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Abstract
For an oriented diagram of a knot, the minimum number of crossing changes

required to convert the diagram into a descending diagram is said to be the
warping degree. The minimum number of warping degrees of all diagrams of a
knot is said to be the ascending number of the knot. In this paper, we study the
relation between the ascending number and the warping degree. We determine
the ascending number of certain families of knots. We prove that the ascending
number equals the half of the crossing number minus one if and only if a knot is
the (2, p)-torus knot. We examine the determinations of the ascending numbers
of prime knots up to ten crossings.

1. Introduction

Throughout this paper, a knot is an oriented closed curve in S3. We use
standard knot diagrams based on Rolfsen’s knot table [9] unless otherwise stated.
For a knot K and a diagram D of K, we denote c(D) the crossing number of
D and c(K) the crossing number of K. A crossing change is a local move of a
diagram as illustrated in Figure 1. The unknotting number u(K) of a knot K

is the minimum number of crossing changes required to convert a knot into the
unknot. A knot diagram is based if a base point (different from the crossing
points) is specified on the diagram.

Ozawa [8] introduces the ascending number of a link. A knot diagram is
said to be descending if we meet each crossing as an overcrossing first when we
go along the diagram with an orientation by starting from a base point on the
diagram. Let K be a knot, and D a based oriented diagram of K. The ascending
number of D is defined as the number of crossing changes required to convert D

into a descending diagram, and denoted by a(D). The ascending number of K is
defined as the minimum number of a(D) over all based oriented diagram D of K,
and denoted by a(K).



2 R. Higa and E. Maeda

Figure 1.

The useful notion to study the ascending number is the warping degree which
is introduced by Kawauchi [4], and lately studied by Shimizu [10]. We study a
relation of the ascending number and the warping degree in Section 2. By defi-
nition, the ascending number is a generalization of the warping degree. In fact,
we have that the ascending number coincides with the warping degree of a knot
(Corollary 2.10).

In Section 3, we introduce moves of a diagram in order to determine the
ascending number of knots. We determine the ascending number of knots by
using such moves.

In Section 4, we study the property of the ascending number of a knot by
comparing with the unknotting number. The ascending number is related to the
unknotting number. For a diagram D of a knot K, since a(K) times crossing
changes convert it into a diagram of the trivial knot, we have u(K) ≤ a(K).
It is well known that u(K) ≤ c(K)−1

2 , and there is also a result for the ascending
number in [8].

Proposition 1.1 ([8]). Let K be a non-trivial knot. Then a(K) ≤ c(K)−1
2 .

Furthermore, we have the following.

Theorem 1.2 ([11]). Let K be a knot. u(K) = c(K)−1
2 if and only if K is

the (2, p)-torus knot for some odd integer p ̸= ±1.

Theorem 1.3 ([1]). If K is a knot with u(K) = c(K)−2
2 , then K is the

figure-eight knot, a positive 3-braid knot, a negative 3-braid knot, or a connected
sum of the (2, p)-torus knot and the (2, p′)-torus knot for some odd integers
p, p′ ̸= ±1.

We give a result similar to Theorem 1.2 for the ascending number.

Theorem 1.4. Let K be a knot. a(K) = c(K)−1
2 if and only if K is the

(2, p)-torus knot for some odd integer p ̸= 1.

Problem 1.5. Characterize knots with a(K) = c(K)−2
2 .

Generally, it is difficult to characterize the unknotting number one knot. On
the other hand, we have the following result for the ascending number.

Theorem 1.6 ([8]). a(K) = 1 if and only if K is a twist knot.
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When a knot K is a twist knot, a torus knot, or a knot in Theorem 1.3, we
have u(K) = a(K). On the other hand, we have many knots such that u(K) ̸=
a(K) by Theorem 1.6, since there are many non-twist knots such that u(K) = 1.

Problem 1.7. Characterize knots with u(K) = a(K).

By Ozawa, the ascending number is completely determined for twist knots
and torus knots. We study the following problem in Section 5.

Problem 1.8. Determine the ascending number for some family of knots.

The following is an answer of Problem 1.8.

Theorem 1.9. Let C(m), C(m, n), and C(m, n, l) be the 2-bridge knots
with Conway notation m, mn, and mnl, respectively, where m, n, l are positive
integers. Then,
(1) a(C(m)) = 1

2 (m − 1) if m is odd;
(2) a(C(m, n)) = 1

2 m if m is even and n is odd;
(3) a(C(m, n, l)) = 1

2 (m + l − 1) if m and n are even and l is odd.

In Section 6, we study the ascending number of a reduced alternating dia-
gram. In Section 7, we give a table of knots up to ten crossings with respect to
the ascending number. This paper is based on the master thesis of the second
author [5], and also based on the first author’s recent paper [2] for Section 7.

2. Ascending number and warping degree

At the beginning, we review the notion of the warping degree according
to Shimizu [10]. Let D be an oriented knot diagram. A base point b of a knot
diagram D is a point on D which is not a crossing point. We denote the pair of D

and b by Db. A crossing point of Db is said to be a warping crossing point if we
meet the point as an undercrossing first when we go along D with the orientation
by starting from b. The warping degree of a based diagram Db, denoted by d(Db),
is the number of warping crossing points of Db. The warping degree of D, denoted
by d(D), is the minimal warping degree for all base points of D. Therefore,
d(D) = min{d(Db) | b}.

Definition 2.1. The warping degree of an oriented knot K is the minimum
number of all diagrams of K. Therefore, d(K) = min{d(D) | D}.

We recall the definition of the ascending number by using the notion of the
warping degree.
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Definition 2.2. The ascending number a(D) of a knot diagram D is the
minimum one of d(D) and d(−D). Therefore, a(D) = min{d(D), d(−D)}.

Definition 2.3. The ascending number a(K) is the minimum one of
the ascending number of all diagrams of K. That is, a(K) = min{a(D) | D} =
min{d(K), d(−K)}, where D is a diagram of K.

Our aim in this section is to prove that the ascending number of a knot
coincides with the warping degree of the knot. We refer to some results concerning
the warping degree.

Lemma 2.4 ([10]). Let D be a knot diagram.
(1) For the base points b and b′ of D which are put across an overcrossing as

illustrated in Figure 2 (1), we have

d(Db′) = d(Db) + 1.

(2) For the base points b and b′ of D which are put across an undercrossing as
illustrated in Figure 2 (2), we have

d(Db′) = d(Db) − 1.

Lemma 2.5 ([10]). Let D be an oriented alternating knot diagram. Let b be
a base point of D which is just before an overcrossing as illustrated in Figure 2 (1).
Then,

d(Db) = d(D).

Lemma 2.6 ([10]). Let D be an oriented knot diagram. For each base point
b of D, we have

d(Db) + d(−Db) = c(D).

Lemma 2.7 ([10]). Let D be an oriented knot diagram, and D♭ the diagram
obtained from D by crossing changes for all crossings. Then, we have

d(−D) = d(D♭).

Lemma 2.8. Let D be a knot diagram, and D# the mirror image with respect
to the vertical line, see Figure 3. Then, we have

d(D) = d(D#).

Proof. We see that D and D# have the same over and under informations
as illustrated in Figure 3.
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Figure 2.

Figure 3.

Theorem 2.9. Let K be a knot, and K⋆ the mirror image of K. Then,
we have

d(K) = d(−K) = d(K⋆).

Proof. Let D be a diagram of K such that d(D) = d(K), and D♭ and D#

the diagrams of K⋆ as in Lemmas 2.7 and 2.8. By Lemma 2.8, d(K) = d(D) =
d(D#) ≥ d(K⋆), hence d(K) ≥ d(K⋆). Since K is the mirror image of K⋆, we
also have d(K) ≤ d(K⋆). Therefore d(K) = d(K⋆).

Let −E be the diagram of −K such that d(−E) = d(−K). By Lemma 2.7,
d(−K) = d(−E) = d(E♭) ≥ d(K⋆), hence d(−K) ≥ d(K⋆). We also have d(−K) ≤
d(K⋆) by the same argument as above. Therefore, we have d(−K) = d(K⋆).

By Theorem 2.9, we have the following immediately.

Corollary 2.10. For a knot K, we have
(1) a(K) = d(K);
(2) a(K) = a(K⋆).

3. Moves to decrease the ascending number of a knot diagram

In this section, we introduce a collection of moves that convert a diagram
into one with the ascending number as less than before. By these moves and
Theorem 1.6, we determine the ascending number of a variety of knots up to ten
crossings.

We first consider a tangle containing oriented anti-parallel 2k half-twists as
illustrated in Figure 4, where k is an integer. We take a base point just before the
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Figure 4.

Figure 5.

Figure 6.

overcrossing of 2k half-twists as in Figure 4. Then Db has k warping crossings
in the portion of the twists. Let D′

b′ be a based diagram obtained from Db by a
move as illustrated in Figure 4. Then we can remove k warping crossings. D′ is
said to be obtained by a whirl move for D.

We remark that we obtain a diagram of a twist knot such that a(D) = 1
by a whirl move. Let D be a diagram of a twist knot as illustrated in Figure 5.
Then a(D) = 4. Let D′ be a diagram obtained from D by a whirl move for D as
illustrated in Figure 5. Then a(D′) = 1.

A chord diagram of D or Db is a circle with n chords marked on it by line
segments, where the preimage of each crossing is connected by a chord. We take
the orientation of the chord from the overcrossing to the undercrossing.

We consider two successive alternating crossings. Let Db be a based diagram
as illustrated in Figure 6 (1), and c1 and c2 two crossings in Db. Then, c2 is a
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warping crossing of Db. Then, Figure 6 (2) is a chord diagram corresponding to
Figure 6 (1). By a move as Figure 6 (3), we remove the warping crossing c2.

We generalize such a move as follows. Let Db be a based oriented diagram,
and c a chord of Db corresponding to warping crossings satisfying the following;
c does not intersect chords whose endpoints are on bc, where bc is the subset of
the circle of the chord diagram starting from b to one of ∂c with orientation such
that bc ∩ (b ∪ c) = ∂bc. Then we can reduce the warping crossing corresponding
to c by pulling over-arc of c into before of b. We call such a portion of a chord
diagram a chord of type 1. We determine the ascending number for a variety of
knots by such moves. In particular, we improve Jablan’s result for the following
thirty-two knots; 932, 940, 1050, 1051, 1054, 1061, 1065, 1066, 1084, 1087, 1089, 1090,
1092, 1095, 1098, 10101, 10102, 10104, 10105, 10107, 10110, 10111, 10114, 10120, 10121,
10140, 10144, 10153, 10154, 10155, 10157, and 10158.

We next consider four successive alternating crossings. Let c1, c2, c3, and
c4 be four successive crossings as in Figure 7. Then, c2 and c4 are warping
crossings of D when we take a base point just before c1. Then, we can remove the
warping crossings in the five cases as illustrated in Figure 8. We call a portion
of a chord diagram as Figure 8 a chord of type 2, 3, 4, 5, and 6, respectively.
Figure 9 illustrates diagrams corresponding to chords of type 2, 3, 4, 5, and
6, respectively. We can remove the warping crossings c2 and c4 by moves as
illustrated in Figure 10.

We determine the ascending number for a variety of knots by such moves.
In particular, we improve Jablan’s result for the following seven knots; 933, 1063,
1067, 1083, 1086, 1088, and 10115.

Example 3.1. Let K be the knot 933, and D a diagram of K as illustrated
in Figure 11. Then, a(D) = 4. Since a chord diagram of D contains a chord of
type 6, then K has a diagram D′ such that a(D′) = 2. Since K is not a twist
knot, we have a(K) ≥ 2 by Theorem 1.6. Therefore, a(K) = 2.

For the knots 1031 and 1058, we can find two chords of type 1.

Example 3.2. Let K be the knot 1058, and Db a diagram of K as illustrated
in Figure 12. Then, a(Db) = 4. Since the chords 2 and 6 are type 1, K has a
diagram D′ such that a(D′) = 2. Since K is not a twist knot, hence a(K) ≥ 2.
Therefore, a(K) = 2.

We remark that a(1031) = 2 by the same argument as Example 3.2.
For the knots 10132 and 10136, we cannot find chords of types 1–6 in the

diagrams of Rolfsen’s knot table. But, we can find a chord of type 1 in the
diagrams as illustrated in Figure 13.
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Figure 7.

Figure 8.

Figure 9.

Figure 10.
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Figure 11.

Figure 12.

Figure 13.
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4. Properties of the ascending number

In this section, we prove Theorem 1.4.

Lemma 4.1. Let D be a diagram with c(D) ≥ 1. Then, we have

a(D) ≤ 1
2(c(D) − 1).

Proof. We take a base point b of D just before an overcrossing. By
Lemma 2.6, we have d(Db) + d(−Db) = c(D). Let b′ be the base point of −D as
illustrated in Figure 14. By Lemma 2.4, we have d(−Db) = d(−Db′) + 1.

Then we have

d(Db) + d(−Db) = c(D),
d(Db) + d(−Db′) + 1 = c(D),

a(D) + a(D) ≤ c(D) − 1,

a(D) ≤ 1
2(c(D) − 1).

Lemma 4.2. If a(D) = 1
2 (c(D) − 1), then D is alternating.

Proof. Suppose that D is not alternating. Then, D contains a portion of
two successive overcrossings. Let b and b′ be the base points of D just before and
after two overcrossings as illustrated in Figure 15.

By Lemma 2.6, we have

d(Db) + d(−Db) = c(D),
d(D′

b) + d(−D′
b) = c(D).

Then, we have

d(Db) + d(−Db) + d(D′
b) + d(−D′

b) = 2c(D).(1)

By Lemma 2.4, we have

d(D′
b) = d(Db) + 2,(2)

d(−D′
b) = d(−Db) + 2.(3)

From the equations (1), (2), and (3), we have

d(Db) + d(−Db) + d(Db) + d(−Db) + 4 = 2c(D),
d(Db) + d(−Db) = c(D) − 2,
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Figure 14.

Figure 15.

a(D) + a(D) ≤ c(D) − 2,

a(D) = 1
2(c(D) − 2).

It contradicts the assumption.

We say that two chords are consecutive if an endpoint of one chord is adjacent
to an endpoint of the other chord as illustrated in Figure 16.

Lemma 4.3. For a chord diagram C, if any two consecutive chords intersect,
then any two chords of C intersects.

Proof. Suppose that there exist two chords c1 and c2 such that they do
not intersect. Let c1c2 be a component of C \ (c1 ∪ c2) such that the endpoints of
c1c2 consist of an endpoint of c1 and an endpoint of c2. If there is no chord one of
whose endpoint is on c1c2, it is a contradiction. If there is a chord c′ one of whose
endpoint is on c1c2, then c′ does not intersect at least one of c1 and c2. Suppose,
without loss of generality, that c′ does not intersect c1, we take c′ as c2. Then, we
can obtain new c1c2 such that the number of chords one of whose endpoints is on
it is less than before. By repeating the argument above, we can find consecutive
chords c1 and c2 such that c1 ∩ c2 = ∅. It is a contradiction.

Lemma 4.4. For a chord diagram C, if any two consecutive chords intersect,
then C is represented as in Figure 17.

Proof. By Lemma 4.3, any two chords intersect, and all chords intersect
as illustrated in Figure 17.

Proof of Theorem 1.4. If K is the (2, p)-torus knot, then we have
u(K) = 1

2 (c(K) − 1) by Theorem 1.2. We have a(K) = 1
2 (c(K) − 1) by the

inequality u(K) ≤ a(K) and Proposition 1.1.
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Figure 16.

Figure 17.

Assume that a(K) = 1
2 (c(K) − 1). Let D be a diagram such that c(D) = c(K).

By the definition of the ascending number and Lemma 4.1, we have

a(K) ≤ a(D) ≤ 1
2(c(D) − 1) = 1

2(c(K) − 1).

Since a(K) = 1
2 (c(K) − 1), then a(K) = a(D) = 1

2 (c(D) − 1). Hence D is alter-
nating by Lemma 4.2. Taking a base point just before an overcrossing, we have
d(Db) = a(D) = a(K) by Lemma 2.5. Furthermore we note that a(D) = a(−D) =
C(D)−1

2 by Lemma 2.6.
Let c1 and c2 be two successive crossings of D. We assign an orientation

to D and a base point just before these crossings so that we first encounter an
overcrossing. If c1 and c2 correspond to chords of type 1, then we can decrease
the ascending number by a move for a chord of type 1. Hence we have a(K) ≤
1
2 (c(K) − 2). It contradicts the assumption. Therefore, any two consecutive
chords of D intersect. By Lemma 4.3, any two chords of D intersect. Then we
have a chord diagram of D as illustrated in Figure 17, by Lemma 4.4. The alter-
nating knot diagram corresponding to such a chord diagram is a diagram of the
(2, p)-torus knot.

5. The ascending number of a certain family of knots

Ozawa [8] determines the ascending numbers of torus knots.

Theorem 5.1 ([8]). Let p and q be coprime integers, and T(p,q) the (p, q)-
torus knot. Then, we have

a(T(p,q)) = 1
2(p − 1)(q − 1).
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Figure 18.

In this section, we consider the families of 2-bridge knots as illustrated in
Figure 18. Let C(m), C(m, n), and C(m, n, l) be 2-bridge knots represented by
Conway notation m, mn, and mnl, respectively, where m, n, and l are positive
integers.

Theorem 5.2.
(1) a(C(m)) = 1

2 (m − 1) if m is odd.
(2) a(C(m, n)) = 1

2 m if m is even and n is odd integer.
(3) a(C(m, n, l)) = 1

2 (m + l − 1) if m and n are even and l is odd integer.

Murasugi [7] defines the signature σ(K) of a knot K as the signature of
the matrix SK + ST

K , where SK is the Seifert matrix of K and ST
K is the trans-

posed matrix of SK . The following is obtained by the well-known result between
the signature and the unknotting number, and the definition of the ascending
number.

Lemma 5.3. Let K be a knot. We have |σ(K)|
2 ≤ u(K) ≤ a(K).

Proof of Theorem 5.2. (1) Since C(m) is the torus knot of type (2, m),
a(K) = 1

2 (m − 1) by Theorem 5.1.
(2) Suppose that m is even and n is odd. We have σ(K) = −m. Hence

m
2 ≤ a(C(m,n)) by Lemma 5.3. We obtain a diagram D of C(m,n) with a(D) = m

2
by a whirl move for the portion of a diagram corresponding to n-twists. Therefore,
we have a(C(m, n)) = m

2 .
(3) Suppose that m and n are even and l is odd. We have σ(K) = m + r − 1.

Hence m+r−1
2 ≤ a(C(m, n, l)) by Lemma 5.3. We obtain a diagram of C(m, n, l)

with a(K) = m+r−1
2 by a whirl move for the portion of a diagram corresponding

to n-twists. Therefore, we have a(m, n, r) = m+r−1
2 .
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Remark 5.4.
(1) u(C(m)) = a(C(m)) = 1

2 (m − 1) if n is odd.
(2) u(C(m, n)) = a(C(m, n)) = 1

2 m if m is odd and n is even.
(3) u(C(m, n, l)) = a(C(m, n, l)) = 1

2 (m + l − 1) if m and n are even and l

is odd.

Theorem 5.5. Let n be an integer. If n = 1 or |n| ≥ 3, then a(C(4,n)) = 2.

Proof. We denote C(4, n) by Kn. If n is positive and odd, then a(Kn) = 2
by Theorem 5.2 (2).

Suppose that n is even, or negative odd. We have a(Kn) ≤ 2 by a whirl move
for the portion of a diagram corresponding to n-half twists. We can show that Kn

is not a twist knot by a knot invariant (for example, Conway polynomial, Jones
polynomial), hence a(Kn) ≥ 2 by Theorem 1.6.

Remark 5.6.
(1) a(K) = 1 for n = −2, −1, 2.
(2) a(K) = 0 for n = 0.

Problem 5.7.
(1) Determine a(C(m, n)) when m and n are even (n ̸= 4).
(2) Determine a(C(m, n, r)) when m, n, and r are odd.
(3) Determine a(C(m, n, r)) when m is even, and n and r are odd.

6. The ascending number of a reduced alternating diagram

According to Lemma 2.5, the warping degree of an alternating diagram takes
two values d(D) or d(D) + 1 depending on a choice of base points.

Problem 6.1. For an alternating diagram, what property of a diagram
does the ascending number depend on?

When a diagram is not reduced, we can make a diagram whose ascending
number is arbitrarily large. We consider the ascending number of a knot repre-
sented by reduced alternating diagrams. Note that any two diagrams of an
alternating knot is mutually transformed by a finite sequence of flype moves
(Figure 19), that is, Tait’s conjecture, see [6].

Let Db be a reduced alternating diagram as illustrated in the left of Figure 20,
and suppose that d(D) = d(Db) = n. Then there are two warping crossings in
the portion of D illustrated by bold lines. Let D′

b′ be a diagram obtained by the
flype move from D, see the right of Figure 20. Then there is one warping crossing
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Figure 19.

Figure 20.

in the portion of bold line, and the portions of D illustrated by dotted lines are
not changed before a flype move. Hence

d(D′) = d(D′
b′) = n − 1.

As above, we can decrease the ascending number of a certain diagram by a flype
move while keeping a diagram reduced alternating.

Example 6.2. Let D be a diagram of 911 as illustrated in Figure 21. Then,
d(D) = 4. By a flype move to the portion denoted by a dotted circle, we have a
diagram D′ with d(D′) = 3.

Problem 6.3. For given n, find the minimal value of d(D) for a reduced
alternating diagram D with c(D) = n.

We can obtain a diagram whose crossing number is arbitrary large and
ascending number is small while keeping a diagram reduced alternating. For an
alternating knot K, we denote amax(K) (resp. amin(K)) the maximal (resp. mini-
mal) of the ascending number among of all reduced alternating diagram of K.

Theorem 6.4. For any natural number n, we have a knot such that
amax(K) − amin(K) ≥ n.

Proof. Let K be a knot obtained by a connected sum of n copies of
41 knots and D a diagram of K as illustrated in the left of Figure 22. Then,
a(D) = 2n. Let D′ be a diagram of K obtained by n flype moves from D as
illustrated in the right of Figure 22. Then, we have a(D′) = n, and amax(K) −
amin(K) ≥ a(D) − a(D′) = n.
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Figure 21.

Figure 22.

7. Table of ascending number of knots

We give a table of the ascending number and unknotting number of prime
knots with ten crossings or less. The notation for knots follows the Rolfsen’s knot
table [9]. The following points should be noted. The knots 10161 and 10162 in
[9] are identical. So we give a numbering for 10n (n = 162, 163, 164, 165) for the
knot 10n+1 in [9]. The figures 1083 and 1086 in [9] should be interchanged. The
lower bound of the ascending number is given by Theorem 1.6 and Lemma 5.3.
The notation twist, 1, 2, . . . , 6, or ∗ in the fourth column indicates a method to
determine the ascending number as follows. The notation “twist” means a twist
knot. The upper bound is given by the transformations in Section 3. The number
1, 2, . . . , or 6 means that the upper bound of a(K) is given by the corresponding
move 1, 2, . . . , or 6 in Section 3. The notation ∗ means that it determined by
the result of the first author [2]. The upper bounds of a(1031) and a(1058) are
determined by the move in Example 3.2. The upper bounds of a(10132) and
a(10136) are determined by the move in Figure 13. These informations are written
in the fourth column.

We use D a knot diagram based on Rolfsen’s knot table. For knots with
unknown ascending number, we give by the set of possible values. For example,
(2, 3) means 2 or 3.

We remark that the authors think a(109) = (2, 3, 4) but (2, 3) in Jablan’s
table [3].
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knot u(K) a(K) a(D)
31 1 1 1 twist
41 1 1 1 twist
51 2 2 2
52 1 1 2 twist
61 1 1 2 twist
62 1 2 2 1
63 1 2 2 1
71 3 3 3
72 1 1 3 twist
73 2 2 3 1
74 2 2 3 1
75 2 2 3 1
76 1 2 3 1
77 1 2 2
81 1 1 3 twist
82 2 3 3 ∗
83 2 2 3 1
84 2 2 3 1
85 2 3 3 ∗
86 2 2 3 1
87 1 (2, 3) 3
88 2 2 3 1
89 1 (2, 3) 3
810 2 (2, 3) 3
811 1 2 3 1
812 2 2 3 1
813 1 2 3 1
814 1 2 3 1
815 2 2 3 1
816 2 2 3 1
817 1 2 3 1
818 2 2 2 1
819 3 3 3
820 1 2 2
821 1 2 2
91 4 4 4
92 1 1 4 twist
93 3 3 4 1
94 2 2 4 2
95 2 2 4 2
96 3 3 4 1
97 2 2 4 2

knot u(K) a(K) a(D)
98 2 2 4 2
99 3 3 4 1
910 3 3 4 1
911 2 3 4 1, ∗
912 1 2 4 2
913 3 3 4 1
914 1 2 3 1
915 2 2 4 2
916 3 3 4 1
917 2 (2, 3) 3
918 2 2 4 2
919 1 2 3 1
920 2 3 4 1, ∗
921 1 2 4 5
922 1 (2, 3) 3
923 2 2 4 2
924 1 (2, 3) 3
925 2 2 4 2
926 1 (2, 3) 3
927 1 (2, 3) 4 1
928 1 (2, 3) 4 1
929 2 (2, 3) 4 1
930 1 (2, 3) 4 1
931 2 (2, 3) 3
932 2 2 3 1
933 1 2 4 6
934 1 2 3 1
935 3 3 4 1
936 2 3 4 1, ∗
937 2 2 3 1
938 3 3 4 1
939 1 (2, 3) 4 1
940 2 (2, 3) 4 1
941 2 (2, 3) 3
942 1 2 2
943 2 3 3 ∗
944 1 2 3 1
945 1 2 3 1
946 2 2 3 1
947 2 2 2
948 2 2 2
949 3 3 3
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knot u(K) a(K) a(D)
101 1 1 4 twist
102 3 4 4 ∗
103 2 2 4 2
104 2 2 4 2
105 2 (3, 4) 4 ∗
106 3 3 4 1
107 1 2 4 2
108 2 3 4 1, ∗
109 1 (2, 3, 4) 4
1010 1 2 4 2
1011 (2, 3) (2, 3) 4 1
1012 2 (2, 3) 4 1
1013 2 2 4 2
1014 2 3 4 1, ∗
1015 2 (2, 3) 4 1
1016 2 (2, 3) 4 1
1017 1 (2, 3, 4) 4
1018 1 2 4 2
1019 2 (2, 3) 4 1
1020 2 2 4 2
1021 2 3 4 1, ∗
1022 2 (2, 3) 4 1
1023 1 (2, 3) 4 1
1024 2 2 4 2
1025 2 3 4 1, ∗
1026 1 (2, 3) 4 1
1027 1 (2, 3) 4 1
1028 2 (2, 3) 4 1
1029 2 (2, 3) 4 1
1030 1 (2, 3) 4 1
1031 1 2 4 Ex. 3.2
1032 1 (2, 3) 4 1
1033 1 (2, 3) 4 1
1034 2 2 4 2
1035 2 2 4 2
1036 2 2 4 2
1037 2 2 4 2
1038 2 2 4 2
1039 2 3 4 1, ∗
1040 2 (2, 3) 4 1
1041 2 (2, 3) 4 1
1042 1 (2, 3) 4 1

knot u(K) a(K) a(D)
1043 2 (2, 3) 4 1
1044 1 (2, 3) 4 1
1045 2 (2, 3) 3 1
1046 3 4 4 ∗
1047 (2, 3) (3, 4) 4
1048 2 (2, 3, 4) 4
1049 3 3 4 1
1050 2 3 4 1, ∗
1051 (2, 3) (2, 3) 4 1
1052 2 (2, 3) 4 1
1053 3 3 4 1
1054 (2, 3) (2, 3) 4 1
1055 2 2 4 2
1056 2 3 4 1, ∗
1057 2 (2, 3) 4 1
1058 2 2 4 Ex. 3.2
1059 1 (2, 3) 4 1
1060 1 (2, 3) 3
1061 (2, 3) 3 4 1, ∗
1062 2 (2, 3, 4) 4
1063 2 2 4 2
1064 2 (2, 3, 4) 4
1065 2 (2, 3) 4 1
1066 3 3 4 1
1067 2 2 4 2
1068 2 (2, 3) 4 1
1069 2 (2, 3) 4 1
1070 2 (2, 3) 4 1
1071 1 (2, 3) 4 1
1072 2 3 4 1, ∗
1073 1 (2, 3) 4 1
1074 2 (2, 3) 4 1
1075 2 (2, 3) 3
1076 (2, 3) 3 4 1, ∗
1077 (2, 3) (2, 3) 4 1
1078 2 (2, 3) 4 1
1079 (2, 3) (2, 3, 4) 4
1080 3 3 4 1
1081 2 (2, 3) 4 1
1082 1 (2, 3) 4 1
1083 2 2 4 5
1084 1 (2, 3) 4 1
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knot u(K) a(K) a(D)
1085 2 3 4 1, ∗
1086 2 2 4 4
1087 2 (2, 3) 4 1
1088 1 2 4 4
1089 2 2 3 1
1090 2 (2, 3) 4 1
1091 1 (2, 3) 4 1
1092 2 3 4 1, ∗
1093 2 (2, 3) 4 1
1094 2 (2, 3) 4 1
1095 1 (2, 3) 4 1
1096 2 (2, 3) 4 1
1097 2 (2, 3) 4 1
1098 2 3 4 1, ∗
1099 2 (2, 3, 4) 4
10100 (2, 3) 3 4 1, ∗
10101 3 3 4 1
10102 1 (2, 3) 4 1
10103 3 3 4 1
10104 1 (2, 3) 4 1
10105 2 (2, 3) 4 1
10106 2 (2, 3) 4 1
10107 1 (2, 3) 4 1
10108 2 (2, 3) 4 1
10109 2 (2, 3, 4) 4
10110 2 (2, 3) 4 1
10111 2 3 4 1, ∗
10112 2 (2, 3) 3
10113 1 (2, 3) 3
10114 1 2 3 1
10115 2 2 4 2
10116 2 (2, 3) 4 1
10117 2 (2, 3) 4 1
10118 1 (2, 3) 4 1
10119 1 (2, 3) 4 1
10120 3 3 4 1
10121 2 (2, 3) 4 1
10122 2 (2, 3) 3
10123 2 (2, 3) 3
10124 4 4 4
10125 2 (2, 3) 3
10126 2 (2, 3) 3

knot u(K) a(K) a(D)
10127 2 3 3 ∗
10128 3 3 4 1
10129 1 (2, 3) 3
10130 2 (2, 3) 3
10131 1 (2, 3) 3
10132 1 2 3 Fig. 13
10133 1 2 3 1
10134 3 3 3
10135 2 2 3 1
10136 1 2 3 Fig. 13
10137 1 2 3 1
10138 2 (2, 3) 3
10139 4 4 4
10140 2 2 3 1
10141 1 (2, 3) 3
10142 3 3 4 1
10143 1 (2, 3) 3
10144 2 2 3 1
10145 2 2 3 1
10146 1 2 3 1
10147 1 2 3 1
10148 2 (2, 3) 3
10149 2 3 3 ∗
10150 2 3 3 ∗
10151 2 (2, 3) 3
10152 4 4 4
10153 2 (2, 3) 4 1
10154 3 3 4 1
10155 2 2 3 1
10156 1 (2, 3) 3
10157 2 2 3 1
10158 2 2 3 1
10159 1 2 2
10160 2 2 2
10161 3 3 3
10162 2 (2, 3) 3
10163 2 2 2
10164 1 (2, 3) 3
10165 2 (2, 3) 3
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