神戸大学附属図書館デジタルアーカイブ
登録はこちら
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/0100485419
このアイテムのアクセス数:
491
件
(
2025-10-01
03:12 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
0100485419 (fulltext)
pdf
2.77 MB
325
メタデータ
ファイル出力
メタデータID
0100485419
アクセス権
open access
出版タイプ
Accepted Manuscript
タイトル
Nonlinear reduced-order modeling for three-dimensional turbulent flow by large-scale machine learning
著者
Ando, Kazuto ; Onishi, Keiji ; Bale, Rahul ; Kuroda, Akiyoshi ; Tsubokura, Makoto
著者名
Ando, Kazuto
著者名
Onishi, Keiji
著者ID
A3404
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=ab89a6bb5a126a45520e17560c007669
著者名
Bale, Rahul
バレ, ラフール
所属機関名
システム情報学研究科
著者名
Kuroda, Akiyoshi
著者ID
A0325
研究者ID
1000040313366
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=0eb599be2df55cbd520e17560c007669
著者名
Tsubokura, Makoto
坪倉, 誠
ツボクラ, マコト
所属機関名
システム情報学研究科
言語
English (英語)
収録物名
Computers & Fluids
巻(号)
266
ページ
106047
出版者
Elsevier
刊行日
2023-11-15
公開日
2025-09-11
抄録
A large-scale machine learning-based nonlinear reduced-order modeling method was developed for a three-dimensional turbulent flow field (Re=1000) using a neural-network with unsupervised learning. First, a mode decomposition method was applied to three-dimensional flow field data using a convolutional-autoencoder-like neural network. Then, a reduced-order model (ROM) was constructed using long short-term memory neural networks (LSTMs). Consequently, it was demonstrated that the time evolution of the turbulent three-dimensional flow field can be simulated at a significantly lower cost (approximately three orders of magnitude) without a major loss in accuracy. However, neural-network-based mode decomposition for the three-dimensional flow field requires a huge computational cost in terms of calculation and memory usage. Therefore, a distributed machine-learning method was implemented using a hybrid parallelism scheme tailored to the network structure. Thus, it was possible to decompose 1.7 million cells of the three-dimensional flow field data into 64 modes and reproduce those with sufficient accuracy. In this study, a uniform flow around a circular cylinder model was used as a test case. To validate the method, the reduction performance of the proposed mode decomposition method was compared with the proper orthogonal decomposition (POD) method. Furthermore, the target flow field was reproduced using ROM, and the reconstruction accuracy was evaluated in terms of various criteria compared with the accuracy based on POD in conjunction with Galerkin projection method.
キーワード
Reduced-order model
Turbulence
Three-dimensional flow field
Distributed machine learning
Convolutional autoencoder (CAE)
Long short-term memory (LSTM) networks
カテゴリ
システム情報学研究科
学術雑誌論文
権利
© 2023 Elsevier Ltd.
This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.
関連情報
DOI
https://doi.org/10.1016/j.compfluid.2023.106047
詳細を表示
資源タイプ
journal article
ISSN
0045-7930
OPACで所蔵を検索
CiNiiで学外所蔵を検索
eISSN
1879-0747
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る