

PDF issue: 2024-05-29

質量分析装置を用いた植物代謝産物変動解析手法の 開発と植物環境応答機構研究

姉川, 彩

<mark>(Degree)</mark> 博士(理学)

(Date of Degree) 2015-03-06

(Date of Publication) 2016-03-01

(Resource Type) doctoral thesis

(Report Number) 乙第3269号

(URL) https://hdl.handle.net/20.500.14094/D2003269

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

博士論文

質量分析装置を用いた植物代謝産物変動解析手法の開発と 植物環境応答機構研究

平成 27 年 1 月

神戸大学大学院理学研究科

姉川 彩

目 次

要旨	i
序論	۱
第1章 キャピラリー電気泳動-飛行時間型質量分析装置(CE-MS)を用いた	
メタボローム解析手法の確立	
序	3
1-1. 実験材料と方法	
1-1-1. 植物材料と生育条件	7
1-1-2. 試薬	8
1-1-3. キャピラリー電気泳動-飛行時間型質量分析装置 (CE-MS)	8
1-2. 結果と考察	
1-2-1. CE-MS 分析条件の検討	10
1-2-2. 陽イオン性化合物の測定	
1-2-2-1. アミノ酸およびその他の陽イオン性化合物の測定	13
1-2-3. 陰イオン性化合物の測定	
1-2-3-1. 有機酸類の測定	15
1-2-3-2. 有機リン酸化合物の測定	16
1-2-3-3. アデニンヌクレオチドの測定	17
1-2-4. 植物ホルモンなどの生理活性物質の測定	18
1-3. まとめ	24
第2章 CE-MS を用いた植物体および植物細胞における生体内物質の分布	解析
序	28
2-1. 実験材料と方法	29
2-1-1. 植物材料と培養条件	
2-1-2. 試薬	
2-1-3. 装置	
2-1-4. 内部標準物質の検討	
2-1-5. 植物試料からの代謝物質の抽出	30
2-1-6. ターゲット解析について	
2-2. 結果と考察	
2-2-1. 植物細胞(培養細胞・プロトプラスト・液胞)のターゲット解析	斤 31
2-3. まとめ	36

第3章 FT-ICR-MS を用いた植物体および植物細胞における生体内物質の	D分布解析
序	37
3-1. 実験材料と方法	39
3-1-1. 植物材料と培養条件	
3-1-2. 試薬	
3-1-3. 植物試料からの代謝物質の抽出	
3-1-4. 装置	
3-2. 結果と考察	40
3-2-1. 植物細胞(植物体・培養細胞・液胞)のノンターゲット解析	
3-2-1-1. DataAnalysis を用いたマスリストの抽出	
3-2-1-2. MatLab, AutoMFCalculator を用いた組成式計算	
3-2-1-3. KNApSAcK によるアノテーション	
3-3. まとめ	57
第4章 シロイヌナズナ植物体のオーキシン添加に応答する代謝変動解析	沂
序	58
4-1. 実験材料と方法	60
4-1-1. 植物材料と生育条件	
4-1-2. オーキシン処理方法と植物試料からの代謝物質の抽出	
4-1-3. 呼吸測定	
4-1-4. 分析装置について	
4-1-4-1. CE-MS によるターゲット分析	
4-2. 結果と考察	62
4-3. まとめ	77
第5章 シロイヌナズナ植物体のオーキシン添加に応答する代謝変動解析	斤
外因性オーキシン処理に応答する根の代謝物質分布解析	
序	78
5-1. 質量顕微鏡(イメージングマススペクトロメトリー)を用いた外因性	±オーキシン処理
に応答する根の代謝物質分布解析	
5-1-1. イメージングマスプレートの作成方法	79
5-1-2. 装置	80

5-2. 結果と考察

5-2-1. 陰イオン性化合物分析用マトリクス(9AA)による蒸着を行った場合

81

5-2-2.マトリクスを蒸着しない場合

5-3. まとめ	86
総論	87
参考文献	89
謝辞	103

植物は、動物と比較して、光合成や二次代謝などにより複雑な代謝系を持つことが良く 知られている。近年、発展してきた生体内の代謝産物を同時分析し網羅的な解析を行う「メ タボローム解析」は、この代謝系の機能解析に重要な手段と考えられている。一方で、植 物種やそれらの細胞や組織によっても含まれる代謝産物の種類や濃度が異なり、その絶対 量も pmol-mmol (Dunn and Ellis. 2005)と幅広いことから、分析手法の一般化や解析手法 の開発は遅れていた。植物体内には、動物に比べ分析対象となる代謝物質がはるかに多く

(ヒトの代謝物質は約3,000種)、シロイヌナズナで5,000種、植物界全体では合計約 200,000種の代謝物質が存在すると言われており、それらの代謝物が複雑に関連している ため、抽出や分析に一般的なメタボロミクス手法を応用することが難しいことが要因にあ げられる。

本研究では、種々の質量分析装置を用いたメタボローム解析を植物に応用し、新たな生 理現象の解明を目指した。未だ一般化されていない質量分析装置を用いた植物メタボロー ムの技術の確立から始め、これらの技術開発やその応用、さらには植物細胞の新しい代謝 像の一旦を明らかにすることを目標に掲げたものである。

第1章では、比較的新しいメタボローム解析の分析技術として注目され、未だ発展途上の技術であるキャピラリー電気泳動-質量分析装置(Capillary Electrophoresis Mass Spectrometry; CE-MS)を植物分野に用いるための解析手法の確立を目指した。CE-MS に用いる泳動バッファーの種類、pHの検討を行った。その結果、陽イオン性化合物は27 種類、植物ホルモンを含む陰イオン性化合物は77種類を、一斉分析できる手法を確立することに成功した。

第2章では、この標準物質を用いた定量分析によるターゲット解析により、植物細胞(液 胞)内代謝産物の測定を行った。液胞内にはリジン、アルギニン、リンゴ酸、クエン酸が 多く検出され、過去の知見と一致する結果となった。さらに、比較的高濃度のリン酸化合 物が液胞内に存在することを初めて見出した。

第3章では、検出される全ピークを解析対象とし質量電荷比(m/z)から得られる組成 式などの精密質量データを用いた半定量・定性分析(ノンターゲット解析)を行った。こ のノンターゲット解析では、CE-MSよりもさらに高分解能を持つフーリエ変換イオンサ イクロトロン共鳴型質量分析装置(Fourier transform ion cyclotron resonance mass spectrometry; FT-ICR-MS)を用い、検出される全ピークのm/z値から組成式を作成し、シ ュート、根、細胞、液胞、それぞれに含まれる代謝物質の化合物候補の同定を試みた。標 準物質では同定できない未知ピークの解析から、細胞と液胞に共通に存在する分子が429 個見出され、代謝産物データベース KNApSAcK 検索によるアノテーションの結果、1割 近くを同定することができた。

i

要旨

第4章では、シロイヌナズナ植物体を用いて、植物の生活環ほぼすべてにおいて重要な 働きをする植物ホルモンの1つであるオーキシンに応答する代謝変動解析を行った。シロ イヌナズナの野生型とオーキシン応答変異体(*tir1, slr, arf7 arf19*)に対し、第1章で確立 した CE-MS によるターゲット解析を応用することで、外部から与えたオーキシンに応答 して変動する代謝物質変動の比較解析を行った。野生型の根およびシュートで変動を示す 代謝産物が複数確認された。IAA 処理による代謝変動は野生型の根で顕著に見られ、ア ミノ酸やリン酸化合物の変動が大きいことが分かった。野生型に比べ、3つのオーキシン 非応答性変異体のシュートおよび根で変動する一次代謝産物は少なく、その変動も小さか った。野生型植物の根で見られた変動は、過去の知見と呼吸測定の結果から、呼吸阻害に よって引き起こされた代謝変動であることが示唆された。

第5章では、形態を保ったまま測定できる質量顕微鏡(イメージングマススペクトロメ トリー)の技術を用いて、シロイヌナズナの根でオーキシンに応答して生体内で変動する 分子、あるいは生体内分布の変動する分子の探索を行った。このノンターゲット解析では、 根端にのみ局在を示す分子、オーキシン処理によって局在を変える分子など様々なシグナ ルパターンを見ることができた。また、KNApSAcK 検索のアノテーションの結果、20-30% の化合物を同定することができた。

質量分析装置を用いた植物メタボローム解析手法の確立によって、これまで個々に見て いた代謝産物の一斉分析が可能となり代謝を俯瞰的に見ることが可能となった。また、分 解能の高い質量分析を用いることによって精度の高い組成式候補結果が得られ、未知化合 物の発見にもつながる可能性がある。本研究では、これらの技術の開発や応用によって植 物細胞の新しい代謝像の一旦を明らかにすることに成功した。 序論

メタボロミクスは、生体内の代謝物を一斉分析することで、生物の代謝の全体像を明らか にする手法である。特に、医療分野での応用研究が最も進んでおり、様々な疾患のバイオマ ーカーがメタボロミクスにより明らかにされている (Soga et al. 2006; Wang et al. 2011)。一方、 植物におけるメタボロミクスは動物に比べ研究が遅れているのが現状である。これは、植物 体内には、動物に比べ分析対象となる代謝物質がはるかに多く(ヒトの代謝物質は約3,000種)、 植物界ではシロイヌナズナで 5,000種、合計約 200,000種の代謝物質が存在すると言われてお り (<u>http://humanmetabolome.com;</u> Fiehn. 2000)、それらの代謝物が複雑に関連しているため、抽 出や分析に一般的なメタボロミクス手法を応用することが難しいことが要因にあげられる。 さらに、植物種やそれらの細胞や組織によっても含まれる代謝産物の種類や濃度が異なり、 その絶対量も pmol-mmol (Dunn and Ellis. 2005)と幅広いことも植物のメタボロミクスを困難 にする理由の1つである。

近年になって、種々の質量分析装置を用いたメタボロミクスによる農業・食品分野での応 用例が報告され始めた。John et al. (2006)は、GC-MSを用いて、遺伝子組み換え体コムギに おいては、成分の変化よりも育てた環境や育った年次の成分の変化の方が大きいことを明ら かにした。また、Kusano et al. (2011)は、GC-MS、LC-MS、CE-MSなど様々な質量分析装置 を複合的に用いて、遺伝子組み換え体トマトと品種の異なるトマトを複合的に調べ、網羅的 に解析している。その他、チーズ (Ochi et al. 2012a; b)やワイン (Inoue et al. 2011)、緑茶 (Inoue et al. 2011)など、食品へのメタボロミクスへの応用も少しずつ増えつつある。基礎研究では、 Yokota-Hirai et al. (2004; 2005)がシロイヌナズナとイネについてのオミックス解析を行って おり、硫黄欠乏や窒素欠乏時における遺伝子発現変動に応答し、グルコシノレートなどの二 次代謝物質が変動することを明らかにしている。

本論文は 1-5 章で構成されており、第1章では、比較的新しいメタボローム解析の分析技術 として注目され、未だ発展途上の技術であるキャピラリー電気泳動-質量分析装置(Capillary Electrophoresis Mass Spectrometry; CE-MS)を植物分野に用いるための解析手法の確立を目指し た。

第2章では、植物試料(シロイヌナズナ植物体、培養細胞、プロトプラスト、培養細胞から単離した液胞)における標準物質によって成分の特定できる化合物の定量解析(ターゲット解析)を行った。第2章のターゲット解析では、第1章で確立した CE-MS の分析手法を用い、培養細胞からプロトプラストを経て単離液胞に至る過程での代謝変動解析を試みた。

第3章では、検出される全ピークを解析対象とし質量電荷比(m/z)から得られる組成式な どの精密質量データを用いた半定量・定性分析(ノンターゲット解析)を行い、第2-3章で植 物試料を用いた2通りのメタボローム解析を行った。このノンターゲット解析では、CE-MS よりもさらに高分解能を持つフーリエ変換イオンサイクロトロン共鳴型質量分析装置(Fourier

1

transform ion cyclotron resonance mass spectrometry; FT-ICR-MS)を用い検出される全ピークの m/z 値から組成式を作成し、シュート、根、細胞、液胞それぞれに含まれる代謝物質の化合物 候補の同定を試みた。

第4章では、シロイヌナズナ植物体を用いて、植物の生活環ほぼすべてにおいて重要な働きをする植物ホルモンとして知られているオーキシンに応答する代謝変動解析を行った。この章では、シロイヌナズナの野生型とオーキシン応答変異体(*tir1*, *slr*, *arf7 arf19*)を用いて、1章で確立したCE-MSによるターゲット解析を行い野生型とオーキシン応答変異体において、外部から与えたオーキシンに応答して変動する代謝物質変動の比較解析を行い、シロイヌナズナ植物体の環境応答を推察した。

第5章では、形態を保ったまま測定できる質量顕微鏡(イメージングマススペクトロメト リー)の技術を用いて、シロイヌナズナの根でオーキシンに応答して生体内で変動する分子、 あるいは生体内分布の異なる分子の探索を行った。

本研究は、種々の質量分析装置を用いたメタボローム解析を植物に応用し、新たな生理現 象の解明を目指した。未だ一般化されていない質量分析装置を用いた植物メタボロームの技 術の確立から始め、これらの技術開発やその応用、さらには植物細胞の新しい代謝像の一旦 を明らかにすることを目標に掲げたものである。

第1章 キャピラリー電気泳動-飛行時間型質量分析装置(CE-MS)を用いたメタボローム解析 手法の確立

序

近年、質量分析装置を用いて、様々な条件下における代謝産物を網羅的に測定し包括的に 調べるメタボローム解析が2004年頃から盛んに行われている。Fiehn et al. (2002)によれば、 メタボロームは、「細胞に存在する低分子の代謝産物を網羅的に分析し、同定・定量すること」 と定義されている(Harrigan & Goodacre. 2003; Sumner, Mendes & Dixon. 2003)。代謝産物を分 析するメタボローム解析は、代謝産物が遺伝子発現や各種酵素反応の最終産物であり、生物 間で互換性を有するため、ゲノム情報を利用できない植物や微生物にも幅広く適用できる技 術である。

シロイヌナズナのようなゲノム情報が存在するモデル植物に対しては、メタボローム解析 によって得られた代謝物プロファイルと遺伝子発現プロファイルを統合することによって、 転写と代謝をつなぐ制御メカニズムの予測が可能になることが期待される。しかしながら、 現時点では対象とする化合物が多岐にわたり手法の標準化や自動化も進んでいない。スルー プットの高い解析手法として運用するにはメタボローム解析の各ステップである、植物の育 成・サンプリング・誘導体化・分離分析・データ変換などの技術の確立が未だに困難であり、 また得られた膨大なデータから有用な結論を導くデータマイニングについても標準的な方法 は確立されていない (Hollywood et al. 2006; Villas Bôas et al. 2005; 福崎 2007)。

これまでに、研究対象や研究目的に応じて様々な材料を用いたメタボローム解析が展開さ れており、2009年に米国質量分析学会が行った調査では、メタボロミクスにおける各機器の 使用率は、液体クロマトグラフィー質量分析(Liquid Chromatography Mass Spectrometry; LC-MS)が57%、ガスクロマトグラフィー質量分析(Gas Chromatography Mass Spectrometry; GC-MS)が28%、キャピラリー電気泳動質量分析(Capillary Electrophoresis Mass Spectrometry; CE-MS)が28%、キャピラリー電気泳動質量分析(Capillary Electrophoresis Mass Spectrometry; CE-MS)が8%、NMRが7%と報告されている。植物の代謝物質の総数は数十万以上におよ ぶと言われている(Fiehn et al. 2000)が、1種類の質量分析装置のみでそれらの化合物を網羅 的に解析することは不可能である。質量分析装置の種類によって有用な分析範囲が異なるた め、Fig. 1-1 に示したように目的とする代謝産物に合わせた解析が行われている。低分子の揮 発性物質の分析には GC-MS、高分子の非極性物質には LC-MS、そして植物体内に多い極性 (イオン)物質の分析には CE-MS が用いられている。最近では、さらに高分解能のフーリ エ変換-リニアイオントラップハイブリッド質量分析(Orbitrap)やフーリエ変換イオンサイ クロトロン共鳴型質量分析(Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry; FT-ICR-MS)などの様々な質量分析装置を用いたメタボローム解析が進められている。下記 に、各質量分析装置を用いたメタボローム解析を行っている研究事例をいくつか紹介する。

Fig. 1-1 メタボローム解析に用いられる様々な分析技術

- GC-MS を用いたメタボローム解析

GC-MS は、ピーク分離能と再現性が良く、安定した高感度分析が可能で、特に、低分子有 機酸や芳香族化合物のような揮発性物質の測定に適している。アミノ酸や糖類など植物体内 に含まれる多くの代謝物質は不揮発性であるため、トリメチルシリル化(Trimetylsilyl、TMS 化)などの誘導体化が必要である。EI イオン化法による GC-MS では、マススペクトルのフ ラグメントパターンが得られるため、化合物の構造情報が得られる。それらのフラグメント パターンを National Institute of Standards and Technology (NIST) が提供するマススペクトルラ イブラリデータベースと比較すれば化合物の予測を行うことができる。また、ドイツにある Max Plank 植物分子生理学研究所では、植物の抽出物を TMS 誘導体化し GC-MS で測定した マススペクトルを収集してデータベースとして公開している(Wagner et al. 2003)。このよ うに、他の質量分析装置を用いたメタボローム解析に比べるとデータベースも整いつつある ため、GC-MS を用いたメタボローム解析は比較的確立された手法として動植物分野で早くか ら利用が進んでいる。特に、医療分野では、がんの早期発見、病因解析やバイオマーカー探 索(Sugimoto et al. 2010; Sreekumer et al. 2009; Nishiumi te al. 2012; Yoshida et al. 2012)など化 学物質の生体への影響を評価する手段として実用化が始まっている。一方、植物分野では、 シロイヌナズナ (Arabidopsis thaliana) を始め、イネ (Oriza sativa) やトウモロコシ (Zea maize) の葉中代謝産物の測定など行われており、測定される植物種も年々増えてきている傾向があ る。報告例として、遺伝子組み換え植物を用いたストレスマーカーの探索やストレス抵抗性 の高い植物系統の代謝物質の応答解析(Roessner et al. 2009; Glauser et al. 2010; Obata et al. 2012) などが挙げられる。

- LC-MS を用いたメタボローム解析

High Performance Liquid Chromatography (HPLC) による代謝物質の分析手法は、様々な性 質を有するカラム固定相および官能基特異的な誘導体化法が開発され進歩してきた。近年で は、官能基(アミノ基、カルボキシル基、チオール基など)を特異的に誘導体化することで、 対象化合物の検出感度を上昇させることができるようになり、カラムや誘導体化試薬を選択 することによってアミノ酸、有機酸、糖などの高感度分析が可能となっている。高圧ガスで 移動相や試料などの液体を噴霧する ESI イオン源が登場する 1995 年頃までは、質量分析装置 との接続は難しかったが、その後、大気圧で生成したイオンを高真空の検出器まで導くイオ ン輸送系の改良やスプレイヤーの改良が進み、現在、汎用されている LC-MS となった。LC-MS は、高分子のタンパク質、核酸、脂肪酸、有機酸および二次代謝物質など幅広い代謝物質の 測定が可能でメタボロミクスの分野でよく利用されている。GC-MSと比べ、移動相溶媒に含 まれる不純物イオンや緩衝塩イオンなどが付加し、[M+H]⁺、[M-H]⁻イオンの他に[M+Na]⁺、 [M+K]⁺、[M+NH₄]⁺、[M+CH₃COO]⁻などの付加体イオンが生成する。このようなイオンはエ ネルギー的に安定な場合が多く、LC-MS ではフラグメントイオンが観測されにくい特徴があ る。これを利用して、未知化合物の整数質量(Norminal mass)を決定する手法が取られる。 しかし、検出されるピークのほとんどが未知成分でデータベースの確立もされておらず、分 離に使用するカラムの選択、煩雑な前処理や条件の最適化など課題も多い。LC-MS を用いた メタボローム解析の既報としては、シロイヌナズナにおける二次代謝物質の網羅的解析 (Matsuda et al. 2009)、リピドミクスを用いたリン欠乏時の植物脂質解析(Okazaki et al. 2013)、 傷害(wounding)ストレスによる代謝変動解析(Boccard et al. 2010; Grata et al. 2007)などが挙 げられる。

- CE-MS を用いたメタボローム解析

CE-MSは、イオン性代謝産物を測定するのに適した手法である。イオン性化合物を対象 とした分析をする場合、GC-MS や LC-MS では誘導体化が必要となるが CE-MS ではその ような前処理が不要となるため、誘導体化による回収率や定量値の精度低下を防ぐことが できる。CE-MS を用いたメタボローム解析は、分析手法や Sato et al. (2004)は、CE-MS によるイネ葉中のアミノ酸、糖リン酸などの一次代謝産物の一斉解析を行っており、ほと んどの代謝産物濃度は、既報にあったタバコ葉中の濃度 (Scheible et al. 2000)と同程度で、 シロイヌナズナ葉中(Fiehn et al. 2000)の10分の1程度であることを報告している。また、 Oikawa et al. (2011)は、シャジクモを用いて単一細胞メタボローム解析を試み、細胞質お よび液胞における変動を125の既知代謝物質について報告している。その他にも、シロイ ヌナズナの野生型および *aox* 変異体を用いた窒素欠乏時の代謝変動解析 (Watanabe et al. 2010)、イネを用いた幼植物での代謝機能解析 (Abiko et al. 2010; Asano et al. 2010; Kurai et al. 2011)、エゾノギシギシ属のシュウ酸を含む代謝変動解析 (Miyagi et al. 2010, 2013a, 2013b) などが報告されている。

これらの中でキャピラリー電気泳動を前段に設置した質量分析技術は、生体内の一般的 な代謝産物の解析に最も有用性が高いため、その利用を試みることとした。しかし、分析 手法や解析方法は、なお発達段階にあり、その分析手法や解析方法は一般化されていると は言えない。本研究では、まず最初に、植物中に含まれる代謝物質を一斉分析するための 泳動条件の開発を進めた。

電気泳動(Capillary electrophoresis: CE)は、溶液中で電位差により荷電粒子が移動する 現象である。電気泳動による分離は、電場(E)中での溶質の移動速度(μ_e)の差に基づ いているもので、あるイオンの移動速度(v)は下記の式で示される。

$v = \mu_e E$

っまり、イオン半径が小さく高電荷のイオンは移動度が高く、イオン半径が大きく電荷 の小さいイオンは移動度が小さくなる。実際の移動度は pH および泳動液の組成やイオン 強度に依存するため、試料に適した泳動バッファーの種類や pH の検討が必要となる。CE では、一般的に泳動液が満たされている内径(i.d.) 25-75 μm のキャピラリーカラム内で の電気泳動を行う。このカラム内に泳動液を満たして分析を行うため、キャピラリー内壁 およびこれに接する泳動液の間に電気二重層が形成される。ここに、電圧が印加されると 泳動液が溶媒を伴って移動し、電気浸透流(Electroosmotic flow: EOF)が生ずる。EOF の 大きさは、キャピラリーカラムの材質や移動層の pH にも影響を受けること(Lukacs et al. 1985)が知られており、EOF をコントロールするには、キャピラリー表面の電荷あるいは 泳動バッファーの粘度を変える必要がある。CE で良好な分離を得るためには EOF のコン トロールと溶質の移動度を考慮する必要がある。

CE-MSは、Dole らのグループ(Mack et al. 1970)によって開発され、試料溶液が電場の かかった質量分析装置のイオン化室に入ると溶媒が急速に蒸発することによってイオン 性物質が濃縮されると同時にイオン化され、検出器側へ飛行する。CE-MSでは、中性およ び非極性の化合物が分離・検出できない。また移動時間が一定しないため、検出ピークの 同定の自動化が難しいとされてきた。しかし、CE-MS は高速かつ高分離で、GC-MS や LC-MS に比べて注入量が数 nl と極微量ですむことが大きな利点として挙げられる。さら に、誘導体化や固相抽出などの煩雑な前処理も不要なため、植物体内中の代謝物質を一斉 分析する有用な分析技術として注目されている。 本章では、植物体内中の主要代謝物質として報告のある化合物の標準物質を可能な限り 入手し、CE-MS での一斉分析の条件検討を行い手法の確立を目指した結果をまとめる。さ らに、植物体内に微量に存在し、植物生理活性の調節物質として知られる植物ホルモンを 代謝産物と同時分析する手法の開発を行った。

1-1. 実験材料と方法

1-1-1. 植物材料と生育条件

実験には、シロイヌナズナ(*Arabidopsis thaliana*, Columbia accession)を使用した。95%エ タノールで15分間滅菌処理した種子を4℃、36時間以上低温処理後、Murashige Skoog (MS) 培地(0.6% gellan gum, pH 6.2) 60 ml を流し入れ固めた角形プレート(栄研化学株式会社) に播種し、23±1℃、24時間連続光照射条件(光強度:270-340 µmol m⁻² s⁻¹)に設定した人工 気象器(BIOTRON, NKSystem, Japan)内で垂直に立てて3週間生育させた。試料は、生育の そろったものを2 ml 粉砕チューブにサンプリングし、ジルコニアビーズを入れて液体窒素で 凍結し、-80℃で保存した。使用した MS 培地の組成を Table 1-1 に示す。

Table 1-1. MS 培地の組成

Compounds	Composition (mM)		
NH_4NO_3	20.6		
KNO ₃	18.8		
KH ₂ PO ₄	1.25		
H ₃ BO ₃	0.1		
$MnSO_4 \cdot 4H_2O$	0.1		
$ZnSO_4 \cdot 7H_2O$	0.037		
KI	0.001		
Na_2MoO_4 •2 H_2O	0.001		
$CuSO_4 \cdot 5H_2O$	0.0001	Sucrose	1.0%
$CoCl_2 \cdot 6H_2O$	0.0001	myo-inositol	0.1 g/L
$CaCl_2 \cdot 2H_2O$	3	Thiamine	0.3 mg / L
MgSO ₄ •7H ₂ O	1.5	Nicotinic acid	0.5 mg / L
FeNaEDTA•3H ₂ O	0.1	Pyridoxine	0.05 mg / L

pH = 6.2 with KOH

1-1-2. 試薬

分析に使用した試薬類は、すべて MS grade を用いた。

LC-MS grade Methanol は、試薬調整および分析時のシース液に用い、positive mode および negative mode 分析用泳動バッファーは LC-MS grade acetonitrile, formate, ammonium formate, 1%アンモニア水を用いてそれぞれ調整した。陽イオン性化合物用内部標準物質として Methionine Sulfone (MeS) を、陰イオン性化合物用内部標準物質として Camphor-10-Sulfonic acid (C10F)を用いた。植物ホルモン測定の際に用いた内部標準物質として deuterium abscisic acid (d₆-ABA)、 deuterium indole-3-acetic acid (d₅-IAA)、deuterium jasmonic acid (d₂-JA) を 用いた。LC-MS grade Ethanol は難溶解性の試薬調整に用いた。

1-1-3. キャピラリー電気泳動-飛行時間型質量分析装置(CE-MS)

分析に使用した装置は、Agilent 社製のキャピラリー電気泳動を前段に設置した飛行時間型 質量分析装置 Agilent 6510 Q-TOF System (Agilent Technologies, Palo Alto, CA, USA) である。 フューズドシリカキャピラリーカラムは、専用カッターで 100 cm にカットし、外側を覆うポ リビニルフィルムをライターで焼いた後 MeOH で拭き取り、内側のガラス部分が両端ともに 5 mm 程度見えるようにした。下記に記述するテイラーコーンの生成に影響を与えるため MS 側へ入る切り口が垂直になるように調整し、イオン化室に設置されるスプレイヤーにセット した。分析前に 15 分間使用する泳動バッファーでフラッシングをしてカラム内壁の平衡化を 行った後、電圧を印加して電流が流れることを確認してから分析を進めた。

この飛行時間型質量分析装置 (Time of Flight; TOF) に使用されている最もソフトなイオン 化法であるエレクトロスプレーイオン化 (electrospray ionization; ESI) 法は、タンパク質、炭 水化物、核酸などの生体高分子や極性低分子の定性・定量分析に幅広く利用されている。Fig. 1-2 にイオンの生成過程の概略図を示す。前段の CE に設置された内径 50 µm のフューズド シリカキャピラリーカラム内で分離された溶質は、質量分析装置のインターフェース (入り ロ側)に組み込まれている中空 3 重構造のスプレイヤー (a) から窒素ガスおよび 50% MeOH シース液と共に噴霧される。大気圧下で 3 - 4 kV の高電圧を印可すると液中のイオンが気相 中に単離される (c)。この溶液は、テイラーコーン (b) と呼ばれる円錐の形状になっており イオンの生成に非常に重要なバランスとなる。飛行時間型質量分析計は、イオンの飛行時間 が質量電荷比 m/z によって異なることを利用したもので、m/z が小さいイオンほど速く飛行 し、逆に大きいイオンほど遅くなる。飛行距離を長くし、分解能を高くすることも可能であ るが (Toyoda. 2003; Okumura. 2004)、一般的な分解能は 15,000-20,000 と言われている。ここ での分解能 (Resolution) とは、隣接した 2 つのピークを分離する能力のことで、質量分析計 を評価する基準でもあり、検出されるピーク分離を判断する指標ともなっている。一般的に、 分解能を表すときは質量 m で検出されたピーク強度をその 50%強度のピーク幅で割った値 とされている(福崎.2013)。分解能 20,000 の機器では質量 1,000 の化合物について、±0.05 の 誤差幅で同定が可能と考えれば良い。イオン源でイオン群はパルス化され一定の加速電圧で 加速される。ある一定の距離を飛行する間に飛行時間の差によって分離され、*m/z* の小さい イオンから順に検出器で検出される。加速開始から検出器までのイオンの飛行時間を記録す るとマススペクトルを得ることができる。陽イオン性化合物を測定する場合は positive mode で分析し[M+H]⁺、[M+Na]⁺、[M+K]⁺などのイオンとしてマススペクトルを得ることができ、 陰イオン性化合物を測定する場合は negative mode で分析し、多くのイオンは[M-H]⁻ として マススペクトルを得ることができる。

分析をする前は装置内のコンタミネーションがないことを確認し、10種類の化合物が混合 されたキャリブレーションミクスチャーを用いてキャリブレーションを行った。キャリブレ ーションの結果、軸ズレが1ppmを超える場合は、チューニングを行った。CE-MSで精度の 高いメタボローム分析を行うために装置面で欠かせないポイントとして、キャピラリーカラ ムのカッティング技術、スプレイヤーへのカラムのセッティング、日常的なイオンソースの 洗浄やマス軸補正のためのチューニング作業などが挙げられる。

Fig. 1-2 イオン源のしくみとイオンの生成過程^(これならわかるマス)

1-2. 結果と考察

1-2-1. CE-MS 分析条件の検討

本研究で対象とする代謝産物は多岐に渡り、その濃度範囲も幅広くサンプルあたりの絶対 量で pmol – mmol までおおよそ 10 桁以上のばらつきがあることもある。一方で、質量分析装 置の検出器のダイナミックレンジは、多くの場合、2~5 桁である。質量分析装置を用いた一 斉分析では、代謝パスウェイ上に存在し分析手法的にも検出可能だが、サンプル中の含有量 が少ないために検出できないということがよく起こるため、各標準物質を用いて泳動条件の 検討と検出下限値の算出を行った。CE では移動時間が一定しないため各サンプルの分析は 3 ないし4回連続分析し、検出時間と面積値のそろった再現性の良いデータを解析に用いた。 陽イオン物質測定時の泳動バッファーは、1 M 酢酸アンモニウムと 1 M ギ酸アンモニウムで 検討した。酢酸アンモニウムは、質量分析装置のマス軸補正に用いる purine [M+H]⁺= 121.05 と検出イオンが一致するため使用を中止した。

CE で汎用されているフューズドシリカキャピラリーを用いて陰イオン性化合物を CE-MS で分析すると、陰極(CE)側から陽極(MS)側へ泳動が行われるが、EOF が発生しその流 れは電気泳動とは逆向きになるため、電気泳動は止まってしまう。この現象を防ぐために、 曽我らは、陰イオン性化合物の一斉分析について、キャピラリー表面に塩基性物質をコーテ ィングした SMILE (+) キャピラリーによる分析や中性ポリマーをコーティングしたキャピ ラリーを用い、さらにエアポンプで加圧送液を行う方法(Soga et al. 2002a, 2002b)を考案し ている。しかし、この方法は EOF の反転が安定せず測定のばらつきが大きいこと、いくつか の陰イオン性化合物は分析できないこと、さらにコーティングキャピラリーはコスト面で難 しいことから、汎用されているフューズドシリカキャピラリーを用いて EOF を安定して発生 させ、陰イオン性化合物を一斉分析する条件検討を行った。

泳動バッファーの pH は、pH=8.5、pH=9、pH=10 の 3 種類で検討した。それぞれの条件で 得られたいくつかの化合物のエレクトロフェログラムを Fig. 1-3、Fig. 1-4 にそれぞれ示す。

Fig. 1-3 pH の異なる泳動バッファーを用いて分析して得られたフマル酸(*m/z* = 115.0036)と リンゴ酸(*m/z* = 133.0143)のエレクトロフェログラム

Fig. 1-4 pH の異なる泳動バッファーを用いて分析して得られた 6-ホスホグルコン酸 (6PG, *m/z* = 275.0179) とフルクトース-1,6-ビスリン酸 (FBP, *m/z* = 338.9888) のエレクトロフェログラム

pHを高くすることによって EOF の流れを加速させ、陰イオン性化合物を陰極(MS)側へ移 動させることができた。クエン酸やリンゴ酸などの多価有機酸は遅い泳動時間に検出される ため分析時間の短縮は期待できないが、安定した EOF を発生させることができるようになっ た。泳動バッファーの pH が高いほど有機酸類は検出時間が遅くなる傾向があるが、ピーク 分離が良くなり検出感度も良くなることが明らかとなった。リン酸化合物では、G6P,F6P,G1P など糖リン酸化合物の分離時間や検出感度に泳動バッファーの pH による顕著な差は見られ なかったが、6PG と FBP で pH が低い泳動バッファーほど検出ピークがブロードになる傾向 が見られ、連続分析で再現性の良いデータが得られなかった。各標準物質のピーク分離、連 続分析による再現性の結果から、陰イオン性物質の分析には、30 mM のギ酸アンモニウム(pH 10)の泳動バッファーを用いることとした。実サンプルの状態によって、試料注入の条件を変 更することもあるが標準的な分析条件を Fig. 1-5 に示す。分析時間の短縮、EOF の安定性を 考慮し、泳動開始1分後から 30 ないし 50 mbar の加圧を行った。

Pos	sitive mode	$\langle \rangle$	Negative mode
<ce< td=""><td>></td><td>11</td><td><ce></ce></td></ce<>	>	11	<ce></ce>
Cap	illary : fused silica capillary		Capillary : fused silica capillary
(50	µm I.d., total length 100cm)		(50µm I.d., total length 100cm)
Buff	er : 1M formate (pH=1.5)		Buffer : 30mM ammonium formate (pH=10)
Volt	age : Positive 0 → 25kV		Voltage : Positive 0 → 30kV
Tem	perature : 20°C		Temperature : 20°C
Pre	conditioning : Flush with buffer for 5 min		Preconditioning : Flush with buffer for 5 min
Inje	ction : Pressure 50mbar for 3.5 sec		Injection : Pressure 50mbar for 10 sec
< 14	(approx 4nL)		(approx 10nL)
Pola	rity : ESI-Positive		Polarity : ESI-Negative
Cap	illary voltage : 4000V		Capillary voltage : 3500V
She	ath liquid : 50% MeOH		Sheath liquid : 50% MeOH
Flow	v rate : 8µL/min	N	Flow rate : 8µL/min

Fig. 1-5 CE-MS 分析条件

1-2-2. 陽イオン性化合物の測定

1-2-2-1. アミノ酸およびその他の陽イオン性化合物の測定

標準物質は、Agilent amino acid standard solution (1 nmol/µL in 0.1 M HCl, PN 5061-3330)を 適宜希釈して用い、この混合標準溶液に含まれない 4-aminobutanoic acid (GABA)、アスパラ ギン (Asparagine, Asn)、グルタミン (Glutamine, Gln)、トリプトファン (Tryptophan, Trp)な どのアミノ酸、その他の陽イオン性化合物については適宜調整して使用した。1 M ギ酸を泳 動バッファーに用いて、Agilent amino acid standard solution 50 µM、その他の標準物質濃度は 10 µg/ml の陽イオン性化合物を測定した結果を Fig. 1-7 に示す。システインは、分解が速いた め検出できなかったが、構造異性体であるロイシン (Leucine, Leu)、イソロイシン (Isoleucine, Ile)も分離でき、30 分の泳動時間で 27 種類の陽イオン性物質の一斉分析手法を確立できた。

Fig. 1-6 陽イオン性標準物質のエレクトロフェログラム

Agilent amino acid standard solution: 50 µM, その他の標準物質: 10 µg/ml

1-2-3. 陰イオン性化合物の測定

1-2-3-1. 有機酸類の測定

ピルビン酸 (pyruvate)、フマル酸 (fumarate)、コハク酸 (succinate)、アコニット酸 (*cis*-aconitate)、2-オキソグルタル酸 (2-oxoglutarate, 2OG)、リンゴ酸 (malate)、クエン酸 (citrate)、イソクエン酸 (*iso*-citrate)、オキサロ酢酸 (oxaloacetate) を 30 mM ギ酸アンモニ ウム (pH 10) で測定した結果を Fig. 1-7 に示す。オキサロ酢酸は、分解が速いため検出でき なかった。

Fig. 1-7 30 mM ギ酸アンモニウム (pH = 10) 泳動バッファーを用いて有機酸類の 標準物質 (10 μg/ml) を測定して得られたエレクトロフェログラム

1-2-3-2. 有機リン酸化合物の測定

CEでヌクレオチドや糖リン酸化合物などのリン酸基を持つ化合物を測定する場合、キャピ ラリー内壁のシラノール基にリン酸基が吸着するため、ピーク分離が悪くなったり、検出さ れるピークがブロードになったりする問題があった。この内壁への吸着を解消するため、Soga et al. (2007)の手法にならい、泳動前にリン酸バッファーによる(75 mM リン酸ナトリウム を含む 25 mM ギ酸アンモニウム)キャピラリー内壁のコーティングを行った。この結果、Fig 1-8. に示すようにキャピラリー内壁へのリン酸基の吸着を抑えることが可能になり、G6P、 F6P、G1P の構造異性体も分離することが可能になった。その他の構造異性体を含む有機リ ン酸化合物の標準物質の同時測定した結果を Fig. 1-9 に示す。これらの有機リン酸化合物も キャピラリー内壁への吸着を抑えたピーク分離が可能になった。

Fig. 1-8 リン酸バッファー(75mM リン酸ナトリウムを含む 25mM ギ酸アンモニウム) コーティング処理有無による糖リン酸化合物(*m/z* = 259.0234)の分離の違い

Fig. 1-9 30 mM ギ酸アンモニウム (pH = 10) 泳動バッファーを用いて有機リン酸化合物 標準物質 (100 μg/ml) を測定して得られたエレクトロフェログラム

1-2-3-3. アデニンヌクレオチドの測定

アデニンヌクレオチド類の標準物質を測定した結果を Fig. 1-10 に示す。市販の標準物質で もメーカー毎に純度が異なる場合があり、保存状態や開封期間によっても異なる結果が得ら れることが示唆された。また、生体試料中のアデニンヌクレオチド類の測定を行う場合、凍 結乾燥中の分解やオートサンプラーにサンプルを設置している間に ATP から ADP、AMP へ と分解が進むため、実試料での定量は行わなかった。

Counts vs. MigrationTime (min)

Fig. 1-10 30 mM ギ酸アンモニウム (pH = 10) 泳動バッファーを用いて AMP, ADP, ATP の 標準物質 (10 μg/ml) を測定して得られたエレクトロフェログラム

1-2-4. 植物ホルモンなどの生理活性物質の測定

植物ホルモンを有機酸やリン酸化合物と同様の分析条件で同時測定するメソッドの開発を 試みた。インドール-3-酢酸(Indole-3-Acetic acid, IAA),ジャスモン酸(Jasmonic acid, JA),ア ブシシン酸(Absicic acid, ABA),サリチル酸(Salycyclic acid, SA)の4化合物は、重水素化 体化合物を入手することができたため、内部標準物質としての有用性を検討した。測定した 植物ホルモン類の物理化学特性を Table 1-2.に示す。まず、アブシシン酸を用いて泳動バッフ ァーの濃度(20 mM, 30 mM)と pH(pH 8, 8.5, 10)を検討した結果、30 mM ギ酸アンモニウ ム (pH 10)が最もピーク分離が良く、短時間で検出された。よって、植物ホルモンの測定に 使用する泳動バッファーは、有機酸や有機リン酸化合物と同様の泳動条件である 30 mM ギ酸 アンモニウム(pH 10)とした。この泳動バッファーを用いて植物ホルモンを測定し、得られ たエレクトロフェログラムを Fig. 1-11および Fig. 1-13 に、マススペクトルを Fig. 1-12 に示す。 アブシシン酸は 9.5 分、オーキシンは 10.3 分、ジャスモン酸は 12.0 分、サリチル酸は 15.6 分にそれぞれ検出された。次に、20-200 μM で4 点検量線を作成し検出下限値を求めたとこ ろ、アブシシン酸の検出下限値は 0.63 μM、オーキシンの検出下限値は 0.45 μM、ジャスモン 酸の検出下限値は 0.77 μM であった。

Table 1-2. 植物ホルモン標準物質

Compound name	MW	CAS	Formula	Abbreviation
salicyclic acid	138.0317	69-72-7	C7H6O3	SA
Indole-3-acetic acid	175.0633	87-51-4	C10H9NO2	IAA
jasmonic acid	210.1256	6894-38-8	C12H18O3	JA
abscisic acid	264.1362	21293-29-8	C15H20O4	ABA
deuterium abscisic acid	270.1738	35671-08-0	C15H14D6O5	d ₆ -ABA
deuterium Indole-3-acetic acid	180.0947	76937-78-5	C10H4D5NO2	d ₅ -IAA
deuterium jasomonic acid	212.1381	183948-71-2	C12H16D2O3	d ₂ -JA

Fig. 1-11 pH および濃度の異なる泳動バッファーを用いて分析して得られた アブシシン酸のエレクトロフェログラム

Fig. 1-12 30 mM ギ酸アンモニウム (pH 10) を用いて得られた ABA、IAA のエレクトロフェログラム、マススペクトル、検量線

さらに、植物ホルモンのひとつであるサイトカイニン類の同時測定も試みた。これまで確立 した分析条件での測定は不可能だったため、Liya et al. (2006)の方法にならった。Fig. 1-5 で 示した positive mode 分析時の泳動バッファーを 3%のアセトニトリルを含む 25 mM ammonium formate / formate (pH 3.5)に変更し、Table 1-3.に示す BA 以外の 7 種類の標準物質の測定を行 った。Liya et al. (2006)が用いた泳動前の水酸化ナトリウムによるプレコンディショニングは、 ガラスキャピラリーの被膜を劣化させ、化合物の検出感度にも影響を与えるため行わなかった。 測定で得られたエレクトロフェログラムを Fig. 1-14 に、マススペクトルを Fig. 1-15 に示す。

Table 1-3. サイトカイニン類標準物質

Compound name	MW	CAS	Formula	Abbreviation
(±)-Dihydrozeatin	221.264	23599-75-9	C10H15N50	DHZ
6-(γ , γ -Dimethylallyl-amino)purine	203.249	2365-40-4	C10H13N5	iP
Zeatin	219.248	13114-27-7	C10H13N50	Z
trans-Zeatin	219.248	1637-39-4	C10H13N50	tZ
Benzyladenin	225.255	1214-39-7	C12H11N5	BA
6-(γ , γ -Dimethylallylamino)purine riboside	335.364	7724-76-7	C15H21N5O4	2iPR
trans-Zeatin-riboside	351.363	6025-53-2	C15H21N5O5	ZR
Dihydrozeatin riboside	353.379	22663-55-4	C15H23N5O5	DHZR

Fig. 1-14 サイトカイニン類のエレクトロフェログラム

Fig. 1-15 サイトカイニン類のマススペクトル

1-5. まとめ

植物体内に含まれる主要なアミノ酸は、プロトンを付加した形でイオン化される positive mode で、有機酸、有機リン酸化合物やサイトカイニン以外の植物ホルモンはプロトンが抜け た形でイオン化される negative mode で一斉分析する手法をそれぞれ確立した。有機酸や植物 ホルモン、その他の代謝産物についてリン酸バッファーによるコーティングの影響を検討し た結果、その影響は少なかった。陽イオン性物質の分析には1 M ギ酸を泳動バッファーに用 い、陰イオン性物質の分析には、30 mM のギ酸アンモニウム (pH 10)を用いることとした。 泳動バッファーの pH を変えることによって測定可能な物質が増加する可能性も否定できな いが、植物ホルモンとの同時測定ができること、CE-MS では植物体内に多く含まれる糖類な どの中性物質が EOF と同じ移動時間に検出され EOF の大きさに影響を与えることを考慮し、 今後の測定における泳動バッファーの pH は 10 に設定することとした。サイトカイニン類の 測定は、主要な代謝物質との同時分析は不可能だが、3%のアセトニトリルを含む 25 mM ギ酸アンモニウム (pH 3.5)を泳動バッファーに用いて、7 種類のサイトカイニンを positive mode で同時測定できるメソッドを開発した。

本実験条件によって、定量性が確認され一斉分析が可能となった代謝産物は、以下に示す通りである。

陽イオン性化合物

Formula	Cpd	Abbrev.	Mass	$[M+H]^+$
C2H5NO2	glycine	Gly	75.0320	76.0399
C3H7NO2	L-2-minopropionic Acid	Ala	89.0477	90.0555
C4H9NO2	4-aminobutanoic acid	GABA	103.0633	104.0712
C3H7NO3	L-Serine	Ser	105.0426	106.0504
C5H9NO2	L-proline	Pro	115.0633	116.0712
C5H11NO2	L-valine	Val	117.0790	118.0868
C4H9NO3	homoserine	Hom	119.0582	120.0661
C4H9NO3	threonine	Thr	119.0582	120.0661
C3H7NO2S	L-cysteine	Cys	121.0197	122.0276
C6H13NO2	L-Isoleucine	lle	131.0946	132.1025
C6H13NO2	L-Leucine	Leu	131.0946	132.1025
C4H8N2O3	L-Asparagine	Asn	132.0535	133.0613
C5H12N2O2	ornithine	Orn	132.0899	133.0977
C4H7NO4	L-Aspartic acid	Asp	133.0375	134.0453
C5H5N5	adenine		135.0545	136.0623
C5H10N2O3	L-glutamine	Gln	146.0691	147.0770
C6H14N2O2	L-Lysine	Lys	146.1055	147.1134
C5H9NO4	L-glutamic acid	Glu	147.0532	148.0610
C5H11NO2S	L-methionine	Met	149.0510	150.0589
C6H9N3O2	L-histidine	His	155.0695	156.0773
C9H11NO2	L-Phenylalanine	Phe	165.0790	166.0868
C6H14N4O2	L-Arginine	Arg	174.1117	175.1195
C9H11NO3	L-tyrosine	Tyr	181.0739	182.0817
C11H12N2O2	L-Tryptophan	Trp	204.0899	205.0977
C6H12N2O4S2	cystin		240.0238	241.0314
C9H12N2O6	uridine		244.0695	245.0774
C10H13N5O4	adenosine		267.0968	268.1046
C10H17N3O6S	glutathione		307.0838	308.0916

陰イオン性化合物

Formula	Cpd	Abbrev.	Mass	[M-H] ⁻
C2H2O3	glyoxylic acid		74.0004	72.9926
C2H4O3	glycolic acid		76.0160	75.0082
C3H4O3	pyruvic acid		88.0160	87.0082
C3H6O3	lactic acid		90.0317	89.0239
C3H4O4	malonic acid		104.0110	103.0031
C4H8O3	2-hydroxyisobutyric acid		104.0473	103.0395
C3H6O4	glyceric acid		106.0266	105.0188
C4H4O4	fumaric acid		116.0110	115.0031
C4H6O4	succinic acid		118.0266	117.0188
C4H4O5	oxaloacetic acid		132.0059	130.9980
C5H8O4	glutaric acid		132.0423	131.0344
C4H6O5	malic acid		134.0215	133.0137
C7H6O3	salicyclic acid	SA	138.0317	137.0239
CH4NO5P	carbamoylphosphate		140.9827	139.9749
C5H6O5	2-oxoglutarate	2-0G	146.0215	145.0137
C6H10O4	adipic acid		146.0579	145.0501
C5H8O5	citramalic acid		148.0372	147.0293
C9H8O2	cinnamic acid		148.0524	147.0446
C2H5O6P	2-phosphoglycolic acid	2PG	155.9824	154.9745
C9H8O3	phenylpyruvic acid		164.0473	163.0395
C9H8O3	p-coumaric acid		164.0473	163.0395
C3H5O6P	phosphoenolpyruvate	PEP	167.9824	166.9745
C3H7O6P	dihydroxyacetone phosphate	DHAP	169.9980	168.9902
C3H7O6P	Glyceraldehyde 3-phosphate	GAP	169.9980	168.9902
C3H9O6P	glycerol-3-phosphate	G3P	172.0137	171.0058
C6H6O6	<i>cis</i> -aconitate		174.0164	173.0086
C7H10O5	(-)-shikimic acid		174.0528	173.0450
C10H9NO2	Indole-3-acetate	IAA	175.0633	174.0555
C9H17NO5	pantothenic acid		219.1112	218.1034
C3H7O7P	3-phosphoglycerate	3PG	185.9929	184.9851
C3H7O7P	2-phosphoglycerate	2PG	185.9929	184.9851
C7H11NO5	N-Acetyl-L-glutamic acid		189.0637	188.0559
C6H8O7	citric acid		192.0270	191.0192
C6H8O7	iso-citric acid		192.0270	191.0192
C7H12O6	Quinic acid		192.0634	191.0556
C6H10O7	D-glucuronic acid		194.0427	193.0348
C6H10O7	D-garacturonic acid		194.0427	193.0348
C8H10N4O2	caffein		194.0804	193.0726

C6H12O7	gluconic acid		196.0583	195.0505
C9H11NO4	3,4-Dihydroxy-L-phenylalanine	L-DOPA	197.0688	196.0610
C8H18N4O2	dimethylarginine	ADMA	202.1430	201.1352
C12H18O3	jasmonic acid	JA	210.1256	209.1178
C5H11O8P	ribose5-phosphate	R5P	230.0192	229.0113
C5H11O8P	ribulose5-phosphate	Ru5P	230.0192	229.0113
C6H13O9P	Fructose6-phosphate	F6P	260.0297	259.0219
C6H13O9P	glucose1-phosphate	G1P	260.0297	259.0219
C6H13O9P	glucose6-phosphate	G6P	260.0297	259.0219
C6H13O9P	inositol phosphate		260.0297	259.0219
C15H20O4	abscisic acid	ABA	264.1362	263.1283
C6H13O10P	6-phosphogluconic acid	6PG	276.0246	275.0168
C10H18N4O6	L-argininosuccinate		290.1226	289.1148
C10H15N2O8P	5-methyluridine monophosphate	TMP	322.0566	321.0488
C9H14N3O8P	cytidine monophosphate	CMP	323.0519	322.0440
C9H13N2O9P	uridine monophosphate	UMP	324.0359	323.0280
C10H12N5O6P	cyclic adenosine monophosphate	cAMP	329.0525	328.0447
C6H14O12P2	D-Fructose1,6-bisphosphate	F-1,6-BP	339.9960	338.9882
C10H12N5O7P	cGMP	cGMP	345.0474	344.0396
C10H14N5O7P	adenosine monophosphate	AMP	347.0665	346.0587
C10H13N4O8P	inosinic acid		348.0471	347.0393
C16H18O9	Chlorogenic acid		354.0951	353.0873
C10H14N5O8P	guanosine monophosphate	GMP	363.0580	362.0502
C9H15N3O11P2	cytidine diphosphate	CDP	403.0182	402.0104
C9H14N2O12P2	uridine diphosphate	UDP	404.0022	402.9944
C12H23O14P	Trehalose 6-phosphate	T6P	422.0825	421.0747
C12H23O14P	Sucrose-6-phosphate	S6P	422.0825	421.0747
C10H15N5O10P2	adenosine di phosphate	ADP	427.0334	426.0256
C10H15N5O11P2	guanosine diphosphate	GDP	443.0243	442.0165
C17H21N4O9P	flavin mononucleotide	FMN	456.1046	455.0968
C10H16N5O13P3	adenosine triphosphate	ATP	506.9990	505.9912
C10H16N5O14P3	guanosine triphosphate	GTP	522.9907	521.9828
C15H24N2O17P2	uridine diphosphate glucose	UDPG	566.0550	565.0472
C16H25N5O15P2	adenosine diphosphate glucose	ADPG	589.0822	588.0744
C21H27N7O14P2	nicotinamide adenine dinucleotide	NAD	663.1091	662.1013
C21H29N7O14P2	reduced nicotinamide adenine dinucleotide	NADH	665.1248	664.1169
C21H28N7O17P3	nicotinamide adenine dinucleotide phosphate	NADP	743.0755	742.0676
C21H30N7O17P3	reduced nicotinamide adenine dinucleotide phosphate	NADPH	745.0911	744.0833
C27H31N9O15P2Na2	flavin adenine dinucleotide	FAD	783.1415	782.1337

第2章 CE-MSを用いた植物体および植物細胞における生体内物質の分布解析(ターゲット解析)

序

第1章の序で記述したように、様々な質量分析装置を用いたメタボローム解析が行われて おり、代謝産物の分離・同定・定量は、対象化合物に適した分析装置を各々選択し、標準物 質と整合性の取れたデータで議論がなされている。しかし、これらの質量分析装置を用いた 定量分析では、「イオンサプレッション」と呼ばれる定量値の精度が低下する問題が生じる。 この現象は、イオン化の際、複数種類の化合物が試料に存在すると化合物間でプロトン[H]⁺、 ナトリウムイオン[Na]⁺、カリウムイオン[K]⁺ などのイオン化に必要なイオンの奪い合いが 起こり、これらのイオンとの親和性が相対的に低い化合物のイオン化が抑制されるという現 象である。この現象によって、分析対象となる化合物のイオン化効率は試料中の化合物組成 に大きく左右されるのみならず、夾雑物の組成やイオン化室の環境など種々な要因にも影響 されるため、質量分析装置を用いた絶対定量は非常に難しいとされている。

解決策として、全ての分析対象化合物に対して既知濃度の安定同位体標識化合物溶液を内 部標準液として試料に添加し、抽出から分析までの一連の作業を分析対象化合物と同時に行 うことが理想ではあるが、コスト面や技術的な面から考えても現実的に困難である。また、 定量値のばらつきには、抽出効率や試料調整時の回収率、試料注入時のばらつきなどもある ため、分析対象化合物と競合しない数種類の内部標準物質を添加した内部標準法を用いた定 量法が一般化している。しかしながら、第1章に記述したように、メタボローム解析の農業 や食品分野での応用は少しずつ広がりつつあるが、植物体内における代謝物質の分布解析に 用いた例はまだ少ない。本章では、第1章で確立した CE-MS の分析手法を用いて、実際に シロイヌナズナ培養細胞、プロトプラスト、培養細胞から単離した液胞のメタボローム解析 を行い、培養細胞からプロトプラストを経て単離液胞に至る過程で変動する代謝解析(ター ゲット解析)を行った。

2-1. 実験材料と方法

2-1-1. 植物材料と培養条件

実験には、シロイヌナズナ(*Arabidopsis thaliana*, Columbia accession)を使用した。それぞれ、95%エタノールで15分間滅菌処理した種子を4℃、36時間以上低温処理後、Murashige Skoog(MS) 培地(0.6% gellan gum, pH 6.2)60 mlを流し入れ固めた角形プレート(栄研化学株式会社)に爪楊枝を用いて播種し、23±1℃、24時間連続光照射条件(光強度 270-340 μ mol m⁻² s⁻¹)に設定した人工気象器(BIOTRON, NKsystem, Japan)内で10日間生育させた。生育のそろったものを2 ml 粉砕チューブにサンプリングし液体窒素で凍結し、-80℃で保存した。

シロイヌナズナの培養細胞(*Arabidopsis* Col-0 cell suspension)は、梅田正明博士(奈良先端 大学院大学)より分与して頂いたものを使用した。培養細胞は、MS 培地に 4.5 μ M 2,4-D と 3 % Sucrose、0.02 % myo-Inositol、2.5 mM KH₂PO₄、ビタミン混合液(Nicotinic acid、Pyridoxin hydrochloride、Thiamine hydrochloride)を加えたもので培養した。7日ごとに新しい培地 20 ml に 2-3 ml の培養細胞を植え継ぎ、約130 rpm、26℃、暗黒下で振とう培養を行った。また、 プロトプラストおよび単離液胞は、Massonneau et al. (2000)の方法にならい、培養7日目の 細胞から単離した。

2-1-2. 試薬

陽イオン性化合物用内部標準物質として Methionine Sulfone (MeS) を、陰イオン性化合物 用内部標準物質として Camphor-10-Sulfonic acid (C10F) を用いた。その他の試薬は、1-1-2 に表記したものと同じものを用いた。

2-1-3. 装置

分析に使用した装置および分析前に行った作業は、1-1-3と同様である。

2-1-4. 内部標準物質の検討

CE-MSで陰イオン性物質の測定を行う場合、電気浸透流(Electroosmotic flow: EOF)の発 生により中性物質が多量に検出される時間帯が存在するため、代謝物質の定量を行う際に使 用する内部標準物質のピーク分離や検出時間が影響されないように考慮する必要性がある。 さらに、液胞サンプル中には液胞単離に使用した浸透圧物質としての糖類が多く含まれ、イ オンサプレッションの影響を大きく受けることが予想されたため、CE-MS で分離可能と考 えられる生化学緩衝剤の中から数種類選び、内部標準物質に適しているかを検討した。検討 した化合物の物理化学特性を Table 2-1 に示す。
Cpd	Formula	Mass	[M-H] ⁻	рКа
Methionine Sulfone	C5H11NO4S	181.0907	180.0837	
Camphor-10-Sulfonic acid	C10H16O4S	232.0729	231.0659	
MES	C6H13NO4S	195.0557	194.0487	6.15
PIPES	C8H18N2O6S2	302.0606	301.0528	7.48
Tris	C4H11NO3	121.0739	120.0661	8.08
tricine	C6H13NO5	179.0794	178.0715	8.05
MOPS	C7H15NO4S	209.0722	208.0644	7.17
CAPS	C9H19NO3S	221.1086	220.1007	10.4
TAPS	C7H17NO6S	243.0777	242.0698	8.4

Table 2-1. 内部標準物質として検討した化合物

2-1-5. 植物試料からの代謝物質の抽出

シロイヌナズナ培養細胞、プロトプラスト、液胞からの代謝物質の抽出は、Ohkama-Ohtsu et al. (2008)の手法にならって Fig. 2-1 に示すフローで行った。CE-MS 分析の条件は、Fig. 1-1 に示したものと同様である。

```
液体窒素で凍結後粉砕
    Ţ
MeOH/Chloroform/MQ = 1:1:0.4 included in Internal Standard
    Voltex 5min
    Centrifugation (15,000g, 5min, 4^{\circ}C)
    L
Sup collection 500 µL
    Centrifuge concentrator 15-20 min
    Ţ
Sup collection
Centrifuge concentrator
    CE/MS分析(ターゲット解析)
```

Fig. 2-1 植物試料からの代謝物質抽出

2-1-6. ターゲット解析について

定量に用いた標準物質リストは、第1章に示した通りである。これらの標準物質リストの 中から m/z 値からエレクトロフェログラムが確認できる化合物について定量を行った。陽イ オン性化合物には MeS を、陰イオン性化合物には C10F を内部標準物質として用い、それぞ れの代謝産物の濃度は内部標準物質に対するピーク面積比として算出した。培養細胞、プロ トプラストおよび液胞に含まれる各代謝物質濃度は、液胞体積の指標であるα-マンノシダー ゼ活性あたりの濃度として算出した。

2-2. 結果と考察

2-2-1. 植物細胞(培養細胞・プロトプラスト・液胞)のターゲット解析

培養細胞、プロトプラスト、液胞からの代謝物質の抽出は、Ohkama-Ohtsu et al. (2008) の 手法にならって Fig. 2-1 に示すフローで行った。CE-MS 分析の条件は、Fig. 1-1 に示したも のと同じである。生体試料のターゲット解析では、1-2-2-3 に記述した通り、分析の経過に伴 って試料中の GTP、UTP、CTP などもリボヌクレオチドへと分解されるため、ピーク検出の 確認までは行ったが実試料での定量までは行わなかった。

液胞に含まれるアミノ酸の濃度を Fig. 2-2 に、有機酸濃度を Fig. 2-3 に、有機リン酸化合物 濃度を Fig. 2-4 に示す。各代謝産物の濃度を算出する際、内部標準物質で補正した濃度を算 出後、液胞のマーカー酵素として知られている α -マンノシダーゼ活性当たりの濃度として算 出し、プロトプラストは生重量が推定した細胞体積の 90%、液胞は 80%の体積を占めている こととした。標準物質を用いてアミノ酸を含む 25 個の陽イオン性化合物、有機酸や有機リン 酸化合物など 12 個の陰イオン性化合物を定量した。リジン(49 ± 5.0 fmol/vacuole)やアルギ ニン (30 ± 3.7 fmol/vacuole)の濃度が高く検出され、既に液胞に蓄積されることが知られて いる報告 (Wiemken et al. 1974; Martinoia et al. 1991) と一致する結果となった。

Tohge et al. (2011) は、大麦を材料として葉肉細胞のプロトプラストと液胞内に蓄積され る代謝産物を GC-MS および UPLC-FT-MS を用いて測定し、59 個の一次代謝産物と 200 個の 二次代謝産物をそれぞれ同定している。プロトプラストと液胞で共通に存在するものは 213 個検出され、そのうち液胞に多く検出されるものは 12 個、プロトプラストに多く検出される ものは 34 個であることを報告している。液胞に多く検出されるものとして、アラニン、イソ クエン酸、コハク酸、リンゴ酸、ヒスチジン、トリプトファンなどの一次代謝産物やフラボ ノイドなどの二次代謝産物などが挙げられており、本実験で液胞中に多く検出された一次代 謝産物の結果 (リンゴ酸、イソクエン酸、ヒスチジンやトリプトファンが多い) と一致した。 有機酸では、リンゴ酸が 122.8 ± 27.6 fmol/vacuole 検出され、従来報告されていた液胞中のリ ンゴ酸濃度よりも高いこと (Winter et al, 1994; Emmerlich et al, 2003) が示唆されたため、同 じサンプルを用いて、従来から使用されてきた酵素法による定量を行い、CE-MS との測定値 を比較した。その結果、CE-MS で測定した値は酵素法で測定した値の 3 分の 1 となった(デ ータ未掲載)。これは、液胞単離時に用いる糖の影響による回収率の低下、あるいはイオン化 が妨害されたことが要因として考えられる。液胞単離液による回収率低下の影響を調べるた めに、既知濃度の標準物質を添加した単離液サンプルからの回収率実験を行った。その結果、 それぞれの化合物によって内部標準物質による濃度補正にばらつきがあることが明らかとな り、単離液の混入が多くなるとアミノ酸濃度のほとんどは高く見積もられる傾向があり、ク エン酸などの陰イオン性化合物は低く見積もられる可能性が示唆された。リンゴ酸が高濃度 に存在する一方、細胞の7割近くを占める液胞(Winter et al, 1993; 1994)には、フォスファ ターゼがあるためリン酸化合物はほとんど存在しない(Winter et al, 1994; Gerhardt et al, 1987) と考えられてきた。我々の測定で、シロイヌナズナ培養細胞の液胞中にも比較的高濃度のリ ン酸化合物が存在する事が明らかになった。液胞中のリン酸化合物がサンプルへの細胞質物 質の混入によるのか、本来存在するものかは、この実験だけからは明らかにできない。しか し、液胞をダイレクトに単離することのできるシャジクモを用いたメタボローム解析でもリ ン酸化合物が検出されたことから(Oikawa et al. 2011)、液胞内にフォスファターゼと有機リ ン酸化合物が同時に存在することは確からしい。

Fig. 2-2 液胞に含まれるアミノ酸の濃度

Fig. 2-3 液胞に含まれる有機酸の濃度

Fig. 2-4 液胞に含まれる有機リン酸化合物の濃度

培養細胞からインタクトの液胞を単離するには、プロトプラストの作成やそこからのイン タクト液胞の単離に数時間を要するため、その過程で代謝産物の変動が考えられる。そのた め、単離過程における培養細胞、プロトプラスト、および液胞の3者の代謝産物比較解析を 行った。各代謝産物濃度を液胞当たりの濃度に換算し、代謝マップにプロットしたグラフを Fig. 2-5 に示す。この結果、培養細胞からプロトプラストを経て液胞を単離する過程で、様々 な化合物の変動が引き起こされることが明らかとなった。液胞を単離する途中過程にあるプ ロトプラスト中においてフマル酸、リンゴ酸、クエン酸、イソクエン酸などの陰イオン性化 合物は減少し、アミノ酸やリン酸化合物は増加したがグルタミン酸は変動しなかった。細胞 内において、グルタミン、アルギニン、リジン、トリプトファン、ヒスチジン、バリンなど のアミノ酸やクエン酸、イソクエン酸、リンゴ酸などの有機酸といった一次代謝産物が 50 % 以上液胞中に存在することが明らかになった。いくつかの代謝産物で培養細胞を超える濃度 で検出される物質が存在したが、これはα-マンノシダーゼ活性による補正あるいはイオンサ プレッションによる実験誤差と考えられる。

Fig. 2-5 培養細胞、プロトプラスト、液胞における各代謝産物の分布(単位:fmol/vacuole)

2-3. まとめ

第1章で確立した CE-MS の分析手法を用いて、シロイヌナズナ培養細胞、プロトプラストおよび培養細胞から単離した液胞のメタボローム解析を行った結果、培養細胞からプロト プラストを経て単離液胞に至る過程で様々な化合物の変動が引き起こされることが明らかと なった。プロトプラストと液胞の単離過程では、アミノ酸などの陽イオン性化合物は増加し、 有機酸などの陰イオン性化合物は減少することが明らかとなった。また、液胞内に多いと報 告されていたリンゴ酸、クエン酸、リジン、アルギニン以外にも変動を示す化合物があるこ と、あるいはグルタミン酸のようにあまり変動しない化合物があることも明らかとなった。 さらに、液胞にはフォスファターゼが存在するにも関わらず、比較的高濃度の有機リン酸化 合物が存在することが明らかになった。本章では、第1章で確立した CE-MS による一斉分 析の手法を用いて、培養細胞、プロトプラスト、単離液胞のメタボローム解析を行い、標準 物質で定量可能な代謝産物の生体内分布を明らかにした。生体内には、未知化合物も多く含 まれるため、次章では、超高分解能質量分析装置である FT-ICR-MS を用い、植物体および植 物細胞における生体内物質の分布解析を試みた。

第3章 FT-ICR-MS を用いた植物体および植物細胞における生体内物質の分布解析

序

第1章および第2章の序で言及したとおり、様々な質量分析装置を用いたメタボローム解析 が行われているが、これらのほとんどは第2章で行ったような標準物質で同定できる代謝物質 に限られたものが多く、生体内にも比較的量の多いものが報告されている。しかしながら、質 量分析装置を用いた分析で強みとなるのは、何か分からない未知ピークが数千あるいは数万と 出てくるところにある。この強みを活用し、標準物質では同定できないその他の検出される未 知ピークから m/z や組成式などの精密質量データを用いたノンターゲット解析を行う試みが 進められている(De Vos et al. 2007)。ノンターゲット解析で m/z 値から分子式予測を行い、生 体内の有用な情報を得るためには、物質同定率を左右する装置の高い分解能が必須となる。分 解能とは、隣接した2つのピークを分離する能力のことを指し、Fig. 3-1 (http://www.thermosci.jp) に示すように分解能 10.000 と 100.000 の装置で、m/z = 400 のイオンの分離能力が異なること が分かる。第2章でターゲット解析に用いた CE-TOF に比べると、FT-ICR-MS はその約 100 倍高い分解能を持つ質量分析装置である。CE-TOF の分解能ではこのピークは分離できず、1 つのピークとして検出されるが、FT-ICR-MS のような高分解能の質量分析装置では分離でき るようになる。FT-ICR-MS のような高分解能の質量分析装置を用いて植物における代謝化合 物を網羅的に調べた研究は少ないが、LC などの分離装置を前段に組んだ質量分析装置を用い てノンターゲット解析を試みている研究事例をいくつか紹介する。

Roepenack-Lahaye et al. (2014) は、シロイヌナズナの野生型と変異体の根や葉に含まれる代 謝物質を 80 %メタノールで抽出し、CapLC-ESI-QqTOF-MS を用いた代謝物質の同定を試みて いる。その結果、葉では 1,400、根では 800 のシグナルを検出し、グルコシノレートやそれら の分解産物、フラボノイドなどの二次代謝物質を同定している。

また、トマトの果実やじゃがいもの塊茎を試料に、遺伝子背景や発生ステージごとの代謝物質 解析を変異体と比較したメタボローム解析の事例もある(Bino et al. 2005; Moco et al. 2006; Vorst et al. 2005)。ニチニチソウの培養細胞におけるテルペノールインドールアルカイドの生 合成について遺伝子発現プロファイルと代謝産物の蓄積から相互解析を試みた報告もある (Rischer et al. 2006)が、これらノンターゲット解析の事例(報告)は、ほとんどが二次代謝 物質についての報告が多く、一次代謝物質についての報告はほとんどない。さらに、高分解能 のFT-ICR-MS を用いた植物におけるノンターゲット解析の事例は数えるほどしかなく、イチ ゴの果実(strawberry fruit *Fragaria ananassa*, ev. *Elsanta*)やトマト(*Solanum lycopersicum ev. Micro-Tom*)の発生ステージごとにメタボローム解析を行った報告があり、一次代謝物質もい くつか同定されているが、どちらの報告でも二次代謝物質が多く同定されている(Aharoni et al. 2002; Iijima et al. 2008)。

FT-ICR-MS は、現在のところ、最も高い分解能を持つ質量分析装置であり、検出された m/z 値から未知物質の分子式を高確率で推定しうる唯一の機器である。FT-ICR-MS は、イオント

ラップ型質量分析計の1つであり、超伝導マグネットが作る極めて強い磁場の中でイオンをト ラップし、そのイオンサイクロトロン周波数を測定することによってイオンの m/z を検出する ことができる。1000.000 と 1000.001 のピークが分離でき、質量の決定精度も非常に高く、外 部標準法を用いた精度でも±1 ppm で質量を決定することが可能となっている。しかしながら、 このような高分解能・高精度の FT-ICR-MS で検出した膨大なデータから代謝に関わる有用な 情報を精査し、物質同定まで至るのは、尚困難を極めているのが現状である。

Fig. 3-1 分解能について (http://www.thermosci.jp)

FT-ICR-MS は、以下の原理で物質の質量を測定することが可能となっている。

ー様な磁場の中にあるイオンは磁場に垂直な平面内で回転運動(サイクロトロン運動)を行う。FT-ICR-MS では、強磁場を得るために超伝導磁石が用いられ、その中にセルと呼ばれる 電極(円筒状や立方体など様々な形状のものがある)が設置されている。周波数fは、m/z と 磁場の強さ(B)に依存した関数で表す次式となり、

$$f = \frac{B}{m/z}$$

周波数に影響するファクターは磁場強度のみとなる。この周波数は、サイクロトロン共鳴周 波数と呼ばれている。静電場と磁場によってセル内にイオンがトラップされ、ばらばらに運 動していたイオンは、高周波電圧の印可によって回転半径と速さを増しながら、同じ m/z の イオンがひとかたまりになって運動するようになる。このひとかたまりになって回転するイ オンは検出電極に近づいたり離れたりするので、検出電極に誘導電流が発生する。通常、セ ルの中には様々なイオンが入っているので、それぞれのイオンの回転速度の応じた周波数の 信号が混合して検出される。この信号を時間とともに検出し、フーリエ変換すると信号強度 と周波数のスペクトルを得ることができる。FT-ICR-MS は、他の質量分析装置と比べると、 一桁ないし二桁高い質量分解能が得られ、さらに超伝導磁石を用いているため磁場の変動も 非常に小さく質量測定の精度や再現性が良いといった特徴がある。また、イオンをセル内に トラップしたまま測定を続けられるため、微量の試料で信号ノイズ (signal-to-noise ratio; S/N 比)の大きいきれいなスペクトルを得ることができるのが利点である。しかし、価格や大き さ、保守性の難しさなどの面から広く普及するには至っていない。

本章では、前章で明らかになった培養細胞、液胞の代謝変動物質以外の代謝物質に着目し、 CE-TOFよりもさらに高分解能の12 Tesla FT-ICR-MSを用いて代謝化合物を限定せず検出さ れる全てのピークについて組成式解析、データベースによる既知物質の検索を行った。

3-1. 実験材料と方法

3-1-1. 植物材料と培養条件

植物材料とその培養条件は 2-1-1 に同じである。但し、FT-ICR-MS を用いたノンターゲット解析に使用した植物体は、シュート、根ともに 21 日間生育した個体を使用した。

3-1-2. 試薬

使用した試薬類も2-1-2と同様である。

3-1-3. 植物試料からの代謝物質の抽出

培養細胞および液胞からの代謝物質の抽出は、2-1-5 と同様に行った。シュートおよび根からの代謝物質の抽出は、Fig. 2-1 に示したフローにならったが、2回目の上層回収時に 10 kDaの限外ろ過フィルター(Amicon Ultra 10,000MW, Millipore, Tokyo, Japan)にかけ、エバポレーターによる濃縮を行った。但し、1回目の試料の Infusion 測定時は、それまで使用していた 8 μM の内部標準物質濃度では検出されなかったため、2回目以降の試料測定時は、抽出溶媒に含まれる内部標準物質濃度を1 mM に変更した。

3-1-4. 装置

本研究で使用された Old Dominion University の FT-ICR-MS (12 Tesla Apex Qe, Bulker Daltonics Inc, Billerica, MA, USA) は、磁場 12 Tesla からなり、当時としては世界最高性能の ものであった (現在は、15 Tesla のものが市販されており、世界で数台稼働中と聞いている)。

また、産業技術総合研究所の FT-ICR-MS (Bulker Daltonics Inc, Billerica, MA, USA) は、9.4 Tesla のものを使用している。

3-2. 結果と考察

3-2-1. 植物細胞(植物体・培養細胞・液胞)のノンターゲット解析

3-2-1-1. DataAnalysis を用いたマスリストの抽出

12 Tesla Apex Qe FT-ICR-MS (Bulker Daltonics, Bremen, Germany) を用いて杉山裕子博士 (兵庫県立大学)の協力のもと、Old Dominion University (Virginia, USA) において、シュート、 根、培養細胞、液胞を positive mode (m/z = 100 - 2,000)、negative mode (m/z = 100 - 1,000) と もに測定して頂き、DataAnalysis ソフトウェアから S/N \geq 4 の条件で抽出した m/z および Intensity のマスリストを得た。

3-2-1-2. MatLab、AutoMFCalculator を用いた組成式さくせい計算

培養細胞、液胞、シュート、根の negative mode で分析した測定値の分子式予測には MatLab を用い、炭素の安定同位体ピークをリストから除いた後、O/C < 1.2、H/C < 2.25、H/C > 0.35、N/C < 0.5、S/C < 0.2、P/C < 0.1、(S+P)/C < 0.2、O > 3P、H < 2C+2、O < C+2、DBE \geq 0 の条件を満 たす分子式を残した後、妥当と考えられる候補を絞り込んだ。また、測定値の分子式予測に は数値データが膨大になり解析に莫大な時間がかかることから、中村らが開発したインハウ ス・ソフトウェア AutoMFCalculator(Nakamura et al. 2008)を用いて FT-ICR-MS で得られた m/z 値と強度から組成式を求めた後に、バックグランドの削除や共通因子の探索を行った。 組成式計算に用いた各元素の種類と数を Table 3-1.に示す。この値は、飯島ら(lijima et al. 2008) に倣って決定し、窒素の最大数に関してはジペプチドおよびトリペプチドを考慮して max の 値を 15 とした。

	min	max
С	1	95
Н	1	182
Ν	0	15
0	0	45
S	0	5
Р	0	6

Table 3-1. 組成式計算に用いた各元素の種類と数

3-2-1-3. KNApSAcK によるアノテーション

KNApSAcK データベース(Afendi et al. 2012)は、奈良先端大学院大学 金谷 重彦 博士 が中心になって開発された代謝物質データベースである。金谷博士から提供された KNApSAcK データベースに使用されている元データを用い、フリーソフトウェア Perl (<u>www.perl.org</u>)を使用して、KNApSAcK データベースに自動検索をかけるプログラムを改変したものを用いた。MatLab 解析時は *m/z* 値を、AutoMFCalculator による解析時は、求められた組成式候補群から計算した精密質量をこのプログラムにかけ、得られた結果を Excel でまとめる半自動解析を行った。

培養細胞の positive mode では 1,624 個、negative mode では 1,728 個、液胞の positive mode では 1,785 個、液胞の negative mode では 1,442 個のピークが検出され、このうち細胞と液胞 で共通したものは 195 個しかなかった。これらのピークを KNApSAcK データベースに検索 をかけたところ、既知物質としてアノテーションのついたものはそのうちの約 10 %程度しか なかったが、2 次代謝産物であるグルコシノレートが同定された。これは、液胞中でグルコ シノレートを発見した初めての知見である。培養細胞とそこから単離した液胞に含まれる代 謝産物の共通ピークが少ないことから、液胞単離過程で用いる単離液の影響が大きいことが 考えられたため、単離液のみを同様の前処理を行ったサンプルを作成し、それらのマスリス トをブランクとして差し引いた。

分子式予測は、キャリブレーションの精度を考慮し、最も精度の高い解析結果が得られる と判断した m/z < 500 について優先的に行った。培養細胞と液胞の negative mode で検出され たデータを用いて単離液ブランクを差し引いたマスリストのうち、m/z < 500 について分子式 予測と既知物質の検索を行った結果を Table 3-2.および Table 3-3.にそれぞれ示す。その結果、 1 ppm 以内の精度で組成式が確認できたものは細胞(453 ピーク)と液胞(440 ピーク)で、 両者に共通するピークは 429 個となり、単離液ピークを差し引く有効性を確認できた。しか し、これらのピークのうち KNApSAcK データベースでアノテーションされた物質は、ブラ ンクを差し引く方法においても約 10 %程度であった。これは、アノテーションに使用して いるデータベースに登録されている物質数が充分でないこと、組成式候補に Fe や Mg などの 金属イオンが入っていないことなどが要因として考えられる。また、イオンサプレッション やイオン化の際にかかる高エネルギーによって物質が分解あるいは結合している可能性も考 えられる。

培養細胞のみに存在すると示唆された分子は 24 個、液胞のみに存在すると示唆された分子 は 12 個であった。これらのうち、KNApSAcK データベースでアノテーションされる物質は なかった(Table 3-4)。positive mode および m/z > 500 以上の分子についても引き続き解析を 行う予定である。

41

Table 3-2. 培養細胞に存在が示唆された分子候補 (*m/z* < 500 in negative mode) (黄色は細胞のみに検出されたものを示す)

		assigned		Error			assigned		Error			assigned		Error			assigned		Err
	m/z	formula	Mass			m/z	formula	Mass			m/z	formula	Mass			m/z	formula	Mass	
				(ppm)					(ppm)					(ppm)					(pp
1		C6H12O6	180.0634		45		C13H23N08S	353.1144		89		C16H6N2O7S	369.9896		133		C13H22O9S2	386.0705	
2		C9H11NO3	181.0739		46		C23H46O2	354.3498		90		C11H7N4O9P	369.9951		134		C15H18NO7PS	387.0542	
3		C6H8O7	192.0270		47		C13H25N06S2	355.1123		91		C15H15O5PS2	370.0099		135		C12H21N011S	387.0835	
4		C6H12O7	196.0583		48		C14H12O7S2	356.0024		92		C13H10N2O9S	370.0107		136		C13H24O13	388.1217	
5		C11H12N2O2	204.0899		49		C12H20O12	356.0955		93		C21H10N2OS2	370.0235		137		C14H28O12	388.1581	
6		C11H13NO3	207.0895		50		C17H14NO4PS	359.0381		94		C19H14O4S2	370.0334		138		C17H6N6S3	389.9816	
7		C8H16O6	208.0947		51		C12H24O12	360.1268		95		C15H14O9S	370.0359		139		C17H1107PS	389.9963	
8		C7H14O7	210.0740		52		C16H10O6S2	361.9919		96		C13H14N4O5S2	370.0406		140		C18H30O9	390.1890	
9		C10H15NO2S	213.0823		53		C17H14O3S3	362.0105		97		C17H10N2O8	370.0437		141		C20H10NO4PS	391.0068	
10		C9H17NO5	219.1107		54		C18H34O7	362.2305		98		C18H14N2O3S2	370.0446		142		C15H25N3O7S	391.1413	
11		C15H24O	220.1827		55		C10H14N5O8P	363.0579		99		C8H19O14P	370.0511		143		C17H7N5OS3	392.9813	
12		C8H14O5S	222.0562		56		C13H10N4O5S2	366.0093		100		C20H10N4O2S	370.0524		144		C13H19N2O8PS	394.0600	
13		C13H24O3	228.1725		57		C12H8N4O6S2	367.9885		101		C15H14O11	370.0536		145		C18H18O8S	394.0722	
14		C14H14OS	230.0765		58		C12H20N2O7S2	368.0712		102		C16H14N6OS2	370.0671		146		C23H25NO3S	395.1555	
15		C10H17NO5	231.1107		59		C18H12NO4PS	369.0225		103		C18H14N2O7	370.0801		147		C13H12N6O5S2	396.0311	
16		C10H16O4S	232.0769		60		C13H12N3O8P	369.0362		104		C14H19N4O4PS	370.0865		148		C21H24N4S2	396.1442	
17		C15H24O2	236.1776		61		C12H11N5O7S	369.0379		105		C14H26O11	370.1475		149		C16H28O11	396.1632	
18		C8H14O8	238.0689		62		C14H15N3O5S2	369.0453		106		C21H30N4O2	370.2369		150		C17H32O10	396.1995	
19		C13H25NO3	243.1834		63		C19H15NO5S	369.0671		107		C22H42O4	370.3083		151		C13H11N5O6S2	397.0151	
20		C17H10S	246.0503		64		C16H19NO5S2	369.0705		108		C11H5N2O9PS	371.9453		152		C20H15NO6S	397.0620	
21		C9H16O8	252.0845		65		C16H11N5O6	369.0709		109		C12H20O13	372.0904		153		C17H36NO7P	397.2229	
22		C11H16N4OS	252.1045		66		C14H16N3O7P	369.0726		110		C13H24O12	372.1268		154		C17H18O7S2	398.0494	
23		C10H20O7	252.1209		67		C14H15N3O9	369.0808		111		C14H15O8PS	374.0225		155		C18H26NO5PS	399.1269	
24		C6H13O9P	260.0296		68		C13H23NO7S2	369.0916		112		C18H30O8	374.1941		156		C16H20NO7PS	401.0698	
25		C16H6O2S	262.0089		69		C14H19N5O3S2	369.0929		113		C17H14NO5PS	375.0330		157		C17H7O8PS	401.9599	
26		C15H23NO3	265.1678		70		C18H15N3O6	369.0961		114		C20H10O2S3	377.9843		158		C20H18O3S3	402.0418	
27		C11H13N2O4P	268.0613		71		C19H19N3OS2	369.0970		115		C11H23O12P	378.0927		159		C16H19O8PS	402.0538	
28		C16H30O3	270.2195		72		C16H23N3OS3	369.1001		116		C12H5N5O6S2	378.9681		160		C13H22O12S	402.0832	
29		C13H13NO6	279.0743		73		C20H19NO4S	369.1035		117		C10H21O13P	380.0718		161		C15H22N4O7S	402.1209	
30		C14H10O5S	290.0249		74		C22H15N3O3	369.1113		118		C18H12N4O6	380.0757		162		C16H26N4O6S	402.1573	
31		C17H26O4	294.1831		75		C13H24NO9P	369.1189		119		C13H11N5O5S2	381.0202		163		C9H14N2O12P2	404.0024	
32		C14H15NO7	309.0849		76		C21H15N5O2	369.1226		120		C23H10O6	382.0477		164		C16H13N4O7P	404.0522	
33		C20H9N3S	323.0517		77		C14H27NO6S2	369.1280		121		C21H10N4O4	382.0702		165		C16H24N2O10	404.1431	
34		C9H13N2O9P	324.0357		78		C23H19N3S	369.1301		122		C14H17N5O8	383.1077		166		C19H32O9	404.2046	
35		C13H24O9	324.1420		79		C17H24NO6P	369.1341		123		C12H5N2O11P	383.9631		167		C21H14N2OS3	406.0268	
36		C12H22O10	326.1213		80		C13H27N3O5S2	369.1392		124		C22H8OS3	383.9737		168		C20H9O4PS2	407.9680	
37		C12H9O7PS	327.9807		81		C11H23N5O9	369.1496		125		C15H16N2O6S2	384.0450		169		C15H9N2O8PS	407.9817	
38		C9H19O11P	334.0664		82		C16H23N3O7	369.1536		126		C13H20O11S	384.0726		170		C13H20N4O7S2	408.0773	
39		C13H13N2O5PS	340.0283		83		C13H28N3O7P	369.1665		127		C14H24O10S	384.1090		171		C19H20O8S	408.0879	
40		C12H20O11	340.1006		84		C22H27NO2S	369.1762		128		C14H20N6O5S	384.1216		172		C12H25O13P	408.1033	
41		C17H26OS3	342.1146		85		C22H29NP2	369.1775		129		C23H44O4	384.3240		173		C20H24O7S	408.1243	
42		C17H18N4O2S	342.1150		86		C15H31NO9	369.1999		130		C17H11N3O4S2	385.0191		174		C20H40O8	408.2723	
43		C12H14NO9P	347.0406		87		C24H35NS	369.2490		131		C18H10O4S3	385.9741		175		C14H11N5O6S2	409.0151	
44		C17H16O6S	348.0668		88		C23H47NO2	369.3607		132		C14H11O9PS	385.9861		176		C20H11O4PS2	409.9836	

		assigned		Error		assigned		Error			assigned		Error			assigned		Err
	m/z	formula	Mass			m/z formula	Mass			m/z	formula	Mass			m/z	formula	Mass	
				(ppm)		lonnada		(ppm)					(ppm)			Torritaid		(pp
177		C21H14O7S	410.0460		221	C12H25O14P	424.0981		265		C19H34O11	438.2101		309		C15H18NO13P	451.0516	
178		C18H34O10	410.2152		222	C20H24O8S	424.1192		266		C20H38O10	438.2465		310		C12H25N3O13S	451.1108	
179		C13H9N5O7S2	410.9943		223	C28H56O2	424.4280		267		C15H13N5O7S2	439.0256		311		C19H8N4O4S3	451.9708	
180		C15H26NO10P	411.1294		224	C17H7N5O5S2	424.9889		268		C18H8N4O4S3	439.9708		312		C20H36O11	452.2258	
181		C13H8N4O8S2	411.9784		225	C13H6N4O9S2	425.9576		269		C15H12N4O8S2	440.0097		313		C15H11N5O8S2	453.0049	
182		C14H12N4O7S2	412.0147		226	C13H22N4O8S2	426.0879		270		C22H16O6S2	440.0388		314		C13H16N3O13P	453.0421	
183		C26H36O2S	412.2436		227	C23H22O6S	426.1137		271		C33H12O2	440.0837		315		C15H10N4O9S2	453.9889	
184		C16H7N5O5S2	412.9889		228	C13H5N2O13P	427.9529		272		C23H20O7S	440.0930		316		C18H10N6O3S3	453.9977	
185		C13H8N3O11P	412.9896		229	C17H17O9PS	428.0331		273		C28H40O2S	440.2749		317		C12H14N4O13S	454.0278	
186		C16H23N5O8	413.1547		230	C17H21N2O7PS	428.0807		274		C16H27NO13	441.1482		318		C14H31O14P	454.1450	
187		C14H10N2O11S	414.0005		231	C20H16NO6PS	429.0436		275		C23H39NO7	441.2727		319		C25H14NPS3	455.0026	
188		C17H23N2O6PS	414.1014		232	C16H23N5O9	429.1496		276		C23H10N2O4S2	442.0083		320		C17H29NO13	455.1639	
189		C16H30O8S2	414.1382		233	C14H6N14O	429.9478		277		C22H22N2O6S	442.1199		321		C15H9N2O13P	455.9842	
190		C24H30O6	414.2042		234	C17H6N2O10S	429.9743		278		C14H5NO14S	442.9431		322		C20H24O10S	456.1090	
191		C16H18NO8PS	415.0491		235	C19H18N4O2S3	430.0592		279		C31H13N3O	443.1059		323		C24H40O8	456.2723	
192		C17H22NO7PS	415.0855		236	C16H30O13	430.1686		280		C19H17N5O8	443.1077		324		C18H20NO9PS	457.0596	
193		C14H26NO9PS	415.1066		237	C23H42O7	430.2931		281		C15H25NO12S	443.1097		325		C16H27NO12S	457.1254	
194		C16H17O9PS	416.0331		238	C16H6N3O8PS	430.9613		282		C24H17N3O6	443.1117		326		C17H31NO13	457.1795	
195		C17H20O6S3	416.0422		239	C19H14NO7PS	431.0229		283		C14H26N3O9PS	443.1127		327		C23H39NO8	457.2676	
196		C16H32O12	416.1894		240	C18H13N3O10	431.0601		284		C17H25N5O9	443.1652		328		C16H10O14S	457.9791	
197		C20H32O9	416.2046		241	C17H22NO8PS	431.0804		285		C18H20O9S2	444.0549		329		C16H26O15	458.1272	
198		C16H11N5O3S3	417.0024		242	C15H29NO13	431.1639		286		C18H20O11S	444.0726		330		C25H46O7	458.3244	
199		C17H11N3O10	417.0444		243	C16H8N4O5S3	431.9657		287		C21H21N2O5PS	444.0909		331		C17H33NO13	459.1952	
200		C16H10N4O4S3	417.9864		244	C19H13O8PS	432.0069		288		C18H28N4O7S	444.1679		332		C22H37NO9	459.2468	
201		C19H15O7PS	418.0276		245	C20H16O5S3	432.0160		289		C24H44O7	444.3087		333		C14H16N6O8S2	460.0471	
202		C20H34O9	418.2203		246	C16H17O10PS	432.0280		290		C19H19N5O6S	445.1056		334		C16H28O15	460.1428	
203		C17H12N2O9S	420.0264		247	C15H28O14	432.1479		291		C18H24NO10P	445.1138		335		C16H31NO14	461.1745	
204		C23H16O2S3	420.0312		248	C16H8N3O8PS	432.9770		292		C16H31NO13	445.1795		336		C22H39NO9	461.2625	
205		C16H21O9PS	420.0644		249	C21H24NO5PS	433.1113		293		C17H11N4O7PS	446.0086		337		C18H11N2O9PS	461.9923	
206		C16H24N2O11	420.1380		250	C11H23N5O11S	433.1115		294		C13H19O13PS	446.0284		338		C17H11N4O8PS	462.0035	
207		C20H36O9	420.2359		251	C16H7N2O9PS	433.9610		295		C14H15N4O9PS	446.0297		339		C20H15O9PS	462.0174	
208		C15H11N5O6S2	421.0151		252	C20H10N4O2S3	433.9966		296		C16H14O15	446.0333		340		C19H14N2O12	462.0547	
209		C23H35NO6	421.2464		253	C15H22N4O7S2	434.0930		297		C17H19O10PS	446.0437		341		C18H23O10PS	462.0750	
210		C12H23O14P	422.0824		254	C23H17NO6S	435.0777		298		C18H23O9PS	446.0800		342		C14H18N5O11P	463.0740	
211		C15H23N2O8PS	422.0913		255	C21H17N5O4S	435.1001		299		C18H13N3O11	447.0550		343		C18H29N3O11	463.1802	
212		C17H30N2O8S	422.1723		256	C22H21N5O3S	435.1365		300		C18H25NO12	447.1377		344		C18H12N2O11S	464.0162	
213		C21H42O8	422.2880		257	C15H17O9PS2	436.0052		301		C15H29NO14	447.1588		345		C16H16O16	464.0438	
214		C23H37NO6	423.2621		258	C19H17O8PS	436.0382		302		C19H20N4O3S3	448.0698		346		C19H16N2O12	464.0703	
215		C14H5N2O10PS	423.9403		259	C15H24N4O7S2	436.1086		303		C18H25O9PS	448.0957		347		C21H20O12	464.0955	
216		C13H5N4O11P	423.9692		260	C19H32O11	436.1945		304		C22H40O9	448.2672		348		C22H40O10	464.2621	
217		C21H13O6PS	424.0170		261	C20H36O10	436.2308		305		C17H11N3O8S2	448.9988		349		C24H48O8	464.3349	
218		C12H16N4O9S2	424.0359		262	C22H44O8	436.3036		306		C25H11N3S3	449.0115		350		C17H12N3O7PS2	464.9854	
219		C11H21O15P	424.0617		263	C12H14N4O10S2	438.0151		307		C22H43O7P	450.2746		351		C17H11N3O9S2	464.9937	
220		C19H20O7S2	424.0650		264	C12H14N4O12S	438.0329		308		C23H46O8	450.3193		352		C20H11N5O3S3	465.0024	

m/z	assigned		Error			assigned		Error			assigned		Errc	
	m/z	formula	Mass	(ppm)		m/z	formula	Mass	(ppm)		m/z	formula	Mass	(ppn
353		C21H23NO7S2	465.0916		387		C21H19O9PS	478.0487	<u></u>	421		C17H12N7O5PS2	489.0079	
354		C14H28NO14P	465.1247		388		C23H46NO7P	479.3012		422		C17H31NO13S	489.1516	
355		C18H27NO13	465.1482		389		C17H13N4O11P	480.0318		423		C17H31NO15	489.1694	
356		C21H38O11	466.2414		390		C17H20O12S2	480.0396		424		C19H23O11PS	490.0699	
357		C17H13N3O9S2	467.0093		391		C22H24O10S	480.1090		425		C18H34O15	490.1898	
358		C17H8O12S2	467.9457		392		C17H28N4O8S2	480.1349		426		C24H42O10	490.2778	
359		C16H8N2O13S	467.9747		393		C22H40O11	480.2571		427		C23H40O11	492.2571	
360		C19H17O8PS2	468.0102		394		C13H24NO14PS	481.0655		428		C24H44O10	492.2934	
361		C14H20N4O10S2	468.0621		395		C23H31NO8S	481.1770		429		C14H15N5O13S	493.0387	
362		C21H27NO9S	469.1407		396		C20H14N6O3S3	482.0290		430		C25H35O6PS	494.1892	
363		C15H7N2O14P	469.9635		397		C22H26O10S	482.1247		431		C17H13N5O9S2	495.0155	
364		C21H14N2O9S	470.0420		398		C13H18N5O13P	483.0639		432		C14H17N5O13S	495.0544	
365		C19H18O12S	470.0519		399		C25H25NO7S	483.1352		433		C20H16O11S2	496.0134	
366		C17H18N4O10S	470.0744		400		C22H29NO9S	483.1563		434		C22H24O11S	496.1039	
367		C17H13NO11S2	470.9930		401		C18H8N6O5S3	483.9718		435		C15H29O16P	496.1193	
368		C23H37NO9	471.2468		402		C16H12N4O10S2	483.9995		436		C22H28N2O9S	496.1516	
369		C19H17N6O5PS	472.0719		403		C17H16N4O9S2	484.0359		437		C22H27NO10S	497.1356	
370		C24H40O9	472.2672		404		C13H17N4O14P	484.0477		438		C15H32NO15P	497.1510	
371		C21H16NO8PS	473.0334		405		C25H24O4S3	484.0837		439		C18H31N3O13	497.1857	
372		C18H35NO13	473.2108		406		C18H28O15	484.1428		440		C17H23O11PS2	498.0419	
373		C17H30O15	474.1585		407		C18H32N2O13	484.1904		441		C20H19N8O4PS	498.0988	
374		C16H30N2O14	474.1697		408		C20H16N5O6PS	485.0559		442		C22H26O11S	498.1196	
375		C24H42O9	474.2829		409		C24H23NO8S	485.1144		443		C24H14N5O4PS	499.0504	
376		C16H29NO15	475.1537		410		C18H31NO12S	485.1567		444		C25H25NO8S	499.1301	
377		C20H29NO12	475.1690		411		C15H7N2O11PS2	485.9229		445		C15H8N4O12S2	499.9580	
378		C17H33NO14	475.1901		412		C21H12O8P2S	485.9728		446		C19H8N4O9S2	499.9733	
379		C23H41NO9	475.2781		413		C16H14N4O10S2	486.0151		447		C16H21O12PS2	500.0212	
380		C20H13O6PS3	475.9612		414		C11H19O19P	486.0257		448		C17H16N4O10S2	500.0308	
381		C21H17O5PS3	475.9976		415		C13H18N4O12S2	486.0365		449		C21H24O14	500.1166	
382		C16H28O16	476.1377		416		C20H9NO12S	486.9845		450		C15H24N4O15	500.1238	
383		C17H32O15	476.1741		417		C23H13N4O5PS	488.0344		451		C18H28O16	500.1377	
384		C17H27N5O9S	477.1529		418		C17H32N2O14	488.1854		452		C26H29O8P	500.1600	
385		C17H7N2O11PS	477.9508		419		C18H36N2O13	488.2217		453		C28H52O7	500.3713	
386		C20H15O6PS3	477.9768		420		C24H40O10	488.2621						

Table 3-3. 液胞に存在が示唆された分子候補 (m/z < 500 in negative mode) (橙色は液胞のみに検出されたものを示す)

		assigned		Error			assigned		Error			assigned		Error			assigned		Err
	m/z	formula	Mass	(ppm)		m/z	formula	Mass	(ppm)		m/z	formula	Mass	(ppm)		m/z	formula	Mass	(nn
1		C6H12O6	180.0634	(ppiii)	45		C13H23NO8S	353.1144	(ppin)	89		C16H6N2O7S	369.9896	(ppin)	133		C15H18NO7PS	387.0542	(PP
2		C9H11NO3	181.0739		46		C23H46O2	354.3498		90		C11H7N4O9P	369.9951		134		C12H21NO11S	387.0835	
3		C6H8O7	192.0270		47		C13H25NO6S2	355.1123		91		C15H15O5PS2	370.0099		135		C13H8O14	387.9914	
4		C6H12O7	196.0583		48		C14H12O7S2	356.0024		92		C13H10N2O9S	370.0107		136		C13H24O13	388.1217	
5		C11H12N2O2	204.0899		49		C12H20O12	356.0955		93		C21H10N2OS2	370.0235		137		C14H28O12	388.1581	
6		C11H13NO3	207.0895		50		C17H14NO4PS	359.0381		94		C19H14O4S2	370.0334		138		C17H6N6S3	389.9816	
7		C8H16O6	208.0947		51		C12H24O12	360.1268		95		C15H14O9S	370.0359		139		C17H11O7PS	389.9963	
8		C7H14O7	210.0740		52		C16H10O6S2	361.9919		96		C17H10N2O8	370.0437		140		C18H30O9	390.1890	
9		C10H15NO2S	213.0823		53		C17H14O3S3	362.0105		97		C18H14N2O3S2	370.0446		141		C20H10NO4PS	391.0068	
10		C9H17NO5	219.1107		54		C18H34O7	362.2305		98		C8H19O14P	370.0511		142		C15H25N3O7S	391.1413	
11		C15H24O	220.1827		55		C10H14N5O8P	363.0579		99		C20H10N4O2S	370.0524		143		C17H7N5OS3	392.9813	
12		C8H14O5S	222.0562		56		C13H10N4O5S2	366.0093		100		C15H14O11	370.0536		144		C13H19N2O8PS	394.0600	
13		C13H24O3	228.1725		57		C12H8N4O6S2	367.9885		101		C16H14N6OS2	370.0671		145		C18H18O8S	394.0722	
14		C14H14OS	230.0765		58		C12H20N2O7S2	368.0712		102		C18H14N2O7	370.0801		146		C23H25NO3S	395.1555	
15		C10H17NO5	231.1107		59		C18H12NO4PS	369.0225		103		C14H19N4O4PS	370.0865		147		C21H24N4S2	396.1442	
16		C10H16O4S	232.0769		60		C13H12N3O8P	369.0362		104		C14H26O11	370.1475		148		C16H28O11	396.1632	
17		C15H24O2	236.1776		61		C12H11N5O7S	369.0379		105		C21H30N4O2	370.2369		149		C17H32O10	396.1995	
18		C8H14O8	238.0689		62		C14H15N3O5S2	369.0453		106		C22H42O4	370.3083		150		C13H11N5O6S2	397.0151	
19		C13H25NO3	243.1834		63		C19H15NO5S	369.0671		107		C11H5N2O9PS	371.9453		151		C20H15NO6S	397.0620	
20		C17H10S	246.0503		64		C16H19NO5S2	369.0705		108		C12H20O13	372.0904		152		C17H36NO7P	397.2229	
21		C9H16O8	252.0845		65		C16H11N5O6	369.0709		109		C13H24O12	372.1268		153		C17H18O7S2	398.0494	
22		C11H16N4OS	252.1045		66		C14H16N3O7P	369.0726		110		C14H15O8PS	374.0225		154		C18H26NO5PS	399.1269	
23		C10H20O7	252.1209		67		C14H15N3O9	369.0808		111		C18H30O8	374.1941		155		C16H20NO7PS	401.0698	
24		C6H13O9P	260.0296		68		C13H23N07S2	369.0916		112		C17H14NO5PS	375.0330		156		C17H7O8PS	401.9599	
25		C16H6O2S	262.0089		69		C14H19N5O3S2	369.0929		113		C20H10O2S3	377.9843		157		C20H18O3S3	402.0418	
26		C15H23NO3	265.1678		70		C18H15N3O6	369.0961		114		C11H23O12P	378.0927		158		C16H19O8PS	402.0538	
27		C11H13N2O4P	268.0613		71		C19H19N3OS2	369.0970		115		C12H5N5O6S2	378.9681		159		C13H22O12S	402.0832	
28		C16H30O3	270.2195		72		C16H23N3OS3	369.1003		116		C13H8N4O6S2	379.9885		160		C15H22N4O7S	402.1209	
29		C13H13NO6	279.0743		73		C20H19NO4S	369.1035		117		C10H21O13P	380.0718		161		C16H26N4O6S	402.1573	
30		C14H10O5S	290.0249		74		C22H15N3O3	369.1113		118		C18H12N4O6	380.0757		162		C9H14N2O12P2	404.0024	
31		C17H26O4	294.1831		75		C13H24NO9P	369.1189		119		C13H11N5O5S2	381.0202		163		C16H13N4O7P	404.0522	
32		C14H15N07	309.0849		76		C21H15N5O2	369.1226		120		C21H10N4O4	382.0702		164		C16H24N2O10	404.1431	
33		C20H9N3S	323.0517		77		C14H2/NO6S2	369.1280		121		C14H17N508	383.1077		165		C19H32O9	404.2046	
34		C9H13N2O9P	324.0357		78		C23H19N3S	369.1300		122		C12H5N2O11P	383.9631		166		C21H14N2OS3	406.0268	
35		C13H24O9	324.1420		/9		C1/H24N06P	369.1341		123		C22H8OS3	383.9/3/		167		C20H904PS2	407.9680	
36		C12H22O10	326.1213		80		C13H2/N3O5S2	369.1392		124		C15H16N2O6S2	384.0450		168		C15H9N2O8PS	407.9817	
37		C12H907PS	327.9807		81		C11H23N509	369.1496		125		C13H20011S	384.0726		169		C13H20N407S2	408.0773	
38		C9H19O11P	334.0664		82		C16H23N3O7	369.1536		126		C14H24O10S	384.1090		170		C19H2008S	408.0879	
39		C12H20O11	340.0265		00			260 1762		127			204.1210		171		C20H24075	400.1245	
40		C17H26OS2	340.1006		84 95			369.1702		128		C25H44U4	285 0101		172		C20H4008	408.2723	
41		C17U19N4O25	242.1140		80			260 1000		129		C19U100452	205 07/1		174		C20H1104B52	409.0131	
42		C12H14NO9P	342.1150		00 97		CITERSTING	360 3400		121		C14H1100455	205 0061		175		C19H34O10	409.9650	
45		C17H16O69	348 0669		07 88		C23H/7NO2	369.2450		122		C13H220052	386 0705		176		C13HQN50752	A10.2132	
44		CT/H10003	546.0008		00		CZ5H4/NUZ	309.3007		152		C13H220932	360.0705		110		CT2H3M2O122	410.3343	

		assigned		Error			assigned		Error			assigned		Error			assigned		Err
	m/z	formula	Mass	(ppm)		m/z	formula	Mass	(nnm)		m/z	formula	Mass	(nnm)		m/z	formula	Mass	Inn
177		C13H8N4O8S2	411.9784	(ppiii)	221		C20H16NO6PS	429.0436	(ppin)	265		C22H22N2O6S	442.1199	(ppiii)	309		C18H20NO9PS	457.0596	(PP
178		C16H7N5O5S2	412.9889		222		C16H23N5O9	429.1496		266		C14H5NO14S	442.9431		310		C16H27NO12S	457.1254	
179		C13H8N3O11P	412.9896		223		C14H6N14O	429.9478		267		C31H13N3O	443.1059		311		C17H31NO13	457.1795	
180		C16H23N5O8	413.1547		224		C17H6N2O10S	429.9743		268		C15H25NO12S	443.1097		312		C23H39NO8	457.2676	
181		C14H10N2O11S	414.0005		225		C19H18N4O2S3	430.0592		269		C24H17N3O6	443.1117		313		C16H10O14S	457.9791	
182		C17H23N2O6PS	414.1014		226		C16H30O13	430.1686		270		C14H26N3O9PS	443.1127		314		C16H26O15	458.1272	
183		C16H30O8S2	414.1382		227		C23H42O7	430.2931		271		C17H25N5O9	443.1652		315		C25H46O7	458.3244	
184		C24H30O6	414.2042		228		C16H6N3O8PS	430.9613		272		C18H20O9S2	444.0549		316		C17H33NO13	459.1952	
185		C16H18NO8PS	415.0491		229		C19H14NO7PS	431.0229		273		C21H21N2O5PS	444.0909		317		C22H37NO9	459.2468	
186		C17H22NO7PS	415.0855		230		C18H13N3O10	431.0601		274		C24H44O7	444.3087		318		C15H12N2O15	460.0238	
187		C14H26NO9PS	415.1066		231		C17H22NO8PS	431.0804		275		C19H19N5O6S	445.1056		319		C14H16N6O8S2	460.0471	
188		C16H17O9PS	416.0331		232		C15H29NO13	431.1639		276		C18H24NO10P	445.1138		320		C16H28O15	460.1428	
189		C16H32O12	416.1894		233		C16H8N4O5S3	431.9657		277		C16H31NO13	445.1795		321		C16H31NO14	461.1745	
190		C20H32O9	416.2046		234		C19H13O8PS	432.0069		278		C22H23N9S	445.1797		322		C22H39NO9	461.2625	
191		C16H11N5O3S3	417.0024		235		C20H16O5S3	432.0160		279		C17H11N4O7PS	446.0086		323		C18H11N2O9PS	461.9923	
192		C17H11N3O10	417.0444		236		C16H17O10PS	432.0280		280		C13H19O13PS	446.0284		324		C17H11N4O8PS	462.0035	
193		C16H10N4O4S3	417.9864		237		C15H28O14	432.1479		281		C14H15N4O9PS	446.0297		325		C20H15O9PS	462.0174	
194		C19H15O7PS	418.0276		238		C16H8N3O8PS	432.9770		282		C16H14O15	446.0333		326		C19H14N2O12	462.0547	
195		C20H34O9	418.2203		239		C21H24NO5PS	433.1113		283		C17H19O10PS	446.0437		327		C18H23O10PS	462.0750	
196		C16H21O9PS	420.0644		240		C11H23N5O11S	433.1115		284		C18H23O9PS	446.0800		328		C14H18N5O11P	463.0740	
197		C16H24N2O11	420.1380		241		C16H7N2O9PS	433.9610		285		C18H13N3O11	447.0550		329		C18H29N3O11	463.1802	
198		C20H36O9	420.2359		242		C20H10N4O2S3	433.9966		286		C18H25NO12	447.1377		330		C18H12N2O11S	464.0162	
199		C15H11N5O6S2	421.0151		243		C15H22N4O7S2	434.0930		287		C15H29NO14	447.1588		331		C16H16O16	464.0438	
200		C23H35NO6	421.2464		244		C23H17NO6S	435.0777		288		C19H20N4O3S3	448.0698		332		C19H16N2O12	464.0703	
201		C12H23O14P	422.0824		245		C22H21N5O3S	435.1365		289		C18H25O9PS	448.0957		333		C21H20O12	464.0955	
202		C17H30N2O8S	422.1723		246		C15H17O9PS2	436.0052		290		C22H40O9	448.2672		334		C22H40O10	464.2621	
203		C21H42O8	422.2880		247		C19H17O8PS	436.0382		291		C17H11N3O8S2	448.9988		335		C24H48O8	464.3349	
204		C23H37NO6	423.2621		248		C15H24N4O7S2	436.1086		292		C25H11N3S3	449.0115		336		C17H12N3O7PS2	464.9854	
205		C14H5N2O10PS	423.9403		249		C19H32O11	436.1945		293		C22H43O7P	450.2746		337		C17H11N3O9S2	464.9937	
206		C13H5N4O11P	423.9692		250		C20H36O10	436.2308		294		C23H46O8	450.3193		338		C20H11N5O3S3	465.0024	
207		C21H13O6PS	424.0170		251		C22H44O8	436.3036		295		C15H18NO13P	451.0516		339		C21H23N07S2	465.0916	
208		C12H16N4O9S2	424.0359		252		C12H14N4O10S2	438.0151		296		C12H25N3O13S	451.1108		340		C14H28NO14P	465.1247	
209		C11H21O15P	424.0617		253		C12H14N4O12S	438.0329		297		C19H8N4O4S3	451.9708		341		C18H27NO13	465.1482	
210		C19H20O7S2	424.0650		254		C19H34O11	438.2101		298		C20H36O11	452.2258		342		C21H38O11	466.2414	
211		C12H25O14P	424.0981		255		C20H38O10	438.2465		299		C15H11N5O8S2	453.0049		343		C17H13N3O9S2	467.0093	
212		C20H24O8S	424.1192		256		C15H13N5O7S2	439.0256		300		C15H10N4O9S2	453.9889		344		C17H8O12S2	467.9457	
213		C28H56O2	424.4280		257		C18H8N4O4S3	439.9708		301		C18H10N6O3S3	453.9977		345		C16H8N2O13S	467.9747	
214		C17H7N5O5S2	424.9889		258		C15H12N4O8S2	440.0097		302		C12H14N4O13S	454.0278		346		C14H20N4O10S2	468.0621	
215		C13H6N4O9S2	425.9576		259		C22H16O6S2	440.0388		303		C14H31O14P	454.1450		347		C21H27NO9S	469.1407	
216		C13H22N4O8S2	426.0879		260		C33H12O2	440.0837		304		C25H14NPS3	455.0026		348		C15H7N2O14P	469.9635	
217		C23H22O6S	426.1137		261		C28H40O2S	440.2749		305		C17H29NO13	455.1639		349		C21H14N2O9S	470.0420	
218		C13H5N2O13P	427.9529		262		C16H27NO13	441.1482		306		C15H9N2O13P	455.9842		350		C19H18O12S	470.0519	
219		C17H21N2O7PS	428.0807		263		C23H39NO7	441.2727		307		C20H24O10S	456.1090		351		C25H14N2O8	470.0750	
220		C32H12O2	428.0837		264		C23H10N2O4S2	442.0082		308		C24H40O8	456.2723		352		C17H13NO11S2	470.9930	

 m/z		assigned		Error			assigned		Error			assigned		Errc
	m/z	formula	Mass	<i>,</i> ,		m/z	formula	Mass	, ,		m/z	formula	Mass	,
		<u></u>	474 2460	(ppm)			622112021000	402 45 62	(ppm)	424		62211240446	406 4020	(ppr
353		C23H37NO9	4/1.2468		387		C22H29NO9S	483.1563		421		C22H24O11S	496.1039	
354		C19H1/N6O5PS	472.0719		388		C18H8N60553	483.9718		422		C15H29O16P	496.1192	
355		C24H40O9	472.2672		389		C16H12N4O10S2	483.9995		423		C22H28N2O9S	496.1516	
356		C21H16NO8PS	473.0334		390		C17H16N4O9S2	484.0359		424		C22H2/NO10S	497.1356	
357		C18H35N013	473.2108		391		C13H17N4O14P	484.0479		425		C15H32N015P	497.1510	
358		C1/H30015	474.1585		392		C14H20N4O1152	484.0570		426		C18H31N3O13	497.1857	
359		C16H30N2O14	4/4.169/		393		C25H24O4S3	484.0837		427		C1/H23011PS2	498.0419	
360		C24H42O9	474.2829		394		C18H28O15	484.1428		428		C20H18N806S	498.1070	
361		C19H9NO14	475.0023		395		C18H32N2O13	484.1904		429		C22H26O11S	498.1196	
362		C16H29NO15	475.1537		396		C20H16N5O6PS	485.0559		430		C24H14N5O4PS	499.0504	
363		C20H29NO12	475.1690		397		C24H23N08S	485.1144		431		C25H25N08S	499.1301	
364		C17H33NO14	475.1901		398		C18H31NO12S	485.1567		432		C15H8N4O12S2	499.9580	
365		C23H41NO9	475.2781		399		C15H7N2O11PS2	485.9229		433		C19H8N4O9S2	499.9733	
366		C20H13O6PS3	475.9612		400		C21H12O8P2S	485.9728		434		C16H21O12PS2	500.0212	
367		C21H17O5PS3	475.9976		401		C11H19O19P	486.0257		435		C17H16N4O10S2	500.0308	
368		C16H28O16	476.1377		402		C13H18N4O12S2	486.0363		436		C21H24O14	500.1166	
369		C17H32O15	476.1741		403		C20H9NO12S	486.9845		437		C15H24N4O15	500.1238	
370		C17H27N5O9S	477.1529		404		C16H26NO10PS2	487.0736		438		C18H28O16	500.1377	
371		C17H7N2O11PS	477.9508		405		C23H13N4O5PS	488.0344		439		C26H29O8P	500.1600	
372		C20H15O6PS3	477.9768		406		C17H32N2O14	488.1854		440		C28H52O7	500.3713	
373		C21H10N4O10	478.0397		407		C18H36N2O13	488.2217						
374		C21H19O9PS	478.0487		408		C24H40O10	488.2621						
375		C23H46NO7P	479.3012		409		C17H31NO13S	489.1516						
376		C17H13N4O11P	480.0318		410		C17H31NO15	489.1694						
377		C17H20O12S2	480.0396		411		C19H23O11PS	490.0699						
378		C22H24O10S	480.1090		412		C18H34O15	490.1898						
379		C17H28N4O8S2	480.1349		413		C24H42O10	490.2778						
380		C22H40O11	480.2571		414		C23H40O11	492.2571						
381		C17H7NO16	480.9765		415		C24H44O10	492.2934						
382		C13H24NO14PS	481.0655		416		C14H15N5O13S	493.0387						
383		C20H14N6O3S3	482.0290		417		C25H35O6PS	494.1892						
384		C22H26O10S	482.1247		418		C17H13N5O9S2	495.0155						
385		C13H18N5O13P	483.0639		419		C14H17N5O13S	495.0544						
386		C25H25NO7S	483.1352		420		C20H16O11S2	496.0134						

r	n/z assigned formula	Mass		m/z	assigned formula	Mass
<u>Cellのみに</u> 材	<u> </u>		Vacuole	のみに検出	されたピーク	
1	C13H14N4O5S2	370.0406	1		C13H8N4O6S2	379.9885
2	C23H10O6	382.0477	2		C13H8O14	387.9914
3	C13H12N6O5S2	396.0311	3		C32H12O2	428.0837
4	C12H25O13P	408.1033	4		C22H23N9S	445.1797
5	C21H14O7S	410.0460	5		C15H12N2O15	460.0238
6	C15H26NO10P	411.1294	6		C25H14N2O8	470.0750
7	C14H12N4O7S2	412.0147	7		C19H9NO14	475.0023
8	C26H36O2S	412.2436	8		C21H10N4O10	478.0397
9	C17H20O6S3	416.0422	9		C17H7NO16	480.9765
10	C17H12N2O9S	420.0264	10		C14H20N4O11S2	484.0570
11	C23H16O2S3	420.0312	11		C16H26NO10PS2	487.0736
12	C15H23N2O8PS	422.0913	12		C15H16N2O5P2	366.0534
13	C17H17O9PS	428.0331				
14	C21H17N5O4S	435.1001				
15	C23H20O7S	440.0930				
16	C19H17N5O8	443.1077				
17	C18H20O11S	444.0726				
18	C18H28N4O7S	444.1679				
19	C13H16N3O13P	453.0421				
20	C19H17O8PS2	468.0102				
21	C17H18N4O10S	470.0744				
22	C23H31NO8S	481.1770				
23	C16H14N4O10S2	486.0151				
24	C17H12N7O5PS2	489.0079				

Table 3-4. 細胞および液胞のみに検出された分子をそれぞれ抜粋

次に、植物個体から抽出した代謝産物の infusion 分析を行い、抽出溶媒をブランクとして 差し引いたマスリストを作成して培養細胞と液胞のノンターゲット解析と同様の解析を行っ た。その結果、シュートの positive mode では 2,080 個、根では 2,735 個のピークが検出され た。一方、negative mode ではシュートで 2,191 個、根では 2,450 個のピークが検出された。 培養細胞、液胞、シュート、根、すべてのサンプルで共通して検出されたピーク数は 47 個で、 予測分子式および KNApSAcK データベースでアノテーションした結果を Table 3-5.に示す。 総ピーク数に対して 4 つのサンプルで共通するピークが少ないのは、サンプルの組成やそれ ぞれのサンプルが持つ夾雑物によって、代謝産物のイオン化効率が変化し検出されるピーク に差が出てくることが考えられる。negative mode で検出されたシュートおよび根の *m/z* < 500 について分子式予測を行った結果を Table 3-6.および Table 3-7.にそれぞれ示す。シュートで は 269 個、根では 664 個のピークについて分子式が予測され、シュートと根に共通のピーク は 90 個であった。これらについて KNApSAcK データベースによる既知物質の検索を行った ところ、二次代謝産物が多く、培養細胞や液胞でアノテーションされたグルコシノレートも 確認された。

	detected	assigned		Annotation
	m/z	formula	IVIASS	by KNApSAcK
1	179.05611	C6H12O6	180.06339	D-Glucose;Glucose;alpha-D-Glucose 他
2	195.05103	C6H12O7	196.05830	D-Gluconate;Gluconic acid;D-Gluconic acid 他
3	207.08741	C8H16O6	208.09469	Ethyl beta-D-glucopyranoside;(-)-Ethyl beta-D-glucopyranoside 他
4	209.06668	C7H14O7	210.07395	alpha-D-Mannoheptulose 他
5	231.06965			Camphor-10-Surfonic acid as internal standard
6	245.04305	C17H10S		
7	259.02231	C6H13O9P	260.02959	D-Glucose 6-phosphate 他
8	269.21222	C16H30O3		
9	333.05909	C9H19O11P		
10	355.08820	C12H20O12		
11	368.08565	C14H19N5O3S2		
12	368.13194	C13H27N3O5S2		
13	369.00258	C15H15O5PS2		
14	377.08544	C11H23O12P		
15	379.06457	C10H21O13P		
16	381.06293	C21H10N4O4		
17	383.31668	C23H44O4		
18	387.11441	C13H24O13		
19	401.04655	C16H19O8PS		
20	401.07554	C13H22O12S		
21	403.19736	C19H32O9	404.20463	Staphylionoside C;(-)-Staphylionoside C 他
22	419.13073	C16H24N2O11		
23	439.03155	C22H16O6S2		
24	439.07645	C33H12O2		
25	443.04760	C18H20O9S2		

Table 3-5. 全てのサンプル(シュート、根、細胞、液胞)で共通に存在が示唆された分子候補と KNApSAcK によるアノテーション結果 (m/z < 500 in negative mode

26	445.03638	C17H19O10PS			
27	446.15153	C15H29NO14			
28	453.02053	C12H14N4O13S			
29	455.10174	C20H24O10S			
30	456.17226	C17H31NO13			
31	460.16718	C16H31NO14			
32	461.06768	C18H23O10PS			
33	463.03656	C16H16O16			
34	463.08820	C21H20O12	464.09548	6-Hydroxyluteolin 5-glucoside	他
35	473.15119	C17H30O15			
36	473.16243	C16H30N2O14			
37	474.14644	C16H29NO15			
38	477.04146	C10H24O17P2			
39	479.24979	C22H40O11			
40	481.11701	C22H26O10S			
41	483.04041	C13H17N4O14P			
42	488.16209	C17H31NO15			
43	492.03123	C14H15N5O13S			
44	496.12829	C22H27NO10S			
45	499.01393	C16H21O12PS2			
46	499.02351	C17H16N4O10P2			
47	499.10933	C21H24O14			

Table 3-6. シュートに存在が示唆された分子候補 (*m/z* < 500 in negative mode)

		assigned		Error			assigned		Error			assigned		Error		assigned		Error
	m/z	formula	Mass			m/z	formula	Mass			m/z	formula	Mass		m/z	formula	Mass	
				(ppm)					(ppm)					(ppm)				(ppm)
1	179.0562	C6H12O6	180.0634	0.5	71	373.1587	C22H23N4S	375.1643	-0.2	141	421.1634	C18H3109S	423.1689	0.3	211 447.0932	C21H20O11	448.1006	-0.2
2	193.0142	C9H6O5	194.0215	-0.2	72	377.0280	C13H15O11S	379.0335	0.2	142	422.0254	C21H14NO5PS	423.0330	-0.8	212 447.1295	C22H24O10	448.1369	-0.4
3	195.0511	C6H12O7	196.0583	0.4	73	377.0855	C11H23O12S	379.0910	0.2	143	422.0420	C16H1/N5O3P3	420.0544	-0.2	213 447.2235	C21H36O10	448.2308	-0.2
4	207.0875	C8H16O6	208.0947	0.4	74	3/7.1/11	C13H2/N6O5S	3/9.1/64	0.9	144	423.0187	C14H12N6O6P2	422.0294	0.0	214 448.1095	C17H23N013	449.1169	-0.4
5	209.0667	C/H14O/	210.0740	0.1	75	379.0261	C13H1709PS	380.0331	0.8	145	423.0544	C22H16O7P	423.0634	0.0	215 448.1824	C19H31N011	449.1897	-0.1
6	218.9944	C11H8OP2	218.0050	0.1	76	379.0647	C21H16O5P	379.0735	0.3	146	423.0698	C15H21O12S	425.0754	0.0	216 449.0361	C19H14O13	450.0434	-0.1
7	223.0612	C11H12O5	224.0685	0.0	77	379.0826	C21H16O7	380.0896	0.7	147	423.0876	C26H16O6	424.0947	0.4	217 449.0455	C23H18N2O2P3	447.0581	-0.6
8	230.0394	C11H9N3OP	230.0483	0.2	78	381.0629	C21H10N4O4	382.0702	-0.1	148	423.1428	C17H29O10S	425.1481	0.6	218 449.0495	C20H14N6O3P2	448.0603	-0.2
9	231.0696	C10H16O4P	231.0786	-0.2	79	381.2051	C17H35O7S	383.2103	0.9	149	423.1606	C28H24O4	424.1675	1.0	219 449.0578	C19H19N2O7PS	450.0651	0.0
10	237.0768	C12H14O5	238.0841	-0.2	80	383.0360	C16H17O7PS	384.0433	0.0	150	423.1791	C18H33O9S	425.1845	0.4	220 449.1088	C21H22O11	450.1162	-0.3
11	245.0431	C17H10P	245.0520	0.2	81	383.3166	C23H44O4	384.3240	-0.2	151	424.0497	C21H15NO7P	424.0586	0.1	221 449.1791	C27H30O4P	449.1882	-0.2
12	253.0928	C9H18O8	254.1002	-0.4	82	384.0116	C17H11N3O4P2	383.0225	-0.6	152	425.0011	C17H6N4O10	426.0084	0.0	222 450.0567	C15H14N7O8S	452.0625	-0.4
13	259.0223	C17H8OP	259.0313	0.0	83	385.1094	C25H14N4O	386.1168	-0.2	153	425.0806	C13H22N4O8P2	424.0913	-0.1	223 450.1981	C19H33NO11	451.2054	0.0
14	269.2121	C16H30O3	270.2195	-0.4	84	385.1140	C17H22O10	386.1213	-0.1	154	426.0864	C18H21NO9P	426.0954	-0.1	224 450.2033	C25H29N3O5	451.2107	-0.3
15	271.2278	C16H32O3	272.2351	-0.3	85	385.1504	C18H26O9	386.1577	0.0	155	426.9815	C17H8N4O6P2	425.9919	0.6	225 450.9606	C11H9N4O12PS	451.9675	0.8
16	285.0615	C12H14O8	286.0689	-0.3	86	385.1867	C19H30O8	386.1941	-0.2	156	427.1033	C22H20O9	428.1107	-0.4	226 451.0041	C25H12N2OP3	449.0162	0.4
17	285.2434	C17H34O3	286.2508	-0.4	87	387.1658	C18H28O9	388.1733	-0.7	157	427.1973	C21H32O9	428.2046	-0.1	227 451.0181	C17H13N2O11S	453.0240	-0.7
18	289.0849	C12H19O6S	291.0902	0.9	88	387.2024	C19H32O8	388.2097	-0.1	158	428.9865	C15H11O13S	430.9920	0.1	228 451.1223	C14H29O14S	453.1278	0.2
19	297.2435	C18H34O3	298.2508	-0.1	89	389.0246	C21H14N2P3	387.0370	-0.1	159	429.0173	C13H10N4O13	430.0244	0.3	229 452.0523	C24H11N3O7	453.0597	-0.3
20	317.0642	C20H14O2P	317.0731	0.1	90	389.1241	C20H22O8	390.1315	-0.2	160	429.0681	C20H19N2O5PS	430.0752	0.3	230 452.9973	C16H11N2O12S	455.0033	-0.8
21	323.1349	C13H24O9	324.1420	0.4	91	389.1765	C18H26N6O2P	389.1855	0.0	161	429.2129	C21H34O9	430.2203	-0.2	231 453.0085	C15H19O10P2S	453.0174	0.1
22	329.0869	C19H14N4P	329.0956	0.8	92	390.0086	C21H13NOP3	388.0210	-0.1	162	430.0904	C20H13N7O5	431.0978	-0.3	232 453.0204	C22H15O7PS	454.0276	0.1
23	330.0467	C12H13NO10	331.0539	0.1	93	391.1657	C15H28N4O6P	391.1746	0.1	163	431.0928	C21H24N2O2P3	429.1051	0.2	233 453.0801	C19H14N6O8	454.0873	0.1
24	333.0381	C12H15O9S	335.0437	0.0	94	391.1974	C18H32O9	392.2046	0.1	164	431.0983	C21H20O10	432.1056	-0.2	234 453.1015	C24H22O7P	453.1103	0.3
25	333.0592	C20H14O3P	333.0681	0.3	95	393.1450	C14H26N4O7P	393.1539	0.1	165	431.1920	C20H32O10	432.1995	-0.6	235 453.1194	C24H22O9	454.1264	0.6
26	337.0777	C12H18O11	338.0849	0.2	96	394.9456	C15H9O7P2S	394.9544	0.4	166	431.2286	C21H36O9	432.2359	-0.1	236 453.2129	C23H34O9	454.2203	-0.2
27	339.0721	C15H16O9	340.0794	-0.2	97	395.0854	C16H20N4O4P2	394.0960	0.2	167	433.0411	C19H14O12	434.0485	-0.3	237 454.9764	C18H8N4O7P2	453.9868	0.5
28	341.1071	C17H26OP3	339.1196	-0.6	98	396.2140	C19H31N3O6	397.2213	0.0	168	433.1026	C17H27N2O5P2S	433.1116	-0.1	238 454.9942	C18H8N4O9P	455.0029	0.6
29	351.1198	C16H20N2O7	352.1271	0.1	99	397.0307	C10H14N4O11P	397.0397	0.0	169	433.1377	C20H18N8O4	434.1451	-0.3	239 455.0973	C17H21N4O9S	457.1029	-0.1
30	352.1036	C16H19NO8	353.1111	-0.5	100	397.1138	C18H22O10	398.1213	-0.6	170	433.2079	C20H34O10	434.2152	0.0	240 455.1016	C20H24O10P	455.1107	-0.3
31	355.0201	C18H13O4PS	356.0272	0.5	101	397.2264	C18H38O7P	397.2355	-0.4	171	434.0138	C15H18NO8P2S	434.0228	-0.2	241 455.9861	C23H12N3P3S	454.9965	0.6
32	355.0581	C18H16N2O2P2	354.0687	0.2	102	399.0099	C19H13O6PS	400.0170	0.3	172	434.9866	C19H8N4O5P2	433.9970	0.6	242 456.1722	C17H31NO13	457.1795	-0.1
33	355.0883	C12H20O12	356.0955	0.3	103	399.0464	C10H16N4O11P	399.0553	0.1	173	435.0312	C19H17O8PS	436.0382	0.7	243 457.1198	C16H26O15	458.1272	-0.2
34	361.0541	C21H14O4P	361.0630	0.3	104	399.0675	C17H21O7PS	400.0746	0.5	174	435.1343	C19H24N4O6P	435.1433	-0.2	244 457.1351	C20H26O12	458.1424	-0.1
35	361.0906	C11H23O11S	363.0961	0.2	105	401.0467	C16H19O8PS	402.0538	0.4	175	435.1385	C24H24N2O4P	435.1474	0.2	245 457.9752	C20H14NO4P3S	456.9856	0.5
36	362.0507	C21H9N5P	362.0596	0.3	106	401.0646	C16H19O10S	403.0699	0.7	176	435.2962	C22H44O8	436.3036	-0.3	246 459.0053	C16H12O16	460.0125	0.1
37	364.0492	C18H12N3O4S	366.0549	-0.2	107	401.0756	C15H19N2O9S	403.0811	0.1	177	436.0411	C22H16NO5PS	437.0487	-0.7	247 459.0214	C21H16O8P2	458.0320	0.0
38	367.0428	C15H16N2O5P2	366.0534	0.0	108	401.1088	C17H22O11	402.1162	-0.3	178	437.0234	C16H14N4O7P2	436.0338	0.7	248 459.0310	C21H17O8PS	460.0382	0.2
39	367.1054	C19H20N4P2	366.1163	-0.7	109	401.1817	C19H30O9	402.1890	0.0	179	437.0406	C16H22O8P3	435.0528	0.5	249 459.0464	C15H16N4O11P	459.0553	0.1
40	368.0268	C15H15NO6P2	367.0375	0.0	110	402.1648	C24H25N3OP	402.1735	0.6	180	437.1276	C21H26O8P	437.1365	0.1	250 459.1192	C17H24N4O9P	459.1281	0.2
41	368.0448	C15H15NO8P	368.0535	0.6	111	403.1245	C17H24O11	404.1319	-0.2	181	437.1870	C28H26N2O3	438.1943	-0.2	251 459.1355	C16H28O15	460.1428	-0.1
42	368.0745	C15H19N3O4P2	367.0851	0.2	112	403.1396	C21H24O8	404.1471	-0.6	182	437.2422	C19H39N2O7S	439.2478	0.0	252 459.1829	C16H32N2O13	460.1904	-0.6

43	368.0782	C20H19NO2P2	367.0891	-0.7 1	13 403.19	2 C19H32O9	404.2046	-0.4	183	438.0368	C16H17N5O4P3	436.0493	-0.4	253	459.2135	C24H32N2O7	460.2210	-0.4
44	368.0854	C14H19N5O3P2	367.0963	-0.7 1	14 404.002	0 C16H11N3O6P2	403.0123	0.9	184	438.0454	C15H22NO8P2S	438.0541	0.5	254	459.2232	C22H36O10	460.2308	-0.8
45	368.0891	C18H15N3O6	369.0961	0.8 1	15 404.104	5 C18H23N5P3	402.1166	0.5	185	439.0024	C15H12N4O8P2	438.0130	0.1	255	459.2597	C23H40O9	460.2672	-0.6
46	368.0928	C23H15NO4	369.1001	-0.1 1	16 405.212	9 C19H34O9	406.2203	-0.3	186	439.0316	C22H16O6P2	438.0422	0.1	256	460.1671	C16H31NO14	461.1745	-0.2
47	368.1195	C13H23NO11	369.1271	-0.9 1	17 406.96	9 C13H5N4O10S	408.9726	-0.4	187	439.0763	C33H12O2	440.0837	-0.3	257	461.0104	C20H15O9PS	462.0174	0.5
48	368.1316	C13H27N3O5P2	367.1426	-0.9 1	18 407.09	9 C12H25O13S	409.1016	-0.2	188	439.0858	C23H20O7P	439.0947	0.2	258	461.0257	C14H14N4O12P	461.0346	0.2
49	368.1340	C11H24N5O7S	370.1396	-0.2 1	19 407.168	7 C25H28O3P	407.1776	0.1	189	439.1168	C13H25N6O7PS	440.1243	-0.5	259	461.0582	C18H22O10P2	460.0688	0.1
50	368.1355	C20H24N3PS	369.1429	-0.2 1	20 408.97	9 C17H6N4O5P2	407.9813	0.5	190	439.1608	C21H28O10	440.1682	-0.4	260	461.0676	C18H23O10PS	462.0750	-0.2
51	368.1378	C16H24N3O5S	370.1437	-0.8 1	21 409.18	6 C21H30O8	410.1941	-0.5	191	439.2579	C22H32N8O2	440.2648	0.8	261	461.1451	C23H26O10	462.1526	-0.5
52	368.1442	C28H19N	369.1517	-0.7 1	22 411.09	9 C22H20O6P	411.0997	0.3	192	440.0236	C13H16NO14S	442.0291	0.1	262	461.9395	C11H6N5O12PS	462.9471	-0.8
53	368.3168	C22H43NO3	369.3243	-0.6 1	23 411.202	5 C21H32O8	412.2097	0.1	193	440.9753	C23H11N2P3S	439.9856	0.9	263	462.0056	C19H14NO9PS	463.0127	0.4
54	368.9829	C17H10N2O2P3	366.9955	-0.7 1	24 413.004	6 C13H10N4O10P	413.0135	0.3	194	441.0006	C23H10N2O4P2	440.0116	-0.7	264	462.0934	C25H22NO4PS	463.1007	-0.1
55	368.9998	C16H6N2O9	370.0073	-0.7 1	25 413.083	8 C16H18N2O11	414.0911	0.0	195	441.2495	C23H38O8	442.2567	0.2	265	463.0364	C16H16O16	464.0438	-0.3
56	369.0029	C15H15O5P2S	369.0115	0.9 1	26 413.218	1 C21H34O8	414.2254	0.0	196	442.0219	C17H13N7O2P3	440.0344	-0.2	266	463.0487	C16H20N2O10P2	462.0593	0.1
57	369.0049	C11H15O10PS	370.0124	-0.5 1	27 415.042	4 C20H17O6PS	416.0483	0.8	197	442.0604	C21H17NO8P	442.0692	0.4	267	463.0881	C21H20O12	464.0955	-0.2
58	369.0074	C18H10O7P	369.0164	-0.1 1	28 415.14	0 C20H32O3P3	413.1564	-0.2	198	442.1718	C20H29NO10	443.1791	-0.2	268	463.1724	C22H28N2O9	464.1795	0.4
59	369.0103	C17H11N2O4PS	370.0177	-0.4 1	29 415.14	7 C15H28O13	416.1530	0.0	199	442.2064	C18H33N7O2P2	441.2171	-0.1	269	464.0422	C16H20NO11PS	465.0495	0.0
60	369.0715	C22H16N2S2	372.0755	-0.3 1	30 417.020	7 C19H15O7PS	418.0276	0.9	200	443.0473	C20H17N2O6PS	444.0545	0.2					
61	369.0789	C11H18N2O12	370.0860	0.5 1	31 417.03	4 C19H15O9S	419.0437	0.7	201	443.1921	C21H32O10	444.1995	-0.4					
62	369.0826	C16H18O10	370.0900	-0.3 1	32 417.06	2 C16H18O13	418.0747	-0.6	202	444.9605	C18H7O12S	446.9658	0.6					
63	369.1156	C13H26N2O6P2	368.1266	-1.0 1	33 417.078	9 C15H18N2O12	418.0860	0.5	203	445.0366	C17H19O10PS	446.0437	0.5					
64	369.2047	C19H26N6O2	370.2117	0.7 1	34 417.149	9 C29H22O3	418.1569	0.7	204	445.0518	C21H19O7PS	446.0589	0.4					
65	369.2282	C20H34O6	370.2355	-0.2 1	35 417.18	2 C17H30N4O6P	417.1903	-0.3	205	445.1140	C22H22O10	446.1213	0.0					
66	370.9939	C11H8N4O9P	371.0029	-0.1 1	36 417.212	9 C20H34O9	418.2203	-0.3	206	445.2079	C21H34O10	446.2152	0.0					
67	371.0150	C18H13O5PS	372.0221	0.4 1	37 419.130	6 C16H24N2O11	420.1380	-0.3	207	446.1513	C15H29NO14	447.1588	-0.5					
68	371.0773	C19H16O8	372.0845	0.2 1	38 419.134	8 C21H24O9	420.1420	0.1	208	447.0537	C16H20N2O9P2	446.0644	-0.1					
69	371.0983	C16H20O10	372.1056	-0.2 1	39 420.040	2 C22H16NO4PS	421.0538	-0.7	209	447.0554	C25H20O2P3	445.0676	0.3					
70	373.0542	C11H19O12S	375.0597	0.2 1	40 421.090	7 C16H23O11S	423.0961	0.4	210	447.0588	C22H16N4O3P2	446.0698	-0.7					

Table 3-7. 根に存在が示唆された分子候補 (m/z < 500 in negative mode)

	assigned		Error		assigned		Error		assigned		Error		assigned		Error
m/z	formula	Mass		m/	formula	Mass		m/z	formula	Mass		m/z	formula	Mass	
			(ppm)				(ppm)				(ppm)				(ppm)
1 179.0562	C6H12O6	180.0634	0.4	84 367.0	96 C16H16O8P	367.0583	0.9	167 389.0644	C15H19O10S	391.0699	0.2	250 417.1554	C22H26O8	418.1628	-0.2
2 1/9.0/15	C10H12O3	180.0786	0.5	85 367.1	87 C21H20O6	368.1260	-0.1	168 389.1242	C20H22O8	390.1315	0.1	251 418.1013	C18H21N5O3P2	417.1120	0.0
3 191.0198	C6H8O7	192.0270	0.4	86 367.9	22 C12H8N3O9S	369.9981	-0.8	169 390.0087	C21H13NOP3	388.0210	0.1	252 418.1012	C18H21N5O3P2	417.1120	-0.2
4 191.0350	C10H8O4	192.0423	0.3	87 368.0	66 C15H15NO6P2	367.0375	-0.6	170 392.0518	C11H15N5O9P	392.0607	0.1	253 418.9960	C21H9O8S	421.0018	-0.4
5 193.0507	C10H10O4	194.0579	0.1	88 368.0	03 C12H11N5O/P	368.0396	-0.8	1/1 392.0519	C11H15N5O9P	392.0607	0.3	254 418.9963	C21H9O8S	421.0018	0.2
6 195.0511	C6H12O7	196.0583	0.2	89 368.0	49 C15H15NO8P	368.0535	1.0	172 392.9972	C14H10N4O6P2	392.0076	0.8	255 419.0086	C19H16O5P3	417.0211	-0.3
7 195.0663	C10H12O4	196.0736	0.0	90 368.0	75 C21H11N3O4	369.0750	-0.6	173 393.0625	C11H23O11PS	394.0699	-0.3	256 419.0341	C21H12N2O6P	419.0433	-0.5
8 207.0663	C11H12O4	208.0736	0.2	91 368.0	36 C14H15N3O9	369.0808	0.2	174 393.0804	C22H18O5P	393.0892	0.4	257 419.0558	C26H12O6	420.0634	-0.7
9 207.0875	C8H16O6	208.0947	0.4	92 368.0	43 C15H19N3O4P	2 367.0851	-0.4	175 393.1071	C14H23N2O9S	395.1124	0.6	258 419.1016	C17H24O10P	419.1107	-0.5
10 209.0666	C7H14O7	210.0740	-0.2	93 368.0	56 C14H19N5O3P	2 367.0963	0.0	176 393.1168	C23H22O4P	393.1256	0.4	259 419.1307	C16H24N2O11	420.1380	0.0
11 209.0820	C11H14O4	210.0892	0.2	94 368.0	91 C18H15N3O6	369.0961	0.7	177 395.0701	C12H20N4O7P2	394.0807	0.2	260 419.1348	C21H24O9	420.1420	0.0
12 221.0490	C8H14O5P	221.0579	0.3	95 368.0	28 C23H15NO4	369.1001	-0.2	178 395.1559	C16H28O11	396.1632	0.0	261 421.0494	C13H18N4O8P2	420.0600	0.2
13 221.1548	C14H22O2	222.1620	0.2	96 368.1	65 C11H23N5O5P	2 367.1174	-0.7	179 395.1924	C17H32O10	396.1995	0.3	262 421.0754	C23H18O6P	421.0841	0.5
14 223.0431	C13H9N2S	225.0486	0.0	97 368.1	99 C15H19N3O8	369.1172	-0.1	180 396.0913	C21H19NO5P	396.1001	0.5	263 421.1352	C17H26O12	422.1424	0.1
15 231.0405	C13H13PS	232.0476	0.9	98 368.1	39 C20H19NO6	369.1212	-0.1	181 397.0142	C19H14N2O2P3	395.0268	-0.7	264 421.1651	C17H30N2O8P	421.1740	0.3
16 231.0697	C10H16O4P	231.0786	0.1	99 368.1	56 C21H15N5O2	369.1226	0.9	182 397.0267	C15H15N2O7PS	398.0338	0.5	265 421.2266	C20H38O7P	421.2355	0.0
17 245.0432	C17H10P	245.0520	0.6	100 368.1	73 C17H23NO6P	368.1263	0.0	183 397.0518	C17H19O7PS	398.0589	0.4	266 422.0255	C21H14NO5PS	423.0330	-0.7
18 259.0225	C17H8OP	259.0313	0.7	101 368.1	11 C14H19N5O7	369.1284	-0.2	184 397.0694	C17H19O9S	399.0750	0.1	267 423.0191	C22H16O3P3	421.0312	0.6
19 265.1479	C12H26O4P	265.1569	0.1	102 368.1	44 C11H23N5O7F	368.1335	-0.3	185 397.1059	C18H23O8S	399.1114	0.3	268 423.0439	C16H16N4O6P2	422.0545	0.1
20 267.1966	C16H28O3	268.2038	0.0	103 368.1	62 C20H23N3P2	367.1367	0.3	186 397.2266	C18H38O7P	397.2355	0.0	269 423.0699	C15H21O12S	425.0754	0.3
21 269.2123	C16H30O3	270.2195	0.2	104 368.1	22 C13H27N3O5P	2 367.1426	0.7	187 399.0276	C19H13O8S	401.0331	0.1	270 423.0576	C19H20O7P2	422.0684	-0.3
22 271.2278	C16H32O3	272.2351	-0.1	105 368.1	57 C18H27NO3P2	367.1466	-0.6	188 399.0676	C17H21O7PS	400.0746	0.7	271 423.0696	C26H16O4P	423.0786	-0.1
23 283.2278	C17H32O3	284.2351	-0.3	106 368.1	38 C18H27NO5P	368.1627	0.3	189 399.0934	C17H20O11	400.1006	0.3	272 423.0729	C15H16N6O7P	423.0818	0.0
24 285.0405	C15H10O6	286.0477	0.0	107 368.1	86 C22H27NO2P	368.1779	-1.0	190 399.1295	C18H24O10	400.1369	-0.5	273 423.0861	C20H25O4P2S	423.0949	0.4
25 285.2071	C16H30O4	286.2144	-0.3	108 368.1	37 C18H31N3OP2	367.1942	0.4	191 399.1469	C23H30PS2	401.1527	-0.4	274 423.1872	C18H32O11	424.1945	0.1
26 293.1759	C17H26O4	294.1831	0.3	109 368.3	72 C22H43NO3	369.3243	0.6	192 400.9345	C17H7O6P2S	400.9439	-1.0	275 423.2233	C19H36O10	424.2308	-0.5
27 293.1790	C14H30O4P	293.1882	-0.6	110 368.9	91 C18H11O5PS	370.0065	-0.2	193 401.0468	C16H19O8PS	402.0538	0.7	276 425.0807	C13H22N4O8P2	424.0913	0.2
28 295.1399	C12H24O8	296.1471	0.1	111 369.0	25 C15H15O5P2S	369.0115	-0.1	194 401.0523	C20H18O5P2	400.0629	0.1	277 425.0807	C13H22N4O8P2	424.0913	0.1
29 295.2278	C18H32O3	296.2351	-0.4	112 369.0	62 C12H11N4O6P	\$ 370.0137	-0.7	195 401.0621	C10H18N4O11P	401.0710	0.1	278 425.1066	C23H22O6P	425.1154	0.3
30 295.2640	C19H36O2	296.2715	-0.8	113 369.0	97 C14H10O12	370.0172	-0.7	196 401.0756	C15H19N2O9S	403.0811	0.1	279 425.1218	C27H22O3P	425.1307	0.2
31 296.0720	C20H11NO2	297.0790	0.9	114 369.0	36 C11H14O12P	369.0223	0.6	197 401.0910	C19H19N2O6S	403.0964	0.4	280 425.2580	C20H42O7P	425.2668	0.2
32 297.0830	C10H18O10	298.0900	0.8	115 369.0	12 C13H10N2O11	370.0285	0.1	198 401.1089	C17H22O11	402.1162	-0.1	281 426.0221	C19H13N3O5P2	425.0330	-0.6
33 297.2433	C18H34O3	298.2508	-0.8	116 369.0	69 C16H19O6PS	370.0640	0.4	199 401.1454	C18H26O10	402.1526	0.2	282 426.0274	C17H13N7OP3	424.0394	0.6
34 297.2797	C19H38O2	298.2872	-0.7	117 369.0	02 C13H15N4O7S	371.0661	-1.0	200 402.0053	C14H14NO9PS	403.0127	-0.3	283 426.0866	C18H21NO9P	426.0954	0.4
35 307.1946	C15H32O4P	307.2038	-1.0	118 369.0	98 C12H22N2O7P	2 368.0902	0.7	201 402.1647	C24H25N3OP	402.1735	0.5	284 427.0735	C17H21N2O7PS	428.0807	0.3
36 307.2640	C20H36O2	308.2715	-0.7	119 369.0	25 C16H18O10	370.0900	-0.7	202 402.9948	C20H9N2O4PS	404.0021	0.1	285 427.0801	C18H21O10S	429.0855	0.2
37 309.2797	C20H38O2	310.2872	-0.8	120 369.1	11 C17H22O7P	369.1103	-0.6	203 403.0604	C18H16N2O7P	403.0695	-0.4	286 427.1247	C19H24O11	428.1319	0.2
38 311.1684	C17H28O3P	311.1776	-0.6	121 369.2	45 C18H35N4PS	370.2320	-0.6	204 403.0221	C18H13O9S	405.0280	-0.8	287 428.9340	C13H6N2O11P2	427.9447	0.0
39 311.2953	C20H40O2	312.3028	-0.8	122 369.2	53 C16H30N6O4	370.2329	-0.8	205 403.1246	C17H24O11	404.1319	0.1	288 429.0173	C13H10N4O13	430.0244	0.3
40 312.0949	C11H15N5O6	313.1022	-0.1	123 369.2	81 C20H34O6	370.2355	-0.5	206 403.1358	C16H24N2O10	404.1431	0.0	289 429.0828	C21H18O10	430.0900	0.1
41 313.1130	C16H18N4OP	313.1218	0.4	124 369.2	66 C21H38O3P	369.2559	-0.9	207 403.1399	C21H24O8	404.1471	0.2	290 429.1403	C19H26O11	430.1475	0.2
42 321.2103	C16H34O4P	321.2195	-0.7	125 369.3	10 C22H42O4	370.3083	0.0	208 403.1974	C19H32O9	404.2046	0.0	291 429.1767	C20H30O10	430.1839	0.2

43	325.0930	C15H18O8	326.1002	0.3	126	371.0151	C18H13O5PS	372.0221	0.7	209	404.0021	C13H12NO12S	406.0080	-0.9	292	429.9917	C26H10NP2S	430.0009	-0.6
44	325.1842	C18H30O3P	325.1933	-0.3	127	371.0984	C16H20O10	372.1056	0.1	210	404.1046	C18H23N5P3	402.1166	0.8	293	430.0012	C13H9N3O14	431.0085	-0.1
45	329.0868	C19H14N4P	329.0956	0.6	128	371.1137	C20H20O7	372.1209	0.1	211	404.1198	C16H23NO11	405.1271	-0.1	294	430.1467	C17H25N3O10	431.1540	0.0
46	330.0467	C12H13NO10	331.0539	0.1	129	371.1348	C17H24O9	372.1420	0.1	212	404.9988	C13H7N6O8S	407.0046	-0.5	295	430.1718	C19H29NO10	431.1791	-0.1
47	333.0592	C20H14O3P	333.0681	0.4	130	373.0508	C18H18N2OP3	371.0632	-0.1	213	405.1404	C17H26O11	406.1475	0.3	296	430.9230	C12H5N2O12PS	431.9301	0.4
48	333.0956	C21H18O2P	333.1044	0.5	131	373.0777	C15H18O11	374.0849	0.1	214	406.0009	C17H9N7P3	404.0132	0.0	297	431.0083	C20H16O5P3	429.0211	-1.0
49	335.2261	C17H36O4P	335.2351	-0.1	132	374.0348	C18H17NO2P3	372.0472	-0.1	215	407.0449	C19H20O4P3	405.0574	-0.4	298	431.0630	C21H20O6P2	430.0735	0.4
50	337.1505	C14H26O9	338.1577	0.2	133	374.1219	C15H17N7O5	375.1291	0.1	216	407.0700	C13H20N4O7P2	406.0807	-0.2	299	431.0726	C11H20N4O12P	431.0815	0.1
51	337.2053	C16H34O5P	337.2144	-0.3	134	375.0091	C20H12N2P3	373.0213	0.2	217	407.0960	C12H25O13S	409.1016	0.0	300	431.0984	C21H20O10	432.1056	0.2
52	339.1239	C20H20O5	340.1311	0.3	135	375.1449	C20H24O7	376.1522	0.0	218	407.1115	C16H25O10S	409.1168	0.5	301	431.1017	C18H24O10P	431.1107	-0.1
53	339.2000	C19H32O3P	339.2089	0.0	136	375.9930	C20H11NOP3	374.0053	0.0	219	407.1348	C20H24O9	408.1420	0.0	302	431.1349	C22H24O9	432.1420	0.4
54	339.3268	C22H44O2	340.3341	-0.2	137	377.0856	C11H23O12S	379.0910	0.5	220	408.9712	C14H7N2O11S	410.9771	-0.8	303	431.1560	C19H28O11	432.1632	0.2
55	341.0878	C15H18O9	342.0951	0.0	138	377.1009	C15H23O9S	379.1063	0.5	221	409.0543	C14H19O12S	411.0597	0.3	304	431.2286	C21H36O9	432.2359	-0.1
56	341.1031	C19H18O6	342.1103	0.2	139	377.1331	C22H22N2O2P	377.1419	0.4	222	409.0907	C15H23O11S	411.0961	0.3	305	433.0624	C16H18O14	434.0697	0.1
57	341.1243	C16H22O8	342.1315	0.4	140	378.9725	C12H5N4O9S	380.9777	0.9	223	409.1084	C19H26N2O2P3	407.1207	0.2	306	433.0673	C14H18N4O10P	433.0761	0.4
58	343.1132	C26H16O	344.1201	0.9	141	379.0648	C21H16O5P	379.0735	0.7	224	409.1715	C17H30O11	410.1788	0.0	307	433.0718	C27H14O6	434.0790	0.0
59	347.1224	C21H20N2OP	347.1313	0.2	142	379.0801	C14H21O10S	381.0855	0.4	225	409.2078	C18H34O10	410.2152	-0.3	308	433.0733	C28H10N4O2	434.0804	0.4
60	351.0688	C12H20N2O6P2	350.0797	-0.6	143	379.0827	C14H16N6O5P	379.0920	-0.7	226	411.0851	C18H21O9S	413.0906	0.1	309	433.1141	C21H22O10	434.1213	0.3
61	353.2003	C16H34O6P	353.2093	0.0	144	381.0403	C23H10O6	382.0477	-0.4	227	411.1062	C15H25O11S	413.1118	0.2	310	433.1505	C22H26O9	434.1577	0.3
62	353.3426	C23H46O2	354.3498	0.1	145	381.0528	C12H19N2O8PS	382.0600	0.2	228	413.0006	C16H14O9P2	412.0113	-0.1	311	433.3322	C27H46O4	434.3396	-0.3
63	355.0883	C12H20O12	356.0955	0.4	146	381.0630	C21H10N4O4	382.0702	0.2	229	413.0255	C20H15O6PS	414.0327	0.1	312	434.9826	C22H12O4P3	432.9948	0.2
64	355.1036	C16H20O9	356.1107	0.3	147	381.1319	C15H27O9S	383.1376	-0.2	230	413.0434	C20H15O8S	415.0488	0.5	313	435.0207	C18H12O13	436.0278	0.3
65	357.1039	C12H22O12	358.1111	0.2	148	381.1766	C16H30O10	382.1839	0.0	231	413.0837	C16H18N2O11	414.0911	-0.2	314	435.0298	C22H16N2O2P3	433.0425	-0.6
66	355.1067	C13H24O9P	355.1158	-0.3	149	381.2317	C18H38O6P	381.2406	0.1	232	413.0942	C17H23N2O6PS	414.1014	0.2	315	435.1872	C19H32O11	436.1945	-0.1
67	355.1188	C20H20O6	356.1260	0.2	150	381.9510	C13H5NO11P	381.9600	0.0	233	413.1261	C16H26N6OP3	411.1381	0.9	316	436.0412	C22H16NO5PS	437.0487	-0.4
68	357.0769	C22H14O5	358.0841	0.0	151	383.3166	C23H44O4	384.3240	-0.3	234	414.0274	C16H13N7OP3	412.0394	0.7	317	437.0234	C16H14N4O7P2	436.0338	0.7
69	357.1192	C16H22O9	358.1264	0.2	152	385.0309	C19H15O5PS	386.0378	0.9	235	415.0018	C12H8N4O13	416.0088	0.6	318	437.0406	C16H22O8P3	435.0528	0.5
70	357.1343	C20H22O6	358.1416	-0.2	153	385.0774	C16H18O11	386.0849	-0.6	236	414.9791	C14H8O15	415.9863	0.0	319	437.0713	C24H14N4O3P	437.0804	-0.3
71	359.0352	C17H16N2OP3	357.0475	-0.1	154	385.0786	C17H22O6P2	384.0892	0.3	237	415.0017	C12H8N4O13	416.0088	0.4	320	437.0807	C14H22N4O8P2	436.0913	0.1
72	359.0582	C12H17N4O5PS	360.0657	-0.7	155	385.0881	C17H23O6PS	386.0953	0.2	238	415.0345	C16H16O11P	415.0430	1.0	321	437.2029	C19H34O11	438.2101	0.2
73	359.0984	C15H20O10	360.1056	0.0	156	385.1140	C17H22O10	386.1213	0.1	239	415.0891	C18H24O7P2	414.0997	0.0	322	437.2393	C20H38O10	438.2465	0.1
74	360.2392	C18H35NO6	361.2464	0.2	157	385.1293	C21H22O7	386.1366	-0.1	240	415.0987	C18H25O7PS	416.1059	0.4	323	438.0369	C16H17N5O4P3	436.0493	-0.1
75	361.0776	C14H18O11	362.0849	-0.1	158	385.1312	C22H28PS2	387.1370	-0.6	241	415.1610	C19H28O10	416.1682	0.1	324	438.0454	C15H22NO8P2S	438.0541	0.6
76	362.0729	C13H17NO11	363.0802	0.0	159	386.0314	C22H13NO2P2	385.0422	-0.3	242	416.0836	C16H19NO12	417.0907	0.3	325	439.0179	C19H12N4O5P2	438.0283	0.7
77	363.0813	C28H12O	364.0888	-0.7	160	386.0761	C12H21NO11P	386.0852	-0.4	243	416.1212	C18H19N5O7	417.1284	0.0	326	439.0317	C22H16O6P2	438.0422	0.2
78	363.0964	C13H21N2O8S	365.1019	0.3	161	386.1569	C16H25N3O8	387.1642	0.0	244	417.0208	C17H10N2O11	418.0285	-1.0	327	439.0469	C15H21O11PS	440.0542	-0.2
79	363.1061	C22H20O3P	363.1150	0.3	162	387.0723	C19H16O9	388.0794	0.2	245	417.0360	C13H14N4O10P	417.0448	0.6	328	439.0765	C33H12O2	440.0837	0.0
80	364.0493	C18H12N3O4S	366.0549	0.0	163	387.1146	C13H24O13	388.1217	0.4	246	417.0788	C15H18N2O12	418.0860	0.2	329	439.0860	C23H20O7P	439.0947	0.6
81	366.1090	C11H21N5O7P	366.1179	0.4	164	387.1298	C17H24O10	388.1369	0.2	247	417.0932	C11H22N4O11P	417.1023	-0.2	330	439.1012	C16H25O12S	441.1067	0.3
82	367.0428	C15H16N2O5P2	366.0534	0.1	165	389.0248	C21H14N2P3	387.0370	0.3	248	417.1165	C25H22O4P	417.1256	-0.3	331	439.1822	C18H32O12	440.1894	0.2
83	367.0472	C20H8N4O4	368.0546	-0.2	166	389.0344	C19H18O3P3	387.0469	-0.3	249	417.1403	C18H26O11	418.1475	0.1	332	439.2186	C19H36O11	440.2258	0.2

_

	m/z	assigned formula	Mass	Error		m/z	assigned formula	Mass	Error		m/z	assigned formula	Mass	Error	m/z	assigned formula	Mass	Error
333	439 2854	C28H40O4	440 2927	-0.1	416	457 1715	C21H30O11	458 1788	0.0	499	473 1173	C18H18N8O8	474 1248	-0.3	582 486 1618	C21H29NO12	487 1690	0.2
334	440.9906	C17H10N6O3P3	439.0027	0.5	417	457,1927	C18H34O13	458,1999	0.1	500	473.1195	C14H26N4O12P	473.1285	-0.1	583 486,1983	C22H33NO11	487.2054	0.4
335	441.0285	C21H14O9P	441.0375	-0.1	418	457.1982	C24H30N2O7	458,2053	0.3	501	473.1510	C17H30O15	474.1585	-0.3	584 486.9922	C17H13O15S	488.9975	0.6
336	441.0546	C16H18N4O7P2	440.0651	0.4	419	457.2079	C22H34O10	458.2152	-0.1	502	473.1624	C16H30N2O14	474.1697	-0.2	585 487.0016	C21H17N2O4P3S	486.0122	0.0
337	441.0805	C15H23O13S	443.0859	0.4	420	457.3172	C25H46O7	458.3244	0.3	503	473.1663	C21H30O12	474.1737	-0.4	586 487.0389	C20H16N4O7P2	486.0494	0.2
338	441.0958	C19H23O10S	443.1012	0.5	421	458.1304	C19H25NO12	459.1377	-0.1	504	473.1776	C20H30N2O11	474.1850	-0.2	587 487.0842	C18H20N2O14	488.0915	0.1
339	441.2528	C20H42O8P	441.2617	0.1	422	458.2036	C21H33NO10	459.2104	1.0	505	474.1463	C16H29NO15	475.1537	-0.2	588 487.1095	C20H24O14	488.1166	0.3
340	441.9975	C20H14NO5P2S	442.0068	-0.8	423	458.9923	C14H12N4O10P2	458.0029	0.2	506	475.0272	C22H13N4O5PS	476.0344	0.1	589 487.1244	C24H24O11	488.1319	-0.3
341	442.0012	C14H9N3O14	443.0085	0.1	424	459.0207	C20H12O13	460.0278	0.5	507	476.1088	C16H31NO9P3	474.1212	0.0	590 487.1315	C28H25O6S	489.1372	-0.1
342	442.1026	C15H25NO12P	442.1114	0.4	425	459.1296	C23H24O10	460.1369	-0.1	508	476.1197	C22H23NO11	477.1271	-0.4	591 487.1458	C21H28O13	488.1530	0.1
343	442.2013	C20H33N3O6P	442.2107	-0.9	426	459.1662	C24H28O9	460.1733	0.4	509	477.0028	C14H14N4O11P2	476.0134	0.1	592 487.1610	C25H28O10	488.1682	0.1
344	442.2084	C21H33NO9	443.2155	0.3	427	459.1871	C21H32O11	460.1945	-0.3	510	477.0160	C16H14O17	478.0231	0.3	593 487.1781	C17H32N2O14	488.1854	0.0
345	443.0183	C21H17O5P2S	443.0272	0.2	428	459.2137	C24H32N2O7	460.2210	0.1	511	477.0418	C21H19O9PS	478.0487	0.6	594 487.1823	C22H32O12	488.1894	0.4
346	443.0477	C18H20O9P2	442.0583	0.3	429	460.1250	C22H23NO10	461.1322	0.2	512	477.0488	C15H19N4O10PS	478.0560	0.2	595 487.1934	C21H32N2O11	488.2006	0.1
347	443.1560	C20H28O11	444.1632	0.3	430	460.1672	C16H31NO14	461.1745	0.1	513	477.0560	C17H23N2O8P2S	477.0650	-0.2	596 487.9151	C15H8NO12P2S	487.9242	-0.3
348	443.1925	C21H32O10	444.1995	0.4	431	460.1826	C20H31NO11	461.1897	0.3	514	477.0582	C24H18N2O5P2	476.0691	-0.4	597 488.0882	C20H19N5O8P	488.0971	0.2
349	443.3015	C24H44O7	444.3087	0.1	432	461.0287	C21H19O6P2S	461.0378	-0.2	515	477.0608	C22H15N4O7S	479.0661	0.4	598 488.1247	C21H23N5O7P	488.1335	0.3
350	444.1877	C20H31NO10	445.1948	0.4	433	461.0419	C19H18N4O4P3	459.0541	0.4	516	477.0619	C21H22N2O5P3	475.0742	0.3	599 488.1621	C17H31NO15	489.1694	0.0
351	445.0367	C17H19O10PS	446.0437	0.7	434	461.0678	C18H23O10PS	462.0750	0.4	517	477.0643	C17H22N2O10P2	476.0750	-0.1	600 488.9810	C20H15N2O5P3S	487.9915	0.4
352	445.0681	C16H22N4O5P3	443.0803	0.3	435	461.0724	C21H18O12	462.0798	-0.3	518	477.0664	C15H19N4O12S	479.0720	-0.1	601 489.0731	C21H22N4O4P3	487.0854	0.2
353	445.0779	C21H18O11	446.0849	0.5	436	461.1089	C22H22O11	462.1162	0.0	519	477.0676	C21H18O13	478.0747	0.4	602 489.0845	C20H22N6O3P3	487.0966	0.5
354	445.0939	C26H22O3P2	444.1044	0.3	437	461.1452	C23H26O10	462.1526	-0.3	520	477.0689	C22H14N4O9	478.0761	0.2	603 489.1303	C26H22N2O8	490.1376	-0.1
355	445.1716	C20H30O11	446.1788	0.2	438	461.1666	C20H30O12	462.1737	0.2	521	477.0712	C21H23N2O5P2S	477.0803	-0.2	604 489.1613	C21H30O13	490.1686	-0.1
356	446.0460	C23H17N3OP3	444.0584	-0.1	439	461.2394	C22H38O10	462.2465	0.3	522	477.0724	C19H18N4O9P	477.0811	0.5	605 489.1766	C25H30O10	490.1839	-0.1
357	446.1304	C18H25NO12	447.1377	0.0	440	462.0932	C17H18N7O7S	464.0988	-0.1	523	477.0760	C24H18N2O7P	477.0852	-0.3	606 489.1821	C18H34O15	490.1898	-0.8
358	446.1516	C15H29NO14	447.1588	0.0	441	462.1405	C22H25NO10	463.1478	-0.1	524	477.1039	C22H22O12	478.1111	0.0	607 490.1354	C23H25NO11	491.1428	-0.1
359	446.1668	C19H29NO11	447.1741	0.1	442	463.0366	C16H16O16	464.0438	0.0	525	477.1403	C23H26O11	478.1475	0.1	608 491.0524	C20H20N4O5P3	489.0647	0.1
360	447.0467	C14H16N4O11P	447.0553	0.7	443	463.0412	C24H17O6PS	464.0483	0.3	526	477.2343	C22H38O11	478.2414	0.4	609 491.1559	C24H28O11	492.1632	0.0
361	447.0538	C16H20N2O9P2	446.0644	0.2	444	463.0365	C16H16O16	464.0438	-0.1	527	478.0882	C17H18N7O8S	480.0938	0.0	610 491.1923	C25H32O10	492.1995	0.1
362	447.0627	C19H20N4O3P3	445.0748	0.5	445	463.0486	C16H20N2O10P2	462.0593	-0.2	528	478.1542	C23H29NO8P	478.1631	0.1	611 492.0314	C14H15N5O13P	492.0404	-0.1
363	447.0881	C21H16N6O4P	447.0971	-0.1	446	463.0653	C21H16N6O3P2	462.0759	0.1	529	478.9844	C19H13O11PS	479.9916	0.1	612 492.0974	C22H23NO10P	492.1060	0.7
364	447.0904	C17H16N6O9	448.0979	-0.4	447	463.0882	C21H20O12	464.0955	0.0	530	479.0153	C17H12N4O11P	479.0240	0.5	613 492.1334	C23H27NO9P	492.1423	0.0
365	447.0914	C18H20N6O4P2	446.1021	-0.1	448	463.1458	C19H28O13	464.1530	0.1	531	479.0312	C22H16N4O3P3	477.0435	0.1	614 492.1545	C20H31NO11P	492.1635	0.0
366	447.0933	C21H20O11	448.1006	0.1	449	463.1610	C23H28O10	464.1682	0.0	532	479.0686	C18H24O11P2	478.0794	-0.3	615 492.9898	C22H11N2O8PS	493.9974	-0.5
367	447.1355	C15H28O15	448.1428	-0.1	450	463.1910	C23H32N2O6P	463.1998	0.4	533	479.1171	C15H29O15S	481.1227	-0.1	616 493.0002	C20H15O11PS	494.0073	0.3
368	447.1508	C19H28O12	448.1581	0.0	451	463.2188	C21H36O11	464.2258	0.7	534	479.1384	C18H25N8O4PS	480.1457	0.0	617 493.0098	C21H10N4O9P	493.0185	0.4
369	447.2236	C21H36O10	448.2308	0.2	452	464.0425	C16H20NO11PS	465.0495	0.6	535	479.1648	C26H28N2O5P	479.1736	0.4	618 493.0002	C20H15O11PS	494.0073	0.4
370	448.0181	C20H11N5O4P2	447.0286	0.3	453	464.1143	C28H19NO6	465.1212	0.7	536	479.2134	C21H36O12	480.2207	0.0	619 493.1177	C23H26O10P	493.1264	0.6
371	449.0362	C19H14O13	450.0434	0.0	454	464.1411	C18H27NO13	465.1482	0.3	537	479.2499	C22H40O11	480.2571	0.1	620 493.1255	C18H30N4O6P3	491.1378	0.0
372	449.0458	C23H18N2O2P3	447.0581	0.0	455	464.1563	C22H27NO10	465.1635	0.1	538	479.9991	C17H11N3O12P	480.0080	0.0	621 493.1716	C24H30O11	494.1788	0.1
373	449.0974	C17H27N2O6P2S	449.1065	-0.2	456	465.0195	C15H19N2O9P2S	465.0286	-0.4	539	480.0316	C13H15N5O13P	480.0404	0.4	622 493.2292	C22H38O12	494.2363	0.2
374	449.1089	C21H22O11	450.1162	0.0	457	465.0923	C17H27N2O7P2S	465.1014	-0.2	540	480.1360	C18H27NO14	481.1432	0.3	623 494.0468	C24H18NO7PS	495.0542	-0.2

375	449.1455	C22H26O10	450.1526	0.3	458	465.1039	C21H22O12	466.1111	0.1	541	480.1463	C19H32NO9PS	481.1535	0.0	624	494.0996	C20H25N5O4P3	492.1119	0.0
376	449.1753	C22H30N2O6P	449.1841	0.2	459	465.1221	C24H23N2O6S	467.1277	0.1	542	481.1171	C24H23N2O7S	483.1226	0.2	625	494.1153	C24H17N9O2P	494.1243	-0.1
377	449.2027	C20H34O11	450.2101	-0.2	460	465.1493	C25H26N2O5P	465.1579	0.6	543	481.1643	C27H18N10	482.1716	0.0	626	494.1153	C18H25NO15	495.1224	0.3
378	449.9797	C19H9N5O3P3	447.9918	0.5	461	465.2341	C21H38O11	466.2414	-0.1	544	481.2292	C21H38O12	482.2363	0.2	627	494.9892	C20H8N4O10P	494.9978	0.6
379	450.0568	C15H14N7O8S	452.0625	-0.2	462	465.9835	C16H9N3O12P	465.9924	0.2	545	482.0193	C15H13N7O8P2	481.0301	-0.3	628	495.0910	C18H25O14S	497.0965	0.2
380	450.1272	C19H25N5O4P2	449.1382	-0.8	463	466.1389	C18H29NO11P	466.1478	0.2	546	482.1021	C15H25N5O9P2	481.1128	0.0	629	495.1145	C22H24O13	496.1217	0.1
381	450.1440	C18H29NO10P	450.1529	0.2	464	466.3077	C28H41N3O3	467.3148	0.5	547	482.1491	C22H29NO9P	482.1580	0.1	630	495.1444	C22H28N2O9P	495.1532	0.3
382	451.0646	C27H16O5P	451.0735	0.1	465	467.0186	C13H16N4O11P2	466.0291	0.3	548	482.9921	C16H12N4O10P2	482.0029	-0.2	631	495.1487	C16H33O15S	497.1540	0.6
383	451.0704	C20H20O10P	451.0794	-0.1	466	467.0339	C17H16N4O8P2	466.0443	0.4	549	482.9943	C22H13O9PS	484.0018	-0.5	632	495.2448	C22H40O12	496.2520	0.2
384	451.0810	C11H24N4O11P2	450.0917	0.0	467	467.0912	C15H24N4O9P2	466.1019	0.0	550	483.0108	C17H16N4O7P3	481.0232	0.0	633	495.3174	C24H48O10	496.3247	-0.1
385	451.0861	C24H20O7P	451.0947	0.8	468	467.1194	C21H24O12	468.1268	-0.2	551	483.0306	C15H13N6O11S	485.0363	-0.2	634	496.0780	C18H19N5O10P	496.0870	0.0
386	451.2185	C20H36O11	452.2258	0.1	469	467.1482	C15H29N6O7PS	468.1556	-0.3	552	483.0403	C23H18O8S2	486.0443	-0.3	635	496.0803	C24H20NO9S	498.0859	0.0
387	451.2551	C21H40O10	452.2621	0.5	470	467.2133	C20H36O12	468.2207	-0.1	553	483.0499	C14H20N4O11P2	482.0604	0.3	636	496.1283	C22H27NO10P	496.1373	0.0
388	452.0525	C24H11N3O7	453.0597	0.1	471	467.2497	C21H40O11	468.2571	-0.1	554	483.0556	C17H25O10P2S	483.0644	0.4	637	496.1437	C15H32NO15S	498.1493	0.1
389	452.1143	C20H27N3O3P3	450.1265	0.3	472	467.9781	C19H7N3O10P	467.9869	0.3	555	483.0651	C18H20N4O8P2	482.0756	0.2	638	496.9472	C21H8O11S2	499.9508	0.6
390	452.9048	C16H6O10P3	450.9174	-0.4	473	468.1334	C21H27NO9P	468.1423	0.1	556	483.0908	C28H20O6P	483.0997	0.0	639	497.0345	C28H18O3P3	495.0469	-0.1
391	453.0086	C15H19O10P2S	453.0174	0.2	474	468.9823	C18H15O9P2S	468.9912	0.1	557	483.0967	C21H24O11P	483.1056	0.0	640	497.0443	C18H18N4O9P2	496.0549	0.0
392	453.0205	C12H14N4O13P	453.0295	0.0	475	469.0149	C14H11N6O11S	471.0207	-0.5	558	483.1223	C16H28N4O9P2	482.1332	-0.4	641	497.0732	C17H18N6O10P	497.0822	-0.1
393	453.0545	C17H18N4O7P2	452.0651	0.1	476	469.0287	C17H15N2O12S	471.0346	-0.6	559	483.1354	C18H28O15	484.1428	-0.2	642	497.0758	C21H22O12P	497.0849	-0.3
394	453.0803	C16H23O13S	455.0859	0.0	477	469.0447	C19H18O12P	469.0536	0.3	560	483.1465	C17H28N2O14	484.1541	-0.5	643	497.1124	C22H26O11P	497.1213	0.1
395	453.0835	C16H18N6O8P	453.0924	0.2	478	469.0754	C16H23O14S	471.0809	0.3	561	483.2083	C20H36O13	484.2156	0.0	644	497.1277	C15H31O16S	499.1333	-0.1
396	453.0862	C20H22O10P	453.0951	0.2	479	469.0811	C20H22O11P	469.0900	0.3	562	484.0160	C21H11NO13	485.0230	0.5	645	497.1379	C19H27N6O6PS	498.1450	0.3
397	453.1168	C17H27O12S	455.1223	0.1	480	469.0907	C20H23O11S	471.0961	0.4	563	484.1106	C21H27NO8P2	483.1212	0.2	646	497.2239	C21H38O13	498.2312	-0.1
398	453.2340	C20H38O11	454.2414	-0.4	481	469.1119	C17H27O13S	471.1172	0.4	564	484.1202	C21H28NO8PS	485.1273	0.2	647	498.1228	C25H25NO8P	498.1318	-0.1
399	455.0339	C16H16N4O8P2	454.0443	0.6	482	469.2841	C22H46O8P	469.2930	0.2	565	484.1462	C21H27NO12	485.1533	0.3	648	498.1616	C22H29NO12	499.1690	-0.1
400	455.0443	C22H16O9P	455.0532	0.2	483	470.0576	C18H17NO14	471.0649	0.0	566	484.1824	C22H31NO11	485.1897	-0.1	649	498.9614	C21H8O13P	498.9703	0.2
401	455.0540	C22H17O9S	457.0593	0.5	484	470.1516	C17H29NO14	471.1588	0.2	567	484.9886	C17H15N2O9P2S	484.9973	0.5	650	498.9815	C22H14O8PS2	500.9868	0.6
402	455.0726	C13H20N4O12P	455.0815	0.0	485	470.1669	C21H29NO11	471.1741	0.3	568	485.0185	C22H14O11P	485.0274	0.2	651	499.0045	C16H20O12P3	497.0168	0.2
403	455.0913	C14H24N4O9P2	454.1019	0.1	486	471.0082	C16H13N2O13S	473.0138	-0.1	569	485.0291	C13H18N4O12P2	484.0396	0.3	652	499.0142	C26H14O7S2	502.0181	0.0
404	455.1020	C20H24O10P	455.1107	0.7	487	471.0184	C25H12O8P	471.0270	0.7	570	485.0493	C19H19O13S	487.0546	0.5	653	499.0238	C17H16N4O10P2	498.0342	0.5
405	455.1142	C20H20N6O5P	455.1233	-0.4	488	471.0279	C15H12N4O14	472.0350	0.3	571	485.0701	C27H18O7P	485.0790	0.0	654	499.0294	C20H21O9P2S	499.0382	0.5
406	455.2134	C19H36O12	456.2207	0.0	489	471.0652	C17H20N4O8P2	470.0756	0.4	572	485.1099	C25H26O6P2	484.1205	0.1	655	499.0389	C21H16N4O7P2	498.0494	0.3
407	456.0151	C20H15N3O4P3	454.0275	-0.3	490	471.1508	C21H28O12	472.1581	0.0	573	485.1148	C17H26O16	486.1221	0.0	656	499.0646	C31H16O5P	499.0735	0.0
408	456.1722	C17H31NO13	457.1795	-0.1	491	471.1872	C22H32O11	472.1945	0.1	574	485.1302	C21H26O13	486.1373	0.4	657	499.0648	C20H21O13S	501.0703	0.3
409	456.1876	C21H31NO10	457.1948	0.1	492	471.2237	C23H36O10	472.2308	0.2	575	485.1415	C20H26N2O12	486.1486	0.5	658	499.0964	C19H24N4O8P2	498.1069	0.2
410	456.9645	C17H7N4O8PS	457.9722	-0.9	493	472.1118	C21H23N5O4P2	471.1225	-0.1	576	485.1662	C22H30O12	486.1737	-0.4	659	499.1014	C21H25O12S	501.1067	0.5
411	457.0026	C24H10O8P	457.0113	0.5	494	472.1462	C20H27NO12	473.1533	0.3	577	485.1729	C18H35N2O9PS	486.1801	0.2	660	499.1095	C21H24O14	500.1166	0.3
412	457.0123	C14H10N4O14	458.0194	0.4	495	472.2189	C22H35NO10	473.2261	0.1	578	485.2029	C23H34O11	486.2101	0.1	661	499.1458	C22H28O13	500.1530	0.2
413	457.0286	C27H10N2O4P	457.0378	-0.6	496	472.9765	C16H11O15S	474.9819	0.5	579	485.2393	C24H38O10	486.2465	0.1	662	499.1570	C21H28N2O12	500.1642	0.0
414	457.1092	C20H27O8PS	458.1164	0.1	497	473.0899	C17H23N4O8PS	474.0974	-0.5	580	485.2790	C22H46O9P	485.2879	0.1	663	499.2550	C25H40O10	500.2621	0.2
415	457.1351	C20H26O12	458.1424	0.0	498	473.0831	C13H22N4O13P	473.0921	0.0	581	486.0396	C16H17N5O9P2	485.0502	0.3	664	499.3639	C28H52O7	500.3713	-0.2

3-3. まとめ

超高分解能質量分析装置 FT-ICR-MS を用いてシロイヌナズナの培養細胞、単離液胞、シュート、根を試料として、検出される全てのピークのうち negative mode で検出され m/z < 500 の分子 について組成式解析、データベースによる既知物質の検索を行った。組成式からのみでは未知 化合物の同定は不可能であるが、最も高い分解能を持つ FT-ICR-MS を持ってすれば、結果に示 したように 1 ppm 以内の精度で候補組成式を絞り込めることが明らかになった。組成式による 培養細胞、単離液胞のそれぞれの分子内分布から、培養細胞と単離液胞に存在する分子のほと んどは共通するものだということが明らかになったが、KNApSAcK でアノテーションされる物 質は 10%以下であった。培養細胞あるいは単離液胞特異的に存在することが示唆される分子も あったが、その同定までは至らなかった。4 つのサンプル間で共通する分子も 47 個推定され、 そのうち7つについては植物内の代謝物質として既報にある物質がアノテーションされていた。 シュート、根で共通する分子は 90 個存在し、そのうち KNApSAcK でアノテーションのついた 物質は、約 24 %であった。

第4章 シロイヌナズナ植物体のオーキシン添加に応答する代謝変動解析

序

植物ホルモンは、植物自身が作り出し微量で作用する生理活性物質・情報伝達物質で多くの 植物に普遍的に存在する。植物の初期発生から、根・茎・葉の成長と発達、花の形から種子の 成熟まで、そのほとんどの過程に植物ホルモンが関与しており、植物の形態形成にとって欠か せない因子である。植物は、また光や温度などの外部環境に応じて、その情報を細胞や器官に 与え、それに応答する仕組みも備えている。植物ホルモンの1つであるオーキシンは、発芽か ら成長、花芽形成、開花、胚形成などの植物の発生プログラムを担う内生の因子として働くだ けでなく、光や重力などの環境応答因子としても重要な働きを担っている。このようにオーキ シンは、植物の生長制御に密接に関与し、農作物の収穫量増加などに直結してくるため、生合 成経路の解明、遺伝子制御やシグナル伝達に関する研究が数多く行われている (Dharmasiri et al. 2005)。

オーキシンのシグナル伝達には、核内オーキシン受容体である TRANSPORT INHIBITOR RESPONSE1 (TIR1) と TIR1-related F-box タンパク質 (AFBs) がオーキシンの存在下で AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) タンパク質と相互作用することが知られており、 オーキシンは、SCF^{TIR1/AFB} 受容複合体によるユビキチン化を介してそれらの分解を促進する

(Kepinski and Leyser. 2004; Guilfoyle and Hagen. 2007)。 *Aux/IAAs* は、オーキシン応答性遺伝 子発現を抑制する半減期の短い核タンパク質をコードするオーキシン誘導性遺伝子である。シ ロイヌナズナの *Aux/IAA* ファミリーは、29 のメンバー(Remington et al. 2004)で構成されてい る。Aux/IAA タンパク質は、転写調節因子である AUXIN RESPONSE FACTOR(ARF)によっ てヘテロ二量体となり ARF に依存するオーキシン応答性遺伝子の転写制御を抑制する。ARF ファミリータンパク質(シロイヌナズナでは 23 のメンバーが知られている)は、オーキシン 応答性シスエレメント(AuxREs)と結合し、それらの転写を活性化あるいは抑制している。 つまり、ARF の転写因子の活性は、細胞内の Aux/IAA リプレッサーの細胞内レベルに左右さ れる(Liscum and Reed. 2002, Mockaitis and Estelle 2008)。

オーキシン自身の生合成やシグナル伝達の研究が進む一方で、オーキシンに応答する代謝に 関する研究は少なく、Table 4-1.に示すように非常に初期に、いくつかの研究が行われていた のみである。1930年代にBonner がカラスムギを用いたオーキシン処理実験を行い、酸素吸収 が増加する報告を行った(Bonner 1936)。その 20 年後、エンドウやトウモロコシを使って同 様の実験が行われたが、1957年を最後に、オーキシンに応答する代謝産物の変動解析につい ての報告はほとんど見出せない(Hackett and Thimann 1952; Marrè and Arrigoni 1957)。また、オ ーキシンやエチレンなどの植物ホルモンがフラボノールなどの二次代謝の生合成を制御して いることも知られているが、一次代謝物質とオーキシンの相関関係を調べた事例はほとんどな い(Lewis et al. 2011)。ごく最近、様々な植物ホルモンに応答する代謝過程の研究がメタボロ ーム解析を用いて報告され始めたが、オーキシンについては言及が少ない。一方で、外部から 与えたオーキシンによる遺伝子応答の中には代謝関連酵素遺伝子の変動が複数知られている (Goda et al. 2004; Okushima et al. 2005; Singla et al. 2007)。

シロイヌナズナのオーキシン応答突然変異体の多くは、オーキシンのシグナル伝達経路を解 明するために用いられてきた。オーキシン応答変異体の一つである transport inhibitor responsel-1 (tir1-1) は、核内オーキシン受容体 TIR1 の機能喪失変異体である。tir1-1 変異体 はオーキシン濃度によって胚軸伸長や根の伸長阻害が認められ (Ruegger et al. 1998)、比較的 弱いオーキシン非感受性を示すことが知られている。また、solitary-root-1 (slr-1) は、Aux/IAA タンパク質 IAA14 の機能獲得型変異体である。slr 変異は、側根形成が全くできなくなり (Fig. 3-2)、根毛形成、根や胚軸の重力屈性応答が阻害されることが報告されている (Fukaki et al. 2002)。ARF7、ARF19 は、シロイヌナズナで 23 個の遺伝子の存在が知られている転写因子で ある ARF のうちの 2 つであり、オーキシンに応答して側根形成に必要な遺伝子を活性化する ことが知られている (Okushima et al. 2005, 2007)。この 2 つの遺伝子を欠損させた arf7 arf19 二重変異体では、オーキシンに応答する機能が欠損しているため Fig. 4-2 に示すように側根形 成能が顕著に低下する。本実験では、根端以外に極端な形態変化があまりない 3 つのオーキシ ン応答変異体 (tir1, slr, arf7 arf19) を用いて、野生型の結果と比べることでオーキシン処理に 応答して変動する代謝産物の探索を試みた。

Table 4-1. オーキシンの代謝応答に関する主な研究の歴史

年代	研究者	研究内容
1910~1913年	James	屈光性刺激の伝達物質発見
1918年	Paál	成長ホルモンの概念
1928年	Went	成長ホルモンを寒天片中へ抽出
1931~1935年	Кöglら	オーキシンと命名され、構造が決定
1934年	Bonner 6	カラスムギを用いたオーキシン処理実験
1946年		トウモロコシ種子からIAAを単離
1940-50年代	Skoogら	オーキシンが根の形成を促進することを発見
1950年	Thimannら	エンドウを用いたオーキシン処理実験
1953年	Frenchi ら	トウモロコシを用いたオーキシン処理実験
1957年	Erasomら	オーキシン処理によるGSH/GSSG比の変動

Fig. 4-2 野生型およびオーキシン応答変異体の 10 日目芽生え

本章では、第1-2章で確立したターゲット・ノンターゲット解析手法を用い、外部から与え たオーキシンが植物体内の代謝産物にどのような影響を与えているのかを質量分析装置によ るメタボローム解析によって明らかにすることを目的とした。まず、CE-MS を用いてオーキ シンの処理時間と処理濃度によって変動する代謝産物のターゲット解析を行い、さらに、イメ ージングマススペクトロメトリーを用いて、1時間のオーキシンを処理した際に変動する分子 の生体内分布解析を試みた。

4-1. 実験材料と方法

4-1-1. 植物材料と生育条件

実験には、シロイヌナズナ(*Arabidopsis thaliana*, Columbia accession)の野生型および3つ のオーキシン応答変異体(*tir1*, *slr*, *arf7 arf19*二重変異体)を使用した。95%エタノールで15 分間滅菌処理した種子を4℃、36時間以上低温処理後、Murashige Skoog(MS)培地(0.6% gellan gum, pH 6.2) 60mlを流し入れ固めた角形プレート(栄研化学株式会社)に爪楊枝を用いて播 種し、23±1℃、24時間連続光照射条件(光強度 270-340 µmol m⁻² s⁻¹)に設定した人口気象器 (BIOTRON, NKsystem, Japan)内で10日間生育させた。

4-1-2. オーキシン処理方法と植物試料からの代謝物質の抽出

オーキシン添加に応答する代謝物質の変動を解析するために、水耕栽培を用いた 60 分のオ ーキシン処理実験を行った。水耕栽培では、植物根系全体が溶液に浸るため、迅速かつ均等 なオーキシン処理が可能となる。水耕栽培の方法を、Fig. 4-3 に示す。

Fig. 4-3 水耕栽培の様子

生育のそろった発芽後 10 日目の個体を培地から回収し、根を滅菌水で 2-3 回洗い、水分 をキムワイプで拭き取ってから滅菌した MS 水耕培地(-Sucrose) へ移した。水耕培地への移 行は、約 1.5 cm 四方に切ってハサミで切り込みを入れた厚さ 0.2 mm のポリプロピレンフィ ルム(PP クラフトフィルム PF-11、アクリルサンデー、Tokyo, Japan)を用い、切れ込み部 分にシュート基部を挟み込み、24 穴マイクロプレート(IWAKI, Tokyo, Japan)にフィルムで 支えるようにして行った。一昼夜静置後、高濃度のオーキシン終濃度を 10⁻⁸ M、10⁻⁷ M に調 整した MS 水耕培地(-Sucrose)を 3 ml ずつ入れた 24 穴マイクロプレートに個体を移した。 control には、同量の MeOH を調整したものを用いた。各時間のオーキシン処理後、2 ml 粉砕 チューブにサンプリング後(シュートは約 5-6 個体、根は約 20 個体)、ジルコニアビーズを 入れ液体窒素で凍結し、-80℃で保存した。植物体からの代謝物質の抽出は、Fig. 2-1 に示し たフローで行った。

4-1-3. 呼吸測定

呼吸測定は、Hansatech 社のガラス製液相型の酸素電極 (DW2/2; Hansatech Ltd, King's Lynn, UK) で行った。25℃のときの飽和溶存酸素濃度が 253 µM に相当することを利用して、ジオ チナイトを用い添加前後の出力電圧を測定してキャリブレーションを行った。呼吸測定に使 用する酸素電極は、室温や外部環境に左右されやすいため、測定前に約 2 時間の安定化を行 った。1 時間の IAA 10⁻⁷ M 処理を行った植物体をシュート (n = 10)、根 (n = 10) ともに 1 個体ずつチャンバー内に入れ測定した。データ処理の際に、根の生重量が 1 g を下回るもの については、呼吸量が極端に大きくなり、ばらつきも大きくなるため解析から除外した。

4-1-4. 分析装置について

4-1-4-1. CE-MS によるターゲット分析

測定に使用した試薬は、全て MS grade のものを使用した。分析条件は Fig. 1-6 に示した通りである。

4-2. 結果と考察

近年の機器分析技術の進歩により、生物の遺伝子発現変動や代謝物の変動を包括的に解析す ることが可能になり、DNA→mRNA→タンパク質→代謝産物という生物のセントラルドグマに そったオミックス解析が盛んに進められている。本章で行った「メタボローム解析」は、遺伝 子情報が転写・翻訳過程を経て実行された最終結果である「代謝産物」が解析対象であるため、 遺伝子発現解析やタンパク質の解析では解明できない新たな生体反応を明らかにできると期 待される技術である。

本章では、シロイヌナズナの野生型とオーキシン応答変異体(*tir1, slr, arf7 arf19*)を用いて、 短時間(60分)での IAA 処理における代謝変動を解析した。

- 野生型(Col-0) における根およびシュートにおける一次代謝物質の分布

CE-MS を用いたメタボローム解析によって、野生型のシロイヌナズナ植物体に含まれる陽 イオン性化合物は、数 10 nmol g⁻¹ F.W. から数万 nmol g⁻¹ F.W.で分布していることが分かった (Fig. 4-4 a, c)。

また、化合物ごとに濃度(存在量)は異なるものの、総アミノ酸濃度はシュートおよび根、共 に約 30 μM g⁻¹ F.W.で、シュートでも根でもグルタミン、アスパラギン、グルタミン酸、セリ ンが多く含まれていることが分かった(Fig. 4-4 a, c)。根およびシュートそれぞれに含まれる 各化合物の濃度分布を比べると、濃度(存在量)の異なる化合物がいくつか見いだされた。中 でも、GABA がシュートの約 15 倍高い濃度で根に検出され、アルギニンは根より約7倍近く、 オルニチンは約 90 倍高い濃度でシュートに検出された。その他にも、シュートに比べ根のバ リン、トレオニン、ロイシン、イソロイシン、リジン、チロシンは、2倍以上高い濃度で検出 された。陰イオン性化合物の濃度も先に示した陽イオン性化合物同様、化合物によって特徴的 な濃度分布が見出された。陰イオン性化合物には、アミノ酸類に比べると、元来、植物に含ま れる量が少ない代謝産物が多いため検出される物質が少なくなってしまう。リンゴ酸やクエン 酸、フマル酸など含有量の多い多価有機酸類については、検出できる場合が多い。シロイヌナ ズナ植物体の陰イオン性化合物は、数 nM から数 μM オーダーで分布しており、シュート、根 共にリンゴ酸の濃度が高く、根ではシュートに比べてフマル酸以外の有機酸量が総じて高いこ とが分かった。有機リン酸化合物は、根で40±3.2 から 500±48 nmoles g⁻¹ F.W.、シュートで 30±8.0 から 510±90 nmoles g⁻¹ F.W.の範囲でそれぞれ検出された。

シロイヌナズナを用いたメタボローム解析については、いくつか報告があるが、これらのほ とんどは、新芽あるいは芽生え全体を分析に供しているものが多く、本研究のようにシュート と根を区別した報告は少ない (Hirner et al. 2006; Sulpice et al. 2010; Tshoep et al. 2009)。さらに、 今回のような極性物質の分析に適した技術である CE-MS を用いた代謝物の測定は、非常に限 られている(Watanabe et al. 2010)。実験条件に違いはあるもののシロイヌナズナを材料に用い た既報の代謝物質の濃度分布と比較したところ、本章で観察された総アミノ酸含量(20~50 µM g⁻¹ F.W.) は、既報 (20~100 μM g⁻¹ F.W.) と類似していた (Armengaud et al. 2009; Hirner et al. 2006; Rawat et al. 1999; Watanabe et al. 2010)。また、含まれる代謝物質の濃度や分布パターンは、既 報と同様の傾向を示し、グルタミン酸(Glutamic acid; Glu)の濃度は、シュートでも根でも総 アミノ酸の 20-30%を占め、どのラインでも高濃度で検出された。グルタミン、セリン (Serin; Ser)、アスパラギン(Asparagine; Asn)も、全てのラインで高い値で検出された。どのライン でも高濃度に検出されたグルタミンとグルタミン酸は、既報(Hirner et al. 2006; Watanabe et al. 2010)と比べると 10~30 倍高い値で検出された。しかし、本研究で観察された高濃度のグル タミンやグルタミン酸は、Armengaudet al. (2009) や Rawat et al. (1999) に報告されている値 とよく一致しており、Hirner et al. (2006) や Watanabe et al. (2010) の実験と大きく異なる点 は水耕栽培であり、植物の生育条件に起因する可能性が示唆された。一方、アミノ酸以外の代 謝物質濃度は、野生型やコントロールと比較した相対値を示しているものが多く(Cook et al. 2004; Nikiforova et al. 2005; Sudre et al. 2013)、絶対量を報告しているものが少ない。絶対量を 報告しているものであってもシロイヌナズナの植物全体を試料として用いている(Armengaud et al. 2009; Scheible et al. 2004) ため、比較は困難だった。そこで、Watanabe et al. (2010) が低 窒素条件下で CE-MS を用いたメタボローム解析を行っている報告があったため、彼らの報告 にある代謝物質濃度との比較を試みた。本章で観察された値とは若干異なる傾向が見られ、 Watanabe et al. (2010)の報告に比べると、シュートにおける有機酸濃度は低い傾向を示した。 一方、根では、コハク酸は3倍、リンゴ酸とクエン酸は1.5倍程高い値を示し、他の有機酸の 値は同程度であった。この代謝物質の濃度差は、分析条件や植物の育成条件の違いによるもの が考えられるが、具体的な理由は分からなかった。

- オーキシン応答変異体の根およびシュートにおける一次代謝物質の分布

野生型と同様に3つのオーキシン応答変異体(*tir1*, *slr*, *arf7 arf19*)の一次代謝物質を測定すると、野生型では検出されなかったグルタチオンが検出された他、計23種類の陽イオン性化合物が検出された。根における陽イオン性化合物の濃度分布は、野生型と同程度で、*tir1*では7.9±0.05から6,700±710 nmoles g⁻¹ F.W., *slr*では5.0±2.6から15,000±4,600 nmoles g⁻¹ F.W., *arf7 arf19*では20±1.7から12,000±440 nmoles g⁻¹ F.W.で検出された。*tir1*の根における総アミノ酸濃度は約20 μ M g⁻¹ F.W.で、各陽イオン性化合物の濃度分布パターンは、野生型と同じ傾

向を示した。野生型の根の濃度分布と比べてみると、アスパラギンと GABA は野生型の根よ りも2から3 倍高い濃度で tirl の根に検出された。また、アデノシンは、野生型の根に比べて 9分の1の値で検出された。一方、slrの根では総アミノ酸濃度が約50 µMg⁻¹ F.W.で検出され、 グルタミン、アスパラギン酸、グルタミン酸が高濃度で検出される傾向は野生型と同様の傾向 を示した。セリン、トレオニン、アラニン、グリシンは野生型の根よりも約2から3 倍高い濃 度で検出された。プロリンとオルニチンは、野生型の根に比べて、約12 倍高い濃度で検出さ れ、slr の根に含まれるアミノ酸は、野生型や他のオーキシン応答変異体とは異なり、特異的 な濃度分布パターンを示した。arf7 arf19 の根に含まれる陽イオン性化合物の濃度は野生型と ほぼ同じように分布しており、総アミノ酸濃度も約30 µMg⁻¹ F.W.であった。野生型と同様に、 GABA、オルニチン、アルギニンなどシュートと根で濃度分布に特徴的な化合物も見出され、 その他の各陽イオン性化合物の濃度分布も野生型と同様の傾向を示した。野生型の根と比べる と、アルギニンとトリプトファンが約2分の1 で検出された (Fig. 4-4a)。

オーキシン応答変異体(tir1, slr, arf7 arf19)の根における陰イオン性化合物の濃度分布パタ ーンは、野生型の根とほぼ同様の傾向を示した。tirlの根ではイソクエン酸、グリセロール-3-リン酸(G3P)やリボース-5-リン酸(R5P)/リブロース-5-リン酸(Ru5P)が野生型の根より も2倍高かった(Fig. 3-4c)。野生型の根に比べ slrの根では 2-ホスホグリセリン酸(2PG)/3-ホスホグリセリン酸(3PG)が約2倍高く、クエン酸は2.5倍、iso-クエン酸は6倍高く検出さ れた。一方、arf7 arf19の根では、cis-アコニット酸とコハク酸が野生型の根に比べると、約2 分の1の値で検出された。オーキシン応答変異体(tir1, slr, arf7 arf19)のシュートにおける陽 イオン性化合物の濃度分布パターンは、いくつかの化合物を除いてほぼ同程度であった(Fig. 4-4b)。野生型のシュートに比べると、tirlのシュートではグリシンが約2倍高い濃度で検出さ れ、slr のシュートではプロリンが約7倍高い濃度で検出された。陰イオン性化合物の濃度分 布パターンは野生型と同様だったが、いくつかの陰イオン性化合物で野生型のシュートよりも 高い濃度で検出されるものがあった。*tirl*のシュートでは*cis*-アコニット酸が2.4倍(Fig. 4-4d)、 slr のシュートではリンゴ酸、クエン酸、コハク酸は2から4倍、フマル酸は11倍、cis-アコ ニット酸は 14 倍高く、slr のシュートでは有機酸が野生型のシュートに比べると総じて高く検 出され、陽イオン性化合物同様、他のサンプルとは異なる濃度分布パターンを示した。有機リ ン酸化合物は、オーキシン応答変異体で高く検出される傾向があり、オーキシン応答変異体で 検出された各有機リン酸化合物は、野生型のシュートに比べると2から4倍高く検出された。

Fig. 4-4 野生型およびオーキシン変異体 (tir1, slr, arf7 arf19) における一次代謝物質の濃度分布

野生型およびオーキシン応答変異体 (*tir1*, *slr*, *arf7 arf19*)におけるオーキシン処理に応答す る一次代謝物質の代謝変動解析

1時間の IAA 処理に応答して変動した野生型の一次代謝物質の濃度を Fig. 4-5 に示す。シュートでも根でも IAA 処理濃度(10⁻⁷ M、10⁻⁸ M)に応じて各代謝物質の濃度変動が確認された。
 1時間の IAA 処理をしたシュートでは、10⁻⁸ M 処理 でアスパラギン酸(Aspartic acid; Asp)が
わずかに増加する以外、IAA 処理によってほとんどのアミノ酸は減少する傾向を示した(Fig. 3-5A)。p < 0.05 で有意差検定を行った結果、グリシン(Glycine; Gly)はどちらの IAA 処理でも 有意に減少し、アラニン(Alanine; Ala)は 10^{-8} M IAA 処理で有意に減少した(Fig. 4-5A)。TCA 回路のコハク酸は IAA 処理によって増加する傾向を示し、 10^{-7} M IAA 処理時の増加に有意差 が確認された(Fig. 4-5B)。一方、1 時間の IAA 処理をした根では、ほとんどの一次代謝物質 が減少傾向を示した(Fig. 4-5D)。p < 0.05 で有意差検定を行った結果、GABA が 10^{-7} M 処理 で有意に減少しており(Fig. 4-5D)、グルコース-6-リン酸 (Glucose-6-Phosphate; G6P)も有意 に減少した。

次に、オーキシンシグナル応答変異体を用いた IAA 処理実験の結果を Fig. 3-6, 3-7, 3-8 に示 す。*tir1*, *slr*, *arf7 arf19*のオーキシン変異体では、シュートでも根でも IAA 処理に応答して変 動した一次代謝物質はほとんど見出されなかった。ただ、*tir1*のシュートで 2PG/3PG が IAA 10⁻⁷ M 処理時に有意に増加し (Fig. 4-6C)、*slr*のシュートでグルタミン (Glutamine; Gln)が 10⁻⁷ M 処理時に有意に減少した (Fig. 4-7A)。*arf7 arf19*のシュートおよび根では、IAA 処理によって 有意に変動する一次代謝物質は見出せなかった (Fig. 4-8)。

Fig. 4-5 1時間 IAA 処理に応答した野性型における一次代謝物質の変動

Fig. 4-6 1時間 IAA 処理に応答したオーキシン変異体(tirl)における一次代謝物質の変動

Fig. 4-7 1時間 IAA 処理に応答したオーキシン変異体(slr)における一次代謝物質の変動

Fig. 4-8 1時間 IAA 処理に応答したオーキシン変異体 (arf7 arf19) における一次代謝物質の変動

Fig 4-9. 1時間 IAA 処理に応答した野性型(WT)およびオーキシンシグナル応答変異体 (*tirl*, *slr*, *arf7 arf19*)代謝マップ上の分布

Fig. 4-5 から Fig. 4-8 に示した野生型およびオーキシン応答変異体(*tir1, slr, arf7 arf19*)の IAA 処理による代謝物質の変動を代謝マップ上にプロットしたものを Fig. 4-9 に示す。代謝マップ 上にプロットしたシュート、根の各一次代謝物質の変動を見ると、有意差 (*p* < 0.05)を持って 変動する化合物は、野生型に多く、オーキシン応答変異体(*tir1, slr, arf7 arf19*)では IAA 処理 に応答して変動する代謝物質が少ないことが分かった。

植物のメタボローム解析は、食糧問題や医薬品合成にも関わることから、非常に注目を集め ているが、植物ホルモンが代謝物質に直接的に及ぼす影響を報告した例は少ない。これは、直 物体内(細胞内)で一次代謝物質の恒常性が保たれ、分析装置で検出可能な程度にホルモン処理 でそれらの濃度が変化しなかった可能性がある。しかし、本研究では、野生型のオーキシン処 理による代謝産物の変動に比べて、オーキシン応答変異体(*tir1, slr, arf7 arf19*)の変動は小さい ことが分かり、オーキシンに依存的な代謝変動があることが示唆された。

本研究で測定された全サンプル (野生型, *tir1*, *slr*, *arf7 arf19*)のオーキシン処理における一次 代謝産物の変動を代謝マップ (Fig. 3-9) に示した。解糖系における G6P 濃度は、野生型の根 で有意に減少し、オーキシン応答変異体では変動を示さなかった。解糖系の他の有機リン酸化 合物である DHAP、GAP、FBP と PEP は、検出下限値以下で測定できなかった。ピルビン酸 は、野生型の根と *slr* のシュートで検出ができなかったのに対し、他のオーキシン応答変異体

(*tir1 と arf7 arf19*)では検出された。ピルビン酸は、代謝マップ上で解糖系の最終産物であり、 TCA 回路やアミノ酸合成、脂質やテルペノイドなどの開始物質としても重要な中間体の1つ である。他の代謝物質と異なり、ピルビン酸の濃度は組織あるいは変異体特異的な傾向を示し、 オーキシン応答が代謝の重要な鍵となるピルビン酸の流れに影響を与えている可能性が示唆 された。また、野生型の根で観察された IAA 処理による G6P の減少は、オーキシン応答変異 体 (*tir1, slr, arf7 arf19*)では観察されなかったため、オーキシン応答性遺伝子によって調節さ れていることが示唆された。IAA 処理に応答する TCA 回路における有機酸の変動は、野生型 シュートのコハク酸で確認され、シュートと根で異なる応答をすることが分かった (Fig. 4-11)。 コハク酸とコハク酸デヒドロゲナーゼ (SDH) は、TCA マーカーであることが知られており

(Lendvai et al. 2014)、呼吸が阻害された結果とも一致する(Fig. 4-10)。他の有機酸(クエン酸、 シスアコニット酸、イソクエン酸、2-オキソグルタル酸、フマル酸)は、野生型の根で IAA 処理時に減少する傾向を示した。リジン(Lysin; Lys)、アルギニン(Arginine; Arg)、グルタミ ンなどのアミノ酸やリンゴ酸(malate)、クエン酸(citrate)などの有機酸は液胞に蓄積すること が知られている(Etienne et al. 2013; Tohge et al. 2011)が、細胞内のこれらの代謝産物分布は解 析中である。

IAA 10⁻⁷ M 処理時に野生型の根で見られた GABA の有意な減少は、シュートでは見られず、 オーキシン応答変異体でも IAA に応答する有意な変動は見られなかった。この野生型の根で 観察された変動はポリアミン合成に関与している可能性がある(Kishinami 1988; Park and Lee 1994; Tiburcio 1997)。

IAA 処理に応答する遺伝子発現は広く研究されており、Armstrong et al. (2004) は、シロイ ヌナズナにおいて、オーキシン応答性遺伝子の10%が代謝に関与していることを示した。他 にも、オーキシン処理をすると細胞の代謝に関連する遺伝子が変動することが報告されている (Goda et al. 2004; Okushima et al. 2005; Singla et al. 2007)。オーキシンによって調節される遺伝 子発現と代謝の関係を推察するために、これまでの研究から利用可能で総合的なマイクロアレ イデータを用いた。Laskowski et al. (2006)は、シロイヌナズナの根で 10 uM IAA を(45 分~ 12時間)行うと、アスパラギン酸アミノトランスフェラーゼ(AST)、リン酸代謝及びNADP 依存性リンゴ酸酵素をコードする遺伝子の発現が誘導されることを報告している。本実験で確 認されたアスパラギン酸、グルタミン酸、2-オキソグルタル酸の変動は、AST の誘導性遺伝子 発現によって引き起こされる可能性が示唆された。また、これらの変動は、オーキシン応答変 異でも見られたので、オーキシン依存的な調節は他のオーキシンシグナル伝達経路に起因して いる可能性が考えられた。オーキシンに応答して変動する遺伝子発現の中には、リン酸代謝に 関連する遺伝子の発現変動もあることが報告されている (Goda et al. 2004, Laskowski et al. 2006)。本研究では、野生型の根で G6P が有意に減少しており、オーキシン応答変異体では変 動しなかったため(Fig. 4-11)、有機リン酸化合物の代謝調節にそれらの遺伝子が関与してい ることが示唆された。

オーキシン応答遺伝子を抑制された3つの変異体では、IAA 処理による代謝変動があまり見 られず、野生型のシュートや根では IAA 処理による変動が見られたことから、Fig. 4-11 に示 した IAA 処理による代謝産物の変動は、オーキシンに応答して変動する遺伝子発現の「結果」 であることが考えられる。さらに、変異体において観察された外因性の IAA に応じて代謝産 物濃度の変動が小さいことから、オーキシンシグナル伝達経路に関与する制御機構の存在が示 唆された。

Fig. 4-10 野生型および arf7 arf19 変異体のシュートおよび根における呼吸速度

IAA 処理による成長阻害については 1930 年代にもいくつか報告があり (Bonner. 1933; 1935)、 IAA 処理によって主根の伸長が阻害され側根数が増えることはよく知られている (Okumura et al. 2013)。また、Bonner(1936)は、Avenaの幼葉鞘を用いて IAA 処理によって 15-26 %ほど の酸素吸収の増加を引き起こすことを報告している。Hackett et al. (Hackett and Thimann. 1952) もショ糖や炭素数 4 の有機酸が呼吸基質として存在するとオーキシンが呼吸増加をもたらす ことを明らかにしている。オーキシンが呼吸を増加させる報告がいくつかなされる一方で、 Mitchell et al. (1949)は、トマトの葉柄を用いて IAA 処理による呼吸への影響はその処理濃度 に依存し、2mM IAA 処理において呼吸阻害を引き起こすことを報告している。いずれにせよ、 約 70-80 年前に行われた実験に使用された IAA 濃度は本実験の千倍近い濃度で行われている ため、本実験で行った 10⁻⁷ Mの IAA 処理が呼吸に何らかの影響を及ぼしているのかを検証す るために呼吸測定を行った。その結果を Fig. 4-10 に示す。シュートでは、野生型・変異体と もに有意な差は見られなかったが、野生型の根では変異体の根に比べ、IAA 処理によって呼吸 が有意に(p<0.05)減少する結果となった。このことから、野生型の根では IAA 処理によっ て呼吸が阻害された結果、いくつかの陽イオン性化合物、有機酸、有機リン酸化合物などの変 動が起こったことが示唆された。arf7 arf19 変異体は、オーキシン応答に欠損のある変異体で あるためにそのような変動が起こらなかったことが示唆される。これまで IAA 処理による代

謝変動については、成長阻害や呼吸についてのみの知見しかなかったため、メタボローム解析 によって1次代謝産物の変動を確認した初めての知見となった。本章の CE-MS を用いたメタ ボローム解析によって、半世紀以上前に報告のあった IAA 処理による代謝変動(Howard and Pelc. 1953)の一部を確認するとともに、変異体を組み合わせた詳細な解析から、実際にどの 代謝過程がオーキシンの制御の下にあるかを確認することが可能となった。

4-3. まとめ

第 1-2 章で確立したターゲット解析の手法を用い、外部から与えたオーキシンが野生型および 3 つのオーキシン応答変異体(*tir1, slr, arf7 arf19* 二重変異体)の植物体内代謝産物にどのような影響を及ぼしているのかをメタボローム解析によって明らかにした。その結果、野生型の根およびシュートで変動を示す代謝産物がいくつか確認された。IAA 処理による代謝変動は野生型の根で顕著に見られ、アミノ酸やリン酸化合物の変動が大きいことが分かった。野生型に比べ、3 つのオーキシン 非応答性変異体のシュートおよび根で変動する一次代謝産物は少なく、その変動も小さかった。既報と本実験のアミノ酸変動から呼吸に関与していることが示唆されたため、呼吸測定を行ったところ、野生型の根で呼吸が有意に阻害されていることが明らかとなった。また、野生型とオーキシン 応答変異体では、アミノ酸などいくつかの代謝産物でシュートおよび根における濃度分布パターンが異なることが明らかとなり、*slr*における代謝物質の分布パターンは特異的であった。本章で明らかとなったこのような代謝産物濃度は、一般的な条件下での植物細胞の状態を把握する上で最も重要で基礎的な情報となる。

第5章 質量顕微鏡(イメージングマススペクトロメトリー)を用いた外因性オーキシン処理に 応答する根端の代謝物質分布解析

序

近年、組織・細胞レベルで生体内の分子分布を質量顕微鏡(イメージングマススペクトロ メトリー)で解析する手法が注目を集めている。特に、医学分野での利用が多く、マウスの 脳や肝細胞などの切片を材料として、組織内の病因分析や薬物動態の解析などに利用されて おり、高解像度の画像の取得が可能となってきている(Setou et al. 2010; Miura et al. 2012)。

マトリクスレーザー支援レーザー脱離イオン化法 (Matrix Assisted Laser Desorption Ionization; MALDI) を用いたイメージングマススペクトロメトリーは、細胞レベルの代謝物 質の評価に有用であると考えられている。「マトリクス」と呼ばれるレーザー光を吸収しやす い酸性あるいはアルカリ性の有機物を混合させレーザーを照射すると、試料中の分子がイオ ン化する。試料中にレーザー光を吸収しやすいマトリクス様の物質が含まれている場合は、 マトリクスがなくてもレーザーを照射しただけでイオン化する。原田らは、大気圧レーザー 脱離イオン化イメージングマスを用いてショウガの揮発性物質の局在を調べている(Harada et al. 2009)。また、吉村らは、MALDI-MS を用いてブドウ切片のイメージングを行い、ブド ウの内果皮や外果皮にアントシアニン類が局在することを示した。果実にアントシアニンが 多く含まれることは分かっていたが、特定の部位にアントシアニンが分布していることを示 した初めての知見となった (Yoshimura et al. 2012)。また、Ye らは、1.8-bis (dimethyl-amino) naphythalene, DMAN)という新しいマトリクスを用いてマメ科植物に共生する根粒菌が分泌 する Nod 因子をイメージングマスで高感度に検出し、その分布を MALDI-MS で報告してい る(Ye et al. 2013)。その他にも、セイヨウオトギリソウの葉や花弁の薬用化合物の局在を脱 離エレクトロスプレーイオン化(Desorption electrospray ionization mass spectrometry, DESI)の 手法を用いて示した報告などがある(Li et al. 2013a, b)。しかしながら、シグナルの強度比で サンプルプレート上の相対比は判断できるものの、イオンサプレッションを考慮した内部標 準物質による補正や標準物質による定量的測定など課題も多い。

質量分析によるイメージング解析は、生体情報と位置情報を同時に明らかにすることがで きる分析手法である。固体試料や液体試料に UV あるいは RI レーザーを照射して急速加熱に よる蒸発を促し局所的にイオン化を行い、イオン化した化合物を質量分析計に導入すること で、その部位に存在する化合物を網羅的に測定することを可能にしている。

位置座標と対応したスペクトルデータを二次元的に少しずつラスタースキャンしながら数 万から数十万取得する。形態を保ったまま生体組織を測定でき、位置情報を得られるため、 個々の化合物について、位置情報に基づいた分布を再構成することで、物質分布の生体イメ ージを得ることが出来る。生命科学の新しい分析手法として医学・薬学分野で広く応用され 始めている(Hayasaka. 2009; Sugiura. 2011)。

現在行われているほとんどのイメージング解析は、試料を切片化し、イオン化補助剤であ

78

るマトリクスを工作用スプレーによって塗布したものである(Hui et al. 2013; Yoshimura et al. 2012)。しかし、この手法は、塗布するマトリクス量によってイオン化効率が変化するため、 マトリクス量の検討や均一に塗布しなければならないという技術的な問題が生じる。こういった問題を克服するために自動化されたマトリクス塗布装置も各メーカーから販売されている。近年になって、蒸着法が開発されており、これはマトリクスを粉末のまま使用する。耐熱ガラス容器の底面にマトリクスを均一に敷き、チャンバー内をロータリーポンプで真空状態に保ち、温度上昇と低下を厳密にコントロールすることにより、昇華したマトリクスが上部に位置する試料に均一に蒸着される(Hankin et al. 2007)。マトリクスは、測定する化合物種によって使い分ける。一般に、タンパク質にはシナピン酸、脂質やペプチドなどの低分子の測定には、2,5-ジヒドロキシ安息香酸(2,5-Dihydroxybenzoic acid:; DHBA)、α-シアノ-4-ヒドロキシけい皮酸(α-Cyano-4-hydroxycinnamic acid; CHCA)が用いられる。9-アミノアクリジン(9-aminoacridine; 9AA)は、マトリクス由来のシグナルが少なく脂質(Harada et al. 2009)や低分子化合物を測定する際に適したマトリクスであることが報告されている(Rachal et al. 2002)。

試料を装置に導入した後、測定する領域を設定し、レーザーを照射することで各測定地点 からデータを取得する。全ての測定領域から統合されるデータは、*m/z*・シグナル強度・位置 情報の3次元のデータとなる。これらのデータから、任意の*m/z*値に対応する強度を疑似カ ラーやグレースケールを用いて位置座標上に表示し、2次元イメージを作成する。マススペ クトルから2次元データを得るまでのソフトウェアも一般化されていないため、フリーソフ トの BioMap (http://mardi-msi.org/)を使用して解析を始めた。しかし、取得データが 200GB を超えるようになり、高分解能(1 ppm)データを解析可能なソフトウェアとして利用するこ とができないため、現在は、産業技術総合研究所の高橋勝利博士が Lab View (National Instruments, Austin, USA)を用いて開発したイメージング解析ソフトウェア Lab MSI を用いて 2次元イメージングデータの解析を行っている。

5-1. イメージングマスプレートの作成方法と分析条件

5-1-1. イメージングマスプレートの作成方法

イメージングマス (IMS) プレートの作成方法を Fig. 5-1 に示す。透明導電膜を施した 11 mm×11 mm×0.7 mm の Indium Tin Oxide (ITO) ガラス (Luminescence Technology Co., Hsin-Chu, Taiwan) 表面に絵筆を使用して凍結切片作製用粘着剤 Cryoglue type I (SECTION-LAB Co. Ltd., Hiroshima, Japan) を塗り、数分乾燥させる。1 時間のオーキシン処理を行った後、根端 を約 1 cm 切り取り、control、IAA 処理の順になるように粘着剤を塗った ITO ガラス上に並べ て、1 日凍結乾燥した。凍結乾燥後、試料が浮かないようにするためスライドガラス上に IMS プレートを裏返して置き、試料を潰さないように上から少し押さえた。IMS 作成後の写真例 を Fig. 5-2 に示す。

Fig. 5-1 イメージングマス (IMS) プレートの作成 (オレンジで示した部分に粘着剤を塗布)

Fig. 5-2 イメージングマス用に作成したプレート

(左側4本:野生型の control と IAA 処理、右側4本: *arf7 arf19*の control と IAA 処理を交互 に並べたサンプル; arabi-root-ARFWT-ICICICIC-2-wm-pos-140119より)

一般に、イメージングマススペクトロメトリーでは、試料のイオン化を促進するためにマ トリックスをエアブラシでスプレーする、あるいは蒸着を行う。予備実験段階でマトリック スなしで野生型と変異体、さらにオーキシン処理有無で変動するシグナルが多く見られため、 マトリックス有無の両条件下で実験を進めた。マトリックス蒸着によるイオン化促進のため、 9AA、DHBA、CHCAの3種類のマトリックス蒸着による実験を行った。

5-1-2. 装置

イメージング分析に使用された FT-ICR-MS (9.4 Tesla Apex Qe, Bulker Daltonics Inc, Billerica MA USA) は、(独) 産業技術総合研究所(産総研)の高橋勝利博士により大幅に改良され、 デュアル MALDI/ESI イオンソースが外され、上下方向にも駆動可能に設計されている。試 料ステージは、ITO ガラスをイオンファネルカートリッジに水平に挿入することができるよ うに設計されており、XYZ 軸方向に±1 µm の誤差内で駆動する。UV レーザー(FTSS-355-Q4; CryLas GmbH, Berlin, Germany) は、355 nm の波長で 1kHz 最大 42 µJ を照射することが可能 で、照射パルスは 1.4 ns 以下である。UV 照射のスポット径は、理論上で約 5 µm 集光可能な 設計になっている。この産総研で設計された試料ステージが上下左右方向に駆動するインタ ーフェスを持つ FT-ICR-MS は、世界的にも唯一無二の装置となっている。特に、植物試料の イメージングマス分析を行う際、サンプルによって厚みや組織形態が異なるため、UV 照射 の集光点を調整できることが最大の利点となっている。本研究で用いたシロイヌナズナの根 は約 100 µm の厚さで、産総研で改良された IMS 装置で植物組織を分析する際のおおよその 最大値ということが予備実験で分かっている。UV レーザー照射領域は、測定時に自身で決 定することが可能になっており、根端約 3 mm の領域になるように設定した。UV レーザー照 射の焦点深度は、装置に組み込まれた CCD カメラに映された IMS プレート上で試料中心部 になるように合わせた。分析終了後の IMS プレートを確認すると、Fig. 5-3 に示すように約 10-20 µm の照射点を確認できた。このように根では全組織に UV レーザーが照射され、植物 体全体に含まれる分子がイオン化され、情報が得られていることが示唆された。

Fig. 5-3 UV 照射後の根端の様子

5-2. 結果と考察

植物体を破砕し、その抽出物をLCやCEなどの分離分析を前段に設置した質量分析装置で 網羅的に分析する手法では、個体に含まれる代謝物質は混合物として測定され、個々の代謝 物質の局在を細胞レベルで把握することは難しい。形態を保ったまま測定できるイメージン グマスの技術を用いれば、環境に応じて生体内で変動する分子、あるいは生体内分布の異な る分子がどのように局在しているのか、細胞あるいは組織レベルで解析することが可能とな る。

5-2-1. 陰イオン性化合物分析用マトリクス(9AA)による蒸着を行った場合

9AAは、フェノール類、カルボン酸、スルホン酸、アミンなどの低分子化合物を測定する 際に適したマトリクスであることが報告されている(Rachal et al. 2002)。9AA 蒸着を施し分 析に供した結果、蒸着せずにイメージングをした際に見られていた根端のシグナルが消える 傾向が確認され、マトリクスなしのサンプルと共通するシグナルは95 個しかなかった。マト リクスなしのサンプルと比べると検出されるシグナルも174 個と減少し、マトリクス蒸着に よってイオン化が阻害されたことが考えられた。negative mode で感度よく代謝物質をイメー ジング解析する際には、マトリクス蒸着の検討が必要となったため、既に報告のある DHBA および CHCA を用いたマトリクス蒸着の検討を行う必要がある。ここでは、マトリクス蒸着 なしでも各イオンのシグナル局在が確認できたため、マトリクスなしで進めた実験について 記す。

5-2-1. マトリクスを蒸着しない場合

FT-ICR-MS (9.4 Tesla Apex Qe, Bulker Daltonics, Billerica MA USA) を用い、positive mode (n=2) および negative mode (n=2) で取得したデータを LabMSI v1.0.12beta にて解析した(こ こでの n は ITO ガラスの枚数。接着した根は、control、IAA 処理のものを 4~8 本)。

平均スペクトル (Total Ion Chromatogram, bin size = 0.001) でシグナルの確認ができた center mass 値と局在の詳細を text に抽出した。その後、AutoMFCalculator (Nakamura et al. 2008) を 用い、C:95、H:182、N:15、O:45、S:5、P:6、tolerance: m/z = 0.001 の条件で組成式を作成し、 組成式のできた実測値 (m/z) を METLIN (検索条件: MW < 200 の場合 10 ppm、MW > 200 の場合 5 ppm) および KNApSAcK (tolerance: m/z = 0.001) でデータベース検索を行い、化合 物の候補検索を行った。(KNApSAcK では脂質やいくつかの代謝物質が登録されていないた め、METLIN でのデータベース検索も行った。)

データ解析のフローチャートを Fig. 5-4 に、野生型の根のイメージングデータ解析で得ら れた結果を Table. 5-1 に示す。シグナルの確認できた数を total signal とし、AutoMFcalculator で組成式のついた数を formula とした。AutoMFcalculator を用いた positive mode の解析は、 $[M+H]^+$ 、 $[M+Na]^+$ および $[M+K]^+$ の和集合リストを作成し重複を除いた数とし、negative mode の解析は、 $[M+H]^-$ で行った。METLIN データベース検索時は、各付加体にチェックを入れた 解析を行い、 Δ 1 ppm 以下の数を示した。KNApSAcK データベース検索は positive mode のデ ータに関しては組成式のついた実測値 (*m/z*)を検索にかけ、各付加体の和集合リストを作成 し、重複を除いた数とした。どのデータでもシグナル数(シグナルの局在が確認される数) は positive mode での分析時の方が多い傾向だった。イメージングマスを用いた分子分布のイ メージングデータから①根全体で検出されるシグナル、②根端部分でのみ検出されるシグナ ル、③根端以外で検出されるシグナルなど様々なパターンが確認された。確認されたシグナ ルの *m/z* 値を解析にかけた結果、AutoMFcalculator で組成式のつく割合は、それぞれ全体の 95-97% (positive mode)、 83-87% (negative mode) だった。組成式のついた *m/z* 値について METLIN および KNApSAcK による同定を試みたところ、METLIN でアノテーションのつく 割合は、positive mode、negative mode ともに約 30 %で、KNApSAcK でアノテーションのつく 割合は、positive mode では約 38%、negative mode では約 20 %だった。また、組成式のついた もののうち、KNApSAcK データベース上で *Arabidopsis thaliana* に登録されている割合は約 4-5 %だった。

ファイル開封時の bin size = 0.001 (default値) J シグナルの見えたm/z値と局在をテキストファイルに抽出 (画像をbin size = 0.002で表示) \mathbf{J} AutoMFcalculatorで組成式を作成しリスト化 (C95, H182, N15, O45, S5, P6の条件) \downarrow 組成式のついたm/z(実測値)をMETLINで データベース検索しリスト化 <u>検索時のtolerance</u> < 200 : 10ppm > 200 : 5ppm \downarrow 組成式のついたm/z(実測値)をKNApSAcKで データベース検索してリスト化 \downarrow 数值化 1. formulaのついた数 2. METLINでアノテーションのついた数

3. KNApSAcKでアノテーションのついた数

4.3.のうちArabidopsis Thalianaに登録されている数

Fig. 5-4 データ解析のフローチャート

Table 5-1.	野生型の根の	IMS デー	タ解析結果
------------	--------	--------	-------

Positive mode			Negative mode		
	sample #1	sample #2		sample #1	sample #2
total signal	2263	553	total signal	358	292
formula	2209	526	formula	298	256
By METLIN	706	197	By METLIN	108	82
By KNApSAcK	844	201	Ву КNApSAcK	56	56
in Arabidopsis	105	26	in Arabidopsis	22	13
common	4	27	common		66

Fig. 5-5 野生型の root をイメージングマススペクトロメトリーで分析した結果

a) positive mode, b) negative mode, Scale bar : 1 mm

Fig. 5-5 a) および b) に示されているような測定領域全体や根を取り囲むようなシグナル は、バックグランドイオン (Back Ground; BG) なので組成式作成やデータベース検索などの 同定作業から除外した。

negative mode で検出された m/z = 179.0561 のイオンは、glucose などの糖が候補化合物とし て同定され、根端に強く、また根の全体にシグナルが確認された(Fig. 5-5 b)。このように、 FT-ICR-MS で糖が一価のイオン([M+H]⁺や[M-H]⁻)として検出されるのは稀で、その理由は よく分からないが、毎回、negative mode で検出されやすい傾向だった(Fig. 5-5 b)。糖リン酸 化合物 (m/z = 261.0375: G6P や F6P などがアノテーションされている)は、positive mode で は根端以外に (m/z = 261.0375)、negative mode では根端にシグナル (m/z = 259.0223)が確認さ れた。Phosphatidic acid (PAs) などのリン脂質は、positive mode では根の全体にシグナル (m/z= 737.4520) が確認され、negative mode では根端にシグナル (m/z = 391.2258) が確認された

(Fig. 5-5 a)。その他のリン脂質(Phosphatidylcholine; PC、Phosphatidylethanolamine; PE など) も positive mode で検出されやすく、ナトリウムやカリウムの付加体イオンも検出されていた。 しかし、実測 *m/z* 値や候補組成式から同定されるこれらの物質が正しいかどうかは、MS/MS のフラグメントイオン情報や NMR などを用いた構造決定が必要となる。

4-2-1.の CE-MS を用いたターゲット分析による代謝変動解析に併せて、イメージングマス スペクトロメトリーを用いたノンターゲット分析による代謝変動解析を試みた。野生型およ び *arf7 arf19* 変異体の根を用いて、1 時間、10⁻⁷ M IAA 処理に応答して変動する分子の局在解 析を行った。野生型と *arf7 arf19* 変異体では、それぞれに異なるパターンを示すシグナルが

84

確認された(Fig. 5-6)。IAA 処理によって変動する分子の存在も示唆され、control のみで検出 されるシグナルやIAA 処理によって、根端部分に強いシグナルが検出されるもの、また根端 以外の部分にシグナルが検出されるものなどが確認された。negative mode では、m/z = 160 -700、postive mode では m/z = 200 - 1130 にシグナルが検出され、positive mode では 2 千以上の シグナルが確認された。negative mode では m/z = 300 - 500 に検出されるシグナルが多く、2 次代謝物質が多くアノテーションされていた。

Fig. 5-6 IAA 処理有無の野生型と *arf7 arf19* 二重変異体の根をイメージングマス スペクトロメトリーで分析した結果

5-3. まとめ

本章では、第4章で明らかになったオーキシン処理によって変動するアミノ酸や有機酸な どの代謝物質以外に、標準物質では同定できない代謝物質を含めたノンターゲット解析を行 った。シロイヌナズナの根を材料とし、新技術であるイメージングマスを用いたメタボロー ム解析を行い、IAA 処理や遺伝子組み換えによって変動する分子の探索を試みた。その結果、 根の代謝産物には IAA 処理によって特異的なパターンを示す分子が存在することが明らかと なり、分子特異的に様々なシグナルパターンを示すことが分かった。また、第2章で行った シュート、根、培養細胞、液胞におけるノンターゲット解析で見いだされた未知化合物の根 における局在をイメージングマスで確認することができた。イメージングマスで検出された シグナルのうち、KNApSAcK や METLIN などの化合物データベースで同定される化合物は 20-30 %だった。m/z 値から推定される化合物を同定するには MS/MS や NMR などの構造決 定解析が必要となるが、環境に応じて変動する分子あるいは遺伝子発現レベルによる代謝物 質の差を組織レベルで確認することができた。 総論

メタボロミクスを利用する際に注意しなければいけない点として、「対象となる生体の代謝物すべ てを一斉分析し網羅的に解析することは不可能である」という事実を認識しておく必要がある。各 種分析装置の特性を知った上で、対象化合物に適した分析手法の取捨選択、日々のメンテナンス、 適切なアプローチがあってこそ、精度の高い精密質量データを取得できる可能性が高くなる。

本研究では、1 章でキャピラリー電気泳動-質量分析装置(Capillary Electrophoresis Mass Spectrometry; CE-MS)を植物分野に用いるための解析手法の確立を行った。既存の手法に加えて、 植物ホルモンも同時定量できるように分析条件を整えた。続く第 2-3 章では、第 1 章で確立した手 法を用い、シロイヌナズナ培養細胞、プロトプラストおよび培養細胞から単離した液胞のメタボロ ーム解析を行った。標準物質による定量解析であるターゲット解析では、培養細胞からプロトプラ ストを経て単離液胞に至る過程でアミノ酸や有機酸などの一次代謝物質が変動していることが分か り、単離液胞には比較的高濃度の有機リン酸化合物も存在することが明らかになった。さらに、高 分解能である FT-ICR-MS を用いたノンターゲット解析では、1 ppm 以内の精度で候補組成式を絞り 込めることが明らかになった。組成式による培養細胞、単離液胞それぞれのノンターゲット解析か ら、培養細胞と単離液胞に存在する分子のほとんどは共通するものだということが明らかになった が、KNApSAcK でアノテーションされる物質は 10 %以下であった。第 4-5 章では、外部から与え たオーキシンが野生型および 3 つのオーキシン応答変異体(*tir1, slr, arf7 arf19* 二重変異体)の植物 体内代謝産物にどのような影響を及ぼしているのかをメタボローム解析によって明らかにすること ができた。

質量分析装置を用いた種々の分析は、一見、ハードルが高そうに見えるが、実はそうではない。 もちろん、トラブルシューティングや日々のメンテナンスのために知識を習得することは必要にな るが、訓練と慣れでクリアできる程度で大きな問題にはならない。質量分析装置の醍醐味は、自分 が手をかけた分だけ"クロマトグラム"あるいは"マススペクトル"として結果に現れる点である。分析 装置は、往々にしてそういう部分があるが、自分が相手にしている装置にどれだけ情を注げるか、 それが精度の高い、生物学的に意味のあるデータ取得につながる。

質量分析装置の制御や解析は、すべてがコンピューターで制御され、マウス1つでデータ取得ま でできる時代にはなったが、課題も多い。本研究で用いた CE-MS は、GC-MS や LC-MS のように自 動化された解析ソフトが存在しないため、解析に多少時間がかかるのが弱点である。CE-MS は、 GC-MS や LC-MS のように移動時間が一定にならないため、コンピューターの自動解析でピッキン グされるデータにミスが見つかることが度々ある。そのため、自動解析後に人間の目で再確認して いる現状がある。実際に、植物試料から極性化合物を抽出し、CE-MS 分析にかけターゲット解析を 行っても、定量解析可能な対象化合物数は 100 にも満たない。これらを総合して考えると、手間は 多少かかっても、自分の目で1つ1つ確認しながらデータ解析を行うことで、自動解析によるピー クピッキングのミスは減少し、より真実に近いデータのみを精査できるのではないだろうか。今後、

87

メタボローム解析における CE-MS の発展には、データマイニングをいかに自動化できるかが鍵となってくるだろう。

本研究を通して、様々な質量分析装置と触れ合い、それらの特徴や限界を改めて知ることができた。今後、メタボローム解析を進める研究者に重要となるのは、プラットホームの選択である。幸い、国内には、数カ所にメタボローム基盤研究を支える研究所あるいは大学がある。費用やマシーンタイムの問題があるかもしれないが、対象化合物が決定しており量的な議論がしたい(ターゲット解析)場合は、理化学研究所、Human Metabolomics Technology. Inc(山形県鶴岡市)、東京大学や大阪大学に整備された質量分析装置に精通した研究者と共同研究することが重要であろう。ノンターゲット解析がしたい場合は、FT-ICR-MS などの高分解能の質量分析装置が必要になってくるため難しいかもしれないが、産総研や他大学、あるいは海外にアプローチすることも重要であろう。

メタボローム解析は、まだやっと始まったばかりの研究技術である。今後、本研究で明らかにな ったノンターゲット解析による植物体内の分子分布や野生型と変異体を用いたターゲット解析によ る代謝物分布の結果が、植物における生理学実験の基礎データとして有用になることを期待すると ともに、この技術がどのように発展していくかが将来の大きな課題であると思う。

参考文献

Abiko T, Wakayama M, Kawakami A, Obara M, Kisaka H, Miwa T, Aoki N, Ohsugi R (2010) Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA). *Planta* 232: 299–311

Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Arnin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research. *Plant Cell Physiol*. 53(2): 1–12

Aharoni A, Ric De Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontarget metabolome analysis by use of fourier transform ion cyclotron mass spectrometry. OMICS 6(3): 217–234

Armengaud P, Sulpice R, Miller AJ, Stitt M, Amtmann A, Gibon Y (2009) Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in *Arabidopsis* roots. *Plant Physiol* 150: 772–785

Armstrong JI, Yuan S, Dale JM, Tanner VN, Theologis A (2004) Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in *Arabidopsis*. *Proc Natl Acad Sci USA* 101: 14978–14983

Asano T, Wakayama M, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R (2010) Overexpression of a *calcium-dependent protein kinase* gene enhances growth of rice under low-nitrogen conditions. *Plant Biotechnol* 27: 369–373

Bino RJ, De Vos CHR, Lieberman M, Hall RD, Bovy A, Jonker HH, Tikunov Y, Lommen A, Moco S, Levin I (2005) The light-hyperresponsive high pigment-2^{dg} mutation of tomato: alterations in the fruit metabolome. *New Phytol* 166: 427–438

Boccard J, Kalousis A, Hilario M, Lantéri P, Hanafid M, Mazerollese G, Wolfender JL, Carrupt PA, Rudaz S (2010) Standard machine learning algorithms applied to UPLC-TOF/MS metabolic fingerprinting for the discovery of wound biomarkers in *Arabidopsis thaliana*. *Chemometrics Intell Lab Syst* 104(1): 20–27

Bonner J (1936) The growth and respiration of the Avena coleoptile. J Gen Physiol 20: 1-11.

Commoner B, Thimann KV (1941) On the relation between growth and respiration in the *Avena* coleoptile. *J Gen Physiol* 4: 279–296

Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of *Arabidopsis*. *Proc Natl Acad Sci USA* 101: 15243–15248

Davies JP (2010) Plant Hormones: revised 3rd edition, Springer, USA

De Vos CHR, Moco S, Lommen A, Keurentjes JJB, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. *Nature Protocols* 2(4): 778–791

Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. *Dev Cell* 9: 109–119

Dunn WB and Ellis DI (2005) Metabolomics: Current analytical plantforms and methodologies. *Trends Anal Chem* 24(4): 285–294

Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, Martinoia E, Neuhaus HE (2003) The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. *Proc Natl Acad Sci USA* 100(19): 11122–11126

Enrico Martinoia, Monika Thume, Esther Vogt, Doris Rentsch, and Karl-Josef Dietz (1991) Transport of arginine and aspartic acid into isolated barley mesophyll vacuoles. *Plant Physiology* 97: 644–650

Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C (2013) What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. *Plant Mol Biol* 64: 1451–1469

Fiehn O (2002) Metabolomics-The link between genotypes and phenotypes. Plant Mol Biol 48: 155-171

Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. *Nature Biotechnology* 18: 1157–1161

Fujimura Y, Kurihara K, Ida M, Kosaka R, Miura D, Wariishi H, Maeda-Yamamoto M, Nesumi A, Saito T, Kanda T, Yamada K, Tachibana H (2011) Metabolomics-driven nutraceutical evaluation of diverse green tea

cultivars. PLoS One 6(8): e23426

Fukaki H, Okushima Y, Tasaka M (2005) Regulation of lateral root formation by auxin signaling in *Arabidopsis. Plant Biotechnol* 22: 393–399

Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of *Arabidopsis*. *Plant J* 29: 153–168

Ge L, Yound JWH, Tan SN, Ong ES (2006) Determination of cytokinins in coconut (*Cocos nucifera L*.) water using capillary zone electrophoresis-tandem mass spectrometry. *Electrophoresis* 27: 2171–2181

Gerhardt R, Stitt M, Herld HW (1987) Subcellular metabolite levels in *Spinach* leaves. *Plant Physiol* 83: 399–407

Glauser G, Boccard J, Rudaz S, Wolfender JL (2010) Mass spectrometry-based metabolomics oriented by correlation analysis for wound-induced molecule discovery: identification of a novel jasmonate glucoside. *Phytochem* 21(1): 95–101

Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in *Arabidopsis*. *Plant Physiol* 134: 1555–1573

Grata E, Boccard J, Glauser G, Carrupt PA, Farmer EE, Wolfender JL, Rudaz S (2007) Development of a two-step screening ESI-TOF-MS method for rapid determination of significant stress-induced metabolome modifications in plant leaf extracts: The wound response in *Arabidopsis thaliana* as a case study. *J Sep Sci* 30: 2268–2278

Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10: 453-460

Hackett DP, Thimann KV (1952) The effect of auxin on growth and respiration of artichoke tissue. *Proc Natl Acad Sci* USA 38: 770–775

Hankin JA, Barkley RM, Murphy RC (2007) Sublimation as a method of matrix application for mass spectrometric imaging. *J Am Soc Mass Spectrom* 18(9): 1646–1652

Harada T, Yuba-Kubo A, Sugiura Y, Zaima N, Hayasaka T, Goto-Inoue N, et al (2009) Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope. *Anal Chem* 81: 9153–9157

Harrigan GG, Goodacre R (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic Publishers, Boston, USA

Hayasaka T, Goto-Inoue N, Sugiura Y, Zaima N, Nakanishi H, Ohishi K, Nakanishi S, Naito T, Taguchi R, Setou M (2008) Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. *Rapid Commun Mass Spectrom* (22)21: 3415–3426

Hayashi K (2012) The interaction and integration of auxin signaling components. *Plant Cell Physiol* 53: 965–975

Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer BW, Koch W (2006) *Arabidopsis* LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. *Plant Cell* 18: 1931–1946

Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: Current technologies and future trends. *Proteomics* 6: 4716–4723

Ijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, Suda K, Suzuki T, Suzuki H, Okazaki K, Kitayama M et al. (2008) Metabolite annotations based on the integration of mass spectral information. *Plant J* 54: 949–962

Inoue K, Nishimura M, Tsutsui H,Min JZ, Todoroki K, Kauffmann JM, Toyo'oka T (2013) Foodomics platform for the assay of thiols in wines with fluorescence derivatization and ultra performance liquid chromatography mass spectrometry using multivariate statistical analysis. *J Agric Food Chem* 61: 1228–1234

Kepinski S, Leyser O (2004) Auxin-induced SCF^{TIR1}–Aux/IAA interaction involves stable modification of the SCF^{TIR1} complex. *Proc Natl Acad Sci USA* 101: 12381–12386

Kishinami I (1988) Effect of auxins (2,4-dichlorophenoxyacetic acid, indole-3-acetic acid and naphthaleneacetic acid) on the accumulation of γ-aminobutyric acid in excised rice root tips. *Plant Cell Physiol* 29: 581–585

Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R (2011) Introduction of the ZmDofl gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions *Plant Biotechnol J* 9(8): 826–837

Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, Arita M, Watanabe S, Yano M, Hiwasa-Tanase K et al. (2011) Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment. *PLoS ONE* 6: e16989

Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R (2006) Expression profiling of auxin-treated *Arabidopsis* roots: Toward a molecular analysis of lateral root emergence. *Plant Cell Physiol* 47: 788–792

Lendvai N, Pawlosky R, Bullova P, Eisenhofer G, Patocs A, Veech RL, Pacak K (2014) Succinate-to-fumarate ratio as a new metabolic marker to detect the presence of *SDHB/D*-related paraganglioma: initial experimental and ex vivo findings. *Endocrinology* 155: 27–32

Lewis DR, Ramirez MV, Miller NG, Vallabhaneni P, Ray WK, Helm RF, Winkel BSJ, Munday GK (2011) Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. *Plant Physiol* 156: 144–164

Li B, Hansen SH, Janfelt C (2013a) Direct imaging of plant metabolites in leaves and petals by desorption electrospray ionization mass spectrometry. *Int J Mass Spectrom* 348: 15–22

Li B, Knudsen C, Hansen NK, Jørgensen K, Kannangara R, Bak S, Takos A, Rook F, Hansen SH, Møller BL, Janfelt C, Bjarnholt N (2013b) Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging. *Plant J* 74(6): 1059–1071

Liscum E and Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. *Plant Mol Biol* 49: 387–400.

Lukacs KD and Jorgenson JW (1985) Capillary zone electrophoresis: Effect of physical parameters on separation efficiency and quantitation. *J High Res Chromatogr* 8 (1985) 407–411

Mack LL, Kralik P, Rheude A, Dole M (1970) Molecular Beams of Macroions. II J Chem Phys 52: 4977–4986

Marrè E, Arrigoni O (1957) Metabolic reactions to auxin I. The effects of auxin on glutathione and the effects of glutathione on growth of isolated plant parts. *Physiol Plantarum* 10: 289–301

Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H et al. (2011) The main auxin biosynthesis pathway in *Arabidopsis*. *Proc Natl Acad Sci USA* 108: 18512–18517

Massonneau A, Martinoia E, Dietz K, Mimura T (2000) Phosphate uptake across the tonoplast of intact vacuoles isolated from suspension-cultured cells of *Catharanthus roseus* (L.) G. Don. *Planta* 211: 390–395

Matsuda F, Okazaki Y, Oikawa A, Kusano M, Nakabayashi R, Kikuchi J, Yonemaru J, Ebana K, Yano M, Saito K (2012) Dissection of genotype–phenotype associations in rice grains using metabolome quantitative trait loci analysis. *Plant J* 70: 624–636

Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T, Shinozaki K, Saito K (2009) MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. *Plant J* 57: 555–577

Mitchell JE, Burris RH, Riker AJ (1949) Inhibition of respiration in plant tissues by callus stimulating substances and related chemicals. *Am J Bot* 36: 368–378

Miura D, Fujimura Y, Wariishi H (2012) In situ metabolomic mass spectrometry imaging: Recent advances and difficulties. *Proteomics* 75(16): 5052-5060

Miyagi A, Takahara K, Takahashi H, Kawai-Yamada M, Uchimiya H (2010) Targeted metabolomics in an intrusive weed, *Rumex obtusifolius* L., grown under different environmental conditions reveals alterations of organ related metabolite pathway. *Metabolomics* 6: 497–510

Miyagi A, Uchimiya M, Kawai-Yamada M, Uchimiya H (2013a) An antagonist treatment in combination with tracer experiments revealed isocitrate pathway dominant to oxalate biosynthesis in *Rumex obtusifolius* L. *Metabolomics* 9: 590–598

Miyagi A, Uchimiya M, Kawai-Yamada M, Uchimiya H (2013b) Impact of aluminium stress on oxalate and other metabolites in *Rumex obtusifolius*. *Weed Research* 53: 30–41

Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. *Annu Rev Cell Dev Biol* 24: 55–80

Moco S, Bino RJ, Vorst O, Verhoeven HA, Groot J, van Beek TA, Vervoort J, De Vos CHR (2006) A liquid chromatography-mass spectrometry-based metabolome database for Tomato. *Plant Physiol* 141: 1205–1218

Nakamura Y, Kanaya S, Sakurai N, Iijima Y, Aoki K, Okazaki K, Suzuki H, Kitayama M, Shibata D (2008) A tool for high-throughput prediction of molecular formulas and identification of isotopic peaks from large-scale mass spectrometry data. *Plant Biotechnol* 25: 377–380

Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of *Arabidopsis* plants. *Plant Physiol* 138: 304–318

Nishiumi S, Kobayashi T, Ikeda A, Yoshie T, Kibi M, Izumi Y, Okuno T, Hayashi N, Kawano S, Takenawa T, Azuma T, Yoshida M (2012) A novel serum metabolomics-based diagnostic approach for colorectal cancer. *PLoS one* 7(7): e40459

Obata T and Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. *Cell Mol Life Sci* 69(19): 3225–3243

Ochi H, Bamba T, Naito H, Iwatsuki K, Fukusaki E (2012a) Metabolic fingerprinting of hard and semi-hard natural cheeses using gas chromatography with flame ionization detector for practical sensory prediction modeling. *J Biosci Bioeng* 114(5): 506–511

Ochi H, Bamba T, Naito H, Iwatsuki K, Fukusaki E (2012b) Metabolomics-based component profiling of hard and semi-hard natural cheeses with gas chromatography/time-of-flight-mass spectrometry, and its application to sensory predictive modeling. *J Biosci Bioeng* 113(6): 751–758

Ohkama-Ohtsu N, Oikawa A, Zhao P, Xiang C, Saito K, Oliver DJ (2008) A γ-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in *Arabidopsis*. *Plant Physiol* 148: 1603–1613

Oikawa A, Matsuda F, Kikuyama M, Mimura T, Saito K (2011) Metabolomics of a single vacuole reveals metabolic dynamism in an Alga *Chara australis*. *Plant Physiol* 157(2): 544–551

Okazaki Y, Otsuki H, Narisawa T, Kobayashi M, Sawai S, Kamide Y, Kusano M, Aoki T, Yokota-Hirai M, Saito K (2013) A new class of plant lipid is essential for protection against phosphorus depletion. *Nature Communication* 1510: 1–10

Okumura D, Toyoda M, Ishihara M, Katakuse I (2004) Application of a multi-turn time-of-flight mass spectrometer, MULTUM II, to organic compounds ionized by matrix-assisted laser desorption/ionization. *J Mass Spectrom* 39: 86–90

Okumura K, Goh T, Toyokura K, Kasahara H, Takebayashi Y, Mimura T, Kamiya Y, Fukaki H (2013) GNOM/FEWER ROOTS is required for the establishment of an auxin response maximum for *Arabidopsis* lateral root initiation. *Plant Cell Physiol* 54(3): 406–417

Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of *LBD/ASL* genes in *Arabidopsis*. *Plant Cell* 19: 118–130

Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Eckerb RJ, Hughesa B, Luia A, Nguyena D et al. (2005) Functional genomic analysis of the *AUXIN RESPONSE FACTOR* gene family members in *Arabidopsis thaliana*: unique and overlapping functions of *ARF7* and *ARF19*. *Plant Cell* 17: 444–463

Park KY, Lee SH (1994) Effect of ethylene and auxin on polyamine levels in suspension-cultured tobacco cells. *Physiol Plantarum* 90: 382–390

Rawat SR, Silim SN, Kronzucker HJ, Siddigi MY, Glass ADM (1999) *AtAMT1* gene expression and NH₄⁺ uptake in roots of *Arabidopsis thaliana*: evidence for regulation by root glutamine levels. *Plant J* 19: 143–152

Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the *Aux/IAA* and *ARF* gene families. *Plant Physiol* 135: 1738–1752

Rischer H, Orešič M, Seppänen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MCE, Inzé D, Oksman-Caldentey K, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in *Catharanthus roseus* cells. *Proc Natl Acad Sci USA* 103(4): 5614–5619

Roepenack-Lahaye EV, Degenkolb T, Zerjeski M, Franz M, Roth U, Wessjohann L, Schmidt J, Scheel D, Clemens S (2004) Profiling of *arabidopsis* secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. *Plant Physiol* 134(2): 548–559

Roessner U, Beckles DM (2009) Metabolite measurements. In Plant Metabolic Networks, Junker B and Schwender J, eds., Springer, Heidelberg, Germany

Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of *Arabidopsis* functions in auxin response and is related to human SKP2 and yeast Grr1p. *Genes Dev* 12: 198–207

Sato S, Soga T, Nishioka T, Tomita M (2004) Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. *Plant J* 40: 151–163

Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of *Arabidopsis* in response to nitrogen. *Plant Physiol* 136: 2483–2499

Scheible WR, Krapp A, Stitt M (2000) Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. *Plant Cell Environ* 23: 1155-1167

Setou M (2010) Imaging Mass Spectrometry_Protocols for Mass Microscopy Springer, Tokyo Japan

Singla B, Tyagi AK, Khurana JP, Khurana P (2007) Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (*Triticum aestivum*) and their possible interactions. *Plant Mol Biol* 65: 677–692 Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, Kakazu Y, Ishikawa T, Robert M, Nishioka T et al. (2006) Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. *J Biol Chem* 281: 16768–16776

Soga T, Ishikawa T, Igarashi S, Sugawara K, Kakazu Y, Tomita M (2007) Analysis of nucleotides by pressure-assisted capillary electrophoresis– mass spectrometry using silanol mask technique. *J Chromatogr A* 1159: 125–133

Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002a) Simultaneous determination of anionic intermediates for *Bacillus subtilis* metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. *Anal Chem* 74: 2233–2239

Soga T, Ueno Y, Naraoka H, Matsuda K, Tomita M, Nishioka T (2002b) Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. *Anal Chem* 74: 6224–6229

Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y et al. (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. *Nature* 457: 910–914

Sudre D, Gutierrez-Carbonell E, Lattanzio G, Rellán-Álvarez R, Gaymard F, Wohlgemuth G, Fiehn O, Álvarez-Fernández A, Zamarreño AM, Bacaicoa E et al. (2013) Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an *Arabidopsis* ferritin mutant. *J Exp Bot* 64: 2665–2688

Sugimoto M, Goto H, Otomo K, Ito M, Onuma H, Suzuki A, Sugawara M, Abe S, Tomita M and Soga T (2010) Metabolomic profiles and sensory attributes of edamame under various storage duration and temperature conditions. *J Agric Food Chem* 58(14): 8418–8425

Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R et al. (2009) Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. *J Lipid Res* 50:1776–1788

Sugiura Y, Shimma S, Setou M (2006) Two-step matrix application technique to improve ionization efficiency for matrix-assisted laser desorption/ionization in imaging mass spectrometry. *Anal Chem* 78: 8227– 8235

Sugiura Y, Zaima N, Setou M, Ito S, Yao I (2012) Visualization of acetylcholine distribution in central nervous system tissue sections by tandem imaging mass spectrometry. *Anal Bioanal Chem* 403:1851–1861

Sulpice R, Trenkamp S, Steinfath M, Usadel B, Gibon Y, Witucka-Wall H, Pyl ET, Tschoep H, Steinhauser MC, Guenther M et al. (2010) Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of *Arabidopsis* accessions. *Plant Cell* 22: 2872–2893

Sumnera LW, Mendesb P, Dixona RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. *Phytochem* 62(6): 817–836

Tam YY, Epstein E, Normanly J (2000) Characterization of auxin conjugates in *Arabidopsis*. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. *Plant Physiol* 123: 589–595

Tiburcio AF, Altabella T, Borrell A, Masgrau C (1997) Polyamine metabolism and its regulation. *Physiol Plantarum* 100: 664–674

Tohge T, Ramos MS, Nunes-Nesi A, Mutwil M, Giavalisco P, Steinhauser D, Schellenberg M, Willmitzer L, Persson S, Martinoia E et al. (2011) Towards the storage metabolome: profiling the barley vacuole. *Plant Physiol* 157: 1469–1482

Toyoda M, Okumura D, Ishihara M, Katakuse I (2003) Multi-turn time-of-flight mass spectrometers with electrostatic sectors. *J Mass Spectrom* 38: 1125–1142.

Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-nesi A, Fernie AR, Koehl K, Stitt M (2009) Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in *Arabidopsis. Plant Cell Environ* 32: 300–318

Vanneste S, Friml J (2009) Auxin: A trigger for change in plant development. Cell 136: 1005-1016

Vermillion-Salsbury RL and Hercules DM (2002) 9-Aminoacridine as a matrix for negative mode matrix-assisted laser desorption/ionization. *Rapid Commun Mass Spectrom* 16(16): 1575–1581

Villas-Bôas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. *Mass Spectrom Rev* 24(5): 613–646

Vorst O, De Vos CHR, Lommen A, Staps RV, Visser RGF, Bino RJ, Hall RD (2005) A non-directed approach to the differential analysis of multiple LC–MS-derived metabolic profiles. *Metabolomics* 1(2): 169–180

Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. *Phytochem* 62(6): 887–900

Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C et al. (2011) Metabolite profiles and the risk of developing diabetes. *Nat Med* 17: 448–453

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung Y et al. (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. *Nature* 472: 57–63

Watanabe CK, Hachiya T, Takahara K, Kawai-Yamada M, Uchimiya H, Uesono Y, Terashima I, Noguchi K (2010) Effects of AOX1a deficiency on plant growth, gene expression of respiratory components and metabolic profile under low-nitrogen stress in *Arabidopsis thaliana Plant Cell Physiol* 51(5): 810–822

Wiemken A and Durr M (1974) Characterization of amino acid pools in the vacuolar compartment of *Saccharomycescerevisiae*. *Arch Microbiol* 101: 45–57

Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. *Plant J* 43: 118–130

Winter H, Robinson DG, Heldt HW (1993) Subcellular volumes and metabolite concentrations in barley leaves. *Planta* 191: 180–190

Winter H, Robinson DG, Heldt HW (1994) Subcellular volumes and metabolite concentrations in spinach leaves. *Planta* 193: 530–535

Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95: 707-735

Ye H, Erin Gemperline E, Venkateshwaran M, Chen R, Delaux P, Howes-Podoll M, Ane J, Li L (2013) MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the *Medicago truncatula–Sinorhizobium meliloti* symbiosis. *Plant J* 75(1): 130–145

Yokota Hirai M, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in *Arabidopsis thaliana*. *Proc Natl Acad Sci USA* 101(27): 10205–10210

Yokota-Hirai M, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H et al. (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in *Arabidopsis* by integration of metabolomics and transcriptomics. *J Biol Chem* 280(27): 25590–25595

Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of Proline as an osmolyte in Plants under water stress. *Plant Cell Physiol* 38: 1095–1102

Yoshida M, Hatano N, Nishiumi S, Irino Y, Izumi Y, Takenawa T, Azuma T (2012) Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography-mass spectrometry. *J Gastroenterol* 47(1): 9–20

Yoshimura Y, Zaima N, Moriyama T, Kawamura Y (2012) Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry. *PLoS ONE* 7(2): e31285

Yoshimura Y, Enomoto H, Moriyama T, Kawamura Y, Setou M, Zaima N (2012) Visualization of anthocyanin species in rabbiteye blueberry *Vaccinium ashei* by matrix-assisted laser desorption/ionization imaging mass spectrometry. *Anal Bioanal Chem* 403:1885–1895

Zaima N, Goto-Inoue N, Hayasaka Y, Setou M (2010) Application of imaging mass spectrometry for the analysis of *Oryza sativa* rice. *Rapid Commun Mass Spectrom* 24(18): 2723–2729

及川 彰 (2013) メタボロミクスの農業・食品分野への応用、化学と生物 51(9):615-621
山本 慎也、中山 泰宗、福崎 英一郎 (2013) 質量分析データの正しい見方を知ってますか? 生 物工学、91:101-104

志田 保夫、笠間 健嗣、黒野 定、高山 光男、高橋 利枝 (2001) これならわかるマススペクトロメ トリー、化学同人

福崎 英一郎 (2007) メタボロミクス(代謝物総体解析)の食品工学への応用 生物工学 85(11):488-491

謝辞

本研究は筆者が神戸大学大学院理学研究科生物学専攻博士後期課程に社会人ドクターとして在籍 した2年間に三村徹郎教授の指導の下に行われた研究をまとめたものです。また、本研究の一部は、 科学技術振興機構(JST)の戦略的創造研究推進事業(CREST)および新学術領域研究「植物の環境 感覚」の支援を受けて行われました。ここに記して謝意を表します。

本研究を遂行するにあたり、沢山の方にご指導とご援助を賜りましたこと、深く感謝致します。

三村徹郎教授には本研究を行うにあたり、公私ともに、終始にわたり叱咤激励して頂き、未熟な 私に研究の手法や方向性などを懇切丁寧にご指導頂きました。岡山大学大学院環境学研究科で研究 を続けることが難しくなり、学位取得を諦めていた私に手を差し伸べて下さいました。我が儘で、 色々と至らない私に時間を割いてご指導頂き、研究者としての心構えのみならず、人間活動につい ても身に余る励ましやご指導を賜りましたこと、美味しいお酒を沢山飲ませて頂いたこと、心より 感謝するとともに、深く御礼申し上げます。

三村先生と共に、大西美輪博士には、研究生活においても、私生活においても心の支えとなって 頂きました。色々と至らない私に適切なご助言を賜りましたこと、心より感謝申し上げます。いつ までも安心して一緒にお酒を楽しめる数少ない人に出逢い、とても嬉しかったです。

深城英弘教授には、本研究で使用したオーキシン応答変異体である*tir1, slr, arf7 arf19*の種子を提供 頂きました。オーキシン処理における代謝変動解析では、分子生物学分野に未熟な私に有用な御助 言・御協力を頂きましたこと、心より感謝するとともに、深く御礼申し上げます。また、七條千津 子助教、石崎公庸准教授、郷達明博士、豊倉浩一博士には、研究を進めるにあたり、研究の方向性 や手法などを丁寧にご指導頂き、時には叱咤激励して頂きました。心より感謝申し上げます。

産業技術総合研究所の高橋勝利博士には、FT-ICR-MSによるノンターゲット解析で装置を使用さ せて頂き、イメージングマススペクトロメトリーによる代謝解析ではご多忙な中、分析を行って頂 きました。解析ソフトの開発やデータの取得など、高分解能質量分析装置を用いたメタボローム解 析においての有用なご助言・ご協力頂きました。心より感謝するとともに、深く御礼申し上げます。

兵庫県立大学の杉山裕子准教授には、学部生の頃から色々と相談させて頂き、知り合ってから早 12年が経ちました。本研究で行った植物体、培養細胞および液胞のFT-ICR-MSによるノンターゲッ ト解析では、ODUのFT-ICR-MSで分析・解析を行って頂きました。研究生活を進めるにあたって、 紆余曲折することもありましたが、その度に叱咤激励して頂き、何とかここまで辿り着けました。 心より感謝するとともに、深く御礼申し上げます。

神戸大学大学院農学研究科三宅親弘准教授、高木大輔氏には、オーキシン応答における代謝変動 解析で呼吸測定を行うにあたり、快く分析装置を使用させて頂き、分析やデータ解析において多大 なるご協力を頂きました。心より感謝致します。 大阪大学大学院情報科学研究科松田史生准教授、山形大学農学部食料生命環境学科及川彰准教授 には、メタボローム解析を進めるにあたり有用なご助言を頂くとともに、時には研究の方向性につ いても議論して頂き、叱咤激励して頂きました。心より感謝するとともに、深く御礼申し上げます。

また、オーキシン応答におけるメタボローム解析の研究を進めるにあたり、研究の方向性や手法 など有用な御助言を頂きました今関英雄名古屋大学名誉教授に心より感謝致します。

博士取得を目指した約7年間、本当に様々な方にお世話になりながら、ここまで辿り着くことがで きました。公私ともに支えて下さった研究室の皆様、そして家族に感謝致します。

最後に、身に余る励ましやご協力を頂き、かつ研究生活を有意義で充実したものとして下さった 川井浩史教授、坂本博教授、井上邦夫教授、小菅桂子准教授、宮本昌明准教授、新学術領域研究グ ループの皆様、三村研究室、深城研究室、七條研究室、石崎研究室の皆様に深く感謝申し上げます。

平成 27 年 1 月

姉川 彩