 2011 at Kenya Agricultural Research Institute (KARI) 

Alupe, Kenya.   
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Fig. 7.1 S. hermonthica infecting rice in a pot experiment at Maseno University, Kenya in 2012: (A) O.

rufipogon W630; (B) Dourado precoce, a highly susceptible cultivar

A B

 

Genome composition and phenotypic recording of BRILs 

Estimation of wild chromosomal segments in each of the 159 BRILs at BC2F8 generation 

ranged between 0.0 to 23.6% (Thanh et al., 2011). The estimation was done using 180 

microsatellite loci covering 1,362 cM of the 12 rice chromosomes. The BRILs have about 

11.3% of wild genome on average in the genetic background of Nipponbare and between 

three (3) to thirty nine (39) lines of the BRILs were identified to have wild homozygous 

alleles at these marker loci.  

In this study, the 141 BRILs were each inoculated with 0.5g of S. hermonthica seed per row 

as described by Berner et al. (1997). This weight of Striga seeds contained about 3000 

germinable seeds per hill. Before inoculation, the Striga seeds were thoroughly mixed with 

fine soil which was sieved through a screen of pore diameter of 250µm to serve as carry 

since Striga seeds are very small. Each hill was 30cm by 30cm of which soil of about 10cm 

diameter and depth of 5cm was dug, and sprinkled with a scoop full of Striga-soil mixture. 

Three rice seeds of each BRIL were planted per hill in ten hills (already artificially 
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inoculated with Striga) per row. After germination, seedlings were thinned to one per hill. 

Fertilizer was applied at rate of 60kg N ha-1. The infected field was weeded once with a hoe, 

after which the weeds were pulled by hand other than Striga to avoid damaging young 

Striga seedlings. Field data on the number of S. hermonthica, survived BRILs and infected 

hills per row were recorded.   
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Fig. 7.2 Frequency distribution of infected plants by S. hermonthica of the

backcross recombinant inbred lines a cross between O. sativa Nipponbare and O.

rufipogon W630. Frequency scores were calculated as the proportion of the lines

in which Striga failed to attach to the BRILs.
 

QTL analysis 

Based on the infected rates (no. infected plants / total no. plants examined) by Striga in the 

BRILs (giving more than five plants examined), QTL analysis was carried out. Single 
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marker analysis (SMA) was used to estimate QTLs for Striga hermonthica resistance by 

qGene software (Nelson, 1997). The significance threshold for SMA was set at p<0.01 level. 

The proportion of phenotypic variation explained by significant marker was estimated as a 

coefficient of determination (R2) for the single locus model. 

 

Results and Discussion 

Evaluation of Striga resistance in parents and BRILs 

O. sativa Japonica cv. Nipponbare is resistance while wild accession O. rufipogon W630 was 

susceptible to S. hermonthica from Alupe, Kenya infections. From the pre-test pot 

experiment at Maseno University, Nipponbare had no Striga plants while O. rufipogon had 

at least two to four Striga per pot (Atera and Itoh, communication).  In the field at Alupe, 

Nipponbare was attacked by very few Striga plants compared with the other cultivars. This 

confirmed the classification of Nipponbare as a resistant cultivar as described by several 

authors (Kaewchumnong and Price, 2008; Swarbrick et al., 2008). Unfortunately O. 

rufipogon being an aquatic species, it could not grow in upland conditions as germination 

was very poor.  Field observations showed that 50.4% (71 out of 141) of the BRILs had no 

Striga infections based on the number of Striga attached to rice plants above the ground. 

The frequency distribution of infected plants by S. hermonthica is as shown in Fig. 7.2. This 

result suggested that the resistance for S. hermonthica was under polygenic control.  

 

Detection and analysis of QTL 

The threshold to declare a QTL was at the significance level of p < 0.01 as revealed by the 

genome scan (Fig. 7.3). The QTL for S. hermonthica resistance was detected on chromosome 

9 with a P value of 0.0022 and a PV value (percentage of phenotypic variance explained by 

the QTL) of 6.6% (Table 7.1). At p<0.05 significance level, other loci having weak effects 
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were detected on chromosomes 2, 3, 7 and 12 but they may not be considered biologically 

significant unless they are validated (Fig. 7.3).  

Chromosome Marker Source P Value aPV(%)
bAdditive
effect (%)

9 RM242 O. rufipogon W630 0.0022 6.6 7.6

Table 7.1 Putative QTL for  S. hermonthica resistance detected in the back cross recombinant 

inbred lines derived from a cross between O. sativa Nipponbare and O. rufipogon W630 

aPercentage phenotypic variance in the mapping population explained by the QTL, bAdditive effect on mean

resistance (arcsine transformed) of an allelic substitution from O. rufipogon W630 to Nipponbare allele.

Significance level at p<0.001.
 

The result showed that O. rufipogon W630 allele at QTL on chromosome 9 increased the 

infection rate in the genetic background of Nipponbare. The Nipponbare-derived allele 

conferred resistance at this QTL as expected.  In our QTL detection, the BRILs were 

subjected to Striga infections in its natural condition with several environmental 

interferences. Previous QTL detections for S. hermonthica resistance were post-attachment 

in cultivated rice and in a controlled environment (Gurney et al., 2006; Kaewchumnong and 

Price, 2008; Swarbrick et al., 2008). In field experiments crop varieties interactions between 

Striga and its host determine the reproductive success of the parasite. For incidence, Striga 

seeds only germinate when exposed to moisture, a favorable temperature and germination 

stimulant is required which is the host plant root exudates. These interactions sometimes 

provide opportunities to the host to resist the parasite. 
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Fig. 7.3 Genome scan of quantitative trait loci (QTL) for Striga resistance in O. sativa Nipponbare and

O. rufipogon W630 population. The marker orders and the genomic regions associated with QTL scored

at significance level at P < 0.001 and P<0.05.
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The detected major QTL can be further studied to see if there is a possibility of identifying 

candidates for resistance through fine mapping. It has been reported that genes that are 

expressed in infected plants tissues of two contrasting parents and able to map closely to a 

QTL are most likely to be appropriate candidates for host-resistance genes (Holloway et al., 

2011). According to Swarbrick et al. (2008) resistance genes can be identified near the 

major QTL associated with resistance. If resistance genes can be identified in rice, 

orthologous genes may be estimated in other cereal crops such as maize and sorghum 

though the synteny of chromosomal gene order. 
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CHAPTER 8 

GENERAL DISCUSSION 

Introduction 

This chapter provides a summary of the research findings in the entire study period. The 

chapter presents an overview of the research objectives in each aspect of the study as well 

as highlighting the limitations in each thematic area of study, challenges and outlook for 

future research. 

The broad research objectives for the study were:- 

 To examine the incidence of Striga hermonthica, research achievements and its 

control in Kenya 

 To elucidate farmers’ perception on Striga spp. control methods and gauge their 

knowledge on production constraints in Kenya and Malawi 

 To assess tolerance level of NERICA cultivars to S. hermonthica and determine the 

economic losses 

 To analyze the quantitative trait loci (QTL) for S. hermonthica resistance of O. 

sativa Nipponbare and O. rufipogon W630 backcross recombinant inbred lines 

(BRILs) at BC2F10 generation 

 

Conclusions on the study findings 

Based on the literature review findings, four broad study objectives were set as presented 

in the introduction (chapter 1). The objectives were addressed under independent studies. 

The literature review in chapter 2 describes insights on ecology, infections and, conditions 

that favor Striga existence and its agents of seed distribution in SSA. The chapter also 
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highlights the severity of Striga infection on cereals and presents resistant cultivars to 

Striga. It was revealed that Striga poses the greatest threat to agriculture in the sub-

Saharan Africa. The parasite infects major cereal crops [maize, rice, millet and sorghum] 

(Ejeta, 2007) which Africans depend on as food. The agents aggravating Striga incidence 

are infertile soils, wind, animals and activities of man (Hearne, 2009). 

Striga existence and distribution in Kenya is discussed in chapter 3. There are 9 Striga 

species found in the country. It was noted that more than 70% of farm land in western 

Kenya is infected with Striga causing a loss of about 30-100%. In Africa, Striga infestation 

causes a loss of about 40% of its economy. Research on Striga control has been carried for a 

long time and a wide range of technologies developed including: - use of chemical herbicides, 

hand pulling, appropriate fertilizer applications, crop rotation, intercropping, resistant 

crops and bio-control (Ahmed et al., 2001; Hearne, 2009). Despite the efforts made to 

control Striga, farmers have not adopted the control options developed (Emechebe et al., 

2004; Oswald, 2005). The study also showed that there are several factors that play a role 

in genetic diversity of Striga which include: seed bank persistent for many generations, 

hybridization, geographic distribution, dispersal and locally adapted host races. According 

to Aigbokhan et al., 2000 geographical distribution appears to have a major role in 

determining the genetic differences of species. Studies conducted at Kobe University on 

genetic differences of S. hermonthica strains from Kenya showed that they have great 

diversity among and within its population. 

In Kenya, the staple crops are maize, sorghum and finger millet are readily infected by S. 

hermonthica (chapter 4). Yield losses reported in the farmers field (maize and sorghum) 

were more than 70% on heavily infected fields. Among the ten Striga control technologies 

assessed in Kenya, the highly ranked were hand pulling, crop rotation and intercropping. 

These findings were in agreement with Emechebe et al. (2004) that crop rotation, 
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intercropping, hand pulling and use of manure were among the most popular technologies 

used in West Africa in Striga control. On the rationale why farmers have not adopted the 

control mechanisms, there were all indications that farmers feared to invest as a result of 

no guarantee on pay off in yield.  

Striga asiatica is estimated to be infecting 268,000 ha of farm land in Malawi (AAFT, 2006). 

Maize is the staple food crop in the country and is heavily infected by S. asiatica (chapter 5).  

According to Park (2009), approximately 80% of the maize crop is infected. The parasite is 

also infecting a wide spectrum of grasses along the road sides and open fields, pointing at 

how difficult it is to control the parasite. A new leguminous parasitic weed Alectra vogelii 

infects soybean, cowpea, bambara nuts and groundnut which are the most popular legume 

crops. Unfortunately, the farmers and extension staff are not aware of the parasite and this 

needs urgent research on its control. In chapter 5, it was revealed that manure application 

was perceived to be the most popular by farmers. This was followed by crop rotation, 

fertilizer application and hand pulling. Despite the development of the control options, 

Striga has increased in size and magnitude in the farmers fields. The farmers have as well 

not adopted the options which they described as too risky as they cannot trust them.    

A newly infected rice experimental field at LBDA Alupe showed that number of Striga 

plants ranging from 3,500 to 420,000 in 2012 and 2013 cropping years (Table 8.1).  However, 

it also known that S. hermonthica can produce massive amounts of seed estimated between 

58,000 and 200,000 per plant (Parker & Riches, 1993).  According to Rodenburg et al. (2006) 

Striga seed production normally continues beyond harvest especially to crops such as rice. 

The magnitude of the additional seed production after harvest depended on seed bank 

density. Continued Striga reproduction beyond harvest contributed significantly (39%) to 

the final reproduction under low infestation, whereas under high infestation only 8% was 

produced after harvest. 
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Table 8.1  Number of Striga plants in the rice field at LBDA Alupe 2012 and 2013

CG14 is Oryza glaberrima rice , - Data was not collected 

Cultivar
Striga number ha-1

2012 2013

NERICA 1 3,571 ­

NERICA 4 75,000 89,286

NERICA 10 17,857 28,571

NERICA 11 53,571 71,429

WAB 56-104 7,144 10,714

Nipponbare ­ 10,714

CG14 100,000 117,857

Dourado Precoce 346,429 421,429

 

NERICA rice is grown in the moist savanna area of sub-Saharan Africa where Striga 

problem has been most severe.  The study on the response of NERICA cultivars to S. 

hermonthica infections (chapter 6) showed NERICA 1 and NERICA 10 are resistant in the 

two years experiment. The first Striga emerged 42 days after rice seed emergence in the 

susceptible rice varieties. The minimum time taken by Striga to complete the life cycle from 

emergence was 56 days. Grain yield losses ranged from 33 to 90%. The order of Striga 

tolerance (resistance to susceptibility) of the cultivars was NERICA 1, NERICA 10, 

NERICA 11, Dourado precoce and NERICA 4. However, the most economically viable 

cultivar was NERICA 10 when infected with Striga. Our result corroborate that of  Cissoko 

et al. (2011),  who demonstrated pronounced differences in post-attachment resistance to 

two parasitic species in NERICA cultivars and their ancestors, with some (NERICA 1 and 

10) showing substantial resistance effects. Cissoko (2012) also showed that there are 
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different responses to NERICAs both in the laboratory and field studies. Cultivars were 

identified that exhibited superior resistance responses to S. hermonthica from Mbita, 

Kenya (CG14, NERICAs 1, 10 and 17) and S. asiatica from Kyela, Tanzania (NERICAs 10 

and 17) and while other cultivars were moderately to highly susceptible to S. hermonthica 

from Mbita, Kenya (IAC165, WAB56-104, WAB56-50, NERICAs 7 and 9) and S. asiatica 

from Kyela, Tanzania (WAB56-104, NERICAs 7 and 9).  

Rice has a small genome (c. 389 Mb) and a complete genome sequence is available as well 

the physical maps (International Rice Genome Sequencing Project, 2005). As a model plant, 

it is therefore important that QTL for Striga resistance be estimated. This will be of great 

benefit as genes for resistance may be identified and transferred to other cereals.  In our 

study of QTL for S. hermonthica resistance to rice, we used O. sativa cv. Nipponbare and O. 

rufipogon W630 backcross recombinant inbred lines (BRILs) (chapter 7). The QTL was 

detected near RM242 marker on chromosome 9 at a significance level of P<0.01. The Lod 

score for the QTL was 2.1 and the source for resistance was Nipponbare allele. There were 

other weak QTLs detected on chromosomes 2, 3, 7 and 12. However, these QTLs are not 

considered biologically significant unless they are validated. In the studies of Cissoko 

(2012), QTL for Striga resistance was detected near RM101 marker on chromosome 12 in 

CG14.   

 

Future directions for research outlook 

There is no “quick fix” to the Striga problem in SSA. The magnitude level of the parasite 

and its persistent infections not only to cereals crops but also wild grasses make the 

parasite a serious biological constraint.  The genetic diversity and soil seed bank of Striga 
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as well as root exudates of host plants need to be studied. This will facilitate understanding 

Striga races or biotypes and how it copes with environmental variability. 

Despite calls for a better understanding of the genetic structure of Striga (Mohamed et al. 

2007), practically, for the deployment of resistant cultivars, it seems that the most 

important requirement is plant breeders should understand that different Striga 

populations may differ in virulence, and that this requires a precautionary approach to 

cultivar deployment, as well as comprehensive monitoring for host resistance breakdown. 

For a long time, presence of biotypes of Striga has been thought to be responsible for the 

breakdown of resistance in crops. 

In the absence of detailed historical information about different populations of Striga and 

their hosts that has expanded over time, host plants grown in different places at different 

times, and knowledge on the impacts caused by Striga on the environment based on its 

interactions, studies that seek to illustrate the effects of different hosts and environments 

on Striga virulence in field trials and supporting lab analysis, will definitely seem to be the 

best way forward. In a recent study, Huang et al., (2013) underscores that breeders should 

pay attention on the genetics of the root parasitic plants.  

Research on stages of Striga between germination and emergence at the field is required in 

order to understand the steps of the life cycle and intervention options that can be put in 

place for its control. This management strategy will involve the use of control measures 

that can cause a reduction in seed production, viability of newly produced seed and its 

survival in the soil. This implies that intervention in the early parasite life cycle is 

necessary for a successful outcome to suppress Striga. 

Possibility should be explored on the use of quantitative trait loci (QTL) to identify genes in 

rice that are resistant to Striga. In this case, NERICA need to be further studied to identify 

genomic regions containing resistant traits for Striga. The mapped QTL of NERICAs will 
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promote understanding on the nature of tolerance. Already there is an attempt by Cissoko 

(2012) who showed that Striga resistance QTL is located near RM101 marker on 

chromosome 12 in CG14. However, an analysis of the 18 NERICA cultivars carried using 

marker RM101 showed monomorphic amplification. It is my considered opinion that RM101 

marker was not suitable for analyzing differences of chromosome 12 among the NERICA 

cultivars. Nipponbare, the Japonica rice cultivar and O. rufipogon W630, the wild accession 

from Myanmar used in our study in QTL analysis need to be studied further with an aim of 

identifying resistant genes. In order to understand S. hermonthica resistance QTL of O. 

rufipogon W630, it will be probably appropriate to determine the underlying genetic 

determinants by analyzing changes in gene expression in Striga infected roots of host. This 

can be carried out using affymetrix of the whole genome rice oligonucleotide array. 

Identification of resistant genes can go a long way in enhancing yield and boosting the 

morale of farmers. These genes can be transferred to other cereals such as maize, millet 

and sorghum by marker-assisted selection through the use of synteny (chromosomal gene 

order similarity).  

Development of genetically modified (GM) crops with Striga resistance is certainly feasible. 

But political opposition on dissemination of GM technology may impede the speed of 

adoption of the technology. The cost of seed also poses a challenge as farmers may not have 

the resources to purchase seeds in every planting season. It will be unrealistic to assume 

that the major cereal crops can be replaced by other food crops unless governments are 

willing to subsidize the cost of seeds and adopt the GM technology.   

Whole genome sequencing is a valuable approach to understand an organism. The genome 

sequences of the growing numbers of model and crop plant species have been published in 

recent years, providing new insights in plant biology. The development of new generation 

sequencing technologies has dramatically accelerated the speed of large-scale sequencing. 
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The molecular and genomic resources currently available for the study of S. hermonthica 

are limited. These studies on molecular resources will be in tandem in understanding the 

parasitic processes of this obligate parasite. However, it is also known that sequencing the 

whole genome of a non-model plant is still challenging and laborious task. The persistence 

of purple witchweed infecting and increasing its host base in sub-Saharan Africa, calls for 

nothing less other than understanding the consequences of adaptation and its parasitic life 

style. Therefore, the study of the genome of this parasite is necessary to provide insight on 

evolution of the species and facilitate identification of genes important for plant parasitism. 

It will also lead to identification of genes which will eventually assist in answering the 

questions on plant-parasite interactions. As it is currently, it is unknown which Striga 

genes are required to successfully infect susceptible host plants. More importantly, the 

study of genetic variability will help in targeting the areas of breeding for resistance. 
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