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Abstract
Hirose, Saito, and the author established the weighted sum formula for finite
multiple zeta(-star) values. In this paper, we present its alternative proof. The
proof is also valid for symmetric multiple zeta(-star) values.

1. Introduction

For positive integers kq, ..., k, with &k, > 2, the multiple zeta values (MZVs)
and the multiple zeta-star values (MZSVs) are defined by

1
Clk1,. . k) = Z T €K,

“ . r
0<ny < <ng ny Ny
(ke k) = 1 cr
TyeoeyRp) = T T .
O<ny<<n, T

We set a Q-algebra A by

Am (1;[%2) / (@ Z/pz>,

where p runs over all primes. For positive integers k1, ..., k., the finite multiple
zeta values (FMZVs) and the finite multiple zeta-star values (FMZSVs) are
defined by

1
C.A(k17"'7k’l“) = ( Z Hmodp) €A7
p

0<ni<-<np<p 1 T

1
Cﬁ(kl,...7kr) = ( Z Mmodp) EA.
p

0<n1 < <n,p<p ny
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The symmetric multiple zeta values (SMZVs) were introduced by Kaneko—
Zagier [8]. For positive integers k1, ..., k., we define

T

Cskry. o k) o= (=D TRt (g k) (s ki) € R
=0

Here, the symbol (* on the right-hand side means the regularized value coming
from the harmonic regularization, i.e., a real value obtained by taking constant
terms of harmonic regularization as explained in Thara—Kaneko—Zagier [4]. In the
sum, we understand ¢*()) = 1. Let Zr be the Q-vector subspace of R spanned
by 1 and all MZVs, which is a Q-algebra. Then the SMZVs are defined by

Cs(k1, .. k) o= C5(ka, ... ky) mod ((2) € Zr/(¢(2)).

For positive integers k1, ..., k., we also define the symmetric multiple zeta-star
values (SMZSVs) by

Gk, ky) = > C5(ki O - Ok,) mod €(2) € Zr/(((2)).

O is either a comma “,”
or a plus “+”

Let Z4 denote the Q-vector subspace of A spanned by 1 and all FMZVs. Kaneko
and Zagier conjecture that there is an isomorphism between Z4 and Zr/({(2))
as Q-algebras such that (4(k1,...,k.) and (s(k1,...,k,) correspond with each
other (for more details, see Kaneko—Zagier [7, 8]). In the following, we use the
letter F stands for either A or S, e.g., the symbol (» means (4 or (s.

Hirose, Saito, and the author [2] proved the following weighted sum formula
for FMZ(S)Vs. In this paper, we will give its alternative proof. Our proof is also
valid for SMZ(S)Vs.

THEOREM 1.1. Let k be a positive integer, r a positive odd integer, and 1
an integer with 1 < i <r <k. Then we have

Z Qkicf(klv"'7k7‘)zo7
ki+-tkr=k
ki,....kr->1

> MGk, k) =0.
kit tke=k
Epyeeskr>1
REMARK 1.2. We note that similar weighted sum formulas for MZVs are
known (see Guo—Xie [1], Ohno—Zudilin [10], and Ong-Eie-Liaw [11]). Kamano
[6] also obtained somewhat different weighted sum formulas for FMZVs.
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2. Proof of the main theorem

2.1. Notation. An index is a sequence of positive integers, and we de-
note by Z the Q-linear space spanned by the indices. Maps defined for indices,
such as (r, will be extended Q-linearly. For an index k = (k1, ..., k), the inte-
ger k:=ky 4+ -+ + k, is called the weight of k (denoted by wt(k)) and the inte-
ger r is called the depth of k (denoted by dep(k)). We write ({1}) = (1,...,1)

——
m
for a nonnegative integer m. For indices k = (k1 ...,k,) and kK" = (k},...,k.)
of the same depths, the symbol k @ k" represents the componentwise sum, i.e.,
kok' = (ki + Kk, ...k +Ek.).

DEFINITION 2.1. For an index k = (k1 ..., k), we define ¢(k) by

d(k) := (—1)" > (1010---01,...,1010---01) e Z.
O is eit}“}er la (;(?}111’{121 7 the number of the number of
or a plus “+ “17 s ky “17 s k.

For example, we have ¢(1,2,2) = —(1,2,2) — (1,1,1,2) — (1,2,1,1) — (1,1,1,1,1).

DEFINITION 2.2. For a nonempty index k = (kyq, ..., k), we define Hoffman’s
dual index of k by

EY=(1,...,1+1,...,1+1,...,1+1,...,1).
N—— N — N—_——
k1 ko ko

For positive integers k, r, ¢ with 1 < <r <k, we set

Fkri):= > 287 (k.. k) € L.
kit-+kr=k
kyyekp>1

Throughout this paper, we always assume that e runs over sequences of non-
negative integers. (Recall that an index is a sequence of positive integers.) For an
index k and a nonnegative integer [, we also set

Gi(k, )= >  (koe) el
wt(e)=l
dep(e)=dep(k)
Go(k,1) == > (koeVer
wt(e)=l

dep(e)=dep(k")
G(k,1) = G1(k,1) — Go(k,1) € T.
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For example, we have G1((2,3),1) = (3,3) + (2,4). For positive integers k, r, i
with 1 <14 <r <k, we put
H(k,r,i)
= F(k,r, i)
k—r—1 ‘ 4
- ( > 2T I+ L) k= = D)+ G{1}), k- 7”)) el
1=1

2.2. Proof of Theorem 1.1. To prove Theorem 1.1, we use Theorems
2.3 and 2.4, and Lemma 2.5.

THEOREM 2.3 (Hoffman [3], Jarossay [5]). For an index k, we have

Cr(k) = Cr(p(k)).

The following relation for FMZVs and SMZVs was conjectured by Kaneko
and established by Oyama [12].

THEOREM 2.4 (Oyama [12]). For an index k and a nonnegative integer 1,
we have

Cr(G(k,1)) = 0.

LEmMA 2.5 (Key lemma). Let k be a positive integer, v a positive odd
integer, and i an integer with 1 <1i <r < k. Then we have

({13%)  (k: even),

H(k,r i)+ ¢(H(k,r i) = {0 (k: odd)

To prove Lemma 2.5, we need Lemmas 2.6 and 2.7.

LEMMA 2.6. Let k, r be positive integers and ¢ an integer with 1 < <r < k.
Then we have

k—r—1
F(k,r, i) — < > 2T I+ LY ) k= = 1)+ Ga(({1}7), k- 7“))
=1
=2k h Yk —r 1, {1},
PrOOF. We note that the depths of all the indices on the left-hand side

are r. Put

k—r—1

A= )" 276 (Y T+ L) k= = 1)+ Ga(({1)7), k= 7).

=1
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Fix an index (a1,...,a;,...,a,) of weight k and depth r. Since the number of
indices (ai,...,a;,...,a,) included in A is
aifl

d o2t =out (1<a; <k-r),
=1

k—r—1

S o=t (g = k—r 4 1),
=1

we find that all the indices appeared in F(k,r,i) and A are same except for
2F=r=1({1}=1 k —r + 1,{1}"~%). Thus we find the result. O

LEMMA 2.7. Put ®(I) := I+ ¢(I) for I € I. Let k be a positive integer,
r a positive odd integer, and i an integer with 1 < i <r < k. Then we have

k—r—1
¢>< Z G ({1 1+ 1, {1y )k —r — 1) + Go(({1}7), k — r))

=1
eI k- e+ L {1 )+ (1) (ke even),
- Lokl ({1t k-4 1, (1)) (k: odd).

PrROOF. Put

k—r—1

B:= Z LG ({1 L+ 1, {1y ) k—r — 1) + Ga(({1}7), k — 1),
=1

C:= 2" 1o({1V  k—r 1, {1770,

Then we have

k—r—1
B= Y 27t N (AT r—it D @e)Y)+ ({11Y)
=1 wh(e)=k—r—1
dep(e)=l+1
k—r—1
=y 2! > {1 ke kg, {177 + ({119).
=1 kit-tkp_r_ip1=k—r+1

ki,oskk—r—14+12>1

Fix an index ({1}*7% aq,...,aq, {1}"7%) of weight k and depth d + r — 1 with
2 < d < k —r. Then the numbers of indices ({1}*~%, a1, ..., aq,{1}"~%) included
in B and ¢(B) are, respectively,

k—r—1
d—1
k—r—d -1 k—1
2 and E 27 (=) (k—r—l)
I=k—r—d+1
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‘We have
k—r—1
d—1
ok—r—d =1 (_1\k—L.
+ Z 2 (=1) k—r—1
l=k—r—d+1
d—2
— 2k—7'—d + 2k—7'—d . (_1)7'+d+1 . (—2)l (d; 1)
1=0
o2 d—1
— gh—r=d_(_1)d. ((—1)d + (—2)l< . )) (by r: 0dd).
1=0
Since
(]. — 2.%)" = Z(*Q.T)a . <n),
a=0 @
we have

S (- (“71) = et - e

1=0
by substituting z = 1, a = [, and n = d — 1. Thus we get

k—r—1

2krfrfd + 2171 . (_1)krfl . d—1
l:k;d+1 <k - l>
= 2 (1) () (1 (2

— 2]€—’I‘—1

Similarly, the number of indices ({1}*) in B + ¢(B) is

k—r—1

O (.50, + v
k—r—1
=1+ %(—1)’“ ; (—2)! <k ; T) + (~1)k
= 1 DR DRT =1 - (2R + ()
1

=ok—r-14 5(1 +(=1)%)  (by r: odd)

2k=r=1 11 (k: even),
gh—r=1 (k: odd).
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Then we find

B+ ¢(B)

k—r
-y 3 2L (1Y ay, . ag, {1177

d=2 a1+ +ag=k—r+1

N {(2’”1+1)({1}k) (k: even),
k—r—1 k .
2 ({1} (k: odd).

On the other hand, by the direct calculation, we have

k—r+1

cC= > > k11 ay, . ag, {13770,

d=2 ai+---+ag=k—r+1
a,...,aqg>1

This finishes the proof. [l

ProOF OF LEMMA 2.5. By Lemmas 2.6 and 2.7, we easily find the lemma
holds. O

PROOF OF THEOREM 1.1 (The first statement). By Theorems 2.3 and 2.4,
and Lemma 2.5, we see the theorem holds. []

Now we prove the second statement of Theorem 1.1. We can prove this in
the same manner as in Hirose-Murahara—Saito [2]. The following formulas are
well known (see, e.g., Sakugawa—Seki [13]).

LEMMA 2.8. For positive integers ki, ..., k., we have

r

S (=D R, )Ry - Kia) = 0.

1=0
Here, we understand (r(0) = (x(0) = 1.

PROPOSITION 2.9 (Hoffman [3], Murahara [9]). For positive integers k1, ...,
k., we have

> Glkoqys s ko() =0,

cES,

Z C}(ko(l)a ) ko’(?')) =0,

ceS,.

where S,. is the symmetric group of degree r.
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PROOF OF THEOREM 1.1 (The second statement). By Lemma 2.8, we have

E (71)l E Qkig}(kla"'7kl)<.7:(kr7"'vkl+1) =0.
=0 ki+-+k,.=k
ki,....kr>1

By using the first statement of Theorem 1.1 and Proposition 2.9, we find the
result. O
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